Towards Intelligent Semantic Caching for Web Sources *

Dongwon Lee and Wesley W. Chu  ({dongwon,wwc}@cs.ucla.edu)
Dept. of Computer Science, University of California, Los Angeles, CA 90095, USA

Abstract. An intelligent semantic caching scheme suitable for web sources is
presented. Since web sources typically have weaker querying capabilities than con-
ventional databases, existing semantic caching schemes cannot be directly applied.
Our proposal takes care of the difference between the query capabilities of an end
user system and web sources. In addition, an analysis on the match types between a
user’s input query and cached queries is presented. Based on this analysis, we present
an algorithm that finds the best matched query under different circumstances. Fur-
thermore, a method to use semantic knowledge, acquired from the data, to avoid
unnecessary access to web sources by transforming the cache miss to the cache hit is
presented. To verify the effectiveness of the proposed semantic caching scheme, we
first show how to generate synthetic queries exhibiting different levels of semantic
localities. Then, using the test sets, we show that the proposed query matching
technique is an efficient and effective way for semantic caching in web databases.
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1. Introduction

Web databases allow users to pose queries to distributed and hetero-
geneous web sources. Such systems usually consist of three compo-
nents (Adali et al., 1996; Garcia-Molina et al., 1995): 1) mediators to
provide a distributed, heterogeneous data integration, 2) wrappers to
provide a local translation and extraction, and 3) web sources con-
taining raw data to be queried and extracted. In the virtual approach
(Florescu et al., 1998), the queries are posed to a uniform interface and
submitted to multiple sources at runtime. Such querying can be very
costly due to run-time costs. An effective way to reduce costs in such
an environment is to cache the results of prior queries and to reuse
them (Alonso et al., 1990; Franklin et al., 1993).
Let us first consider a motivating example for semantic caching.

Example 1: Two queries, Q1 and Q2, are asked against a relation
emp (name,age,title,gender) using Datalog notation of Zaniolo et
al. (1997) and saved in the cache as follows:

Ql: male(name) <- emp(name,_,_,’m’).
Q2: 50s_mngr(name) <-
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2 LEE AND CHU
emp (name ,age, ’manager’ y ), 50<=age<60.

When a new query (3 asking “male manager’s name in his fifties” is
given, it can be evaluated against either the emp relation or the stored
queries 1 and 2 in the cache as follows:

El: 50s_male_manager (name) <-
emp (name ,age, 'manager’,’m’), 50<=age<60.
E2: 50s_male_manager(name) <- male(name), 50s_mngr(name) .

Both evaluations yield identical results. However, when the emp re-
lation is stored remotely or temporarily unavailable due to network
partition, using the evaluation E2 against the stored queries is much
more efficient. |

Semantic caching (Dar et al., 1996; Keller and Basu, 1996; Lar-
son and Yang, 1985; Ren and Dunham, 1998; Sellis, 1988) exploits
the semantic locality of the queries by caching a set of semantically
associated results, instead of tuples or pages which are used in con-
ventional caching. Semantic caching can be particularly effective in
improving performance when a series of semantically associated queries
are asked if the results may likely overlap or contain one another. Ap-
plications, such as the cooperative database system (Chu et al., 1994)
and geographical information system, are the examples.

So far most semantic caching schemes in client-server architectures
are based on the assumption that all participating components are
full-fledged database systems. If a client sends a query A but its cache
contains answers for A A B, then the client has to send a modified
query A A —B to the server to retrieve the remaining answers. In web
databases, however, web sources such as plain web pages or form-based
IR systems have very limited querying capabilities and cannot easily
support such complicated (e.g., negation) queries.

Our proposed semantic caching scheme is based upon the following
three key ideas:

1. Since querying capabilities of web sources are weaker than those of
queries from end users, query translation and capability mapping
are necessary in semantic caching.

2. With an efficient method to locate the best matched query from the
set of candidates, semantic caching for web sources can significantly
improve system performance.

3. Semantic knowledge can be used to transform a cache miss in a
conventional caching to a cache hit.
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INTELLIGENT SEMANTIC CACHING 3

The rest of the paper is organized as follows. In Section 2, we intro-
duce background information and related work for semantic caching.
In Section 3, we describe our proposed intelligent semantic caching
in detail. In Section 4, query matching technique is presented. Then,
experimental results follow in Section 5. Finally, concluding remarks
are discussed in Section 6.

2. Background

2.1. PRELIMINARIES

Our caching scheme is implemented in a web database test-bed called
CoWeb (Cooperative Web Database) at UCLA. The architecture con-
sists of a network of mediator and wrapper components (Adali et al.,
1996; Garcia-Molina et al., 1995). The focus of the system is to use
knowledge for providing cooperative capabilities such as conceptual and
approximate web query answering, knowledge-based semantic caching,
and web triggering with fuzzy threshold conditions. The input query
is expressed in the SQL' language based on the mediator schema. The
mediator decomposes the input SQL into sub-queries for the wrappers
by converting the WHERE clause into disjunctive normal form, DN F
(the logical OR of the logical AND clauses), and dis-joining conjunctive
predicates. CoWeb handles selection and join predicates with any of the
following operators {>,>, <, <,=}.

Our semantic caching approach is closely related to the query sat-
isfiability and query containment problems (Guo et al., 1996; Ullman,
1988). Given a database D and query Q, applying Q on D is denoted as
Q(D). Then, (Q(D)), or (Q) for short, is the n-ary relation obtained by
evaluating the query Q on D. Given two n-ary queries, Q; and Qo, if
(Q1(D)) C (Q2(D)) for any database D, then the query Q; is contained
in the query Q,, that is Q1 C Q. If two queries contain each other,
they are equivalent, that is Q1 = Qo.

