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ABSTRACT
To provide accurate and explainable misinformation detection, it
is often useful to take an auxiliary source (e.g., social context and
knowledge base) into consideration. Existing methods use social
contexts such as users’ engagements as complementary informa-
tion to improve detection performance and derive explanations.
However, due to the lack of sufficient professional knowledge,
users seldom respond to healthcare information, which makes
these methods less applicable. In this work, to address these short-
comings, we propose a novel knowledge guided graph attention
network for detecting health misinformation better. Our proposal,
named as DETERRENT, leverages on the additional information
from medical knowledge graph by propagating information along
with the network, incorporates a Medical Knowledge Graph and an
Article-Entity Bipartite Graph, and propagates the node embeddings
through Knowledge Paths. In addition, an attention mechanism
is applied to calculate the importance of entities to each article,
and the knowledge guided article embeddings are used for mis-
information detection. DETERRENT addresses the limitation on
social contexts in the healthcare domain and is capable of providing
useful explanations for the results of detection. Empirical valida-
tion using two real-world datasets demonstrated the effectiveness
of DETERRENT. Comparing with the best results of eight com-
peting methods, in terms of F1 Score, DETERRENT outperforms
all methods by at least 4.78% on the diabetes dataset and 12.79%
on cancer dataset. We release the source code of DETERRENT at:
https://github.com/cuilimeng/DETERRENT.
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1 INTRODUCTION

Lower body mass index (BMI) is consistently 
associated with reduced type II diabetes risk, 
among people with varied family history, genetic 
risk factors and weight, according to a new study.

(BMI, Diagnoses, Diabetes)

Besides chemicals, cancer loves sugar. A study at 
the University of Melbourne, Australia discovered 
a strong correlation between sugary soft drinks 
and 11 different kinds of cancer, including 
pancreatic, liver, kidney, and colorectal.

(Sugar, CreatesRiskFor, Nonalcoholic Fatty 
Liver Disease) 
(Liver Diseases, CreatesRiskFor, Liver Cancer)

Herbal supplement found to be more effective at 
managing diabetes than metformin drug.

(Herbal Supplement, DoesNotHeal, Diabetes)

Triples from KG

(Family History, Causes, Diabetes)

(Metformin, Heals, Diabetes)

(Weight Gain, CreatesRiskFor, Diabetes)

Fact

Misinformation

Misinformation

Figure 1: Healthcare article examples and related triples
from a medical knowledge graph (KG). The triples can ei-
ther enhance or weaken the augments in the articles.

The popularity of online social networks has promoted the
growth of various applications and information, which also en-
ables users to browse and publish such information more freely. In
the healthcare domain, patients often browse the Internet looking
for information about illnesses and symptoms. For example, nearly
65% of Internet users use the Internet to search for related topics
in healthcare [25]. However, the quality of online healthcare infor-
mation is questionable. Many studies [12, 32] have confirmed the
existence and the spread of healthcare misinformation. For example,
a study of three health social networking websites found that 54%
of posts contained medical claims that are inaccurate or incomplete
[38].

Healthcare misinformation has detrimental societal effects. First,
community’s trust and support for public health agencies is under-
mined by misinformation, which could hinder public health control.
For example, the rapid spread of misinformation is undermining
trust in vaccines crucial to public health1. Second, health rumors
that circulate on social media could directly threaten public health.
During the 2014 Ebola outbreak, the World Health Organization
(WHO) noted that some misinformation on social media about cer-
tain products that could prevent or cure the Ebola virus disease
has led to deaths2. Thus, detecting healthcare misinformation is
critically important.

Though misinformation detection in other domains such as poli-
tics and gossips have been extensively studied [1, 26, 29], health-
care misinformation detection has its unique properties and chal-
lenges. First, as non-health professionals can easily rely on given
health information, it is difficult for them to discern information
correctly, especially when the misinformation was intentionally

1https://www.nature.com/articles/d41586-018-07034-4
2https://www.who.int/mediacentre/news/ebola/15-august-2014/en/
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made to target such people. Existing misinformation detection
for domains such as politics and gossips usually adopt social con-
texts such as user comments to provide auxiliary information for
detection[8, 13, 16, 36, 39]. However, in healthcare domain, social
context information is not always available and may not be useful
because of users without professional knowledge seldom respond
to healthcare information and cannot give accurate comments. Sec-
ond, despite good performance of existing misinformation detection
methods [42], the majority of them cannot explain why a piece of
information is classified as misinformation. Without proper expla-
nation, users who have no health expertise might not be able to
accept the result of the detection. To convince them, it is necessary
to offer an understandable explanation why certain information is
unreliable. Therefore, we need some auxiliary information that can
(1) help detect healthcare misinformation; and (2) provide easy to
understand professional knowledge for an explanation.

Medical knowledge graph, which is constructed from research pa-
pers and reports can be used as an effective auxiliary for healthcare
misinformation detection, to find the inherent relations between
entities in texts to improve detection performance and provide ex-
planations. In particular, we take the article-entity bipartite graph
and medical knowledge graph as complementary information, into
consideration to facilitate a detection model (See Figure 1). First,
article contents contain linguistic features that could be used to ver-
ify the truthfulness of an article. Misinformation (including hoaxes,
rumors and fake news) is intentionally written to mislead readers
by using exaggeration and sensationalization verbally.

For example, we can infer from a medical knowledge graph that
𝑆𝑢𝑔𝑎𝑟 is not directly linked to 𝐿𝑖𝑣𝑒𝑟 𝐶𝑎𝑛𝑐𝑒𝑟 , however, the misinfor-
mation indicates that there is a “strong correlation” between the
two entities. Second, the relation triples from a medical knowledge
graph can add/remove the credibility of certain information, and
provide explanations to the detection results. For example, in Fig-
ure 1, we can see that the triple (𝐵𝑀𝐼 , 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 , 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠) and
two more triples can directly verify that the article is real, while
the triple (𝐻𝑒𝑟𝑏𝑎𝑙 𝑆𝑢𝑝𝑝𝑙𝑒𝑚𝑒𝑛𝑡 , 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐻𝑒𝑎𝑙 , 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠) can prove
that the saying in an article is wrong. Above all, it is beneficial to
explore the medical graph for healthcare misinformation detection.
And to our best knowledge, there is no prior attempt to detect
healthcare misinformation by exploiting the knowledge graph.

