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ABSTRACT
Ranking of publication venues is often closely related with
important issues such as evaluating the contributions of in-
dividual scholars/research groups, or subscription decision
making. The development of large-scale digital libraries and
the availability of various meta data provide the possibility
of building new measures more efficiently and accurately. In
this work, we propose two novel measures for ranking the
impacts of academic venues – an easy-to-implement seed-
based measure that does not use citation analysis, and a re-
alistic browsing-based measure that takes an article reader’s
behavior into account. Both measures are computationally
efficient yet mimic the results of the widely accepted Impact
Factor. In particular, our proposal exploits the fact that: (1)
in most disciplines, there are “top” venues that most people
agree on; and (2) articles that appeared in good venues are
more likely to be viewed by readers. Our proposed measures
are extensively evaluated on a test case of the Database re-
search community using two real bibliography data sets –
ACM and DBLP. Finally, ranks of venues by our proposed
measures are compared against the Impact Factor using the
Spearman’s rank correlation coefficient, and their positive
rank order relationship is proved with a statistical signifi-
cance test.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.7.4 [Document and Text processing]: Electronic Pub-
lishing

General Terms
Algorithms, Design, Experimentation, Measurement
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1. INTRODUCTION
Ranking publication venues based on various bibliometrics
is an important and oft-studied field. Proper venue rankings
offer objective methods to evaluate the relative intellectual
influence of a particular venue. Thus, the impacts of venues
are often related with many decision scenarios – e.g., decid-
ing which venues to subscribe in a library or to evaluate the
performance of scholars or research groups [15].

The questions such as “How good is a journal X?” or “Is
a conference X better than Y?” are inherently difficult to
answer since they involve subjective measures. Neverthe-
less, to answer these questions, people have proposed many
methods (e.g., [1, 15, 7]). However, in this paper, we argue
that existing methods are not sufficient. Let us elaborate
this point in the motivation below.

1.1 Motivation
By and large, most of existing works on venue ranking per-
form some kinds of citation analysis to evaluate the impact
of publication venues. For example, the Thomson ISI Impact
Factor (IF hereafter) [1] is one of the well-accepted methods
of this kind. In that measure, the citation of “the article a
cites the article b” is treated as the endorsement from a to b.
Although being intuitive, IF is not without problems, limit-
ing its validity and applicability (e.g., [14, 2]). For instance,

1. One of the common issues of the citation-based meth-
ods is the hardness of the citation meta data extrac-
tion and parsing from articles. An accurate citation
analysis depends on clean and comprehensive citation
information. In general, there are two kinds of citation
extraction and parsing methods – manual ( as being
used in DBLP, ISI JCR) and automatic methods (as
being used in Google Scholar, CiteSeer). The manual
methods can provide cleaner (or more accurate) cita-
tions, but demand for extensive manual labor. Thus
the application of the manual methods is restricted to
a manageable subset of all the available publications.
On the other hand, the automatic methods use com-
puter programs to automatically extract and parse ci-
tation meta data. However, since computer programs
cannot handle the diverse cases in the citation format,
the qualities of the extracted citations are often less
than satisfactory. Often, the automatically extracted
citation data cannot be used to evaluate the quality of
publication venues or scholars.
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Figure 1: Yearly distribution of # of
TODS/SIGMOD papers being cited in 2002.

2. Existing citation-based venue ranking methods tend
to consider only the explicit citation relationships as
indicated in the reference parts of academic articles.
However, when an author writes an article, it is rea-
sonable to expect for the author to read a large number
of articles, but cite only a fraction of them. The final
decision of making references in the article depends on
many factors. Further more, it has been shown that
citations tend to have problems like biased-citation,
self-citation, or positive vs. negative citation [9].

3. Most of the citation-based methods focus on the rank-
ing of “journals”, excluding “conferences” or “work-
shops” 1. Conferences are becoming more and impor-
tant publication outlets in Computer Science. How-
ever, their publication and citation behaviors do not
parallel with those of journals. For instance, [12] stud-
ies the IF of 5 major database publication venues (2
journal and 3 conferences) and concludes that two ma-
jor database conferences have higher IF values than the
other two database journals. An implicit hypothesis
of the work is that journals and conferences have the
similar citation patterns so that they can be compared
uniformly. However, as shown in Figure 1, the hypoth-
esis does not hold sometimes. For instance, TODS and
SIGMOD are two top database journal and conference
respectively. Yet, they show very different citation pat-
terns. That is, while people cite old TODS papers
as frequently as they cite new TODS papers, people
seem to prefer to cite newly published SIGMOD pa-
pers. Such difference in citation patterns may indicate
the fundamental difference in publication patterns be-
tween journals and conferences.

1.2 Our Approach
To remedy the aforementioned issues of citation-based meth-
ods, in this paper, we argue that:

1We treat conferences, symposiums, and workshops equally
in this paper – i.e., they are referred to as conferences.

1. Instead of relying on citation analysis, other kinds of
meta data may also be useful. For instance, extracting
and parsing the title or authors of an article is much
easier and more accurate than extracting and pars-
ing citations from the reference section of an article.
Therefore, we propose to exploit author information of
articles in measuring the impact of venues.