The solutions to both query satisfiability and containment problems
vary depending on the exact form of the predicate. If a conjunctive
query has only selection predicates with the five operators {>, >, <
,<,=}, the query satisfiability problem can be solved in O(|Q|) time
for the query Q (Guo et al., 1996). On the other hand, the conjunc-
tive query containment problem is shown N P-complete (Chandra and
Merlin, 1977) although in the common case where no predicate appears

! Current CoWeb implementation supports only SPJ (Select-Project-Join) type
SQL.
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4 LEE AND CHU

more than twice, there appears to be a linear-time algorithm (Saraiya,
1991; Ullman, 1997).

2.2. RELATED WORK

Past research areas related to semantic caching include conventional
caching (Alonso et al., 1990; Franklin et al., 1993), query satisfia-
bility and containment problems (Guo et al., 1996; Ullman, 1988),
view materialization (Levy et al., 1995; Larson and Yang, 1985), query
folding (Qian, 1996), and semantic query optimization (Chu et al.,
1994). Recently, semantic caching in a client-server or multi-database
architecture has received attention (Ashish et al., 1998; Dar et al.,
1996; Godfrey and Gryz, 1999; Keller and Basu, 1996; Ren and Dun-
ham, 1998; Chidlovskii and Borghoff, 2000). Deciding whether a query
is answerable or not is closely related to the problem of finding complete
rewritings of a query using views (Levy et al., 1995; Qian, 1996). The
main difference is that semantic caching techniques evaluate the given
query against the semantic views, while query rewriting techniques
rewrite a given query based on the views (Cluet et al., 1999). Further,
our proposed technique is also more suitable for web databases where
the querying capability of the sources is not compatible with that of
the clients. In such settings, it is generally impossible to get a snapshot
of the given views to materialize them since query interfaces simply do
not allow it.

Semantic caching and the corresponding indexing techniques which
require that the cached results be exactly matched with the input query
are presented in Sellis (1988). In our approach, the cached results do not
have to be exactly matched with the input query in order to compute
answers. Chen and Roussopoulos (1994) approaches semantic caching
from the query planning and optimization point of view. Dar et al.
(1996) maintains cache space by coalescing or splitting the semantic
regions, while we maintain cache space by reference counters to allow
overlapping in the semantic regions. Further, we provide techniques to
find the best matched query under different circumstances via extended
and knowledge-based matching. In Keller and Basu (1996), predicate
descriptions derived from previous queries are used to match an input
query with the emphasis on updates in the client-server environment.
In Chidlovskii and Borghoff (2000), a semantic caching scheme for
conjunctive keyword-based web queries is introduced. Here, to quickly
process a comparison of an input query against the semantic views,
binary signature method is used. Issues such as probe vs. remainder
query and region coalescing that were originally dealt in Dar et al.
(1996) are further explored with real life experiments.
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INTELLIGENT SEMANTIC CACHING 5

In Ashish et al. (1998), selectively chosen sub-queries are stored in
the cache and are treated as information sources in the domain model.
To minimize the expensive cost for containment checking, the number
of semantic regions is reduced by merging them whenever possible. Ren
and Dunham (1998) defines a semantic caching formally and addresses
query processing techniques derived from Larson and Yang (1985). A
comprehensive formal framework for semantic caching is introduced
in Godfrey and Gryz (1999) illustrating issues, such as when answers
are in the cache, when answers in the cache can be recovered, etc. Adali
et al. (1996) discusses semantic caching in the mediator environment
with knowledge called invariants. Although the invariants are powerful
tools, due to their support of arbitrary user-defined functions as con-
ditions, they are mainly used for substituting a domain call. On the
contrary, we propose a simpler and easier way (i.e., FZN D) to express
a fragment containment relationship on relations that can be acquired
(semi)-automatically.

3. Semantic Caching Technique

3.1. SEMANTIC CACHING MODEL

A semantic cache is essentially a hash table where an entry consists
of a (key, value) pair. The key is the semantic description based on
the previous queries. The value is a set of answers that satisfy the key.
The semantic description made of a prior query is denoted as semantic
view, V. Then, an entry in the semantic cache is denoted as (V, (V))
using the notation (V) in Section 2.

To represent a submitted SQL query in a cache, we need: 1) relation
names, 2) attributes used in the WHERE clause, 3) projected attributes,
and 4) conditions in the WHERE clause (Larson and Yang, 1985; Ren and
Dunham, 1998). For semantic caching in CoWeb, we use only “condi-
tions in the WHERE clause” for the following reasons. In our settings,
since there is one wrapper covering one web source, and thus 1-to-1
mapping between the wrapper and the web source, the relation names
are not needed. In addition, the majority of the web sources has a fixed
output page format from which the wrapper (i.e., extractor) extracts
the specified data. That is, whether or not the input SQL query wants to
project some attributes, the output web page that the wrapper receives
always contains a set of pre-defined attribute values. Since retrieval cost
is the dominating factor in web databases, CoWeb chooses to store all
attribute values contained in the output web page in the cache. Thus
the attributes used in conditions and the projected attributes do not
need to be stored.

SemCache-final.tex; 26/09/2001; 14:26; p.5



6 LEE AND CHU

Furthermore, by storing all attribute values in the cache, CoWeb
can completely avoid the un-recoverability problem, which can occur
when query results cannot be recovered from the cache even if they
are found in the cache, due to the lack of certain logical informa-
tion (Godfrey and Gryz, 1999). As a result, queries stored in the se-
mantic cache of the CoWeb have the form “SELECT * FROM web_source
WHERE condition”, where the WHERE condition is a conjunctive pred-
icate. Hereafter, user queries are represented by the conditions in the
WHERE clause.

3.2. QUERY NATURALIZATION

Different web sources use different ontology. Due to security or per-
formance concerns (Florescu et al., 1998), web sources often provide
different query processing capabilities. Therefore, wrappers need to per-
form the following pre-processing of an input query before submitting
it to the web source:

1. Translation: To provide a 1-to-1 mapping between the wrapper
and the web source, the wrapper needs to schematically translate the
input query.

