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Abstract—Web services are considered to be a potential silver bullet for the envisioned Service Oriented Architecture, in which

loosely coupled software components are published, located, and executed as integral parts of distributed applications. The main

research focus of Web services is to achieve the interoperability between distributed and heterogeneous applications. Therefore,

flexible composition of Web services to fulfill the given challenging requirements is one of the most important objectives in this research

field. However, until now, service composition has been largely an error-prone and tedious process. Furthermore, as the number of

available Web services increases, finding the right Web services to satisfy the given goal becomes intractable. In this paper, toward

these issues, we propose an AI planning-based framework that enables the automatic composition of Web services, and explore the

following issues. First, we formulate the Web service composition problem in terms of AI planning and network optimization problems

to investigate its complexity in detail. Second, we analyze publicly available Web service sets using network analysis techniques.

Third, we develop a novel Web service benchmark tool called WSBen. Fourth, we develop a novel AI planning-based heuristic Web

service composition algorithm named WSPR. Finally, we conduct extensive experiments to verify WSPR against state-of-the-art

AI planners. It is our hope that both WSPR and WSBen will provide useful insights for researchers to develop Web service discovery

and composition algorithms, and software.

Index Terms—Web service composition, AI planning, complex network, benchmark.

Ç

1 INTRODUCTION

WEB services are often considered to be one of the

most important and vital building blocks for the

“Semantic Web” [1]. As such, the industrial support of

Web services has grown drastically in recent years. For

example, it is expected that by 2007, 72 percent of all

application development software will support Web

services, and 45 percent of all types of software will be
Web services enabled [2]. As a growing number of Web

services are available on the Web and in organizations,

finding and composing the right set of Web services

become ever more important.
The main research focus of Web services is to achieve

interoperability between distributed and heterogeneous
applications. Therefore, flexible composition of Web services
in order to fulfill the requirements of the tasks is one of the
most important objectives in this research field. To date,
however, many people have considered the service composi-
tion to be an ad hoc, time-consuming, and error-prone
process involving repetitive low-level programming [3]. To
remedy these problems, in recent years, a plethora of research
work and products on Web service composition (WSC)

problems have appeared. In addition, the Web service
research community has hosted competitive programs (e.g.,
EEE05 [4] and ICEBE05 [5]) to solicit algorithms and soft-
wares to discover pertinent Web services and compose
them to make value-added functionality. We first show
how a WSC problem typically forms by illustrating a small
size problem.

1.1 Motivating Example

In Web service enabled networks, typically a client
program first locates a Web service server that can satisfy
certain requests from a yellow page (UDDI) and obtain a
detailed specification (WSDL) about the service. Then,
using the known API in the specification, the client sends a
request to the Web service considered via a standard
message protocol (SOAP), and in return, it receives a
response from the service. Web services are self-
explanatory; by interpreting XML tags, applications can
understand the semantics of operations. In particular, a
problem of practical interest concerns the following two
issues. Given a request r, among thousands of candidate
Web services found in UDDI: 1) how we can find matching
services that satisfy r and 2) how we can compose multiple
services to satisfy r when a matching service does not exist.
Consider the four Web services in Table 1, as illustrated in
WSDL notation:

. Given the hotel name, city, and state information,
findHotel returns the address and zip code of the
hotel.

. Given the zip code and food preference,
findRestaurant returns the name, phone num-
ber, and address of the restaurant with matching
food preference and closest to the zip code.
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. Given the current location and food preference,
guideRestaurant returns the address of the
closest restaurant and its rating.

. Given the start and destination addresses, find-
Direction returns a detailed step-by-step driving
direction and a map image of the destination address.

Now, consider the following two requests from “State
College, PA, USA”:

. r1: find the address of the hotel “Atherton,” and

. r2: find a “Thai” restaurant near the hotel “Atherton”
along with a driving direction.

To fulfill r1, invoking the Web service findHotel is
sufficient. That is, by invoking findHotel(“Atherton,”
“State College,” “PA”), one can get the address of the hotel
as “100 Atherton Street” with the zip code of “16801.”
However, none of the four Web services can satisfy r2

alone. Both Web services findRestaurant and guide-

Restaurant can find a “Thai” restaurant near the hotel
but cannot provide a driving direction. On the other hand,
the Web service findDirection can give a driving
direction from one location to another but cannot locate
any restaurant. Therefore, one has to use a chain of Web
services to fully satisfy r2. There are two possible methods
to carry out this task. After obtaining the hotel address
using findHotel, one can do either of the following:

1. Invoke guideRestaurant(“Thai,” “100 Atherton
Street, 16801, PA”) to get the address of the closest

restaurant, e.g., “410 S. Allen St. 16802, PA.” Then,
invoke the Web service findDirection(“100
Atherton Street, 16801, PA,” “410 S. Allen St. 16802,
PA”) to get a driving direction.

2. Invoke findRestaurant(“16801,” “Thai”) to get
the address of the closest restaurant, e.g., “410
S. Allen St. 16802, PA.” Then, invoke the Web
service findDirection(“100 Atherton Street,
16801, PA,” “410 S. Allen St. 16802, PA”) to get a
driving direction.

The above motivating example shows a simple and small
WSC problem, wherein multiple Web services must be
composed to satisfy a given request. The real-world
composition problems, however, are much more compli-
cated than the motivating example, as the number of Web

services are rapidly increasing and Web services are
connected to other services in different structures depend-
ing on applications.

This paper’s main contribution is to propose WSBen and
WSPR for a Web service benchmark and a WSC algorithm,
respectively. Compared to our previous works [6], [7],
WSBen is significantly updated by incorporating the
complex network theories for populating its testing sets,
and WSPR is also improved in terms of effectiveness,
efficiency, scalability, and robustness by adopting better

heuristics discovered through the study on real Web service
networks. To deliver our detailed study on the topic of Web
services, we take a developmental progression; formalize
the WSC problem, observe the topology of real Web service
networks, build benchmarks that simulate these observed
topologies, and design a WSC algorithm, and finally
evaluate it against the generated benchmarks as well as
existing testing sets. Accordingly, our paper has its
organization laid out to fit the above developmental
progression. For details, as shown in Fig. 1, this paper is

organized as follows:

1. Section 2 defines the WSC problem in terms of the AI
planning problem, where we will show that the WSC
problem is NP-Complete and justify our develop-
ment of a polynomial-time approximation algorithm
to solve the problems.

2. Section 3 observes existing Web services, through
which we become aware that the WSC problem can
arise in diverse domains whose characteristics can
be captured by investigating the underlying network
topologies.
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TABLE 1
Web Service Interface Examples

(a) findHotel. (b) findRestaurant. (c) guideRestaurant.
(d) findDirection.

Fig. 1. Organization of this paper.



3. In Section 4, based on the implications from
observing existing Web services, we develop a
flexible Web service benchmark tool called WSBen,
which utilizes complex network models to generate
diverse Web service sets for testing the robustness
of existing and newly introduced composition
algorithms.

4. In Section 5, we develop an effective WSC
algorithm titled WSPR, and in Section 6, we
evaluate the performance of our proposal through
the experimental validation using multiple criteria
including effectiveness, efficiency, scalability, and
robustness.

We can indicate three main assumptions of this work.

First, Web services defined in this paper are assumed to

have no side effects such as delete effects. Second, we

assume that Web services can be composed only using their

interfaces defined with WSDL and the semantic matchmak-

ing is out of the paper scope. Third, we expect that the

interface matching between Web services can be prepro-

cessed by leveraging on off-the-shelf semantic- or context-

based models in a different granularity level. This implies

that composition algorithms will simply concentrate on the
effective composition alone and not worry about individual
matching between parameters (Tables 2 and 3).

2 PROBLEM DEFINITION

A Web service w typically has two sets of parameters:
wi ¼ fI1; I2; . . .g for SOAP request (as input) and
wo ¼ fO1; O2; . . .g for SOAP response (as output). When
w is invoked with all input parameters, wi, it returns the
output parameters, wo. We assume that in order to
invoke w, all input parameters in wi must be provided
(i.e., wi are mandatory).

Definition 2.1 (Web service discovery (WSD) problem).
Suppose that a request r has initial input parameters ri and
desired output parameters ro. The WSD problem is defined
as to find a set of Web services w, such that 1) ri � wi and
2) ro � wo.

With a simple lookup table, the WSD problem can be easily
solved. Therefore, in the remainder of this paper, we focus
on the case where no single Web service can fully satisfy
the request r, and therefore, one has to compose multiple
Web services. This type of problem is referred to as the
WSC problem and can be formally defined using a
planning problem in the STRIPS [8] four-tuple model,
� ¼ hP;W; ri; roi, where

1. P is a set of parameters. In the motivating ex-
ample in Section 1, P ¼ f‘‘hotel-name;’’ ‘‘hotel-city;’’
‘‘hotel-address;’’ . . .g,

2. W is a set of Web services. In the motivating
example, W ¼ f‘‘findHotel;’’ ‘‘findRestaurant;’’ . . .g,

3. ri � P is the initial input parameters,
4. ro � P is the desired output parameters.