Therefore in this paper, we study a novel problem of explainable
healthcare misinformation detection by leveraging the medical
knowledge graph. Modeling the medical knowledge graph with
healthcare articles is a non-trivial task. On the one hand, healthcare
information/texts and medical knowledge graph cannot be directly
integrated, as they have different data structures. On the other
hand, social network analysis techniques are not applied to the
medical knowledge graph. For example, recommendation systems
would recommend movies to users who watched a similar set of
movies. However, in the healthcare domain, two medications are
not necessarily related even if they can heal the same disease.

To address the above two issues, we propose a knowledge guided
graph attention network that can better capture the crucial entities
in news articles and guide the article embedding.We incorporate the
Article-Entity Bipartite Graph and a Medical Knowledge Graph into
a unified relational graph and compute node embeddings along
the graph. We use the Node-level Attention and BPR loss [30] to

tackle the positive and negative relations in the graph. The main
contributions of the paper include:

• We study a novel problem of explainable healthcare misinforma-
tion detection by leveraging medical knowledge graph to better
capture the high-order relations between entities;
• We propose a novel method DETERRENT (knowleDgE guided
graph aTtention nEtwoRks foR hEalthcare misiNformation
deTection), which characterizes multiple positive and negative re-
lations in the medical knowledge graph under a relational graph
attention network; and
• We manually build two healthcare misinformation datasets on
diabetes and cancer. Extensive experiments have demonstrated
the effectiveness of DETERRENT. The reported results show that
DETERRENT achieves a relative improvement of 1.05%, 4.78% on
Diabetes dataset and 6.30%, 12.79% on Cancer dataset comparing
with the best results in terms of Accuracy and F1 Score. The case
study shows the interpretability of DETERRENT.

2 RELATEDWORK
In this section, we briefly review two related topics: misinformation
detection and graph neural networks.

Misinformation Detection. Misinformation detection methods
generally focus on using article contents and external sources. Ar-
ticle contents contain linguistic clues and visual factors that can
differentiate the fake and real information. Linguistic features based
methods check the consistency between the headlines and contents
[4], or capture specific writing styles and sensational headlines that
commonly occur in fake content [28]. Visual-based features can
work with linguistic features to to identify fake images [42], and
help to detect misinformation collectively [9, 13].

For external sources based approaches, the features are mainly
context-based. Context-based features represent the information
of users’ engagements from online social media. Users’ responses
in terms of credibility [31], viewpoints [36] and emotional signals
[9] are beneficial to detect misinformation. The diffusion network
constructed from users’ posts can evaluate the differences in the
spread of truth and falsity [41]. However, users’ engagements are
not always available when a news article is just released, or users
lack professional knowledge of relevant fields such as medicine.
Knowledge graph (KG) can address the disadvantages of current
methods relying on social context and derive explanations to the
detection results. Some researchers use knowledge graph based
methods to decide and explain whether a (Subject, Predicate, Object)
triple is fake or not [7, 15, 17]. These methods use the score function
to measure the relevance of the vector embedding of subject and
vector embedding of object with the embedding representation of
predicate. For example, KG-Miner exploits frequent predicate paths
between a pair of entities [35]. Other researchers use news streams
to update the knowledge graph [37].

Hence in this paper, we study the novel problem of knowledge
guided misinformation detection, aiming to improve misinforma-
tion detection performance in healthcare, and provide a possible
interpretation on the result of detection simultaneously.

GraphNeural Networks. GraphNeural Networks (GNNs) refer to
the neural network models that can be applied to graph-structured



data. Several extensions to GNN [33] have been proposed to en-
hance the capability and efficiency [43]. GCN [20] attempts to learn
node embeddings in a semi-supervised fashion using a different
neighborhood aggregation method. GAT [40] extends GNN by in-
corporating the attention mechanism. R-GCN [34] is also a variant
of GCN which is suitable for relational data. RGAT [6] takes ad-
vantage of both the attention mechanism and R-GCN and attempts
to extend the attention mechanism to the area of relational graph-
structured data. Signed Networks are variants of GNNs applicable
to the signed graphs with negative and positive edges [10, 22, 23].

However, existing methods are not suitable for modeling the
positive and negative relations in the medical knowledge graph, as
mentioned in the introduction. In this work, we model the medical
knowledge graph under a relational graph attention network, and
use BPR loss to capture positive and negative relations.

3 PROBLEM FORMULATION
In this section, we describe the notations and formulate medi-
cal knowledge graph guided misinformation detection problem.
The medical knowledge graph describes the entities collected
from the medical literature, as well as positive/negative rela-
tions (e.g., 𝐻𝑒𝑎𝑙𝑠/𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐻𝑒𝑎𝑙) among entities. For example,
(𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒 , 𝐻𝑒𝑎𝑙𝑠 , 𝐻𝑦𝑝𝑜𝑐𝑎𝑙𝑐𝑒𝑚𝑖𝑎) contains a positive re-
lationship, but (𝐴𝑐𝑡𝑜𝑛𝑒𝑙 , 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐻𝑒𝑎𝑙 , 𝐻𝑦𝑝𝑜𝑐𝑎𝑙𝑐𝑒𝑚𝑖𝑎) has a nega-
tive relationship.

Definition 1. Medical Knowledge Graph: Let G𝑚 = {E,R,
R−,T ,T−} be a knowledge graph, where E, R, R−, T and T−
are the entity set, positive relation set, negative relation set, positive
subject-relation-object triple set and negative triple set, respectively.
The positive triples are presented as {(𝑒𝑖 , 𝑟 , 𝑒 𝑗 ) |𝑒𝑖 , 𝑒 𝑗 ∈ E, 𝑟 ∈ R},
which describes a relationship 𝑟 from the head node 𝑒𝑖 to the tail node
𝑒 𝑗 . Similarly, negative triples are represented as {(𝑒𝑖 , 𝑟 , 𝑒 𝑗 ) |𝑒𝑖 , 𝑒 𝑗 ∈
E, 𝑟 ∈ R−}.

We denote D as the health-related article set. Each article 𝑆 ∈
D contains |𝑆 | words, 𝑆 = {𝑤1,𝑤2, . . . ,𝑤 |𝑆 |}. We perform entity
linking to build the word-entity alignment set {(𝑤, 𝑒) |𝑤 ∈ V, 𝑒 ∈
E}, where (𝑤, 𝑒) means that word 𝑤 in the vocabulary V can
be linked with an entity 𝑒 in the entity set. To capture the co-
relationships of articles and entities in a medical knowledge graph,
we define the article-entity bipartite graphs as follow.