2. Generalization & Filtration: If there is no 1-to-1 mapping be-
tween the wrapper and the web source, the wrapper can generalize the
input query to return more results than requested and filter out the
extra data. For instance, a predicate (name=’tom’) can be general-
ized into the predicate (name LIKE ’%tomJ’) with an additional filter
(name=’tom’).

3. Specialization: When there is no 1-to-1 mapping between the wrap-
per and the web source, the wrapper can specialize the input query with
multiple sub-queries and then merge the results. For instance, a pred-
icate (1998<year<2001) can be specialized to a disjunctive predicate
(year=1999 V year=2000) provided that year is an integer type.

The original query from the mediator is called input query. The
generated query after pre-processing the input query is called native
query, as it is supported by the web source in a native manner (Chang
et al., 1996). Such pre-processing is called query naturalization. The
query used to filter out irrelevant data from the native query results
is called filter query (Chang et al., 1996). When the translation is not
applicable due to the lack of 1-to-1 mapping, CoWeb applies generaliza-
tion or specialization based on the knowledge regarding the querying
capability of the web source. This information is pre-determined by a
domain expert such as wrapper developer. CoWeb carries a capability
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Figure 1. The control flow among the mediator, wrapper, and web source. An input
query from the mediator is naturalized in the wrapper and converted to a native
query. A filter query can be generated if needed. The cache manager then checks
the native query against the semantic views stored in the cache to find a match. If a
match is found but no filter query was generated for the query, results are retrieved
from the cache and returned to the mediator. If there was a filter query generated,
then the results need to be filtered to remove the extra data. If no match is found, the
native query is submitted to the web source. After obtaining native results from the
web source, the wrapper performs post-processing and returns the final results to the
mediator. Finally the proper form of the native query (e.g., disjunctive predicates
are broken into conjunctive ones) is saved in the cache for future use.

description vector (CDV), a 5-tuple vector, to describe the querying
capability of the web source. For each attribute of the web source,
the associated 5-tuple vector carries: 1) in: describes whether the web
source must be given binding for this attribute or not. It can have
two values — man for mandatory, opt for optional. 2) out: describes
whether this attribute will be shown in the results or not. It has the
same values as in. 3) op: contains operators being supported by the
attribute. 4) any: contains a string value to be used as a wild card.
5) domain: represents the complete domain values of the attribute.
Currently three types — 1list, interval, and set — are supported.

The expressive power of the CDV is less than that of the Vassalos
and Papakonstantinou (1997), but equivalent to that of the Levy et
al. (1996). Unlike Levy et al. (1996) where query capabilities are de-
scribed for a whole web source, each attribute in CoWeb carries its own
description. Figure 1 illustrates the control flow among the mediator,
wrapper and web source in detail.

Example 2: Imagine a web source that supports queries on the relation
employee (name,age,title) with only “=" operator. Then, an input
query Q:(20<age<22 A title=’manager’) needs to be naturalized
(i.e., specialized) into a native query V:((age=20 A title=’manager’)
V (age=21 A title=’manager’) V (age=22 A title=’manager’)).
Further, since semantic views use only conjunctive predicates, the na-
tive query V is partitioned into three conjunctive parts, V;:(age=20 A
title=’manager’), Vs:(age=21 A title=’manager’),and V;:(age=22
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Figure 2. A cache replacement example. When Q1 is evicted at time ¢1, the cor-
responding reference counters are decremented. The tuple b is deleted since its
reference counter is 0, but the tuple a and c remain in the physical storage. When
Q4 is inserted at time ¢2, new tuple tuple d is inserted to the physical storage and
the reference counter of the tuple c is increased.

A title=’manager’). Thus, three entries (Vi, V1)), (V2, (V2)), and
(Vs, (V3)) are inserted as semantic views into the cache. O

3.3. SEMANTIC VIEW OVERLAPPING

A semantic view creates a spatial object? in an n-dimensional hyper-
space, which creates overlapping. For instance, two queries (10<age<20
A 30k<sal<40k) and (15<age<25 A 35k<sal<4bk) create an over-
lapping (15<age<20 A 35k<sal<40k). Since excessive overlapping
of the semantic views may waste the cache space for duplicate answers,
the overlapped portions can be coalesced to the new semantic views
and the remaining semantic views are modified appropriately or can
be completely separate semantic views. For details, refer to Lee and
Chu (1999). In CoWeb, unlike these approaches, the overlapping of the
semantic views is allowed to retain the original form of the semantic
views. By using a reference counter to keep track of the references of
the answer tuples in implementing the cache, the problem of storing
redundant answers in the cache is avoided (Keller and Basu, 1996).

3.4. CACHE REPLACEMENT PoLICY

According to pre-determined evaluation functions (e.g., LRU, semantic
distance), the corresponding replacement values (e.g., access order, dis-

2 This is called a semantic region in Dar et al. (1996) and a semantic segment in
Ren and Dunham (1998).
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Table I. Query match types and their properties. V is a semantic view
and Q is a user query.

Answers from

Match Types Properties Cache Web source
Exact match V=9 V) 0
Containing match VZOAQCY (Q((WV))) 0
Contained match VCOAQZY V) (QAV)
Overlapping match VZIANQLZY (QUY))) (A-Y)
Disjoint match Q AV is unsatisfiable 0 (Q)

tance value) are computed and added to the semantic view. Individual
tuples stored in the physical storage contain a reference counter to
keep track of the number of references. After the semantic view for
replacement has been decided, all tuples belonging to the semantic
view are found via the semantic index and their reference counters are
decremented by 1. The tuples with counter value 0 are removed from
the physical storage. The corresponding semantic view and semantic
index are then removed from the cache entries. An example is illus-
trated in Figure 3.4. Note that the objects in the semantic index can
be overlapped, but not in the physical storage. Also, there is no coalease
among overlapping or containing semantic indices.