2. We do not desert the citation meta data, since has the
citation has been widely acknowledged as a kind of
informative meta data. However, in order to use the
citation data more properly, we need to define new
metrics to take into account the differences in citation
patterns among various publications venues.

3. Although it is difficult to rank venues in general, in
practice, people are more interested in the question:
“What are the top-k venues in the field f?”. Fur-
thermore, note that this question can be solved if the
following two sub-questions can be answered:

S1: What is the set of good articles, SeedP ?

S2: What are the top-k venues that are most similar
in their qualities to SeedP ?

In this paper, we answer the two sub-questions S1 and S2
by proposing several new bibliometrics that can be used in
ranking publication venues. The new bibliometrics, which
have the properties of easier-to-implement and more accu-
rate, provide new perspectives and alternative ways in evalu-
ating publication venues, which supplement existing ranking
methods to provide a more comprehensive estimation of the
scientific qualities of publication venues.

2. MAIN PROPOSAL
We first define the goodness of a venue that is used through-
out the paper. The goodness of a venue is defined as the sum

of the goodness of articles in it – i.e., a venue a is “better”
than a venue b if a has more “good” articles than b has2.
Note that the definition of the goodness of a venue is inten-
tionally recursive by using the goodness of an article, which
is to be defined later.

Definition 1 (Goodness of Venue B) Let P be the set
of articles in a venue B, G(p) be the goodness of an article
p (p ∈ P ), and 4 be the normalization factor to make G(B)
constant. Then, the goodness of venue B is:

G(B) = 4
∑

p∈P

G(p)

Further, venue B1 is said to be better than venue B2 if
G(B1) > G(B2).

where, 0 ≤ G(B) ≤ 1 2

In the following sections, we propose several alternative def-
initions of the “good article” – G(p), but the definition of
the “good venue” remains the same.

2Other definitions of the goodness of a venue are also pos-
sible, such as using avg or max. For instance, using avg, the
semantics is changed to: a venue a is “better” than a venue
b if the articles in a are better than those in b on average.



2.1 Sub-question S1
Sub-question S1 asks for a collection of good articles, de-
noted as SeedP , which acts as a seed for sub-question S2.
The basic hypothesis is:

Hypothesis 1 There are a number of good articles in each
subject field that most people agree on (denoted as SeedP ).2

Using this Hypothesis, to identify SeedP , we consider two
solutions to the sub-question S1 as follows:

1. Users may provide a number of good articles that col-
lectively can be used as a seed. For instance, all the
articles of certain prestigious journals or conferences
may be used as seed articles SeedP .

2. Seed articles, SeedP , may be decided via citation count.
For instance, those articles whose accumulated cita-
tions are above a threshold may be considered as seed
articles.

Note that both approaches to S1 are very simple yet intu-
itive. For instance, if people agree that JCDL is one of the
top venues in the digital library community, then one can
answer the sub-question S1 by using all the articles of JCDL
as seed articles, SeedP .

2.2 Sub-question S2
From here forward, we assume that the sub-question S1 is
resolved somehow – i.e., SeedP is known, and focus on solv-
ing the sub-question S2, which is much harder to solve and
evaluate. In particular, we propose two novel measures –
one based on seed articles directly and the other exploiting
the user-browsing model.

2.2.1 Seed-Based Measure
Hypothesis 2 Authors of seed articles, SeedP , are author-
itative authors (denoted as SeedA) and are likely to produce
good quality articles. 2

In order words, Hypothesis 2 assumes that each community
or subject field has a certain number of “top” scholars who
are known for writing good quality articles. Using the given
SeedP as the starting seed, therefore, one can test the qual-
ity of an article p by checking if p is contributed by any
subset of authors in SeedA or not. Now, based on Hypoth-
esis 2, we consider three variations of seed-based goodness
measures for an article – naive, fair, and unfair policies.

Definition 2 (Seed-based Goodness of an Article) Suppose
that an article p has n co-authors ai, (1 ≤ i ≤ n), P i

a

is the set of articles in SeedP to which an author ai has
contributed, Wi is a weight factor with the the constraint
∑n

i=1
Wi = n (Wi = 1 by default), and 4 is a normalization

factor. Then,

• Naive: SGn(p) =

{

1, if ai ∈ SeedA

0, otherwise

• Fair: SGf (p) = 1

n

∑n

i=1
WiXi, where Xi = 1 if ai ∈

SeedA, and 0, otherwise.

• Unfair: SGu(p) = 1

n

∑n

i=1
WiXi, where Xi = 4

|P i
a
|

|SeedP |
2

Given an article p, SGn(p) considers p as “good” as long
as p is contributed by any author in SeedA. Therefore,
SGn(p) does not differentiate the quality of two articles
to which different number of SeedA have contributed. On
the other hand, SGf (p) views the quality of an article in
terms of the number of co-authors in SeedA. Therefore,
an article with n “top” co-authors are considered to be n
times better than an article with n co-authors where only
one is “top” author. Obviously, SG(p) has the range of
0 ≤ SG(p) ≤ 1. The weight factor Wi can be used to
give relative importance among co-authors. Consider two
articles p1 and p2, where only the first co-author of p1 is
SeedA while only the second co-author of p2 is SeedA. If
one wants to apply an arbitrary logic such as “the first
author counts three times more than the second author”,
then one can give non-uniform weights like W1 = 1.5 and
W2 = 0.5. Then, SGf (p1) = 1.5∗1+0.5∗0

2
= 1.5

2
= 0.75

and SGf (p2) = 1.5∗0+0.5∗1
2

= 0.5
2

= 0.25. For our current
work, we use uniform weights, ignoring the order informa-
tion among author names.