Definition 2. Article-Entity Bipartite Graph: The article-
entity bipartite graph is denoted as G𝑎𝑒 = (D ∪ E,L), where L
is the set of links. The link is denoted as {(𝑆, 𝐻𝑎𝑠, 𝑒) |𝑆 ∈ D, 𝑒 ∈ E}.
If an article 𝑆 contains a word that can be linked to entity 𝑒 , there will
be a link “𝐻𝑎𝑠” between them, otherwise none.

Exploiting the knowledge path between entities is of great im-
portance. Here we formally define the knowledge path.

Definition 3. Knowledge Path: A knowledge path between en-
tity 𝑒1 and 𝑒𝑘 is denoted as 𝑒1, 𝑟1, 𝑒2, 𝑟2 . . . , 𝑟𝑘−1, 𝑒𝑘 , where 𝑒𝑘 ∈ E,
𝑟𝑘 ∈ R and (𝑒𝑘−1, 𝑟𝑘−1, 𝑒𝑘 ) ∈ T .

Consider such a knowledge path: 𝑒1, 𝑟1, 𝑒2, 𝑟2, 𝑒3, of which the
two relations are (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠,𝐶𝑟𝑒𝑎𝑡𝑒𝑠𝑅𝑖𝑠𝑘𝐹𝑜𝑟, 𝐾𝑖𝑑𝑛𝑒𝑦 𝐷𝑖𝑠𝑒𝑎𝑠𝑒) and
(𝐾𝑖𝑑𝑛𝑒𝑦 𝐷𝑖𝑠𝑒𝑎𝑠𝑒,𝐶𝑎𝑢𝑠𝑒𝑠, 𝐸𝑑𝑒𝑚𝑎). The two relations build a path
between “diabetes” and “edema”, which implies a potential link

between two disorders. Such a knowledge path can add credibility
to the article mentioning these two disorders. Conversely, if two
words are not reachable in a knowledge graph, such two words are
largely irrelevant, which reduces the credibility of related articles.
For example, although “bipolar disorder” and “fenofibrate” may be
the causes of “diabetes”, there is no strong connection between two
entities themselves from a medical perspective. However, existing
text classification methods regard ‘bipolar disorder” and “fenofi-
brate” as related as they both co-occur with “diabetes” a lot. Hence,
we argue that considering knowledge paths between words through
a knowledge graph can provide medical evidence in healthcare mis-
information detection, which yields higher detection accuracy.

With the above notations and definitions, we formulate the
knowledge guided misinformation detection task as follows:

Problem 1 (Medical Knowledge Graph Guided Misinforma-
tion Detection) Given a set of healthcare articles D, their corre-
sponding label set Y, and the medical knowledge graph G, the goal
is to learn a prediction function 𝑓 to distinguish if a news is fake.

4 METHODOLOGY
Our proposed framework consists of three components, which
is shown in Figure 2: 1) an information propagation net, which
propagates the knowledge between articles and nodes by preserving
the structure of KG; 2) knowledge aware attention, which learns the
weights of a node’s neighbors in KG and aggregates the information
from the neighbors and an article’s contextual information to update
its representation; 3) a prediction layer, which takes an article’s
representation as input and outputs a predicted label. Next, we
introduce the details of each component.

4.1 Information Propagation Net
The medical knowledge graph can provide medical evidence in
healthcare misinformation detection. To fully utilize the medical
knowledge graph for healthcare misinformation detection, moti-
vated by previous work [34, 37], we leverage inherent directional
structure of the medical database to learn the entity embedding.
To propagate the information from knowledge graph to the arti-
cle, we incorporate the Article-Entity Bipartite Graph and Medical
Knowledge Graph into a unified relational graph, and add a set
of self-loops (edge type 0) denoted as A = {(𝑒𝑖 , 0, 𝑒𝑖 ) |𝑒𝑖 ∈ E},
which allows the state of a node to be kept. Hence, the new graph
is defined as G = {E ′,R ′,R−,T ′,T−}, where E ′ = E ∪ D,
R ′ = R ∪ R− ∪ {𝐻𝑎𝑠, 0} and T ′ = T ∪ T− ∪ L ∪ A.
Information Propagation: As there are multiple relations in a
graph, we use R-GCN [34] to model the relational data, which is
very effective in modeling multi-relational graph data. In R-GCN,
each node is assigned to an initial representation h(0)

𝑖
. The layer-

wise propagation rule updates the node representation using the
representations of its neighbors in the graph in the (𝑙 + 1)-th layer,
yielding the representation h(𝑙+1)

𝑖
as follows:

h(𝑙+1)
𝑖

= 𝜎
©«
∑
𝑟 ∈R′

∑
( 𝑗,𝑟 ,𝑖) ∈T′

1
𝑐𝑖,𝑟

W𝑟h(𝑙)
𝑗

ª®¬ , (1)
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Figure 2: Illustration of the proposedDETERRENTmodel. The left subfigure shows the Knowledge Guided Embedding Layers of
DETERRENT, and the right subfigure presents the Information Propagation Net of DETERRENT. The Information Propagation
Net is performed on the unified graph of Article-Entity Bipartite Graph and Medical Knowledge Graph, which has positive
(in black) and negative (in red) relations.

where 𝑐𝑖,𝑟 is a normalization factor which is usually set to the
number of neighbors of node 𝑖 ∈ E ′ under relation 𝑟 ∈ R ′, W𝑟 is a
learnable edge-type-dependent weight parameter and 𝜎 (·) denotes
an activation function (we use LeakyReLU in this paper).
Node-level Attention: Each entity has relations with multiple
entities. Not all relations are equally important for the healthcare
misinformation detection problem. However, each neighbor has
different importance to the node representation. Thus, we introduce
the attention mechanism into the Information Propagation in Eq. (1)
to assign more weights to important neighboring nodes, and the
node representation is computed as the weighted sum of neighbors’:

h(𝑙+1)
𝑖

= 𝜎
©«
∑
𝑟 ∈R′

∑
( 𝑗,𝑟 ,𝑖) ∈T′

𝛼𝑟𝑖 𝑗W
𝑟h(𝑙)

𝑗

ª®¬ (2)

where 𝛼𝑟
𝑖 𝑗

measures the importance of node 𝑖 for a neighbor 𝑗 ,
which is calculated as follows:

u𝑟𝑖 𝑗 = W𝑟 (h(𝑙)
𝑖
∥ h(𝑙)

𝑗
),

𝛼𝑟𝑖 𝑗 =
exp(a𝑟u𝑟

𝑖 𝑗
)∑

(𝑘,𝑟,𝑖) ∈T′ exp(a𝑟u𝑟𝑖𝑘 )
(3)

where a𝑟 is the learnable parameter that weighs different feature
dimensions of the node representation.