3.5. MATcH TYPES

When a query is compared to a semantic view, there can be five different
match types. Consider a semantic view V in the cache and a user query
Q. When V is equivalent to Q, V is an exact match of Q. When
V contains Q, V is a containing match of Q. In contrast, when V
is contained in Q, V is a contained match of Q. When V does not
contain, but intersects with O, V is an overlapping match of Q.
Finally, when there is no intersection between Q and V, V is a disjoint
match of Q. The exact match and containing match are complete
matches since all answers are in the cache, while the overlapping and
contained match are partial matches since some answers need to be
retrieved from the web sources. The detailed properties of each match
type are shown in Table I. Note that for the contained and overlapping
matches, computing answers requires the union of the partial answers
from the cache and from the web source.

The MatchType (Q,V) algorithm then can be derived from Table I
in a straightforward manner. Using algorithms developed for solving
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Query Matching
Exact Extended
= = =
MatChing MatChing _ Answer

Figure 3. The flow in the query matching technique.

Query —>

the satisfiability and containment problems (Saraiya, 1991; Guo et al.,
1996; Ullman, 1997), the MatchType algorithm can be implemented in
O(|Q| + |V|) complexity (limited containment case when no predicate
appears more than twice).

4. Query Matching Technique

Let us now discuss the process of finding the best matched query from
the semantic views, called query matching, which consists of three
steps: exact, extended, and knowledge-based matching, as depicted in
Figure 3.

4.1. EXACT MATCHING

Traditional caching considers only ezact matches between input queries
and semantic views. If there is a semantic view that is identical to the
input query, then it is a cache hit. Otherwise, it is a cache miss.

4.2. EXTENDED MATCHING

Ezxtended matching extends the exact matching for those cases where
an input query is not exactly matched with a semantic view. Other
than the exact matching, the containing match is the next best case
since it only contains some extra answers. Then, between the contained
and overlapping matches, the contained match is slightly better. This
is because the contained match does not contain extra answers in the
cache, although both have only partial answers (see Table I). Note
that for an input query, there can be many containing or contained
matches. In the following subsections, we present how to find the best
match among the different candidates in a cache.

4.2.1. The BestContainingMatch & BestContainedMatch
Algorithms

Intuitively, we want to find the most specific semantic view which

would incur the least overhead cost to answer the user’s query (i.e.,

the smallest superset of the input query). Without loss of generality,
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i'1pU1querY4>‘ 1<x<4 & 3<y<=5 & z='C’ ‘
minimally-containing
1l<x<=4 & 3<=y<=5 1<=x<4 & 4<=y<=6 & z='C’
match
O<x<=4 1l<=x<=4 & z LIKE 'C’ 2<=y<=6 z='C’ .
/ <T— containing match
z LIKE 'C’
AN +— semantic views
x=2 ... y=1 4 z='C’ & w='D’ ...

Figure 4. Example query containment lattice. Given the input query, there are seven
containing matches. Among them, two are the minimally-containing matches. That
is, these two semantic views are the smallest superset of the given input query.

we discuss the case of the containing match only (the contained match
case can be defined similarly). We first define the query containment
lattice.

Definition 3 (Query Containment Lattice)

Suppose Q is a query and the set Uy corresponds to the set of all the
containing/contained matches of the Q found in the cache. Then, the
query containment lattice is defined to be a partially ordered set (Q,
C) where the ordering C forms a lattice over the set Ug U {L}. For a
containing match case, the greatest lower bound (glb) of the lattice is
the special symbol L and the least upper bound (lub) of the lattice is
the query @ itself. For contained match case, the least upper bound
(lub) of the lattice is the special symbol L and the greatest lower bound
(glb) of the lattice is the query Q itself. n

Definition 4 (Minimality and Maximality)

A containing match of the Q, A, is called minimally-containing
match of the Q and denoted by M(C; Q),,.;,, if and only if there is
no other containing match of the Q, B, such that A C B C Q in Q’s
query containment lattice. Symmetrically, a contained match of the Q,
A, is called mazimally-contained match of the @ and denoted by
M(=C; Q),,.4, if and only if there is no other contained match of the
Q, B, such that A 2 B D Q in Q’s query containment lattice. [

An example of the query containment lattice is shown in Figure 4. Note
that for a given query Q, there can be several minimally-containing
matches found in the cache as illustrated in Figure 4. In such cases, the
best minimally-containing match can be selected based on such heuris-
tics as the number of answers associated with the semantic view, the
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12 LEE AND CHU

Input: {Vi,..., Vi }; Output: Best + V; € {V1, ...,V };

Best < 0, Bucketeontaining < {V1, - Vi };
for V; < Vi toV; do

for V; < VitoVy;i# 5 do

if MatchType(V;, V;) = containing match then
BUCketcontaining <~ BUCketcontaining - Vj ;

for V; € Bucket.ontqining do

Best < pick one heuristically from Bucket ontaining;
return Best;

Figure 5. The BestContainingMatch algorithm.

number of predicate literals in the query, etc. The BestContainingMatch
algorithm is shown in Figure 5. It first finds the minimally-containing
matches using the containment lattice and if there are several minimally-
containing matches, then pick one heuristically.

With |V,,4z| being the length of the longest containing match and
k being the number of containing matches, the running time of the
BestContainingMatch algorithm becomes O (k?|Vyqz|) without any in-
dexing on the semantic views. Observe that the BestContainingMatch
algorithm is only justified when finding the best containing match is
better than selecting an arbitrary containing match followed by fil-
tering. This occurs often in web databases with a large number of
heterogeneous web sources or in multi-media databases with expensive
operations for image processing. The BestContainedMatch algorithm
is similar to the case of the BestContainingMatch algorithm.