Note that � ¼ hP;W; ri; roi is a propositional STRIPS
planning in which an initial state is a finite set of ground
atomic formulas, indicating that the corresponding condi-
tions are initially true and that all other relevant conditions
are initially false. In addition, the preconditions and
postconditions of an operator as well as the goals are the
ground literals [9]. Fig. 2 illustrates the STRIPS model of the
motivating example.
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TABLE 2
Summary of Notations

TABLE 3
Summary of Definitions

Fig. 2. STRIPS model of the motivating example.



We can transform a STRIPS model � into a state space
model � ¼ hS; s0; SG;�ð�Þ; f; ci, where

1. The state s 2 S is a collection of parameters in P ,
2. The initial state s0 2 S is such that s0 ¼ ri,
3. The goal states s 2 SG are such that ro � s,
4. �ðsÞ is a set of Web services w 2W such that wi � s.

That is, w can be invoked or applicable in the state s,
5. The transition function fðw; sÞ ¼ s0 that maps a

state s into a state s0 such that s0 ¼s [ wo for w 2 �ðsÞ,
6. cðwÞ is the invocation cost of w.

A solution of the state model is a finite sequence of Web
services w1; w2; . . . ; wn, where a sequence of states
s0; s1; . . . ; sn exists, such that si ¼ fðwi; si�1Þ for i ¼ 1; . . . ; n,
wi 2 �ðsi�1Þ, and sn 2 SG [10], [11]. Based on �, the WSC
problem can be formally defined as follows:

Definition 2.2 (WSC problem). Suppose that a request r has
initial input parameters ri and desired output parameters ro.
The WSC problem is to find a finite sequence of Web services,
w1; w2; . . . ; wn such that 1) wi is invoked sequentially from 1
to n, 2) ðri [ wo1 [ . . . [ wonÞ � ro, and 3) the total costPn

i¼1 cðwiÞ is minimized.

The WSC problem can be considered to be the informa-
tion gathering problem [12], where Web services represent
information sources and interleaving between Web services
is not found. For that reason, WSC algorithms model the
world state as an information state, which is a description of
the information collected by the algorithm at a particular
stage in composition [13]. Therefore, the WSC problem is a
relatively simple delete-free problem from a planning
perspective but has quite different characteristics than a
usual planning problem. Classical planning problems (e.g.,
blocks world problem) have generally considered a small
number of actions (e.g., move block) in the assumption of a
large number of initial and goal propositions (e.g., hundreds
of blocks to move). On the contrary, WSC problems
generally deal with a large number of actions (e.g.,
hundreds of travel agent services) with a limited number
of propositions involved (e.g., registering one hotel) [14].

Definition 2.3 (state node network). A state node network is a
directed graph GsðVs; EsÞ, where si 2 Vs represents a state,
and Ep is a set of directed edges (or arcs) ðsi; sjÞ that connects
ordered pairs of si 2 Vs and sj 2 Vs. Every arc ðsi; sjÞ 2 Es is
weighted by the invocation cost cðwÞ, where w 2 �ðsiÞ and
sj ¼ fðw; siÞ (i.e., sj ¼ si [ wo).

Given a network GsðVs; EsÞ, we consider paths in which
arcs are traversed only in the forward direction. The cost of a
path is the sum of the costs of the associated arcs. Our interest
is to obtain the shortest path between s0 and snð2 SGÞ. Fig. 3
illustrates the GsðVs; EsÞ of the motivating example. Note
that s5, s6, and s7 contain the goal parameters, “K” and “L,”
where “K” and “L” refer to “mapHotelRestaurant” and
“directionHotelRestaurant,” respectively. Therefore, s5, s6,
and s7 belong to SG. It is evident that if cðwiÞ ¼ 1 for all
wi 2W , then the shortest paths are: 1) s0, s1, s2, s5ðw1 !
w2 ! w4Þ and 2) s0, s1, s3, s7 ðw1 ! w3 ! w4Þ. Indeed, the
problem of finding the shortest paths from s0 to snð2 SGÞ can
be formulated as the minimum cost flow problem.

Let bi denote the amount of flow that enters the network
at node si 2 Vs, i ¼ 0; . . . ; n. Let fli;j denote the amount of
flow that is greater than 0 on arc ðsi; sjÞ 2 Es. Note that fli;j
will automatically be an integer due to the unimodularity
property of network flow problem. If bi > 0, the node is a
source that supplies bi units of flow. If bi < 0, the node is a
sink that demands bi units of flow. In the minimum cost
flow problem, one unit of flow is analogous to be a
pathfinder in a real world who finds a shortest path from a
source node to a sink node. Suppose s0 ¼ ri, and sn 2 SG.
Although we are interested in obtaining the shortest path
between s0 and sn, it is also possible to consider the issue of
finding the shortest path from all states to a given goal state
by setting bi ¼ 1, for i ¼ 0; . . . ; n� 1 and bn ¼ �n. Simply,
this will put a supply of one unit at every other non-goal
state node, and a demand of n at the goal state node so that
the total supply and demand are equal. Suppose that a cost
of ci;j per unit flow on arc ðsi; sjÞ 2 Es is cðwÞ, where
sj ¼ fðw; siÞ. Then, the minimum cost flow problem is given
as follows:

minimize
X

ðsi;sjÞ2Es
ci;jfli;j ð1Þ

subject to

X
ðsi;sjÞ2Es

fli;j �
X

ðsk;siÞ2Es
flk;i ¼ bi; ð2Þ

fli;j � 0 8ðsi; sjÞ 2 Es: ð3Þ

This formula indicates that flows must be feasible and
each node conserves flow. Specifically, Objective function
(1) indicates that we are interested in getting the shortest
plan (or path). Constraint (2), called the “flow conservation
equations,” indicates that the flow may be neither created
nor destroyed in the network. In the conservation equation,P
ðsi;sjÞ2Es fli;j represents the total flow out of node si, whileP
ðsk;siÞ2Es flk;i indicates the total flow into node si. This

equation requires that the net flow out of node si,P
ðsi;sjÞ2Es fli;j �

P
ðsk;siÞ2Es flk;i, should be equal to bi. Note

that if bi < 0, then there should be more flow into i than out
of i. Feasible flows exist when

Pn
i¼0 bi ¼ 0.
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Fig. 3. GsðVs; EsÞ of the motivating example.



This minimum cost flow problem can have a dual problem.
With b0¼b1¼ � � � ¼ bn�1¼1, the dual problem with �n¼ 0 is

maximize
Xn�1

i¼0

�i ð4Þ

subject to

�i � ci;j þ �j 8ðsi; sjÞ 2 Es: ð5Þ

�i refers to the cost associated with the path from si to sn.
This maximization problem suggests that in the optimal
solution, ��, if all components are fixed except for ��i , then
��i tends to become as large as possible and is subject to the
feasibility constraint (5). Therefore, ��i satisfies the following
Bellman equation with ��n ¼ 0:

��i ¼ min
ðsi;sjÞ2Es

ci;j þ ��j
n o

; i ¼ 0; . . . ; n� 1: ð6Þ

��i s are also called labels, and there are polynomial
algorithms to solve the equation outlined in (6), such as the
label setting algorithm (when ci;j is nonnegative) or label-
correcting algorithm [15]. However, there are problems
with this idea. These algorithms are polynomial in the size
of nodes jVsj, but the number of nodes are exponential in
the number of parameters jP j. This is because nodes are
information states, and the information state is a collection
of parameters in P . Before we proceed to investigate the
complexity of the WSC problem in detail, we need to
introduce two matching operations described below.

Definition 2.4 (full matching). Suppose that a state s 2 S is
given. Let a Web service w1 2 �ðsÞ. If for w2 2W , wo1 � wi2,
then w1 can “fully” match w2.

Definition 2.5 (partial matching). Suppose that a state s 2 S
is given. Let a Web service w1 2 �ðsÞ. If for w22W , ðwo1 6�wi2Þ
and ðwo1 \ wi2 6¼ ;Þ, then w1 can “partially” match w2.

In the motivating example, findHotel partially
matches findRestaurant and guideRestaurant. In
turn, findRestaurant and guideRestaurant partially
match findDirection. However, if both findHotel and
findRestaurant are composed, then findDirection

can be fully matched. When only full matching is
considered in the WSC problem, it can be seen as a
single-source shortest path problem, which is defined over
GsðVs; EsÞ. On the other hand, when both full and partial
matching operations must be considered concurrently, the
problem becomes a decision problem to determine the
existence of a solution of k operators or less for proposi-
tional STRIPS planning with restrictions on negation in pre-
and postconditions.