An issue of Eq. 2 is that, with the increasing number of relation
types, the model will be quickly over-parameterized. To alleviate
this problem, we apply Basis Decomposition [34] for regulariza-
tion. This approach decomposes the weight matrix into a linear
combination of several basic matrices, which largely decreases the
number of model parameters.
Modeling Negative Relations: Since negative relations have dif-
ferent effects on the target node compared with positive relations,
they should be treated separately. For example, the following three
positive triples between four entities in a medical knowledge graph:
1) 𝐶𝑎𝑙𝑐𝑖𝑡𝑟𝑖𝑜𝑙 can heal 𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝐷𝑒𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦; 2) 𝐴𝑐𝑡𝑜𝑛𝑒𝑙 can heal
𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝐷𝑒𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦; and 3)𝐶𝑎𝑙𝑐𝑖𝑡𝑟𝑖𝑜𝑙 can alleviate 𝐻𝑦𝑝𝑜𝑐𝑎𝑙𝑐𝑒𝑚𝑖𝑎.
Intuitively, we can infer that 𝐴𝑐𝑡𝑜𝑛𝑒𝑙 is a potential treatment for
𝐻𝑦𝑝𝑜𝑐𝑎𝑙𝑐𝑒𝑚𝑖𝑎. However, a negative triple in a medical knowl-
edge graph indicates that 𝐴𝑐𝑡𝑜𝑛𝑒𝑙 does not heal 𝐻𝑦𝑝𝑜𝑐𝑎𝑙𝑐𝑒𝑚𝑖𝑎.
Although the fact overrides our guess, it is explainable medically:

Both 𝐶𝑎𝑙𝑐𝑖𝑡𝑟𝑖𝑜𝑙 and 𝐴𝑐𝑡𝑜𝑛𝑒𝑙 can treat 𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝐷𝑒𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦. How-
ever, the active ingredients in them are Vitamin D and Risedronate,
respectively. Furthermore, the Vitamin D in𝐶𝑎𝑙𝑐𝑖𝑡𝑟𝑖𝑜𝑙 can alleviate
𝐻𝑦𝑝𝑜𝑐𝑎𝑙𝑐𝑒𝑚𝑖𝑎 while Risedronate cannot. Thus, when we are mod-
eling the graph, we hope the discrepancy between two entities in
a negative triple is larger than in a positive triple. To achieve this
goal, we choose BPR loss [30]. It is commonly used in recommen-
dation systems, to maximize the difference between the scores of
the positive and negative samples. Hence, we first conduct inner
product of entity representations as the matching score:

𝑚𝑖 𝑗 = hT𝑗 (W
𝑟h𝑖 ) (4)

where h𝑖 and h𝑗 are the representations for entity 𝑒𝑖 and 𝑒 𝑗 under
relation 𝑟 in each layer. Then we use BPR loss to penalize the scores
of two entities in a negative triple:

L𝑘 =
∑

(𝑒 𝑗 ,𝑟 ,𝑒𝑖 ) ∈T′
(𝑒𝑘 ,𝑟 ,𝑒𝑖 ) ∈T−

− ln𝜎
(
𝑚𝑖 𝑗 −𝑚𝑖𝑘

)
(5)

where 𝜎 (·) is the Sigmoid function.
It is worth noting that the signed GCNs [10] use balance theory

[14] in social psychology to deal with the negative relations in GCN.
The balance theory suggests a positive relationship between two
nodes, if there exists a knowledge path between the nodes that
have an even number of negative relations (e.g., “The enemy of
my enemy is my friend”). However, these methods cannot be used
in modeling the medical knowledge graph due to the complexity
of entities (medications and diagnoses). Distinct from the existing
methods, ourmodel uses a soft assumption on the negative relations,
which does not require the graph to be balanced.

4.2 Knowledge Guided Embedding Layers
After going through the Information Propagation Net, we can get
the neighboring attention weights of nodes (including articles). In
this section, we propose Knowledge Guided Embedding Layers
to use the relevance scores of entities to an article to guide the
embedding of the article.
Text Encoder: To fully capture the contextual information of an
article, we use BiGRU [3] to encode word sequences from both
directions of words. To be specific, given the word embeddings



{v1, v2, . . . , v |𝑆 |} of an article 𝑆 , the article embedding is computed
as below: −→s 𝑡 = GRU(−→s 𝑡−1, v𝑡 )

←−s 𝑡 = GRU(←−s 𝑡−1, v𝑡 )
(6)

We concatenate the forward hidden state −→s 𝑡 and the backward
hidden state←−s 𝑡 as s𝑡 = [−→s 𝑡 ,←−s 𝑡 ], which captures the contextual
information of the article centered around word v𝑡 .

Since not all words equally contribute to the semantic represen-
tation of the article, we leverage the attention mechanism to learn
the weights to measure the importance of each word, and compute
the article representation vector as follows:

c =
|𝑆 |∑
𝑡=1

𝛽𝑡 s𝑡 (7)

where 𝛽𝑡 measures the importance of the 𝑡-th word for the article,
which is calculated as follows:

u𝑡 = tanh (W𝑐s𝑡 + b𝑐 )

𝛽𝑡 =
exp(uT𝑡 g)∑ |𝑆 |
𝑘=1 exp(u

T
𝑘
g)

(8)

where u𝑡 is a hidden representation of v𝑡 obtained by feeding the
hidden state v𝑡 to a fully embedding layer, and g is a trainable
parameter to guide the extraction of the context.
Knowledge Guided Attention: To incorporate the knowledge
guidance into the textual information, we update the g in Eq. 8 by
g′ to get the final attention function:

g′ = 𝛾g + (1 − 𝛾)W𝑘h
𝑠 (9)

where h𝑠 is the node embedding of the article 𝑆 obtained from
the Information Propagation Net, W𝑘 is a learnable transforma-
tion matrix and 𝛾 ∈ [0, 1] is a trade-off parameter that controls
the relative importance of the two terms. If we set 𝛾 = 1, then g′

degenerates to g and our framework degenerates to a text classi-
fier without the information from the medical knowledge graph. It
makes it easy to pre-train the model to get good word embeddings
for misinformation detection. The updated context vector g′ takes
both linguistic features from BiGRU and knowledge guidance into
consideration. The Information Propagation Net propagates more
information among similar entities and articles through the knowl-
edge paths. We further use the attention score 𝛽𝑡 to compute the
articles representation vector c by Eq. 7.