4.2.2. The BestOverlappingMatch Algorithm

For the overlapping matches, we cannot construct the query contain-
ment lattice. Thus, in choosing the best overlapping match, we use
a simple heuristic: choose the overlapping match which overlaps most
with the given query. There are many ways to determine the meaning
of overlapping. One technique is to compute the overlapped region
between two queries in n-dimensional spaces or compare the number
of associated answers and select the one with maximum answers.

4.3. KNOWLEDGE-BASED MATCHING

According to our experiments in Section 5, partial matches (i.e., over-
lapping and contained matches) constitute about 40% of all match
types for the given test sets (see Table IV). Interestingly, a partial
match can be a complete match in certain cases. For instance, for the
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INTELLIGENT SEMANTIC CACHING 13

employee relation, a semantic view V:(gender=’m’) is the overlapping
match of a query Q:(name=’john’). If we know that john is in fact
a male employee, then V is a containing match of Q since @ C V.
Since complete matches (i.e., exact and containing matches) eliminate
the need to access the web source, transforming a partial match into a
complete match can improve the performance significantly.

Obtaining semantic knowledge from the web source and maintain-
ing it properly are important issues. In general, such knowledge can
be obtained by human experts from the application domain. In addi-
tion, database constraints, such as inclusion dependencies, can be used.
Knowledge discovery and data mining techniques are useful in obtain-
ing such knowledge (semi-)automatically. For instance, the association
rules tell if the antecedent in the rule is satisfied, then the consequent
of the rule is likely to be satisfied with certain confidence and support.

How to manage the obtained knowledge under addition, deletion, or
implications is also an important issue. Since the focus of this paper
is to show how to utilize such knowledge for semantic caching, the
knowledge acquisition and management issues are beyond the scope of
this paper. We assume that the semantic knowledge that we are in need
of was already acquired and was available to the cache manager. We
use a generic notation derived from Chu et al. (1994) to denote the
containment relationship between two fragments of relations.

Definition 5 (Fragment Inclusion Dependency)

A fragment inclusion dependency (FIND) says that values in columns
of one fragment must also appear as values in columns of other frag-
ment. Formally, 74, .. 4,>(0p(R)) & 7<p, ... B>(00(S)), where & €
{=,C}, P and Q are valid SELECT conditions, R and S are valid rela-
tions, and A; and B; are attributes compatible each other. Often LHS
or RHS is used to denote the left or right hand side of the FZND.
A set of FZND is denoted by A and assumed to be closed under its
consequences (i.e., A = A¥). ]

Definition 6 (Query A-Containment)

Given two n-ary queries, Q1 and Qo, if (Q1(D)) C (Qc(D)) for an
arbitrary relation D obeying the fragment inclusion dependencies, then
the query Q; is A-contained in the query Qs and denoted by Q1 Ca
Qy. If two queries A-contain each other, they are A-equivalent and
denoted by Q1 =a Q2 (Gryz, 1998). m

Now using FZND framework, we can easily denote the various se-
mantic knowledges. For instance, let’s consider the classical inclusion
dependency. Inclusion dependency is a formal statement of the form
R[X] C S[Y], where R and S are relation names, X is an ordered list
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14 LEE AND CHU

of attributes of R, ) is an ordered list of attributes of S of the same
length as X (Johnson and Klug, 1984). For instance, the inclusion
dependency “every manager is also an employee” can be denoted as

T <manager _id> (0* (ma‘nager—table) ) C T <employee_id> (O'* (employee—table) )
in FZND, where o, means selecting every tuples in the relation. In
addition, FZND can easily capture association rules found via data
mining techniques.

4.3.1. Transforming Partial Matches to Complete Matches

Our goal is to transform as many partial matches (i.e., overlapping
and contained matches) to complete matches (i.e., exact and contain-
ing matches) as possible with the given FZND set A. The overlap-
ping match can be transformed into four other match types, while the
contained match can only be transformed into the exact match.

1. Overlapping Match: Given a query Q, its overlapping match V
and a dependency set A,

— U{LHS=RHS} € A,Q=LHS,V =RHS, then V is the ezact
match of the Q.

— If {LHS C RHS} € A,Q C LHS,RHS C V, then V is the
containing match of the Q.

— If {LHS C RHS} € A,V C LHS,RHS C Q, then V is the
contained match of the Q.

— If {LHS C RHS} € A,Q C LHS,V AN RHS is unsatisfiable, or
{LHS CRHS} € A, Y CRHS,QAN LHS is unsatisfiable, then V
is the disjoint match of the Q.

Proof: Here, we only show the proof for the second case of the over-
lapping match transformation. Others follow similarly as well. For the
overlapping match, from Table I, we have Q € VAV € Q. If the
condition part is satisfied, then we have @ C LHS C RHS C V, thus
Q C V since C is a transitive operator. This overwrites the original
property Q@ Z V. As a result, we end up with a property @ C VAV € Q,
which is the property of the containing match. (g-e.d)

2. Contained Match: Given a query O, its contained match V and a
A, if {LHS = RHS} € A,Q C LHS,V C RHS, then V is the ezact
match of Q.

Example 7: Suppose we have a query Q:(salary=100k) and a se-
mantic view V:(title=’manager’). Given a A: {USOkgsalaryglzok C

Otitle="manager’ Aage>40 }, V becomes a containing match of Q since Q C
LHS,RHS CV and {LHS C RHS} € A. O
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4.3.2. The A-MatchType Algorithm

Let us first define an augmented MatchType algorithm in the pres-
ence of the dependency set A. The A-MatchType algorithm can be
implemented by modifying the MatchType algorithm in Section 3.5
by adding additional input, A, and changing all = to =A and C to
CAa. The computational complexity of @ =a: V where A’ contains the
single FZN'D = LHS ¢ RHS is then O(|Q| + |V| + |[LHS| + |RHS]).
Let |Lmaz| and |Rpmez| denote the length of the longest LHS and RHS
in A and let |A| denote the number of FZND in A, then the total
computational complexity of the A-MatchType algorithm is O(|A|(| Q|+
[V|+|Lmaz| + |Rmaz|)) in the worst case when all semantic views in the
cache are either overlapping or contained matches. Since the gain from
transforming partial matches to complete matches is I/O-bounded and
the typical length of the conjunctive query is relatively short, it is a
good performance trade-off to pay overhead cost for the CPU-bounded
A-MatchType algorithm in many applications.