Theorem 2.6. The WSC problem with full and partial matching
operations is NP-complete.

Proof. For proof, see Appendix A. tu

Theorem 2.6 implies that when the number of Web
services to search is not small, finding an optimal solution
to the WSC problem defined in Definition 2.2 is prohibi-
tively expensive. Therefore, we will propose an AI-planner-
based approximate algorithm instead. Note that if not

specially provided, a WSC problem is considered to have
both full and partial matching cases throughout this paper.

3 STUDY OF EXISTING WEB SERVICES

In this section, we will observe public Web services and the
ICEBE05 test sets and reveal their network features by
means of complex network properties. For this purpose, we
first define Web service networks in a novel way, as it is then
easy to investigate the real-world Web service structure.

A set of Web services forms a network (or directed
graph). There are different kinds of models to determine
nodes and edges of the network depending on the
granularity level: Web service level (coarse granularity),
operation level, and parameter level (fine granularity)
models. Fig. 4 illustrates that three WSDL files can be
converted into a bipartite graph structure that consists of
three distinct kinds of nodes (parameter, operation, and Web
service node) and directed edges between bipartite nodes
(operation nodes and parameter nodes). An edge incident
from a parameter node to an operation node suggests that
the parameter is one of the inputs of the corresponding
operation. Conversely, an edge incident from an operation
node to a parameter node implies that the parameter is one
of the outputs of the corresponding operation. The graph in
Fig. 4 has three Web services, labeled WS1, WS2, and WS3.
WS1 has two operations, Op11 and Op12. WS2 and WS3
have one operation, Op21 and Op31, respectively. The graph
also displays 11 parameters, labeled A through K. According
to the node granularity, we can project the upper graph into
three different Web service networks.

Definition 3.1 (parameter node network). A parameter node
network is a directed graph, GpðVp; EpÞ, in which Vp is a set of

all parameter nodes and Ep is a set of directed edges from input
parameters pi 2 Vp to output parameters pj 2 Vp; i.e., there

exists an operation that has an input parameter matching pi
and an output parameter matching pj.

Definition 3.2 (operation node network). An operation node

network is a directed graph GopðVop; EopÞ, in which Vop is a set
of all operation nodes and Eop is a set of directed edges from
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operation opi 2 Vop to operation opj 2 Vop; i.e., opi can fully or
partially match opj.

Definition 3.3 (web service node network). A Web service
node network is a directed graph GwsðVws; EwsÞ, in which Vws
is a set of all Web service nodes and Ews is a set of directed
edges from Web service node wsi 2 Vws to wsj 2 Vws; i.e., there
exists one or more edges between any operation in wsi and any
operation in wsj in an operation node network.

For example, in Fig. 4, A! Op11! C is projected into
A! C in the parameter node network, Gp. Similarly, since
Op12 partially matches Op21 and, subsequently, Op21
partially matches Op31, Op12 ! Op21 ! Op31 is shown
in the operation node network, Gop. Also, since WS1
possesses Op12, and WS2 possesses Op21, WS1 ! WS2
appears in the Web service node network, Gws. As men-
tioned previously, in operation node networks, a directed
arc, ði; jÞ 2 Eop suggests that i 2 Vop can match j 2 Vop either
fully or partially. Slightly differently, we can define a new
type of operation node network by restricting the partial
match and only allowing the full match. We differentiate this
operation node network by using the f symbol:Gf

opðV f
op; E

f
opÞ.

To investigate the properties of public Web services, we
first downloaded 1,544 raw WSDL files (downloadable at
http://rakaposhi.eas.asu.edu/PublicWebServices.zip) that
Fan and Kambhampati [16] gathered from real-world Web
service registries such as Bindingpoint, Salcentral,
WebserviceList, WebserviceX, and xMethods. After
weeding out invalid WSDL files that do not conform to the
WSDL DTD, 670 valid WSDL files remained. Then, we
converted semantically invalid parameters such that those
parameters can capture their underlying semantics when
they have evident semantic sources. For example, many
operations of WSDL files have terms like “result(s)” or
“return(s)” in their output parameters, which make it hard
to interpret what the terms mean; i.e., what the “results” or
“returns” means. In this case, we replaced the terms with
their operation name or Web service name. Sometimes, an
operation name is a sequence of concatenated words;
therefore, it is hard to do the replacement tasks. In such a
case, we did a proper token segmentation and extracted
the primal terms from the tokens using lexical analysis.
For example, if an operation name is “getAuthorname-
fromPaper” or “searchAuthornamesbyPaper,” we extracted
“Authornames” and used it to replace “result(s)” or
“returns(s).” After these preprocessing tasks, we built a
set, P ¼ {all parameters found in the valid 670 WSDL files}.

3.1 Complex Network Models

Complex network models have been used to investigate
real-world networks. Especially, “random,” “small-world,”
and “scale-free” types have been shown to model many
real-world networks sufficiently [17]. Commonly, in ran-
dom, scale-free, and small-world complex networks, nodes
signify the elements of the system and edges represent the
interactions between them.

Definition 3.4 (random network). A random network is
defined with N nodes, if each pair of nodes is connected with
probability p. As a result, edges are randomly placed among a
fixed set of nodes. The random network can be constructed by
means of the Erdos-Renyi’s random-graph model [18].

Definition 3.5 (regular network). RgðN;kÞ is defined as a
regular network on N nodes, if node i is adjacent to nodes

½ðiþ jÞmod N	 and ½ði� jÞmod N	 for 1 � j � k, where k is
the number of valid edge of each node. If k ¼ N � 1, RgðN;kÞ
becomes a complete N-node graph, where every node is

adjacent to all the other N � 1 nodes.

We can define some metrics to quantify the characteristic
properties of the complex networks as follows:

. L: the average shortest distance between reachable
pairs of nodes, where the distance between nodes
refers to the number of hops between the nodes.
LðpÞ is defined as L of the randomly rewired
Watts-Strogatz graph [19] with probability p.
Lrandom is identical to Lð1Þ.

. C: the average clustering coefficient. Suppose that
for a node i with vi neighbors, Ci ¼ 2Ei

viðvi�1Þ , where Ei

is the number of edges between vi neighbors of i.
C is the average clustering coefficient Ci for a
network. CðpÞ is defined as C of the randomly
rewired Watts-Strogatz graph with probability p.
Crandom is identical to Cð1Þ.

Definition 3.6 (small-world network). Small-world networks
are characterized by a highly clustered topology like regular
lattices and small average short distance. Specially, C 

Crandom and L �>Lrandom [20].

By using the Watts-Strogatz model [21], [19], we can
construct networks that have small-world network proper-
ties. The model depends on two parameters, connectivity ðkÞ
and randomness ðpÞ, given the desired size of the graph ðNÞ.
The Watts-Strogatz model starts with an RgðN;kÞ and then
every edge is rewired at random with probability p; for every
edge ði; jÞ, we decide whether we change j node (the
destination node of ði; jÞ) with probability p. The Watts-
Strogatz model leads to different graphs according to the
different p as follows:

. When p ¼ 0, an RgðN;kÞ is built.

. When p ¼ 1, a completely random network is built.

. Otherwise, with 0 < p < 1, each edge ði; jÞ is recon-
nected with probability p to a new node k that is
chosen at random (no self-links allowed). If the new
edge ði; kÞ is added, then ði; jÞ is removed from the
graph. The long-range connections (shortcuts) gen-
erated by this process decrease the distance between
the nodes. For intermediate values of p, there is the
“small-world” region, where the graph is highly
clustered and has a small average path length.

Definition 3.7 (scale-free network). Networks are called scale-

free networks if the number of nodes that have v number of
neighbor nodes is proportional to PwðvÞ / vð��Þ, where � is

typically greater than two with no humps.

Albert and Barabasi defined several extended models
[22], [23], [20] to provide the scale-free properties. The
extended model uses an algorithm to build graphs that
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depend on four parameters: m0 (initial number of nodes),
m (number of links added and/or rewired at every step of
the algorithm), p (probability of adding links), and
q (probability of edge rewiring). The procedure starts with
m0 isolated nodes and performs one of the following three
actions at every step:

1. With the probability of p, mð� m0Þ new links are
added. The two nodes are picked randomly. The
starting point of the link is chosen uniformly, and
the end point of the new link is chosen according
to the following probability distribution:

�i ¼
vi þ 1P
jðvj þ 1Þ ; ð7Þ

where �i is the probability of selecting the ith node,
and vi is the degree of node i. The process is
repeated m times.

2. With the probability of q, m edges are rewired. For
this purpose, i node and its link lij are chosen at
random. The link is deleted. Instead, another node z
is selected according to the probabilities of (7), and
the new link liz is added.

3. With the probability of 1� p� q, a new node with
m links is added. These new links connect the new
node to m other nodes chosen according to the
probabilities of (7).