The third variation that we consider is to give different influ-
ence among authors in SeedA. This mimics the fact that “if
an author a1 has written 50 articles in SeedP while another
author a2 has written only 1 article in SeedP , then a1 has
a higher probability of producing top quality articles than
a2 has”. Therefore, experienced authors (e.g., professors)
would have more impact toward the goodness of an article
than amateur authors (e.g., graduate students) would. Since
this scheme is not fair to amateur authors, we name it as
unfair while we name the other case as fair. Note that,
more complex methods can also be used to assign influence
to authors, such as computing PageRank for the authors [8].
However, we stick to our simple scheme in this work.

The goodness of venue G(B) in Definition 2 is then defined
accordingly for the three variations. “G(B) = 1” roughly
implies that “the quality of venue B is as good as that of
SeedP ”. The overall accuracy of the seed-based measures
heavily depends on the correct choice of the initial SeedP .

2.2.2 Browsing-Based Measure
In defining the above measures, we only consider the static
bibliographic properties of the articles without considering
article readers’ behaviors. We believe that a realistic venue-
ranking scheme should match real readers’ evaluations to
the venues. Therefore, we argue that incorporating read-
ers’ behaviors into a venue-ranking scheme is a reasonable
choice. In this section, we mathematically model a common
reader’s behavior when browsing through a collection of ar-
ticles in digital libraries, denoted as the the article-browsing
model, and derive a browsing-based measure accordingly.

Suppose a reader is reading an interesting article pi in the
field f . If the reader wants to find more interesting arti-
cles about field f to read, he/she may achieve the goal by
following two paths among others: (1) select more articles
from the reference part of the article pi, or (2) find articles
authored by the same author of pi. When the reader has
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Figure 2: The article browsing model.

switched to the newly found article pj , he/she may follow
either of the two paths to further select more relevant arti-
cles to read. Figure 2 illustrates this paper browsing process
conceptually. The reader can follow the paths indicated by
different kinds of lines to select the next article to read.

Based on the above observation of a reader’s article brows-
ing behavior, we propose the article-browsing model as fol-
lows. The theory of the model is a modification of the well-
known PageRank model by using the personalization vec-
tor to change the teleportation matrix. However, the new
model is different than computing PageRank on the citation
graph. Intuitively, a reader’s article browsing pattern is in-
corporated in the new model, and not only the references
but also the authors of a paper will influence the reader’s
choice of articles. Google’s original intent in introducing
the personalization vector is to deal with different classes of
surfers [6]. [4] extends this idea to improve the ranking of
search-query results by allowing query-time information to
influence the link-based score. Using the matrix representa-
tion, the basic PageRank is the solution to

r = M × r (1)

where M is the matrix corresponding to the directed Web
graph G, and r is the vector that contains the PageRank
value of all of the web pages. To ensure PageRank conver-
gence, M must be stochastic, irreducible and aperiodic [6].
The last one is guaranteed in practice. M is modified to
be stochastic by assigning artificial out-links to the dangling
nodes to all other nodes in G, and be irreducible by damping
the rank propagation by a factor of α.

Let p be an n-dimensional column vector representing a uni-
form probability distribution over all the nodes:

p =
1

n
e. (2)

where e is the column vector of all ones. Let d be the n-
dimensional column vector identifying the nodes with out-
degree 0:

di =

{

1, if deg(i) = 0
0, otherwise

(3)

Then the stochastic, irreducible M is constructed as follows:

D = p × dT

E = p × eT = [
1

n
]n×n

M = (1 − α)(M + D) + αE.

r = M × r (4)

To model a reader’s article browsing pattern, we use a cita-
tion graph C in place of the Web graph G. Then M is the
matrix corresponding to the directed citation graph. Let
P be the set of all articles in the data collection, PA be the
set of articles written by authoritative authors, and function
author(pj) stand for the authors of article pj . We substitute
the uniform vector p = 1

n
e with the non-uniform vector w

into Equation 4, where

wji =

{

1

|PA|
if author(pj) ∩ SeedA 6= 0

0 otherwise
(5)

Then the article-browsing model becomes:

r = (1 − α)(M + w × dT ) × r + αw (6)

Since wT > 0 is a probability vector, every node (i.e., arti-
cle) is still directly connected to every other node, forcing
Equation 6 to converge.

Roughly speaking, the article-browsing model ranks each ar-
ticle with respect to the probability that a reader choose the
article when browsing through a collection of articles. Then,
using this model, we define the browsing-based goodness as
follows:

Definition 3 (Browsing-based Goodness of an Article)
The browsing-based goodness of an article p is:

BG(p) = rp

where rp is determined by the article-browsing model of
Equation 6. 2

This measure indicates that articles browsed by readers with
higher probability are likely to be of better quality than
otherwise. Obviously, BG(p) has the range 0 ≤ BG(p) ≤ 1.