4.4. THE QueryMatching ALGORITHM: PUTTING IT ALL
TOGETHER

The QueryMatching algorithm shown in Figure 6 finds the best seman-
tic view in the cache for a given input query in the order of the exact
match, containing match, contained match and overlapping match. If
all semantic views turn out to be disjoint matches, it returns a null
answer. It takes into account not only exact containment relationship
but also extended and knowledge-based containment relationships. Let
|Vinaz| denote the length of the longest semantic views. Then the for
loop takes at most O(k|A[(|Q] + [Vinaz| + |Lmaz| + [Rmaz|)) time. As-
suming that in general |V,,q,| is longer than others, the complexity can
be simplified to O(k|A||Vmaz|). In addition, the BestContainingMatch
and BestContainedMatch takes at most O(k?|Viaz|). Therefore, the
total computational complexity of the QueryMatching algorithm is
O(k|Al[Vinaz| + k*[Vina|)-

5. Performance Evaluation via Experiments

The experiments were performed on a Sun Ultra 2 machine with 256
MB RAM. Each test run was scheduled as a cron job and executed
between midnight and 6am to minimize the effect of the load at the
web site. The test-bed, CoWeb, was implemented in Java using jdk1.1.7.
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16 LEE AND CHU

Input: Q, Uy + {V1,...,Vi}, A; Output: Best < V; € Uy;

Best < (0; Bcntinga Bented, Bovlp <~ @;
for V; < Vi toV; do

switch A-MatchType(Q, V;, A) do

case exactmatch: return V;;

case containingmatch: Beyting < Benting + Vis

case containedmatch: Bguteq < Bented + Vi;

case overlappingmatch: By, < Boyp + Vi

otherwise: skip;
if Benting # 0 then Best < BestContainingMatch(Benting);
else if Byeq # 0 then Best < BestContainedMatch(Beyieq);
else if By, # (0 then Best < BestOverlappingMatch(Boyp);
return Best;

Figure 6. The QueryMatching algorithm.

We used the following schema available from USAir site>. Among
7 attributes, both org and dst are mandatory attributes, thus they
should always be bounded in a query.

USAir(org, dst, airline, stp, aircraft, flt, meal)

5.1. GENERATING SYNTHETIC TEST QUERIES

Semantic caching inevidently behaves very sensitively according to the
semantic locality (i.e., the similarity among queries) of the test queries.
Because of difficulties to obtain real-life test queries from such web
sources, synthetic test sets with different semantic localities were gen-
erated to evaluate our semantic caching scheme. Two factors to the
query generator were manipulated using the distribution D={Ny:P,,
Ni:Py, ..., N7:Pr} or D={org:Py, dst:Py, ..., meal:P;}, where N; is
the number of attributes used in the WHERE condition and P; is the
percentage of the P-th item.

1. The number of the attributes used in the WHERE condition
(NUM): A test query with a large number of attribute conditions
(e.g., age=20 A 40k<sal<50k A title=’manager’) is more specific
than that of a small number of attribute conditions (e.g., age=20).
Therefore, a test set with many such specific queries is likely to perform
badly in semantic caching since there are not many exact or containing

3 Flight schedule site at http://www.usair.com/. At the time of writing, we noticed
that the web site has slightly changed its web interface and schema since then.
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INTELLIGENT SEMANTIC CACHING 17

matches. Let us denote the number of attributes used in the WHERE
condition as N; (i.e., N3 means that 3 attributes are used in the WHERE
condition). For instance, the following input distribution D={N;:30%,
N1:20%, N2:15%, N3:3%, N4:2%, N526%, N6:3%, N7:1%} can be read
as “Generate more queries with short conditions than ones with long
conditions. The probability distributions are 30%, 20%, 15%, 13%, 12%,
6%, 3%, 1%, respectively”.

2. The name of the attributes used in the WHERE condition
(NAME): A test set containing many queries asking about common
attributes is semantically skewed and is likely to perform well with
respect to semantic caching. Therefore, different semantic localities
can be generated by manipulating the name of the attributes used
in the WHERE condition. For instance, the following input distribution
D={org:14.3%, dst:14.3%, airline:14.3%, stp:14.3%, aircraft:14.3%, f1t:14.3%,
meal:14.3%} can be read as “All 7 attributes are equally likely being
used in test set”. As an another example, the fact that flight number
information is more frequently asked than meal information can be
represented by assigning a higher percentage value to the £1t attribute
than the meal attribute.

5.2. QUERY SPACE EFFECT

Another important aspect in generating synthetic test queries is the
Query Space that is the sum of all the possible test queries. For instance,
for the input distribution for the NUM factor D={Ny:0%, N1:0%,
No:180%, N3:180%, Ny:180%, N5:130%, Ne:132%, N7:130%}, the effects
of applying this distribution to 100 query space and 1 million query
space are different. That is, the occurrence of a partial or full match in
the case with 100 query space is much higher than the occurrence of
those in the case with 1 million query space. To take into account this
effect, we need to adjust the percentage distribution.