Once the desired N nodes are obtained, the algorithm

stops. The graphs generated by this algorithm are scale-free

graphs, and the edges of the graphs are constructed such

that there are no correlations among the edges.

3.2 Public Web Services

Table 4 shows the general information about each of the

public Web service networks. First, we investigate the scale-

free network properties of public Web services. Figs. 5 and 6

show Gp, Gop, and Gws of public Web services with their

corresponding outgoing edge distributions. In the outgoing

edge distributions, the x-axis represents the number of

outgoing edges and the y-axis represents the number of

nodes with the same outgoing edges. We can apply the

power function, PwðvÞ, to each of the outgoing edge

distributions and check �, the exponent value of PwðvÞ.
Even though all � values do not exceed 2, they are highly

skewed so that their shape is similar to the Zipf distribution.
We also investigated the small-world network properties

of public Web services. Table 5 shows the average path

length L and clustering coefficient C for three giant

connected components extracted from each of the three

public Web service networks (Gp, Gop, and Gws), compared

to random graphs with the same number of nodes and

average degree of a node. It is interesting that Gp, Gop,

and Gws show small-world network properties: L �>Lrandom
and C 
 Crandom. This result suggests that public Web

OH ET AL.: EFFECTIVE WEB SERVICE COMPOSITION IN DIVERSE AND LARGE-SCALE SERVICE NETWORKS 7

TABLE 4
Features of Public Web Service Networks

Fig. 5. Public Web services. (a) Gp. (b) Gop. (c) Gws.

Fig. 6. Outgoing edge distribution of public Web services. (a) Gp. (b) Gop. (c) Gws.

TABLE 5
Small-World Network Properties of Giant Components

in the Public Web Services



services have such “shortcuts” to connect nodes that would
otherwise be much farther apart than Lrandom.

3.3 ICEBE05 Test Sets

The ICEBE05 [5] test sets are autogenerated from software

by the ICEBE05 organization, who provides 18 test sets. We

have selected “composition2-20-4,” as a representative of

the 18 test sets because all of them are similar in nature.

Figs. 7 and 8 show Gp, Gop, and Gf
op with their outgoing edge

distributions. The shapes of the graphs differ considerably
from the real public Web services. Each graph consists of

10 islands, and those islands (the connected component) are

uniform in terms of their network topologies (number of

nodes, number of arcs, and the connectivity pattern). Each

island is likely to approximate workflow Web service

domains (e.g., business, scientific, and medical workflows).
The parameters used in workflows tend to be domain

specific or constitute professional terms, and thus their Gps

are likely to have a regular network property. Moreover, the

nodes in Gop and Gf
op of workflow domains are likely to be

connected to a few number of neighboring Web services in

the succeeding stage of workflow. This can occur because
workflows can be constructed such that the underlying

networks do not follow scale-free network properties, in

order to avoid skewed resource consumption or increase the

network survivability.
Table 6 shows the general information about each of the

ICEBE05 Web service networks. Note that all Web services

in ICEBE05 have only one operation, meaning that Gop and
Gws are identical. This is why the network diameters of Gop

and Gf
op are 7 identical. In fact, all test requests of ICEBE05

can be solved using the full matching operation alone. In
the event that the WSC problem has this kind of special
scheme, it can be addressed quickly using a simple shortest
path algorithm with a single source.

Considering Fig. 8, 86 percent of the nodes of Gp have an
outgoing edge degree of 7 uniformly and 77 percent of the
nodes of Gop has an outgoing edge degree of 20 uniformly.
Hence, the distribution can be fitted by the peak distribu-
tion, and this peak shape is the strong evidence to prove
that Gp and Gop do not follow the scale-free network, which
is the case with the public Web services (refer to Fig. 6). On
the contrary, the outgoing edge distribution of Gf

op has
� ¼ 1:5927, so that it can be regarded as the Zipf-like
distribution. However, it is not clear if it has scale-free
properties, because the largest outgoing degree is just 12.
This number is too small to view the node as a hub,
considering that the total node number of Gf

op is 1,229.
Table 7 shows the average path length L and clustering

coefficient C for three giant connected components ex-
tracted from each of the three ICEBE05 Web service
networks, compared to random graphs with the same
number of nodes and average degree of a node. Gp shows
the random network characteristics: L � Lrandom and
C � Crandom. On the contrary, Gop and Gf

op show special
characteristics: C = 0 and L � Lrandom. As an extreme case, if
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a graph is a tree in which no circle exists, then C becomes 0,
because there are no triangles in the graph.

In summary, we observed existing Web services and
learned several implications, which are given as follows:

. WSC problems can arise in diverse scenarios.
However, they can be captured by investigating
which of the network topologies would fit into their
Web service networks, especially complex networks.

. Conversely, we can use the complex network models
to generate Web service test sets. This idea is
fundamental to the design of WSBen.

. A Web service network can be relaxed into a
parameter node network by ignoring operation and
Web service information. This relaxation idea can be
adopted for building a new WSC algorithm. In fact,
WSPR conducts a polynomial-time forward search
over the relaxed parameter-based search space.

4 WSBEN: WEB SERVICES DISCOVERY AND

COMPOSITION BENCHMARK TOOL

In this section, we present a novel benchmark tool titled
WSBen [6], which provides a set of functions to simplify the
generation of test environments for WSD and WSC
algorithms. The main contributions of WSBen is to provide
diverse Web service test sets based on three complex
network models such as “random,” “small-world,” and
“scale-free” types. Note that we already showed in
Section 3.2 that real Web service networks have character-
istics of “small-world” and “scale-free” complex networks.
At a higher level, a Web service can be assumed to be a
transformation between two different application domains,
and each can be represented by a parameter cluster. This
assumption is the basis for developing WSBen. From the
perspective of graph theory, WSBen builds a Parameter
Cluster Network, which consists of clusters and directed
edges connecting two different clusters. These directed
edges become Web service templates from which WSBen
generates Web services as users specify. Formally, the
parameter cluster network is defined as follows:

Definition 4.1 (parameter cluster network). A directed graph
GclðVcl; EclÞ, where Vcl is a set of clusters and Ecl is a set of
directed edges that are incident from input clusters i 2 Vcl to
output clusters j 2 Vcl. Here, cluster i and j contain a set of
nonoverlapping parameters denoted by Pai and Paj, respec-
tively, where Pai \ Paj ¼ ;. Each directed edge is also called a
Web service template from which WSDL files are generated.

Fig. 9 shows the overview of WSBen, which consists of
the following functionalities:

. Input framework: Users can specify and control the
generated synthetic WSDL files and their character-
istics. For this purpose, WSBen provides an input
framework xTS ¼ hjJ j; Gr; �;Mp; jW ji. xTS applies
existing complex network models to specify Gr. Each
element of xTS will be discussed in more detail
below.

. Parameter cluster network, GclðVcl; EclÞ: If xTS is given
by users, based on the first four elements, WSBen

generates Gcl. Each cluster of Gcl is filled with some
number of atomic parameters. In this network, Web
services are defined as transformations between two
different clusters. That is, hi; ji 2 Ecl becomes Web
service templates. The role of Web service templates
in the test set generation will be illustrated.

. Test set and sample requests: by randomly selecting the
Web service templates (arcs of the parameter cluster
network), WSDL files are generated. Once a test set
is generated, users can generate sample test requests
r ¼ hri; roi. The generation process of test sets and
test requests will be illustrated.

. Test and evaluation: WSBen can export both the Web
service WSDL files and test requests into files in
PDDL [24] and STRIPS formats, enabling concurrent
comparison with state-of-the-art AI planners.

Considering xTS ¼ hjJ j; Gr; �;Mp; jW ji, if the first four

tuples are grounded, one can build a parameter cluster

network, where clusters are nodes and Web service

templates are directed edges. In detail,

1. jJ j is the total number of parameter clusters.
2. Gr denotes a graph model to specify the underlying

topology of a parameter cluster network. Gr can be
one of the following three models that are developed
to simulate “random,” “small-world,” and “scale-
free” complex networks, respectively:

. Erdos-RenyiðjJ j; pÞ: This model has such a

simple generation approach that it chooses each

of the possible jJ jðjJ j�1Þ
2 edges in the graph with

jJ j nodes with probability p. The resulting graph

becomes the same as the binomial graph. Note

that the generation of this graph costs OðjJ j2Þ
because it starts with creating jJ jðjJ j�1Þ

2 edges.
. Newman-Watts-StrogatzðjJ j; k; pÞ: The initializa-

tion is a regular ring graph with k neighbors.
During the generation process, new edges are
added randomly with probability p for each
edge. Note that no edges are removed, differing
from the Watts-Strogatz model.
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. Barabasi-AlbertðjJ j;mÞ: This graph model is
generated by adding new nodes with m edges
that are preferentially attached to existing nodes
with a high degree. The initialization is a graph
withm nodes and no edges. Note that the current
implementation of WSBen is limited because it
can only generate the simplified version of
the extended Barabai-Albert model, by setting
p ¼ q ¼ 0 and m0 ¼ m, resulting in graphs with
� ¼ 2:9
 0:1, where � is the exponent of a power
function PwðvÞ defined over connectivity v range
in the form of PwðvÞ / v�� .