4.3 Model Prediction
We have introduced how we can encode article contents through
knowledge guidance. We further feed the embeddings to a softmax
layer for misinformation classification as follows:

𝑦 = Softmax(W𝑓 c + b𝑓 ) (10)

where 𝑦 is the predicted value which indicates the probability of
the article being fake. For each article, our goal is to minimize the
cross-entropy loss:

L𝑑 = −𝑦 log𝑦 − (1 − 𝑦) log(1 − 𝑦) (11)

where 𝑦 ∈ {0, 1} is the ground truth label being 0 (fact) and 1
(misinformation), respectively.

Table 1: Statistics of datasets

Disease Diabetes Cancer

# Misinformation 608 1,476
# Fact 1,661 4,623
# Entities 1,932 2,873
# Relations 22,685 28,391

4.4 Training and Inference with DETERRENT
Finally, we combine the detection goal with BPR loss to form the
final objective function as follows:

L𝑓 𝑖𝑛𝑎𝑙 = L𝑘 + L𝑑 + 𝜂 ∥Θ∥22 (12)

where Θ is the model parameters, and 𝜂 is a regularization factor.
During the training, we optimize L𝑘 and L𝑑 alternatively. We

use Adam [19] to optimize the embedding loss and the prediction
loss. Adam is awidely used optimizer, which can compute individual
adaptive learning rates for different parameters w.r.t. the absolute
value of gradient.

5 EXPERIMENTS
In this section, we present the experiments to evaluate the effective-
ness of DETERRENT. Specifically, we aim to answer the following
evaluation questions:
• RQ1: Is DETERRENT able to improve misinformation classifi-
cation performance by incorporating the medical knowledge
graph?
• RQ2: How effective are knowledge graph and knowledge aware
attention, respectively, in improving the misinformation detec-
tion performance of DETERRENT?
• RQ3: Can DETERRENT provide reasonable explanations about
misinformation detection results?

Next, we first introduce the datasets and baselines, followed by
experiments to answer these questions.

5.1 Datasets
As the medical knowledge graph, we use a public medical knowl-
edge graph KnowLife3 [11] which contains 25,334 entity names
and 591,171 triples. We extract six positive relations includ-
ing 𝐶𝑎𝑢𝑠𝑒𝑠 , 𝐻𝑒𝑎𝑙𝑠 , 𝐶𝑟𝑒𝑎𝑡𝑒𝑠𝑅𝑖𝑠𝑘𝐹𝑜𝑟 , 𝑅𝑒𝑑𝑢𝑐𝑒𝑠𝑅𝑖𝑠𝑘𝐹𝑜𝑟 , 𝐴𝑙𝑙𝑒𝑣𝑖𝑎𝑡𝑒𝑠 ,
𝐴𝑔𝑔𝑟𝑎𝑣𝑎𝑡𝑒𝑠 and four negative relations including 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐶𝑎𝑢𝑠𝑒 ,
𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐻𝑒𝑎𝑙 , 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑖𝑠𝑘𝐹𝑜𝑟 , 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝑅𝑒𝑑𝑢𝑐𝑒𝑅𝑖𝑠𝑘𝐹𝑜𝑟 .

To evaluate the performance of DETERRENT, we need a reason-
ably sized collection of health-related articles of several diseases
with labels. Unfortunately, there is no available dataset of adequate
size. For this reason, we have collected a health-related article
dataset whose years range from 2014 to 2019.

To gather real articles, we crawled from 7 reliable media out-
lets that have been cross-checked as reliable, e.g., Healthline, Sci-
enceDaily, NIH (National Institutes of Health), MNT (Medical News
Today), Mayo Clinic, Cleveland Clinic, WebMD. For misinforma-
tion, we crawled verified health misinformation from Snopes.com
and Hoaxy API, popular hoax-debunking site and web tool. The
detailed statistics of the datasets are shown in Table 1.
3http://knowlife.mpi-inf.mpg.de/



Table 2: Performance Comparison on Diabetes and Cancer datasets. DETERRENT outperforms all state-of-the-art baselines
including knowledge graph based and article contents based methods.

Datasets Metric KG-Miner TransE text-CNN CSI\c dEFEND\c GUpdater HGAT DETERRENT

Diabetes

Accuracy 0.7601 0.7671 0.7566 0.8359 0.9101 0.9012 0.8888 0.9206
Precision 0.5398 0.5963 0.5563 0.6847 0.9793 0.9687 0.7730 0.8445
Recall 0.6333 0.4248 0.4836 0.7826 0.6597 0.6369 0.8289 0.8503
F1 Score 0.5828 0.4961 0.5174 0.7304 0.7883 0.7685 0.7996 0.8474

Cancer

Accuracy 0.8051 0.8536 0.8812 0.8982 0.8969 0.9022 0.8608 0.9652
Precision 0.5790 0.6455 0.8531 0.7900 0.8847 0.7868 0.7226 0.9469
Recall 0.7365 0.8125 0.5988 0.8165 0.6538 0.8147 0.7338 0.9153
F1 Score 0.6485 0.7195 0.7037 0.8030 0.7519 0.8005 0.7282 0.9309

5.2 Baselines
We compare DETERRENTwith representative and state-of-the-art
misinformation detection algorithms, which are listed as follows:

• KG-Miner [35]: KG-Miner is a fast discriminative path mining
algorithm that can predict the truthfulness of a statement. We
first use OpenIE [2] to extract the relation triple of each sentence
in the article. Then we compute the score of each triple when the
subject, predicate, object are all in the KG, and average all the
score as output label.
• TransE [5]: TranE is a knowledge graph embedding method,
which embeds entities and relations into latent vectors and com-
pletes KGs based on these vectors. We use TransE on the unified
relational graph. The article embeddings are used for misinfor-
mation detection.
• text-CNN [18]: text-CNN is a text classificationmodel that utilizes
convolutional neural networks to model article contents, which
can capture different granularity of text features with multiple
convolution filters.
• CSI\c [31]: CSI is a hybrid deep learning-based misinformation
detection model that utilizes information from article content
and user response. The article representation is modeled via an
LSTM model with the article embedding via Doc2Vec [21] and
user response. As our datasets do not have user comments, the
corresponding part of the model is ignored, and termed as CSI\c.
• dEFEND\c [36]: dEFEND utilizes a hierarchical attention neural
network framework on article content and co-attention mech-
anism between article content and user comment for misinfor-
mation detection. As our datasets do not have user comments,
the corresponding part of the model is ignored, and termed as
dEFEND\c.
• HGAT [24]: HGAT is a flexible heterogeneous information net-
work framework for classifying short texts, which can integrate
any type of additional information. We add Semantic Group to
the entities as side information, such as Procedures and Disorders.
• GUpdater [37]: GUpdater can update KGs by using news. It is
built upon GNNs with a text-based attention mechanism to guide
the updating message passing through KG structures. Similar to
TransE, we use article embeddings for misinformation detection.