3. EMPIRICAL EVALUATION
In this section, we empirically evaluate the two proposed
measures. Since the goodness of venues is a quite subjective
matter, we do not seek to conduct a user study here. Rather,
we test if the two proposed measures can produce ranking
results comparable to some known methods. That is, we
compare our results to those of IF since it is one of the most
adopted ones.

3.1 Set-Up
To rank academic publication venues, we used two data sets
– the ACM data set (ACM hereafter) and the DBLP data
set. Detailed data characteristics are summarized in Ta-
bles 4 and Table 5. Like CiteSeer, ACM also extracts meta
data from each paper automatically. In recent years, ACM
begins to require authors to submit meta data together with
the published articles, improving the quality of meta data



Naive Fair Unfair Browsing
Rank Venue Score Venue Score Venue Score Venue Score

1 VLDB 1.000 VLDB 1.000 VLDB 1.000 TODS 3.161
2 EDBT 0.755 VLDB-J 0.519 VLDB-J 0.689 VLDB 3.025
3 VLDB-J 0.750 DBPL 0.504 SIGMOD 0.589 SIGMOD 2.597
4 DBPL 0.721 EDBT 0.498 EDBT 0.562 WebDB 2.324
5 WebDB 0.679 WebDB 0.493 WebDB 0.526 EDBT 2.169
6 SIGMOD 0.654 TODS 0.401 TODS 0.397 VLDB-J 1.955
7 DS 0.618 SIGMOD 0.393 ICDE 0.364 DBPL 1.954
8 IQIS 0.600 DS 0.387 PODS 0.332 PODS 1.809
9 SSD 0.597 ICDT 0.382 DBPL 0.330 ICDE 1.754
10 TODS 0.540 SSD 0.378 FODO 0.323 ICDT 1.747
11 CoopIS 0.539 FODO 0.364 DPD 0.276 SSD 1.687
12 DPD 0.536 ICDE 0.359 SSD 0.270 DNIS 1.583
13 ICDE 0.530 DPD 0.320 DNIS 0.267 DS 1.565
14 PODS 0.521 CoopIS 0.299 DKD 0.254 IQIS 1.528
15 ICDT 0.517 SIGMOD Rec. 0.276 ICDT 0.242 DASFAA 1.512
16 FODO 0.513 DASFAA 0.269 SIGMOD Rec. 0.237 CoopIS 1.406
17 DASFAA 0.488 BNCOD 0.259 DS 0.228 SSDBM 1.403
18 SIGMOD Rec. 0.418 PODS 0.249 CoopIS 0.212 DAWAK 1.382
19 BNCOD 0.415 Inf. Syst. 0.244 DAWAK 0.192 FODO 1.354
20 DAWAK 0.413 DAWAK 0.242 DASFAA 0.176 RIDE 1.325

Table 1: Ranking results (Seed = VLDB conference)

Statistics Value
# of papers 842,422

# of papers in G 281,904
# of papers being cited 206,783

# of papers citing other papers 138,638
# of papers in G without authors 3,799

# of authors in G 258,421

Table 4: Statistics of ACM data set and their cita-
tion graph G.

Statistics Value
# of distinct conf., symp., and workshop 2,530

# of distinct journals 438
# of papers 500,462

# of distinct venues matching ACM 2,385

Table 5: Statistics of DBLP data set.

substantially. ACM also gets meta data information from af-
filiated publishers. However, errors such as missing the data
for a certain year of a publication venue (e.g., ICDE 2003)
or missing the author information (e.g., SSDBM 2004 has no
author information) are found in ACM dataset. Since DBLP
manually extracts (by human editors) meta data from each
publication, its data can be deemed to be cleaner (although
there are still some errors). However, DBLP does not have
the paper citation information.

Since neither the ACM nor the DBLP data set is complete
and error-free, we pre-processed and consolidated them as
follows. We first linked DBLP and ACM using titles (and
ISBN if exists) of articles, remove all conflicting authors and
venues, and form the DBLP-ACM data set – a clean data
set with citation information. After linking DBLP and ACM
data, we hand-picked publication venues (journals, confer-
ences, symposiums and workshops, 86 in all) that we believe

to be closely-related to the Database research community
in Computer Science. Note that we intentionally excluded
venues that have some database papers but also have pa-
pers from other fields (e.g., J. ACM, ACM Comm. ACM,
and WWW). Hereafter, we will refer to this collection of
86 venues as DBLP-ACM, as shown below. At the end,
the DBLP-ACM data set contains 32,192 papers and 34,216
authors in the Database community.