3. � denotes the parameter condense rate. With �, users
can control the density of partial matching cases in
produced Web services.

4. Mp denotes the minimum number of parameters a
cluster can contain. In other words, clusters may
have a different number of parameters, but all
clusters must have at least Mp number of parameters.

5. jW j denotes the total number of Web services of a
test set.

With jJ j and Gr, the first two input elements of xTS, we
can build Gcl with each empty cluster. Thus, we need a
procedure to fill each empty cluster with parameters. For
this purpose, WSBen uses the following procedure:

1. A parameter cluster network Gcl with empty clusters
is built by specifying jJ j and Gr.

2. Cooccurrence probability of each cluster is measured
by the following probability:

�j ¼
kj

maxj2Vcl kj
�; ð8Þ

where �j is the cooccurrence probability of cluster j,
and kj is the edge degree of cluster j. � is the
parameter condense rate, which is given by users. �j

is designed to reflect the observation discovered in
Section 3.2, where small number of hub parameters
(e.g., name, postal code, and password) exclusively
possess most of edges in Web service networks.

3. jPajj is measured based on the following equation:

jPajj ¼
Mp

�j
; ð9Þ

where Paj is the set of parameters contained in
cluster j.

4. For each j cluster, atomic parameters are generated
up to jPajj, with duplicated parameters forbidden
(i.e., 8i, j 2 Vcl, Pai \ Paj ¼ ;).

Once a complete parameter cluster network GclðVcl; EclÞ
is built, WSBen generates jW j number of Web services.

Fig. 10 illustrates how WSBen builds Gcl and
generates WSDL files based on the Gcl. Suppose that
xTS¼h8;Barabasi-Albertð8; 2Þ; 0:8; 1:5; 100i is given. Then,
the generation steps are given as follows:

1. WSBen generates a graph of Barabasi-Albert(8, 2).
The direction of each edge is determined at random.

2. �j and jPajj are specified. For example, Cluster 5

has nine parameters as shown in Fig. 10. That is,

jPa5j ¼ 9, as �5 ¼ kj
maxj2Vcl kj

� � ¼ 1
5� 0:8 ¼ 0:16, re-

sulting in jPa5j ¼ Mp

�t
¼ 1:5

0:16 ’ 9.
3. Paj is specified. For example, P5 ¼ f17; 18; 19;

20; 21; 22; 23; 24; 25g as shown in Fig. 10 because
jP5j ¼ 9 and for 8j 2 Vcl, P5 \ Paj ¼ ;. Note that the
parameter names are automatically generated and,
thus, do not contain any semantics.

4. Finally, Gcl is built and WSBen generates jW j Web
services by

a. Randomly choosing hi; ji 2 Ecl.
b. Selecting input parameters from cluster i with

the cooccurrence probability of �i and output
parameters from cluster j with the cooccurrence
probability of �j.

For example, in Fig. 10,ws1 is instantiated from a Web
service template h3; 1i 2 Ecl. Note that �1 ¼ 0:16 and
�3 ¼ 0:8. �1 ¼ 0:16 suggests that the occurrence
probability of each parameter in Cluster 1 is 0.16.
Due to the low probability, only “1” and “9” are
selected from Cluster 1. Similarly, �3 ¼ 0:8 means
that the occurrence probability of each parameter in
Cluster 3 has 0.8. Due to the high probability, all
parameters in Cluster 3 that are “13” and “14” are
selected. Note that each parameter in one cluster can
map into either an input parameter or an output
parameter. In the case where no parameter is
generated, dummy parameters “S” and “T” are filled
in the input and output parameters, respectively.

For experimental purposes in Section 6, we build three
test set frameworks by specifying xTS as follows:

1. baTS ¼ h100;Barabasi-Albertð100; 6Þ; 0:8; 5; jW ji,
2. nwsTS ¼ h100;Newman-Watts-Strogatzð100; 6; 0:1Þ;

0:8; 5; jW ji,
3. erTS ¼ h100;Erdos-Renyið100; 0:06Þ; 0:8; 5; jW ji.
Note that if the first four elements of xTS are grounded, a

Gcl is generated. For eachGcl of the three test set frameworks,
seven different sizes of test sets are generated by varying jW j
as 1,000, 3,000, 5,000, 10,000, 20,000, 30,000, and 50,000,
respectively. This results in 21 test sets (three frameworks �
seven different test sizes). Each Gcl of the three test set
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frameworks has a different jP j. For example, baTS has 4,231,

while nwsTS and erTS have 751 and 1,392, respectively.

Fig. 11 shows the Gp for each of baTS, nwsTS, and erTS

when jW j ¼ 1;000. Each of the 21 test sets has five test

requests. The test request r is constructed such that ro is

farthest away from ri in a parameter space. In order to create

a test request r, we used WSBen, as follows:

1. WSBen selects a Cluster j 2 Gcl at random.
2. WSBen copies all parameters in the Cluster j (i.e.,

Paj) into ri, and then ro is constructed so that it
consists of the first five largest parameters in terms
of griðpÞ. The details about obtaining griðpÞ will be
discussed in Section 5. Consequently, parameters in
ro are farthest away from parameters in ri in a
parameter space.

As a default, WSBen repeats the above procedure five times,

generating five requests for each test set.

5 WSPR: WEB SERVICE PLANNER ALGORITHM

We showed that the sizeof state space is exponential to the size

of the parameterset.Toaddress this intractableWSCproblem,

we propose a polynomial-time heuristic algorithm titled

WSPR, which is a type of AI planning algorithm with two

search steps. When a request r is given, first, WSPR computes

the cost of achieving individual parameters starting from ri

by conducting the forward search. Second, it approximates

the optimal sequence of Web services that connects ri to ro

by conducting the regression search, leveraging on the

results obtained from the first step as guidance.
This two-step-based approach is essentially in accor-

dance to Graphplan [25]. Especially, our forward search

corresponds basically to the algorithm used by one of the

best known planners, FF [26] that uses relaxed Graphplan by

ignoring delete lists. However, our method is significantly

different in that we use a novel heuristic to minimize the

number of Web services in a solution. In contrast, Graphplan

and other AI planners originated from Graphplan typically

aim at minimizing the number of time steps but not

necessarily the number of actions (Web services).
(Step 1) forward search. In the first stage, WSPR obtains

griðpÞ—the cost of achieving p 2 P from a state ri. This cost

can be characterized by the solution of a recursive equation

as follows:

griðpÞ ¼ min
w2OwðpÞ

cðwÞ þmax
p02wi

griðp0Þ
� �

; ð10Þ

where cðwÞ is an invocation cost of a Web service. Since the
average service response time can be seen as an invocation
cost, in this case, we will assume cðwÞ ¼ 1. OwðpÞ is a set of
Web services: OwðpÞ ¼ fw 2W jp 2 wog. At first, griðpÞ is
initialized to 0 if p 2 ri, and to 1 otherwise. Then, the
current information state s is set to ri (line 1 in Algorithm 1).
Every time for 8w 2 �ðsÞ, each parameter p 2 wo is added
to s, and griðpÞ is updated until for 8p 2 ro, griðpÞ are
obtained (lines 2-6 in Algorithm 1). If �ðsÞ does not increase
further, there remains no additional search space, which
means that no solution exists. We name a Web service w as a
predecessor Web service of p 2 P if w is the first Web
service to generate p. We denote PDwsðpÞ to be an inverted
index [15] that contains a set of predecessor Web services
for p. In this paper, we assume that the invocation cost of
Web services is nonnegative. However, it is possible to have
a negative Web service invocation cost if various Qualities
of Service (QoS) are considered (e.g., cost, quality, security).
In that case, rather than (10), label-correcting algorithms
such as the Bellman-Ford algorithm [15] must be used.

Algorithm 1: Forward search algorithm of WSPR.

We can prove the correctness of the forward search of
WSPR by using the loop invariants technique [15].

Theorem 5.1 (correctness of forward search). The forward
search of WSPR runs on � ¼< S; s0; SG;�ð�Þ; f; c > with
cðwÞ ¼ 1 for all w 2W and terminates after obtaining griðpÞ
for all parameter p 2 SG if at least a path exists from ri to ro.