Note that for a fair comparison, we choose above contrasting
methods that use features from following aspects: (1) only knowl-
edge graph, such as TransE, KG-Miner; (2) only article contents,
such as text-CNN, CSI\c, dEFEND\c and (3) both knowledge graph

and article contents, such as HGAT and GUpdater. For knowledge
graph methods, we feed output article embeddings into several tra-
ditional machine learningmethods and choose the one that achieves
the best performance. The methods include Logistic Regression,
Multilayer Perceptron and Random Forest. We run these methods
by using scikit-learn [27] with default parameter settings.

5.3 Experimental Setup
5.3.1 Metrics. To evaluate the performance of misinformation de-
tection algorithms, we use the following metrics, which are com-
monly used to evaluate classifiers in related areas: Accuracy, Preci-
sion, Recall, and F1 score.

5.3.2 Implementation Details. We implement all models with Keras.
We randomly use the labels of 75% news pieces for training and
predict the remaining 25%. We set the hidden dimension of our
model and other neural models to 128. The dimension of word
embeddings is 100. For DETERRENT, the entity embeddings and
relation embeddings are pre-trained using Information Propagation
Net.We tested the depth ofDETERRENT𝐿 = {1, 2, 3, 4} and learning
rate 𝑙𝑟 = {10−2, 10−3, 10−4}. We set 𝜂 = 0.05. For other methods,
we follow the network architectures as shown in the papers. For all
models, we use Adam with a minibatch of 50 articles on Diabetes
dataset and 100 on Cancer dataset, and the training epoch is set as
10. For a fair comparison, we use cross-entropy loss.

5.4 Misinformation Detection (RQ1)
To answer RQ1, we first compare DETERRENT with the represen-
tative misinformation detection algorithms introduced in Section
5.2, and then investigate the performance of DETERRENT when
dealing with different types of articles.

5.4.1 Overall Comparison. Table 2 summarized the detection per-
formance of all competing methods (reporting the average of 5
runs). From the table, we make the following observations:
• For knowledge graph-based methods, TransE and KG-Miner, the
performance is less satisfactory. Although they are designed for
KG triple checking and they do not incorporate linguistic features
in news information. TransE can capture article-entity relations
to differentiate fake and real news. When detecting fake articles,
KG-Miner is dependent on OpenIE to extract relation triple from
the contents, and the performance of OpenIE tends to decrease
as the sentence gets longer.



• In addition, article content-based methods, text-CNN, CSI\c and
dEFEND\c perform better than those methods purely based on
a knowledge graph. This indicates that the methods can utilize
the semantic and syntactic clues in texts. dEFEND\c can better
capture important words and sentences that can contribute to
the prediction through a hierarchical attention structure.
• Moreover, methods using both article contents and knowledge
graph, DETERRENT, GUpdater, and HGAT, perform compara-
ble or better than those methods using either one of them, and
those only based on the knowledge graph. This indicates that
knowledge graph can provide complementary information to
the linguistic features, and thus improving the detection results
thereby.
• Generally, for methods based on both article contents and knowl-
edge graph, we can see that DETERRENT consistently outper-
forms other methods in terms of Accuracy and F1 Score on both
two datasets. DETERRENT achieves a relative improvement of
1.05%, 4.78% on Diabetes dataset and 6.30%, 12.79% on Cancer
dataset, comparing against the best results in terms of Accuracy
and F1 Score.
• It is worthwhile to point out that dEFEND\c and CSI\c have a
relatively high Precision and low Recall, which indicates that the
methods predict positive samples (misinformation) wrongly as
negative (fact). Hence we can see the necessity of modeling the
relations between entities, as only linguistic information is not
enough to distinguish fake and real information.

5.4.2 Performance Comparison w.r.t. Article Types. Besides fake
articles, misinformation also includes shorter formats such as click-
bait and fake posts which can easily be posted and quickly go viral
on social media. The important motivation of misinformation de-
tection is to build a general framework to detect various types of
misinformation.

Hence we investigate the performance of DETERRENT when
dealing with different types of articles, including title and abstract.
We evaluate DETERRENT by using articles’ titles and abstracts
respectively. The results in terms of F1 score on both datasets are
shown in Figure 3. The bars show the word lengths of different
news types in log base 10. From the results, we observe that:

• DETERRENT consistently outperforms the other models. It
demonstrates the effectiveness of DETERRENT on different types
of misinformation regardless of the length. It again verifies the
significance of knowledge graph and knowledge guided text em-
bedding.
• The performance of article contents based methods like CSI\c
and dEFEND\c do not perform very well when the length of the
information is short. This suggests that those methods rely on the
linguistic features of contents and cannot avoid the disadvantages
brought by limited data. Although DETERRENT leverages article
contents, it also exploits the additional information of entities
to address above issue. The performance of DETERRENT only
slightly decreases when dealing with titles (the shortest text).
• The performance of knowledge graph-based methods, KG-Miner
and TransE, is relatively stable with all types of information on
the two datasets.
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Figure 3: Performance comparison over the length of article
types on two datasets. The background histograms indicate
the length of each article; meanwhile, the lines demonstrate
the performance w.r.t. F1 score.

Table 3: Effects of the network depth

Datasets Metric 1 2 3

Diabetes

Accuracy 0.8853 0.9171 0.9206
Precision 0.7500 0.9217 0.8445
Recall 0.8543 0.7361 0.8503
F1 Score 0.7987 0.8185 0.8474

Cancer

Accuracy 0.9580 0.9599 0.9652
Precision 0.9108 0.9507 0.9469
Recall 0.9157 0.8817 0.9153
F1 Score 0.9132 0.9149 0.9309

5.5 Ablation Analysis (RQ2)
In order to answer RQ2, we explore each component of DETER-
RENT. We first investigate the layer number of the model, then we
examine the components of knowledge graph embedding and the
attention mechanisms by deriving several variants.