ADBIS, ADC, ARTDB, BNCOD, CDB, CIKM,
CoopIS, DANTE, DASFAA, DAWAK, DB, DBPL,
DBSEC, DEXA, DKD, DKE, DL, DMKD, DNIS,
DOLAP, DOOD, DPD, DPDS, DS, EDBT, ER,
FODO, FOIKS, FQAS, GIS, HPTS, ICDE, ICDM,
ICDT, ICIS, IDA, IDEAL, IDEAS, IGIS, Inf.
Process. Lett., Inf. Sci., Inf. Syst., IPM,
IQIS, ISF, ISR, IW-MMDBMS, IWDM, JDM,
JIIS, JMIS, K-CAP, KA, KDD, KER, KIS, KR,
MDA, MFDBS, MLDM, MMDB, MSS, NLDB,
OODBS, PAKDD, PKDD, PODS, RIDE, RIDS,
SIGKDD Exp., SIGMOD, SIGMOD Rec., SSD,
SSDBM, TKDE, TODS, TOIS, TSDM, UIDIS,
VDB, VLDB, VLDB-J, WebDB, WIDM, WISE,
XMLEC

3.2 Result
First, to solve the sub-question S1, we use SIGMOD and
VLDB as seed venues after consulting colleagues in the Data-
base community. That is, all articles from either SIGMOD
or VLDB are considered to be “good” articles. Second, we
use the threshold 10%, and all articles whose numbers of ac-
cumulated citations are above top 10% are considered to be
“good” articles. After finding seed papers, SeedP , we apply
the seed-based measure and the browsing-based measure to
solve the sub-question S2. Both measures are applied to
the three different SeedP , which are the VLDB papers, the
SIGMOD papers, and the upper 10% highest cited papers.



Naive Fair Unfair Browsing
Rank Venue Score Venue Score Venue Score Venue Score

1 SIGMOD 1.000 SIGMOD 1.000 SIGMOD 1.000 TODS 3.873
2 VLDB-J 0.758 VLDB-J 0.513 VLDB-J 0.712 SIGMOD 3.496
3 VLDB 0.709 TODS 0.503 VLDB 0.710 VLDB 2.635
4 DBPL 0.658 VLDB 0.496 EDBT 0.496 PODS 2.227
5 DMKD 0.654 DBPL 0.496 TODS 0.474 WebDB 2.174
6 TODS 0.647 wedDB 0.432 WebDB 0.471 VLDB-J 2.008
7 PODS 0.642 EDBT 0.419 PODS 0.462 EDBT 1.998
8 EDBT 0.635 ICDT 0.410 DKD 0.385 DBPL 1.967
9 WebDB 0.607 SSD 0.361 DBPL 0.379 ICDT 1.917
10 DPD 0.562 SIGMOD Rec. 0.354 ICDE 0.348 DMKD 1.668
11 ICDT 0.557 FODO 0.352 FODO 0.316 SSD 1.654
12 SSD 0.554 PODS 0.343 DMKD 0.308 ICDE 1.650
13 SIGMOD Rec. 0.490 DPD 0.342 SIGMOD Rec. 0.306 DNIS 1.599
14 ICDE 0.473 ICDE 0.319 SSD 0.297 SIGMOD Rec. 1.465
15 FODO 0.470 DMKD 0.284 ICDT 0.289 DASFAA 1.415
16 CoopIS 0.435 DS 0.257 DPD 0.287 FODO 1.405
17 DS 0.404 CoopIS 0.230 KDD 0.268 DPD 1.380
18 DASFAA 0.383 Inf. Syst. 0.229 DAWAK 0.225 CoopIS 1.377
19 DKD 0.371 DKD 0.228 DNIS 0.197 RIDE 1.342
20 CIKM 0.370 DNIS 0.218 Sigkdd Exp. 0.191 DKD 1.305

Table 2: Ranking results (Seed = SIGMOD conference)

3.2.1 Seed-Based Measure
Three approaches of the seed-based goodness measure –
naive, fair, and unfair – are tested. According to the seed-
based measure, seed papers are “good” articles that form
the set SeedP , and authors of seed papers are considered as
authoritative authors to form the set SeedA. Corresponding
venue ranking results are shown in Table 1 for the VLDB
case, Table 2 for the SIGMOD case, and Table 3 for the
top-10% case. Note that, in the naive and the fair version
of the seed-based approaches, the goodness score of SeedP

(e.g., VLDB in Table 1) always equals to 1. However, this is
not true for the unfair version. By using the normalization
factor 4 defined in Definition 2, we normalize scores for all
the venues so that the goodness score for the seed venue
SeedP equals to 1.

3.2.2 Browsing-Based Measure
For a given SeedP , we extract all the authors of seed papers
and set the value of the non-uniform vector w in the paper
browsing model according to Equation 5. The goodness for
each article is then calculated based on the browsing pattern
model according to Equation 6. The final goodness value of
a publication venue is determined according to the definition
of the venue goodness (Equation 1). Experimental results
are shown in Tables 1, 2, and 3 (all the 4-th columns).

The browsing-based goodness scores shown in tables are af-
ter normalization as follows: we first suppose that a reader
randomly selects an article in the collection to read. The
probability that an article is being randomly selected is cal-
culated as 1

N
, where N is the total number of articles in

our collection. Then, the raw score of each venue is di-
vided by this randomly selected probability and the results
are shown in tables. After the normalization, the score of
a venue stands for the ratio of the probability that an ar-
ticle in the venue being selected by a reader according to
the paper-browsing model to the probability that the paper
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Figure 3: # of venues per year in DBLP-ACM.

being randomly selected. The bigger the score of a venue
is, the larger probability that a reader will select an article
from the venue.