Formally, given the n attribute list, {A1, ..., A | Am+1, ---y An }, among
which Ay, ..., A, are mandatory attributes and the rest are optional
attributes, and their domain value list, D, ..., D, respectively, all pos-
sible number of query combinations (query space), T, satisfies:

(f[obj> (gaik(”;m)> <T< (f[om,w) <§ﬂ|’°(";m)> (1a)

where & = min(Dy 41, ..., D), 8 = maz(Dpy1,-.-, D), and |Dj| is the
cardinality of the values in domain Dj;.

According to the calculation using Equation 1a, for instance, a total
of 32,400 different SQL queries (i.e., query space) can be generated

SemCache-final.tex; 26/09/2001; 14:26; p.17



18 LEE AND CHU

Table II. Breakdown between the number of SELECT conditions and query
space.

Number of attributes (NUM) Query space size  Query space percentage

0 0 0%
1 0 0%
2 36 0.1 %
3 540 1.67 %
4 3168 9.8 %
5 9072 28.0 %
6 12672 39.2 %
7 6912 21.4 %
Total 32400 100%

from the given USAir schema. The breakdown of query space is shown
in Table II. Using the query space size and percentage, now we can
adjust the percentage distribution for the input of the query generator.
For instance, to make a uniform distribution in terms of the number
of attributes, we give the following input distribution to the generator:
DZ{N()ZO%, Nl:O%, NQZO.l%, N3:1.67%, N4:9.8%, N5:28%, N6239.2%,
N7:21.4%}, instead of D={Ny:0%, N1:0%, N2:132%, N3:130%, N;:130%,
Ng;%o%, N()-:léﬂ%, N7:%%}.

5.3. TEST SETS

The four test sets (uni-uni, uni-sem, sem-uni, and sem-sem) were
generated by assigning different values to the two input parameters
(NUM and NAME) after adjusting the query space effect. They are
shown in Table III. uni and sem stand for uniform and semantic
distribution, respectively. The total query space was set to 32,400.
Each test set with 1,000 queries was randomly picked based on the
two inputs. The sem values for the input NUM were set to mimic the
Zipf distribution (Zipf, 1949), where it is shown that humans tend to
ask short and simple questions more often than long and complex ones.
The sem values for the input NAME were set arbitrarily, assuming that
airline or stopover information would be more frequently asked than
others. Figure 7 shows the different access patterns of the uniform and
semantic distribution in terms of the chosen attribute names.
The following is an example of a typical test query generated.

SELECT org, dst, airline, stp, aircraft, flt, meal
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meal

flt
aircraft aircraft

stp

airline 3

org

0 100 200 300 400 500 600 700 800 900 1000

Test Query Number Test Query Number

a. Uniform distribution b. Semantic distribution

Figure 7. Attribute name access patterns. Shaded area means the attribute is being
used in the test query. Since both org and dst attributes are mandatory, they are
chosen always (thus completely shaded). Since the case b has more semantics, its
access pattern is more skewed (i.e., f1t attribute is seldom accessed in b while it
is as frequently accessed as other attributes in a.) Also the case b shows airline
attribute is more favored in the test query (the row is mostly shaded) than aircraft
attribute.

Table III. Uniform and semantic distribution values used for gener-
ating the four test sets.

Number of the attributes used (NUM)
1 2 3 4 5 6 7

Scheme

16.7%
40%

uni 0% 0%
sem 0% 0%

16.7%
25%

16.7%
15%

16.7% 16.7% 16.7%
10% 5% 5%

0 100 200 300 400 500 600 700 800 900 1000

Name of the attributes used (NAME)

Scheme
org dst airline  stp  aircraft fit  meal

uni 100% 100% 20%  20% 20% 20% 20%

sem 100% 100% 40% 25% 10% 5%  20%
FROM  USAir
WHERE org=’LAX’ AND dst=’DCA’
AND 6<=f1lt AND 1<=stp<=2  AND meal=’supper’
AND aircraft=’Boeing 757-200’
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20 LEE AND CHU
5.4. PERFORMANCE METRICS

1. Average Response Time 7: 7 = (total response time for n
queries) / n. To eliminate the initial noise when an experiment first
starts, we can use 7 from the k queries of the sliding window instead
of n queries in the query set.

2. Cache Coverage Ratio R : Since the traditional cache “hit ratio”
does not measure the effect of partial matching in semantic caching, we
propose to use a cache coverage ratio as a performance metric. Given
a query set consisting of n queries q1, ..., qn, let L; be the number of
answers found in the cache for the query g¢;, and let M; be the total

number of answers for the query ¢; for 1 <1 <n. Then R, = Z':nl Rai ,
where 1) Ry, = ]{“/I—’Z if M; >0and 2) Ry, = cfor 0 < ¢ < 1if M; = 0*. For
instance, the query coverage ratio R, of the exact match and containing
match is 1 since all answers must come from the cache. Similarly, R,
of the disjoint match is 0 since all answers must be retrieved from the
web source.

5.5. EXPERIMENTAL RESULTS

In Figure 8, we compared the performance difference of three caching
cases: 1) no caching (NC), 2) conventional caching using exact matching
(CC), and 3) semantic caching using the eztended matching (SC). Both
cache sizes were set to 200KB. Regardless of the types of test set,
NC shows no difference in performance. Since the number of exact
matches was very small in all the test sets, CC shows only a little
improvement in performance as compared to the NC case. Due to the
randomness of the test sets and large number of containing matches in
our experiments, SC exhibits a significantly better performance than
CC. The more semantics the test set has (thus the more similar queries
are found in the cache), the less time it takes to determine the answers.