5.5.1 Effects of Network Depth. We vary the depth 𝐿 of DETER-
RENT to investigate the efficiency of the usage of multiple em-
bedding propagation layers of a knowledge graph. The larger 𝐿
allows further information to propagate through the information
propagation layer. In particular, we search the layer number in the
set of {1, 2, 3, 4}. For 𝐿 > 3, we did not get satisfying results on both
datasets, which suggests that forth- and higher-order knowledge
paths contribute little information. The results are summarized in
Table 3. From this, we make the following observations:
• Increasing the depth of DETERRENT can improve the perfor-
mance of DETERRENT, which demonstrates the effectiveness of
modeling high-order knowledge paths.
• By analyzing Table 2 and Table 3, we can see that DETERRENT
is slightly better than the article contents based methods, which
indicates the effectiveness of leveraging the relations.
• Besides first-order knowledge paths, high-order paths can dis-
cover inherent relations overlooked by traditional methods.

5.5.2 Effects of Attention Mechanisms and Negative Relations. In
addition to article contents, we also apply knowledge graph infor-
mation and integrate it with article contents with knowledge guided
attention. We further investigate the effects of these components
by defining three variants of DETERRENT:



Table 4: Ablation study of DETERRENT demonstrated the ad-
vantage of the attention mechanisms and modeling both
positive and negative relations.

Datasets Metric w/o Rel w/o K-Att w/o Neg

Diabetes

Accuracy 0.8412 0.9012 0.9118
Precision 0.7164 0.8870 0.9565
Recall 0.7988 0.7236 0.7096
F1 Score 0.7554 0.7971 0.8148

Cancer

Accuracy 0.9022 0.9291 0.9586
Precision 0.9291 0.9385 0.9462
Recall 0.6569 0.7651 0.8756
F1 Score 0.7697 0.8430 0.9096

• w/o Rel: w/o Rel is a variant of DETERRENT, which does not
consider the relations in the medical knowledge graph. The In-
formation Propagation Net is replaced by a GNN model.
• w/o K-Att: w/o K-Att is a variant ofDETERRENT, which excludes
the knowledge-guided attention module. Each article is repre-
sented by the concatenation of the text embedding from the text
encoder and node embedding from the Information Propagation
Net, and fed into the prediction module.
• w/o Neg: w/o Neg is a variant of DETERRENT, which does not
specifically model the negative relations in the medical knowl-
edge graph. The BPR loss is excluded from this variant.
When one removes a medical knowledge graph, leaving only a

BiGRU text encoder, the results are far from satisfactory, and thus
are omitted. We summarize the experimental results in Table 4 and
have the following findings:
• Whenwe solely use amedical knowledge graphwithout consider-
ing relations, the performance of DETERRENT largely degrades,
which suggests the necessity of modeling relations.
• Removing knowledge guided embedding attention degrades the
model’s performance, as the attention mechanism will assign
importance weights for words, based on the semantic clues in
differentiating misinformation from fact without considering
knowledge paths.
• When we do not specifically model negative relations, some
entities may be embedded close in a relation wrongly through
information propagation. Thus, some misinformation (label 1)
may be predicted as fact (label 0), which leads to relatively high
Precision and low Recall.
Through the ablation study of DETERRENT, we conclude that

(1) knowledge-guided article embedding can contribute to the mis-
information detection performance; (2) both positive and negative
relations are necessary for effective misinformation detection.

5.6 Case Study (RQ3)
In order to illustrate the importance of knowledge graph for ex-
plaining healthcare misinformation detection results, we use an
example to show the triples captured by DETERRENT in Figure 4
and the corresponding attention weight in Figure 5.

In Figure5, 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 has higher attention weights to the texts.
The related triples (𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑡𝑖𝑐𝐼𝑠𝑙𝑒𝑡 ,𝑅𝑒𝑑𝑢𝑐𝑒𝑠𝑅𝑖𝑠𝑘𝐹𝑜𝑟 ,𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠) and
(𝐼𝑛𝑠𝑢𝑙𝑖𝑛, 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐻𝑒𝑎𝑙 , 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠) can provide explanations about

why the information is false, as the texts exaggerated the effects
of 𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑡𝑖𝑐𝐼𝑠𝑙𝑒𝑡 and 𝐼𝑛𝑠𝑢𝑙𝑖𝑛. In contrast, 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 has a smaller
attention weight than above two entities. We can see that DETER-
RENT can not only detect the given information as fake but also
yields the explanations of the detection results.

Chaste tree berry may have a potential in 
improved pancreatic islet regeneration and 
hepatic insulin sensitivity for cure of Type I 
and II diabetes, some scientists suggested. 
Diabetes are condition caused by insufficient 
insulin entering the bloodstream in 
regulation of glucose.

Misinformation

(Pancreatic Islet, ReducesRiskFor, Diabetes)

Triples from KG

(Insulin, DoesNotHeal, Diabetes)

(Glucose, Causes, Diabetes Mellitus)

(Glucose, ReducesRiskFor, Insulin Resistance)

Figure 4: The explainable triples captured by DETERRENT.
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ReducesRiskForCauses0.0124 0.0068
0.0052 0.0089

0. 0012 0. 0045 0. 0027 0. 0013

Figure 5: The visualization with attention wights.
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Figure 6: The attention weight analysis indicates that posi-
tive relations contributemore to fact, and negative relations
contribute more to misinformation.

We calculate the average attention weights of positive and neg-
ative relations to both misinformation and fact on two datasets.
The results are shown in Figure 6. Note that positive relations have
higher attention weights to fact than misinformation, while nega-
tive relations have higher attention weights to misinformation than
fact. Hence, it indicates that positive relations contribute more to
fact, and negative relations contribute more to misinformation.

6 CONCLUSION
In this paper, we proposedDETERRENT, a knowledge guided graph
attention network for misinformation detection in healthcare. DE-
TERRENT leverages additional information from a medical knowl-
edge graph, to guide the article embedding with a graph attention
network. The network can capture both positive and negative rela-
tions, and automatically assign more weights to important relations
in differentiating misinformation from fact. The node embedding
is used for guiding text encoder. Experiments on two real-world
datasets demonstrate the strong performance of DETERRENT.



DETERRENT has two limitations. It only leverages a knowledge
graph, instead of other complementary information. Also, it does
not consider the publishing time of an article. In future, first, we
can incorporate the data from medical forums to find questionable
user comments. Second, other complementary information, such as
doctors’ remarks, can be considered. Third, time intervals between
posts can be considered to model misinformation diffusion.
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A APPENDIX ON REPRODUCIBILITY
All the codes that we have implemented are available under the
folder “Healthcare misinformation detection” through the following
link: https://github.com/cuilimeng/DETERRENT.