The browsing-based goodness score is entirely determined
by the quality of the articles in a venue in terms of the
reputation of authors and the number of citations. Note that
the meaning of the score is different from the probability of
a “venue” being selected by a reader. The probability of a
venue being selected is influenced by the number of articles
contained in the venue. In other words, the probability of
a venue being selected by a reader is going to bias towards
the venues that contain larger number of articles, and may
not truly reflect the quality of a venue.

3.2.3 Comparison to Impact Factor
We rank the 86 DBLP-ACM venues according to ISI IF
method. The IF is calculated based on a three-year period.



Naive Fair Unfair Browsing
Rank Venue Score Venue Score Venue Score Venue Score

1 TODS 0.764 TODS 0.666 SIGMOD 0.706 TODS 3.383
2 PODS 0.759 PODS 0.634 VLDB 0.702 SIGMOD 2.425
3 VLDB-J 0.758 SIGMOD 0.578 VLDB-J 0.636 VLDB 2.152
4 SIGMOD 0.749 WebDB 0.574 PODS 0.622 PODS 1.993
5 VLDB 0.724 VLDB 0.552 WebDB 0.592 WebDB 1.912
6 WebDB 0.714 DBPL 0.549 TODS 0.574 TOIS 1.769
7 DBPL 0.705 VLDB-J 0.508 EDBT 0.549 EDBT 1.740
8 EDBT 0.688 EDBT 0.473 DBPL 0.518 ICDT 1.655
9 IQIS 0.625 ICDT 0.469 DKD 0.466 DBPL 1.646
10 ICDT 0.603 TOIS 0.444 ICDT 0.405 VLDB-J 1.638
11 SSD 0.590 SSD 0.406 ICDE 0.401 DKD 1.496
12 TOIS 0.544 DKD 0.398 SIGMOD Rec. 0.385 ICDE 1.441
13 DKD 0.543 IQIS 0.375 FODO 0.335 SSD 1.379
14 DPD 0.531 ICDE 0.348 SSD 0.283 FODO 1.230
15 FODO 0.513 DPD 0.335 DPD 0.278 RIDE 1.193
16 ICDE 0.501 SIGMOD Rec. 0.328 KDD 0.276 DAWAK 1.184
17 KDD 0.488 FODO 0.327 TOIS 0.273 SIGMOD Rec. 1.170
18 DS 0.483 DS 0.301 DAWAK 0.271 DS 1.150
19 SIGMOD Rec. 0.464 KDD 0.295 DMKD 0.232 SSDBM 1.136
20 CIKM 0.453 TISSEC 0.286 TKDE 0.225 DPD 1.121

Table 3: Ranking results (Seed = top-10% papers)

For example,

Definition 4 (2003 IF of Journal X) The IF of a jour-
nal X is: IFX = A

B
, where A is the number of times that

articles (that were published in 2001-2002) were cited in in-
dexed journals during 2003, and B is the total number of
articles published in 2001-2002. 2

The IF is only calculated for journals, excluding other out-
lets such as conferences. Since DBLP-ACM contains sub-
stantial number of non-journal venues, their IF values were
not readily available. Therefore, using the same formula,
we calculated IF values for all non-journal venues in DBLP-
ACM as follows: According to Figure 3, year 2001 contains
the largest number (53) of unique venues. We then calculate
the 2002 IF which will cover the largest number of venues
in DBLP-ACM. Ranking result is show in Table 6. Notice
that, there is a big drop in number of venues in the graph
of Figure 3 after 2002. This is because the DBLP data we
use are up to early 2005. It takes time for DBLP to update
and add new publications into its database. However, we
can trust the data before 2002 as shown in the graph.

Although ranks in Table 6 look reasonable, note that IF
ranks venues according to years. However, none of our pro-
posed measures consider time. Therefore, if we compare the
ranking result of our proposed measures with that of IF, we
would expect substantial difference. For example, consider
the case of ACM Transaction of Databases (TODS), a pre-
mier journal in Database community. Given three different
seeds, all results of the browsing-based measure show that
TODS is ranked as the first. However, IF ranks TODS 9-th
in Table 6. In order to mitigate this variation, we repeat the
experimentation using a slightly-modified IF formula such
that:

Definition 5 (Modified IF of Journal X) The modified
IF of a journal X is: IFX = C

D
, where C is the number of

times that articles of X were cited, and D is the total num-
ber of articles in X. 2

The new ranking using this modified formula is shown in
Table 7. The table is created using 2002 as the start point
and includes all data (not just 2000 and 2001). It appears
that TODS has been cited a lot. However, many of these
citations happen after the cited TODS papers have been
published for more than two years. Therefore, if we do not
consider time constraints, TODS is ranked No. 1. However,
if we only count the citations within the short period of 2
years after publishing, TODS is ranked much lower.

In order to objectively show that ranks in Tables 1, 2, and
3 are meaningful, we use Spearman’s rank correlation coef-
ficient ρ, and access the relationship between two ranking
results. Let X and Y be two ranked sequences. Then, ρ is
given by:

ρ = 1 −
6ΣD2

N(N2 − 1)

where D is the difference between the ranks of corresponding
values of X and Y , and N is the number of pairs of values.

To test if the comparison results are significant enough to
make any conclusion, we did the significance test. The
Spearman critical value table ends with N = 30. For num-
ber of pairs of data larger than 30, two ways can be taken
to approximately test the significance.