Proof. For proof, see Appendix B. tu

(Step 2) regression search. In the second stage, WSPR
approximates the optimal sequence of Web services that
connects ri to ro by conducting the regression search, as
directed by griðpÞ and PDwsðpÞ, which are obtained from the
first step. In this paper, we propose a greedy algorithm-
based backward search. The backward search is an old idea
in planning that is also known as regression search. In the
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regression search, state s can be thought as a set of effects
and we can specify a subgoal from state s. This algorithm
denotes its subgoal by subGoal and sets subGoal to ro in the
beginning (line 1 in Algorithm 2). We can denote wSpace to
be a set of Web services w 2W , such that wi 2 PDwsðpÞ,
where p 2 subGoal. Then, WSPR selects a Web service from
wSpace by considering their heuristics at each backward
step (lines 3-6 in Algorithm 2). This backward selection
procedure is repeated until subGoal � ri (line 2 in
Algorithm 2). The heuristic used for selecting a Web service
and its underlying hypothesis is given as follows:

Hypothesis 1. Choosing a Web service with a greater
contribution to match subGoal earlier in the regression search
helps reach the initial state faster:

hsgðwÞ ¼ wo \ subGoal½ 	: ð11Þ

hsgðwÞ implies that WSPR favors a Web service with a
bigger contribution to match the subgoal. However, hsgðwÞ
has another important interpretation. A Web service w with
bigger hsgðwÞ has a higher probability to match the subgoal
fully, leading to preventing proliferation of the following
search spaces. In other words, our heuristic attempts to
avoid a partial matching case or reduce the size of partial
matching Web services as much as possible.

In the case that multiple Web services with the same
hsgðwÞ value are in the OPEN list [15], we choose a Web
service with the largest edge degree, as a tie-break rule. This
rule can increase the chance of finding better Web services
by fertilizing the succeeding search space, because the Web
service with the larger edge degree is likely to be connected
to the more Web services.

Experimentally, we will assess the performance differ-
ence provided by the WSPR heuristic. To this end, we
compare the effectiveness and efficiency of WSPR with
those of WSPR without the heuristic.

Algorithm 2: Regression search algorithm of WSPR.

We can use the loop invariants technique to prove the
correctness of the regression search of WSPR.

Theorem 5.2 (correctness of regression search). The regres-
sion search of WSPR terminates after obtaining a set of Web
services to form a path from ri to ro.

Proof. For proof, see Appendix C. tu

The forward search procedure has the polynomial
computation time OðjW j2jP jÞ. First, the length of a sequence
of Web services to satisfy a request is limited by jW j.
Therefore, there are at most jW j iterations. Second, at each
iteration of the forward search, the maximum jW j Web
services and jP j parameters are examined. Consequently, the
computational complexity of the forward search procedure
costs OðjW j2jP jÞ. On the contrary, the regression search
procedure has the polynomial computation time
OðjW j2logjW jÞ. First, the regression search procedure has at
most jW j iterations, and at each iteration, the maximum
OðjW jlogjW jÞ time is required to conduct the sorting task to
select a Web service wwith the largest hsgðwÞ. The time taken
to print a solution can be ignored (lines 8-12 in Algorithm 2).
In general, jP j
 logjW j, so that OðjW j2jP jÞ
OðjW j2logjW jÞ.
In other words, the forward search takes much longer than
the regression search. As a result, the performance of WSPR
is dominated by the forward search procedure. In this
remark, we find that there are three significant dimensions to
determine the performance of WSPR: 1) the length of a
sequence of Web services in a solution, 2) jW j of the Web
service size, and 3) jP j of the parameter set size.

We can use (10) to drive the lower bound of the optimal
cost of WSC solutions. Note that the invocation cost of a
Web service is assumed to be 1. Thus, the optimal cost of a
WSC problem coincides with the minimum number of Web
services required to solve the WSC problem.

For a set of parameters denoted by A, we can regard the
following cost function:

gmaxri ðAÞ ¼ max
p2A

griðpÞ: ð12Þ

The cost of achieving a set of parameters cannot be lower
than the cost of achieving each of the parameters in the set.
Thus, gmaxri ðAÞ is the lower bound of the optimal cost of
achieving ro from ri. In the experimental section, we will use
gmaxri as a baseline assessment to compare different methods.

6 EXPERIMENTAL VALIDATION

In this section, we compare the performance of WSPR and
other three AI planners, Blackbox 4.2, IPP 4.1, and
Graphplan in terms of effectiveness and computational
efficiency. The choice of the three AI planners is based on
their reputation in the AI community. Also, they all provide
their publicly accessible versions downloadable through the
Web. Besides effectiveness and efficiency, we also investi-
gate the scalability of WSPR with respect to increasing the
test set size. We also study the robustness of WSPR in the
presence of diverse test sets and composition scenarios.

To validate an algorithm for the WSC problem, one
needs both test sets and test requests. We prepared three
types of test sets as follows:

1. EEE05 test set [4]: human-generated test sets that are
small-scale with only 100 Web services but with
nontrivial test requests.

2. ICEBE05 test sets [5]: synthetically generated large-
scale test sets.
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3. WSBen-generated test sets: baTS, nwsTS, and erTS
in Section 4.

Note that we could have generated test sets using real
1,544 Web services that we had gathered in Section 3.
However, 1,544 Web services were not large enough for us
and the lack of correlation among real Web services (e.g.,
the network diameter of Gop is just five) makes it hard to
generate “challenging” test sets. Throughout the experi-
ments, we use two evaluation metrics as follows:

1. T ðTimeÞ: it measures how long an algorithm takes
to find a right solution, in seconds. This is a measure
of computational efficiency.

2. #W : the number of Web services in a right solution.
This is a measure of effectiveness.

The smaller both values get, the better the solutions are.
In other words, algorithms that take less running time while
producing right solutions that use fewer Web services are
considered to be “good.”

Blackbox and IPP are extended planning systems that
originated from Graphplan. In particular, Blackbox is
extended to be able to map a plan graph into a set of
clauses for which Blackbox forms a satisfiability (SAT)
problem. For the SAT problem, Blackbox applies the local-
search SAT solver, Walksat [27], so that Blackbox can run
even with a large number of operators. All three AI planners
are each an optimal parallel planner that minimizes the
number of time steps but not necessarily the number of
actions (i.e., the number of Web services). All AI planners
run with their default options, except that the maximum
number of nodes for Blackbox and Graphplan was set to
32,768 and 10,000, respectively. Commonly, the time to read
operator and fact files is not included in T . Blackbox and
IPP accept only the PDDL format, while Graphplan accepts
only the STRIPS format for their operator and fact files. Note
that an operator file corresponds to a test set, and a fact file
corresponds to a test request file. WSBen provides a
function to convert test sets and requests into PDDL and
STRIPS files automatically. The experiments were per-
formed on Linux with three Intel Xeon CPU, running at
2.4 GHz with 8-Gbyte RAM. We also compare WSPR and
“WSPR without heuristic” in order to assess the perfor-
mance difference brought by the WSPR heuristic.

6.1 EEE05 and ICEBE05 Test Sets

The first set of experiments deals with the EEE05 contest
set. In this experiment, all methods solved the optimal
solutions for all test queries within 0.1 second, as shown in

Table 8, where boldfaced entries mean the win of the test
request. The EEE05 test set is a synthetic one that contains
artificially created composition scenarios, and the test set
and test requests appear to be manually created by human
experts. For example, test request 15 has an input set
{“pickup LocationName,” “pickupLocationID,” “first-
Name,” “lastName,” “middleInitial,” “custStreetAddress,”
“custCityAddress,” “custStateAddress,” “custZipAddress”}
and an output set {“shipmentTrackingNumber,” “ship-
mentCost”}. The test set contains just 100 WSDL files.
Although the test set is small, the EEE05 test set is still
challenging because it is not simple for humans to solve
them optimally in a short time. Note that the EEE05 contest
originally offered 15 test requests, but six test requests (i.e.,
4, 6, 7, 9, 11, and 12) out of 15 are discarded since there are
syntax errors in the requests.

The second set of experiments deals with the ICEBE05
contest set. ICEBE05 provides 18 test sets with their
complexities varied in different dimensions. Note that all
test requests of ICEBE05 can be solved by the full
matching operation, so that #W ¼ maxp2ro griðpÞ. We found
that “Composition2-100-32” was the most difficult test set
among 18 test sets and the results of the experiments with
“Composition2-100-32” are shown in Table 9. More details
about the ICEBE05 test sets and the computational
complexity of their problems are revealed in [7]. All
methods, except Graphplan, had no problem in solving the
optimal solutions for all test requests within a reasonable
time. We found that Graphplan fails to read the operation
file when the number of operation in the file exceeds 5,000;
“Composition2-100-32” has 8,356 Web services (or opera-
tions, in the PDDL and STRIPS operation files). Regarding
#W , all methods had no problem to generate the minimal
length solution to each of the test requests. In terms of T ,
Blackbox and WSPR shows similar results, while IPP
shows the worst performance.