A.1 Healthcare Misinformation Detection
In this section, we provide more details of the experimental setting
and configuration to enable the reproducibility of our work.

We compared the proposed framework, DETERRENT, with 7
baseline methods discussed in Section 5.2, including KG-Miner,
TransE, text-CNN, CSI, dEFEND, HGAT and GUpdater. Baselines
were obtained as follows:

• KG-Miner: We used the implementation by the authors of [15],
which is available at: https://github.com/huynhvp/Benchmark_
Fact_Checking.
• TransE: We used the implementation by the authors of [15],
which is available at: https://github.com/huynhvp/Benchmark_
Fact_Checking.
• text-CNN: we used the publicly available implementation at:
https://github.com/dennybritz/cnn-text-classification-tf .
• CSI:We used the implementation available at: https://github.com/
sungyongs/CSI-Code.
• dEFEND: We used the implementation provided by the authors
available at: https://tinyurl.com/ybl6gqrm.
• HGAT: We implemented the codes ourselves.
• GUpdater: We used the implementation available at: https://
github.com/esddse/GUpdater.

For the health-related article dataset, we manually created a
dataset on healthcare by ourselves, under the folder “Dataset” at:
https://github.com/cuilimeng/DETERRENT.

For parameter settings forDETERRENT, we introduce the details
of major parameter setting as shown in Table 5. The abstracts of
the major parameters are as follows:

• Text Max Length: the threshold to control the maximum length
of news contents
• Word Embedding: the word emending package used for initialize
the word vectors
• Embedding Dimension: the dimension of embedding layer
• 𝑑 : the size of hidden states for BiGRU

A.2 Medical Knowledge Graph
For a medical knowledge graph used in this paper, we use partial
data from KnowLife, which is a well-known knowledge base in
biomedical science. The data we used were provided by the authors
of [11]. KnowLife is constructed from textual Web sources found in
specialized portals and discussion forums, such as Pubmed Medline,
Pubmed Central, by using information extraction (IE) techniques.
The sources include both scientific publications and posts in health
portals. Overall, it consists of 214k canonical entities and 78k facts
for 14 relations. Example triples in KnowLife are listed in Table 7.

Left pattern phrase and right pattern phrase are entities, regard-
ing to the head node and tail node in a medical knowledge graph,
respectively. The relation indicates a directed edge from the head
node to the tail node. The above three, then, forms a triple in a
medical knowledge graph.

Table 5: The details of the parameters of DETERRENT

Parameter Diabetes Cancer

Text Max Length 500 120
Embedding Dimension 100 100
Dropout Rate 0.5 0.5
Learning Rate 10−4 10−3
# Epochs 10 10
Minibatch Size 50 100
𝑑 128 128
Adam Parameter (𝛽1) 0.9 0.9
Adam Parameter (𝛽2) 0.999 0.999

Table 6: An example of the entity name consistency

Left Fact Entity Left Pattern Phrase

C0271650 Prediabetes
C0271650 Glucose Intolerance
C0271650 Impaired Glucose Tolerance

As there may exit multiple names for a disease/symptom, KnowL-
ife assigns the same entity ID to all names with the same semantics
to maintain the consistency of entity name, as shown in the Table
6. Left pattern phrase indicates an entity name and left fact entity
indicates the corresponding entity ID. For instance, “Prediabetes",
“glucose intolerance" and “impaired glucose tolerance" are several
phrases that indicate the same disorder, which is characterized by
the inability to properly metabolize glucose. As we can see in the
example, then, they have the same left fact entity “C0271650”.

A.3 Querying Examples of DETERRENT
DETERRENT can not only predict the truthfulness of a given article,
but also provide related entities and triples. Hence, to show the
input and output of DETERRENT more clearly, we show more
examples in this section. In Table 8, we show two fake and two real
snippets of information, and the detection results by DETERRENT.
The related triples can help people better understand why certain
information is fake (or not).

https://github.com/huynhvp/Benchmark_Fact_Checking
https://github.com/huynhvp/Benchmark_Fact_Checking
https://github.com/huynhvp/Benchmark_Fact_Checking
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https://github.com/dennybritz/cnn-text-classification-tf
https://github.com/sungyongs/CSI-Code
https://github.com/sungyongs/CSI-Code
https://tinyurl.com/ybl6gqrm
https://github.com/esddse/GUpdater
https://github.com/esddse/GUpdater


Table 7: Example triples extracted from specialized portals

Source Sentences Left Pattern Phrase Relation Right Pattern Phrase

DrugsDotCom {“Although rare, the corticosteroid in this medicine
may cause higher blood and urine sugar levels ,
especially if you have severe diabetes and are using
large amounts of this medicine .”}

Corticosteroid Causes Diabetes

Wikipedia {“One of the more serious complications of choledo-
cholithiasis is acute pancreatitis , which may result
in significant permanent pancreatic damage and
brittle diabetes .”}

Acute Pancreatitis Causes Brittle Diabetes

pub_med_medline {“Anemia is associated with an increased risk of car-
diovascular and renal events among patients with
type 2 diabetes and chronic kidney disease -LRB-
CKD -RRB- .”}

Anemia CreatesRiskFor Diabetes

MedlinePlus {“Diseases such as diabetes , obesity , kidney failure
or alcoholism can cause high triglycerides .”}

Alcoholism Causes High Triglycerides

Table 8: Querying Examples of DETERRENT

Article Ground Truth Prediction Related Triples

This is a detailed exploration of BME’s anti-obesity ef-
fect, facilitating the rational use of this herbal plant
to address this increasingly severe issue, obesity.

1 1 (Herbal Plant, DoesNotHeal, Obesity)

They contain essential fats like ALA, antioxidants like
vitamin E. . .Urolithin can bind to estrogen receptors,
making it a strong candidate for the prevention of
breast cancer. An animal study also reported that wal-
nuts can reduce the growth of prostate cancer cells.

1 1 (Vitamin E, DoesNotReduceRiskFor,Prostate Cancer)
(Estrogens, DoesNotReduceRiskFor, Breast Cancer)

A study published this month found that mediter-
ranean diet led to significantly lower risk of gesta-
tional diabetes and reduction in excess weight gain
during pregnancy.

0 0 (Mediterranean Diet, ReducesRiskFor, Diabetes)

Researchers say vitamin D may make the body more
resistant to breast cancer.

0 0 (Vitamin D, ReducesRiskFor, Breast Cancer)
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