1. For N > 30, use the critical value from Pearson’s table
as an approximation;

2. Use t test, where

t =
ρ

√

(1 − ρ2)/(N − 2)



Rank Venue Score
1 SIGMOD 1.023121387
2 VLDB 0.852071006
3 PODS 0.833333333
4 ICDT 0.827586207
5 KDD 0.616766467
6 TOIS 0.571428571
7 DBPL 0.5
8 DL 0.342592593
9 TODS 0.32
10 ICDE 0.316666667
11 WebDB 0.307692308
12 FOIKS 0.277777778
13 SSDBM 0.274193548
14 CIKM 0.260869565
15 SSD 0.260869565
16 EDBT 0.243243243
17 DOLAP 0.230769231
18 DKD 0.225806452
19 VLDB-J 0.2
20 SIGKDD Exp. 0.166666667

Table 6: Venues of DBLP-ACM sorted by their 2002
Impact Factors.

We implemented the significance test using both methods.
For the t test, we use α = 0.01, and set the null hypothesis
H0 as “There is no strong positive rank order relationship be-
tween the naive/fair/unfair seed-based/browsing-based mea-
sure result and the impact factor result.”

The first significance test results against the ranking by
IF measure of Table 6 are shown in Table 8. Here, ρs is
the Spearman coefficient, ts is the calculated t coefficient,
t = 2.396 is the one tail test t value where the degree of
freedom is 54 according to the t-distribution table, and ρp

is the critical value for Pearson’s coefficients where the de-
gree of freedom is 54. According to experimental results,
we reject the null hypothesis H0 and accept that there is
a strong positive rank order correlation between the venue
ranking results by our proposed measures and those by the
IF method.

Next, the results of the same significant test against the
modified IF measure are shown in Table 9. From the table,
again, we can conclude that the ranking results by all our
proposed measures are positively correlated with the ranking
result by the modified IF method.

3.2.4 Comparison to Known Ranks
Finally, we compare the ranking results by the proposed
measures to the known ranks in the community. We used
the CS conference ranking from the following site:

http://www.cs-conference-ranking.org/

They used the so-called “Estimated Impact of Conference
(EIC)” measure that consists of:

1. CP: 40% citation of papers

Rank Venue Score
1 TODS 7.835294118
2 SIGMOD 5.870910173
3 VLDB 4.892446634
4 PODS 4.722077922
5 WebDB 2.833333333
6 TOIS 2.00660793
7 ICDT 1.975609756
8 EDBT 1.81232493
9 ICDE 1.772783251
10 VLDB-J 1.523972603
11 DBPL 1.48241206
12 SSD 1.463576159
13 DKD 1.459302326
14 KDD 1.447080292
15 TISSEC 1.18487395
16 TKDE 1.025936599
17 SIGMOD Rec. 0.883399209
18 CIKM 0.756410256
19 FODO 0.752066116
20 JIIS 0.750778816

Table 7: Venues of DBLP-ACM sorted by their mod-

ified Impact Factors.

Seed Pair ρs ts Conclusion

VLDB

(naive, IF) 0.5081 4.34 reject H0

(fair, IF) 0.4914 4.15 reject H0

(unfair, IF) 0.5765 5.18 reject H0

(browsing, IF) 0.5684 5.08 reject H0

SIGMOD

(naive, IF) 0.5964 5.4597 reject H0

(fair, IF) 0.56992 5.10 reject H0

(unfair, IF) 0.5995 5.5 reject H0

(browsing, IF) 0.6154 6.15 reject H0

Top-10%

(naive, IF) 0.7126 0.71 reject H0

(fair, IF) 0.7204 7.63 reject H0

(unfair, IF) 0.7075 7.36 reject H0

(browsing, IF) 0.7244 8.05 reject H0

Table 8: Significance test: α = 0.01, t = 2.396, ρp =
0.354 (56 venues, using t test and Pearson’s critical
value). Note that this comparison is made against
the rank by IF measure of Table 6.

2. RR: 20% quality of referees’ reports

3. RS: 20% availability of resources for students (funds
for travel, fees, hotel)

4. IN: 10% indexing

5. JA: 10% percentage of conference papers accepted and
appeared in reputable journals

The Top-80 ranks of Database community using the EIC
measure is available in the web site. From the top-80, we
selected the top-20 venues, which are overlaps with DBLP-
ACM, for experiments, as shown in Table 10. Table 11 sum-
marizes the results of the significance test using the ranks in
Table 10. Unlike the previous two significance tests, here, we
get quite different results. That is, measures using VLDB
or SIGMOD as the seed did not show strongly correlated
ranks to the EIC ranking. However, three (naive, unfair,



Seed Pair ρs ts Conclusion

VLDB

(naive, IF’) 0.70589 7.32 reject H0

(fair, IF’) 0.75501 8.46 reject H0

(unfair, IF’) 0.80553 9.99 reject H0

(browsing, IF’) 0.73262 7.91 reject H0

SIGMOD

(naive, IF’) 0.794778 9.62 reject H0

(fair, IF’) 0.815609 10.36 reject H0

(unfair, IF’) 0.812581 10.24 reject H0

(browsing, IF’) 0.818105 10.45 reject H0

Top-10%

(naive, IF’) 0.84461 11.57 reject H0

(fair, IF’) 0.91640 16.82 reject H0

(unfair, IF’) 0.88301 13.83 reject H0

(browsing, IF’) 0.88930 14.29 reject H0

Table 9: Significance test: α = 0.01, t = 2.396, ρp =
0.354 (56 venues, t test and using Pearson’s critical
value). Note that this comparison is made made
against the rank by the modified IF measure, IF’, of
Table 7.