6.2 Test Sets Generated by WSBen

The third set of experiments deals with baTS, nwsTS, and
erTS. Table 10 shows the results of the five test requests of
baTS with jW j ¼ 5;000. Graphplan and IPP run out of
memory for all cases. Blackbox also fails except for the fourth
request, but the solution length of the fourth request is
longer than that of WSPR. WSPR finds all solutions without
difficulty. Regarding T , WSPR solves all requests within
30 seconds, but Blackbox takes 609 seconds to solve
the fourth request. The experiment results of baTS with
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TABLE 8
Results of the EEE05 Test Set

TABLE 9
Results of the Composition2-100-32 Test Set of ICEBE05



jW j ¼ 5;000 implies that the comparison of AI planners and

WSPR is in vain once the number of Web services exceeds

5,000. Judging from the results above, the WSPR heuristic

with the strategy in support of locating a fully matching Web

service first in a tie situation is in effect when the underlying

network topology follows the scale-free network.
Table 11 shows the results of the five test requests of

nwsTS with jW j ¼ 5;000. Graphplan runs out of memory

for all cases. IPP also fails to solve the second request.

WSPR finds all solutions, and four out of the five solutions

are better than the other planners. Regarding T , WSPR

shows better performance as well. Compared to baTS,

Blackbox and IPP still run even though #W and T are not

as good as WSPR. According to the results above, the WSPR

heuristic is in effect when the underlying network topology

follows a small-world network.
Table 12 shows the results of the five test requests of

erTS with jW j ¼ 5;000. Graphplan fails for all cases and IPP

fails to solve the fifth request. WSPR and Blackbox have no

problem in obtaining solutions, but WSPR shows better

performance in terms of #W and T than others overall. The

results suggest that the WSPR heuristic is still in effect even

when the underlying network topology follows the random

network.
From the above experiments using diverse test sets, we

can understand how different network models of Gcl

influence the performance of WSC algorithms. In general,

given the same number of clusters, the Barabasi-Albert

model generates Gcl with a greater number of parameters

and a larger variance of the number of parameters between

clusters than the Newman-Watts-Strogatz and Erdos-Renyi

models do. Due to the greater number of parameters and

larger variance, baTS based on the Barabasi-Albert model

needs more partial matching Web services to fulfill the

given requests than others. As such, the increasing need for

partial matching Web services leads to increasing #W and

T . This is the reason three AI planners almost failed to run

in the baTS case.

We change our focus from the comparison of WSPR and
AI planners to the assessment of scalability of WSPR.
Figs. 12 and 13 show how WSPR and WSPR without
heuristic operate in different domains, while the test size
increases from 1,000 to 50,000. Note that #W and T at each
size are averaged over the solutions to the five requests. The
line with the triangle mark at the bottom in each graph in
Fig. 12 links values, where each value is averaged over the
five lower bounds of optimal solutions at each size. In fact,
the lower bound corresponds to the total time steps counted
from the input to the desired output parameters in the
forward search of WSPR so that #W cannot be less than the
lower bound.

Regarding #W , WSPR and WSPR without heuristic have
no difficulties to address requests even when jW j ¼ 50;000.
However, WSPR overruns WSPR without heuristic com-
pletely. Regarding T , WSPR and WSPR without heuristic
scale up smoothly, with WSPR being slightly faster than
WSPR without heuristic. We can simply assert that WSPR
will continue to perform with this increasing smooth
pattern in terms of T , even if jW j continues to increase.
Thus, the time to compute the heuristic in the regression
search step is trivial and WSPR is scalable, regardless of
different topologies of underlying Web service networks.

Fig. 14 illustrates the solutions of WSPR and Blackbox to
the fourth request of nwsTS with jW j ¼ 3;000, respectively.
Note that WSPR and Blackbox have the same scheme in
their forward search stage because both aim to minimize the
number of time steps to reach the goal. Therefore, both
WSPR and Blackbox have the same number of time steps of
eight. However, in their regression search schemes, con-
siderable differences exist. When the size of a test set
becomes very large, Blackbox converts the plan graph into a
set of clauses to form a SAT problem. For the SAT problem,
Blackbox applies Walksat, an incomplete local SAT search
algorithm. The algorithm is limited to seek an assignment of
the variables that satisfies a given formula without
considering full or partial matching. It is natural because
the SAT problem is a decision problem, not an optimization
problem. As a result, Walksat search strategy can produce
poor solutions in the WSC problem domain.

For example, at the sixth time step in Fig. 14, Blackbox
composes a set of four Web services, such as {ws38, ws366,
ws369,ws710}, to match the subgoal at the seventh time step
that is the set of input parameters of two Web services, such
as {ws371, ws1364}. This decision results in an exponen-
tially increasing number of Web services for the subsequent
subgoal. Due to the exponentially growing number, as
previous results show, the regression search of Blackbox
often fails before it reaches the initial state. On the contrary, at
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Results of baTS with jW j ¼ 5;000

TABLE 11
Results of nwsTS with jW j ¼ 5;000

TABLE 12
Results of erTS with jW j ¼ 5;000



the same time step, WSPR, which is designed to favor the full
matching Web services, composes a set of two Web services,
such as {ws1362, ws2355}, to match the subgoal that is the
set of input parameters of two Web services, such as
{ws1364, ws702}. Thus, the size of subsequent subgoal does
not explode and continues this pattern until it reaches the
initial state, thereby reducing #W .

The main findings about WSPR from the experiments are
given as follows:

1. Effectiveness. As confirmed by the experimental
evaluation, WSPR shows better results in 80 percent
of all cases in terms of #W , compared to the other
prominent AI planners including Blackbox, IPP, and
Graphplan. In particular, WSPR outperformed
WSPR without heuristic. This implies that the
heuristic of WSPR with the strategy in support of
locating fully matching Web service first in a tie
situation is in effect.

2. Computational efficiency. We measured how quickly
WSPR generates the correct solutions in comparison
with the other AI planners, as more data are applied
to the problem. The experimental validation showed

that WSPR outperformed the other methods with
significant differences in terms of T .

3. Scalability. The experiments proved that WSPR and
WSPR without heuristic did not blow up exponen-
tially when the test set size increases. This implies
that both algorithms have scalability and the two-
step approach of WSPR is responsible for scalability.
Note that the time to compute the WSPR heuristic in
the regression search step was ignorable.

4. Robustness. As confirmed by the experimental
evaluation, WSPR can be seen as a robust solution
for the WSC problem because it can perform
persistently well in diverse WSC scenarios that arise
in different test sets, including EEE05, ICEBE05
characterized by the tree structure, and WSBen-
generated test sets: baTS, nwsTS, and erTS featured
by complex and random graph structures.

7 RELATED RESEARCH WORK

There are three approaches from different communities that

have been established to address WSC (Table 13). First is the

manual composition approach, which adopts the idea of

OH ET AL.: EFFECTIVE WEB SERVICE COMPOSITION IN DIVERSE AND LARGE-SCALE SERVICE NETWORKS 15

Fig. 12. #W of WSPR over the test sets. (a) baTS. (b) nwsTS. (c) erTS.

Fig. 13. T of WSPR over the nwsTS test sets. (a) baTS. (b) nwsTS. (c) erTS.

Fig. 14. Solutions to nwsTS with jW j ¼ 3;000. (a) WSPR. (b) Blackbox.



semiautomatic service composition where GUI-based soft-
ware and human experts can work together to generate
composite services by allowing for binding manually
generated workflows to the corresponding concrete Web
services either statically or dynamically. To that end,
METEOR-S [28], Proteus [29], Kepler [30], and e-Flow [31]
were suggested.

The second approach is to leverage on the various
planning-based solutions of AI community. Regarding
representative AI planners capable of being used by WSC
solvers, there are Graphplan [25], the SATPlan algorithm
[32], and Blackbox. We conducted a further detailed survey
on these algorithms and analyzed their distinct solving
processes with respect to WSC context [33].

The third approach is to utilize Semantic Web features for
the service matching and composability. Medjahed et al. [3]
propose an ontology-based framework for the automatic
composition of Web services. Sirin et al. [14] demonstrate how
an OWL reasoner can be integrated with an AI planner to
overcome automatic WSC problems, which work later
extends to the development of SHOP2. OntoMat-Service,
the semantic framework proposed by Zeng et al. [34],
provides a Web service planning module, which computes
logically possible service flows based on a knowledge base
with a set of pre- and postconditions, goals, and so forth, for
Web services.

Although the above three approaches are designed with
different directions in expectation of future Web services,
we however believe that the three approaches are com-
plementary enough to be incorporated to generate better
solutions. As an example, we can assume that Web services
are published according to Semantic Web standards and
recommendations, and they are composed by means of AI
planning algorithms initially but automatically for a large
scale, and then the initial solutions can be fine-tuned by
human experts using GUI-based software.