Next, we studied the behavior of semantic caching with respect to
cache size. We set the replacement algorithm as LRU and ran four test
sets with cache sizes equal to 50KB, 100KB, 150KB, and unlimited.
Because the number of answers returned from the USAir web site is,
on average, small, the cache size was set to be small. Each test set
contained 1,000 synthetic queries. Figure 9.a and Figure 9.b show the
T and R, for semantic caching with selected cache sizes. The graphs
show that the 7 decreases and the R. increases proportionally as
cache size increases. This is due to the fact that there are fewer cache

4 In our experiments, ¢ was set to 0.5 for the overlapping and contained match
when M; = 0.
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Figure 8. Performance comparison of the semantic caching with conventional
caching.
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Figure 9. Performance comparison of four test sets with selected cache sizes.

replacements. The degree of the semantic locality in the test set plays
an important role. The more semantics the test set has, the better it
performs. Due to no cache replacements, there is only a slight difference
for the unlimited cache size in the R, graph. The same behavior occurs
in the R, graph for the cache size with 150KB for the sem-uni and
sem-sem test sets.

Next, we compared the performance difference between the LRU
(least recently used) and MRU (most recently used) replacement al-
gorithms. Due to limited space, we only show uni-uni and sem-sem
test set results. For this comparison, 10,000 synthetic queries were
generated in each test set and the cache size was fixed to be 150KB.
Figure 10.a shows the 7 of the two replacement algorithms. For both
test sets, LRU outperformed MRU. Further, the difference of the 7T
between LRU and MRU increased as the semantic locality increased.
This is because when there is a higher semantic locality, it is very
likely that there is also a higher temporal locality. Figure 10.b shows
the R, of the two replacement algorithms. Similar to the 7 case, LRU
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Figure 10. Performance comparison of four test sets with LRU and MRU replace-
ment algorithms.

Table IV. Distribution of match types for four test sets.

Test sets  Exact  Containing Contained Overlapping Disjoint

uni-uni 0.4% 13.5% 7.8% 32.1% 46.2%
uni-sem 0.5% 27.7% 12.8% 36.8% 22.2%
sem-uni 5.1% 44.6% 12.0% 25.1% 13.2%
sem-sem 6.1% 52.0% 15.1% 18.0% 13.6%
Average 3.025% 34.35% 11.925% 28.0% 23.8%

outperformed MRU in the R, case as well. Note that the sem-sem case
in the R, graph of the LRU slightly increased as the number of test
queries increased while it stayed fairly flat in the uni-uni case. This is
because when there is a higher degree of semantic locality in the test
set such as in sem-sem case, the replacement algorithm does not lose its
querying pattern (i.e., semantic locality). That is, the number of exact
and containing matches is so high (i.e., 58.1% combined in Table IV)
that most answers are found in the cache, as opposed to a web source.
On the other hand, in the sem-sem case, the R, graph of the MRU
decreased as the number of test queries increased. This is true due to
the fact that MRU loses its querying pattern by swapping the most
recently used item from the cache.

Table IV shows the average percentages of the five match types
based on 1,000 queries for four test sets. The fact that partial matches
(contained and overlapping matches) constitute about 40% shows the
potential usage of the knowledge-based matching technique.

SemCache-final.tex; 26/09/2001; 14:26; p.22



INTELLIGENT SEMANTIC CACHING 23

T
uni-uni —6—

o uni-sem —x—

-] sem-uni —4&—

o 08 sem-sem —E—

j=))

£

<

L

< 06

=

°

Q

@

2 04

(0]

(o))

O

Q<

2 02

c

N4

25 50 75 100
Semantic Knowledge Size (%)

Figure 11. Performance comparison of the knowledge-based matching.

Figure 11 shows an example of the knowledge-based matching using
semantic knowledge. We used a set of induced rules acquired by tech-
niques developed in Chu et al. (1994) as semantic knowledge. Figure 11
# knowledge-based matches)

# partial matches
with selected semantic knowledge sizes. The semantic knowledge size is

represented as a percentage against the number of semantic views. For
instance, a size of 100% means that the number of induced rules used as
semantic knowledge equals the number of semantic views in the cache.
Despite a large number of partial matches in the uni-uni and uni-sem
sets shown in Table IV, it is interesting to observe that the knowledge-
based matching ratios were almost identical for all test sets. This is due
to the fact that many of the partially matched semantic views in the
uni-uni and uni-sem sets have very long conditions and thus fail to
match the rules. Predictably, the effectiveness of the knowledge-based
matching depends on the size of the semantic knowledge.

shows knowledge-based matching ratios (

6. Conclusions

Semantic caching via query matching techniques for web sources is
presented. Our scheme utilizes the query naturalization to cope with the
schematic, semantic, and querying capability differences between the
wrapper and web source. Further, we developed a semantic knowledge-
based algorithm to find the best matched query from the cache. Even
if the conventional caching scheme yields a cache miss, our scheme can
potentially derive a cache hit via semantic knowledge. Our algorithm
is guaranteed to find the best matched query among many candidates,
based on the algebraic comparison of the queries and semantic context
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of the applications. To prove the validity of our proposed scheme, a
set of experiments with different test queries and with different degrees
of semantic locality were performed. Experimental results confirm the
effectiveness of our scheme for different cache sizes, cache replacement
algorithms and semantic localities of test queries. The performance
improves as the cache size increases, as the cache replacement algo-
rithm retains more querying patterns, and as the degree of the semantic
locality increases in the test queries. Finally, an additional 15 to 20 %
improvement in performance can be obtained using knowledge-based
matching. Therefore, our study reveals that our semantic caching tech-
nique can significantly improve the performance of semantic caching in
web databases.

Semantic caching at the mediator-level requires communication with
multiple wrappers and creates horizontal and vertical partitions as well
as joining of input queries (Godfrey and Gryz, 1999), which result
in more complicated cache matching. Further research in this area is
needed. Other cache issues that were not covered in this paper, such
as selective materializing, consistency maintainence and indexing, also
need to be further investigated. For instance, due to the autonomous
and passive nature of web sources, wrappers and their semantic caches
are not aware of web source changes. More techniques need to be de-
veloped to incorporate such web source changes into the cache design
in web databases.
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