Rank Venue EIC Score
1 SIGMOD 0.99
2 VLDB 0.99
3 ICDE 0.97
4 ICDT 0.94
5 PODS 0.94
6 FODO 0.92
7 ER 0.91
8 CIKM 0.90
9 DOOD 0.90
10 DEXA 0.90
11 SSDBM 0.90
12 COMAD 0.90
13 EDBT 0.90
14 VDB 0.88
15 SSD 0.88
16 CoopIS 0.88
17 DS 0.86
18 DAWAK 0.86
19 MDM 0.83
20 ARTDB 0.83

Table 10: Top-20 conferences by the EIC measure.

and browsing) out of four measures using top-10% articles
as the seed shows strong correlation to the EIC ranking by
rejecting the null hypothesis. Both facts – top-10% articles
with more number of citations are used as the seed as well
as that EIC counts 40% weight of the citations of papers –
may be attributable to this result 3

4. RELATED WORK
ISI’s Impact Factor has been used in many applications –
journal quality estimation, promotion and tenure of schol-
ars, etc. Since the introduction of the IF, however, it has
been heavily criticized (e.g., its sole dependency on citation
counts [13]). To remedy those issues, many alternatives have
been proposed such as H-index to measure the impact of
individual scholars [5], the measure for ranking documents

3We thank the anonymous reviewer for his/her point on this
matter. However, more study needs to be done to draw a
conclusion.

Seed Pair ρs Conclusion

VLDB

(naive, EIC) 0.2632 accept H0

(fair, EIC) 0.2797 accept H0

(unfair, EIC) 0.4964 accept H0

(browsing, EIC) 0.5046 accept H0

SIGMOD

(naive, EIC) 0.5273 accept H0

(fair, EIC) 0.6120 reject H0

(unfair, EIC) 0.5893 reject H0

(browsing, EIC) 0.5294 accept H0

Top-10%

(naive, EIC) 0.5439 reject H0

(fair, EIC) 0.5273 accept H0

(unfair, EIC) 0.6471 reject H0

(browsing, EIC) 0.5501 reject H0

Table 11: Significance test with the EIC ranking
(critical value of Spearman’s rank correlation coef-
ficient ρs = 0.534 for 20 pairs).

retrieved from a digital library [7], case study in database
field [12], or the PageRank-like measure [3].

In particular, [3] proposes to use the PageRank algorithm
[11] to distinguish the “quality” of citations and hence im-
prove the IF calculation. However, the improved IF still does
not consider the different citation patterns between journal
and conference types. [2] generates networks of journal re-
lationships from the citation and download data, and deter-
mines the journal impact ranking from the networks using
social network centrality measures. For instance, accord-
ing to their scheme, a more frequently downloaded article
is likely to have more impact. Again, they do not consider
the application scope problem of IF. However, they draw
an interesting conclusion that “a unique aspect of general
journal impact is not captured by the Impact Factor” and
further question the validity of the IF as the sole assessment
of the journal impact.

Finally, recent study such as [10] introduces the topic mod-
eling to further complement the citation-based bibliometric
indicators, producing more fine-grained impact measures.

5. CONCLUSION
Although having many benefits, the ISI’s Impact Factor
measure is not suitable for cases like:

• Young or emergent journals whose historical citation
statistics are not readily available or mature, rendering
citation-based metrics inapplicable.

• Well-established conferences whose citation statistics
takes time to accumulate. A recent study of the major
database conferences and journals between 1994 and
2003 shows many of the citations reach back five and
more years [12], rendering three-year window of IF in-
adequate.

• Data sets from digital libraries whose quality of meta
data extraction mechanism is less than perfect.

In this paper, toward these issues of IF, we proposed an ar-
ray of alternative measures to judge the goodness of venues.
The seed-based measure uses the simple author meta data



which are much more accurate and easier to extract and
parse than the citation meta data. Experimental results
show that our measure using the simple author meta data
produces positively correlated results with that of the IF
method, however, the drawbacks caused by citation-based
metrics are eliminated. Three variations of the seed-based
measure provide a broader applicability of the measure. The
browsing-based measure, which uses both the citation and
author meta data, takes an article reader’s behavior into ac-
count. Thus this measure yields more realistic rankings of
venues from the reader’s point of view.

During the research work, we are inspired to further extend
the venue ranking measures in several directions. First, our
current work proves the applicability and efficacy of the new
measures in the Database domain. We plan to apply the
measures to other domains and check their performances.
Second, since venue ranking is a quite subjective problem,
it is interesting to do user evaluations and find out how well
the objective measures match with the subjective evalua-
tions. In other words, we want to find out how well the
objective measures reveal the reality. Last, with the exis-
tence of various meta data, we envision a unified model,
which properly combine various information, to yield more
realistic ranking results.
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