8 CONCLUSION

So far, we have explored several novel issues by laying out
the developmental organization of this paper. First, we
formulated the WSC problem in terms of AI planning and
network optimization problems to investigate its complex-
ity. Second, we analyzed publicly available Web service sets
using complex network analysis techniques. Third, we
proposed WSBen, a novel Web service benchmark tool,
which may be reused by follow-up research studies. Fourth,
we developed WSPR, a novel AI planning-based heuristic
WSC algorithm and verified its performance against state-
of-the-art AI planners. WSBen (downloadable at http://
pike.psu.edu/sw/wsben/) and WSPR (downloadable at
http://pike.psu.edu/sw/wspr/) in GUI versions are as
shown in Fig. 15. Although it is our hope that WSPR and

WSBen will provide useful insights for follow-on research-
ers, it is true that the two proposals still have limitations to
address. For example, WSBen is only and most applicable
when users know the underlying network topology of the
targeted Web service cluster. In addition, WSBen is
currently limited to generate only WSDL files so that
WSBen cannot incorporate semantic information that is
written in OWL. Similar to WSBen, WSPR is hardly used in
conjunction with Semantic Web because it is designed with
an assumption that the matchmaking is sufficiently re-
solved by WSDL interface information. It is, however,
possible that this assumption is invalidated in the near
future as Semantic Web becomes populated. If such a case
happens, WSPR needs to be revisited by adding reasoning
modules to set up or interpret semantic composition
conditions. For these reasons, we have consideration on
future research studies to address limitations and relax
assumptions of current work, such as: 1) Mixed Integer
Programming-based multicriteria framework for WSC in
order to relax assumptions like single criterion for deter-
mining effectiveness, 2) Open-loop control-based composi-
tion to handle the dynamic Web environment issues, and
3) Semantic matchmaking by incorporating the agent
reasoning technology. Finally, we hope that future follow-
on researchers benefit not only by our findings but also the
list of future researches we have initiated.

APPENDIX A

PROOF OF THEOREM 2.6

Proof. We revised the result of Bylander [9] in Web service
context. In this proof, the WSC problem is considered as a
decision problem of determining whether an instance of
propositional STRIPS planning has a solution of k or
fewer operators, where k is given as part of input. The first
part of this proof proves that the WSC problem is NP, and
the second part proves that the WSC problem is NP-hard
by building a polynomial reduction from the 3SAT [13].

NP. Web services without negative effects can never
negate a condition. Thus, a previous state is always a
subset of succeeding states. Also, Web services within a
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Fig. 15. GUI versions of WSBen and WSPR.



service sequence that have no effect can always be
removed. Hence, if a solution exists, the length of the
smallest solution can be no longer than the total number
of Web services. Since only a linear number of
nondeterministic choices are required, the WSC problem
is in NP. In other words, a solution to a WSC problem
can be verified in polynomial time.

NP-hard. 3SAT can be reduced to the WSC problem
in polynomial time (3SAT �p WSC). Let U ¼
fu1; u2; . . . ; umg be the set of variables used in an
instance of 3SAT. Let n be the number of clauses. The
equivalent WSC problem to the instance of 3SAT can be
constructed using the following types of parameters or
conditions:

. T ðkÞ: if uk ¼ true is selected, T ðkÞ is true;
otherwise false.

. F ðkÞ: if uk ¼ false is selected, F ðkÞ is true;
otherwise false.

. V ðkÞ: if some value (i.e., either true or false) for uk
has been selected, then V ðkÞ is true; otherwise
false.

. CðjÞ: if the jth clause is satisfied, it is true;
otherwise false.

The initial state and goal can be specified as follows:

. ri¼ ;,

. ro¼Vð1Þ^Vð2Þ^� � �^VðmÞ^Cð1Þ^ Cð2Þ^� � �^CðnÞ.
That is, the goal is to select a value for each variable
(i.e., V ) and satisfy each of the clauses. For each
variable uk, four Web services are needed:

. wtk : wtik ¼ ; and wtok ¼ T ðkÞ.

. wfk : wfik ¼ ; and wfok ¼ F ðkÞ.

. wvk1 : wvik1 ¼ T ðkÞ and wvok1 ¼ V ðkÞ.

. wvk2 : wvik2 ¼ F ðkÞ and wvok2 ¼ V ðkÞ.
These four Web services are used to select a value for

uk and to ensure that a value has been assigned to uk.
Note that nothing prevents the double selection of both
true and false for one variable. To prevent the double
assignment, we require two more Web services, wcj1 and
wcj2 described below. If the jth clause contains a variable
uk, wcj1 is needed. On the contrary, if the jth clause
contains a negated variable �uk, wcj2 is needed:

. wcj1: wcij1 ¼ T ðkÞ and wcoj1 ¼ CðjÞ, where uk is
contained in the jth clause.

. wcj2: wcij2 ¼ F ðkÞ and wcoj2 ¼ CðjÞ, where �uk is
contained in the jth clause.

If the 3SAT problem is satisfiable, then ro is true
because all V ðkÞ and CðjÞ must be true. On the other
hand, if the 3SAT problem is not satisfiable, then at least
one of CðjÞ must be false, resulting that ro is false.

In addition, if the 3SAT formula is satisfiable, then
2mþ n Web services are sufficient, because

. Only one value between true and false is selected
for each variable. Therefore, m Web services are
required.

. m number of Web services are required to ensure
that m number of variables are set by a true or
false value.

. n number of Web services are required to indicate
that n number of clauses are determined to be
either true or false.

On the contrary, if the 3SAT formula is not satisfiable,
then both values must be selected for some variables to
achieve the goal, implying that more than 2mþ n Web
services are needed. Thus, the 3SAT formula is satisfiable
if and only if there is a WSC of size k ¼ 2mþ n. tu

APPENDIX B

PROOF OF THEOREM 5.1

Proof. We use the following loop invariant: At the start of
each iteration of the “while” loop of lines 2-7 in
Algorithm 1, we obtain griðpÞ for each parameter
p 2 wo, where w 2 �.

Then, it suffices to show that for each parameter p 2 wo,
we obtain griðpÞ at the time when p is added to state s:

. Initialization: Initially, s ¼ ;, so that the invariant
is trivially true.

. Maintenance: For the purpose of contradiction,
let u be the first parameter for which we do not
obtain griðuÞ when u is added to state s. This
assumption implies that there is another state
including u, which occurs afterward providing
griðuÞ. However, this is false because cðwÞ ¼ 1 for
all w 2W . In other words, if siþ1 ¼ fðwi; siÞ,
griðyÞ ¼ griðxÞ þ 1, where x 2 ðsi n si�1Þ and y 2
ðsiþ1 n siÞ. Therefore, we obtain griðpÞ at the time
when p is first added to state s.

. Termination: The termination condition is s � ro.
This implies that s 2 SG. Thus, we have obtained
griðpÞ for all parameters p 2 SG if at least a path
exists from ri to ro. tu

APPENDIX C

PROOF OF THEOREM 5.2

Proof. We use the following loop invariant: at the start of
each iteration of the “while” loop of lines 2-6 in
Algorithm 2, we obtain a set of Web services, soln, that
can be temporarily sequenced and executed to form the
path from subGoal to ro. Then, it suffices to show that for
the Web service w that was added recently in soln, w can
be invoked by subGoal. Once we show that subGoal can
invoke w, we rely on the subGoal relation described at
line 6 in Algorithm 2 to show that the subsequent
invocation holds at all times thereafter:

. Initialization: Initially, subGoal ¼ ro and soln ¼ ;,
making the invariant trivially true.

. Maintenance: LetA be a Web service added to soln
at time t, where t¼1; 2; . . . ; T ð� maxp2ro griðpÞ � 1Þ.
As soon as A is added to soln, subGoalðtÞ is
updated such that subGoalðtÞ ¼ ½subGoalðtþ 1Þ n
ðAo [ riÞ	 [Ai. That is, subGoalðtÞ contains Ai,
which is a set of preconditions necessary to
invoke A. Therefore, the updated subGoalðtÞ can
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always invoke A. After invoking A, we can obtain
new information state s ¼ subGoalðtÞ [ ðAo [ riÞ.
Note that ri is always available throughout the
planning process. Since s � subGoalðtþ 1Þ, there is
at least one Web service whose input parameters
are included in s as long as soln 6¼ ;. In this manner,
we can invoke all Web service in solnuntil soln ¼ ;.

. Termination: The termination condition is
subGoal n ri ¼ ;. This implies that ri satisfies
subGoal. In the forward search of WSPR, we saw
that there is a state s, such that s � ro. This
suggests that there is at least one path from ri to ro.
Since there exists a path from ri to ro, there is at
least one Web service w belonging to soln at
termination, such that w can be invoked only by ri.

tu
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