
GRACE: Generating Concise and Informative Contrastive Sample
to Explain Neural Network Model’s Prediction
Thai Le

The Pennsylvania State University
thaile@psu.edu

Suhang Wang
The Pennsylvania State University

szw494@psu.edu

Dongwon Lee
The Pennsylvania State University

dongwon@psu.edu

Abstract

Despite the recent development in the topic of explainable AI/ML
for image and text data, the majority of current solutions are not
suitable to explain the prediction of neural network models when
the datasets are tabular and their features are in high-dimensional
vectorized formats. To mitigate this limitation, therefore, we borrow
two notable ideas (i.e., “explanation by intervention" from causality
and “explanation are contrastive" from philosophy) and propose a
novel solution, named as GRACE, that better explains neural net-
work models’ predictions for tabular datasets. In particular, given a
model’s prediction as label X , GRACE intervenes and generates a
minimally-modified contrastive sample to be classified as Y , with
an intuitive textual explanation, answering the question of “Why
X rather than Y ?" We carry out comprehensive experiments using
eleven public datasets of different scales and domains (e.g., # of fea-
tures ranges from 5 to 216) and compare GRACE with competing
baselines on different measures: fidelity, conciseness, info-gain, and
influence. The user-studies show that our generated explanation is
not only more intuitive and easy-to-understand but also facilitates
end-users to make as much as 60% more accurate post-explanation
decisions than that of Lime. We release the source code of GRACE
at: https://github.com/lethaiq/GRACE_KDD20

Keywords

explainability, contrastive, data generation

ACM Reference Format:

Thai Le, Suhang Wang, and Dongwon Lee. 2020. GRACE: Generating Con-
cise and Informative Contrastive Sample to Explain Neural NetworkModel’s
Prediction. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3394486.
3403066

1 INTRODUCTION

Tabular data is one of the most commonly used data formats. Even
though tabular data receives far less attention than computer vi-
sion and NLP data in neural networks literature, recent efforts
(e.g., [1, 2, 21, 28]) have shown that neural networks, deep learn-
ing in particular, can also achieve superior performance on this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403066

Feat freq_now freq_credit freq_!!! freq_! class
xxx 1 0.1 0.0 0.0 0.0 Ham
x̃1 0.1 0.0 0.3 0.453 Spam

Feat freq_you freq_direct avg_longest_capital class
xxx 2 0.68 0.34 158.0 Spam
x̃2 0.68 0.34 1.0 Ham

Table 1: Examples of original samples xxx i and contrastive

samples x̃xx i on spam dataset. x̃i only differs from xxx i on a few
features. (unchanged features are randomly selected)

type of data. Yet, there is still a lack of interpretability that re-
sults in the distrust of neural networks trained on general tabular
data domains. This obstructs the wide adoption of such models in
many high-stakes scenarios in which tabular data is prominent–e.g.,
healthcare [3, 25], finance [6, 9], social science [15, 38], and cyber-
security [19, 34]. Moreover, the majority of explanation algorithms
(e.g., [4, 12, 17, 24, 26, 30, 36]) are designed for models trained on
images or texts, while insufficient efforts have been made to ex-
plain the prediction results of neural models that take tabular data
formats as input. Furthermore, most of the previous explanation ap-
proaches are geared for professional users such as ML researchers
and developers rather than lay users and ML consumers. This sit-
uation calls for a novel approach to provide end-users with the
intuitive explanation of neural networks trained on tabular data.
However, developing such an approach poses several challenges.
Challenges. First, tabular data used in neural network models
sometimes have high-dimensional inter-correlated features. There-
fore, presenting feature importance scores for top-k or all features
(e.g., [26]) can induce both information overload and redundancy,
causing confusion to end-users. In fact, for a data instance, a com-
plex model can focus on just a few key features in making its
prediction. To illustrate, Table 1 shows that for two emails xxx1 and
xxx2, the model can focus on two different sets of features, f req_!,
f req_!!! or avд_lonдest_capital , respectively, to predict if an email
is a spam or ham. While explanation constructed only from these
features is much more concise, providing both f req_! and f req_!!!
(frequency of “!" and “!!!" within an email content) in the first ex-
ample produces redundancy. In this case, we also want to replace
f req_! with another key feature to make the explanation more
informative. Thus, we need to find a subset of instance-dependent
key features that are both concise and informative to explain the
model’s prediction.

Second, for images or texts, highlighting a patch of an image (e.g.,
[4, 17, 36]) or a phrase of a sentence (e.g., [12]) usually gives a clear
understanding of what a model is focusing on and why a model
gives such prediction. However, in tabular data, such visualization
does not provide much insight into the chosen model. For instance,
in the second example in Table 1, the model predicts xxx2 as spam

https://doi.org/10.1145/3394486.3403066
https://doi.org/10.1145/3394486.3403066
https://doi.org/10.1145/3394486.3403066


and the important feature used by the model is avд_lonдest_capital .
However, simply providing this feature to end-users does not give
an easy-to-understand explanation. Since we often justify our deci-
sion verbally [18], in this case, an explanation written in text can
help end-users understand the prediction better.

Third, approximating the decision boundaries does not neces-
sarily provide a clear understanding on the decision-making of a
model to end-users, who usually lack ML background. Instead, such
lay users are usually more interested in the contrastive expla-

nation, i.e., why X rather than Y . For example, Table 1 shows in
the second example that "had avд_lonдest_capital (i.e., the
average length of the longest capitalized words) been
about 150 characters shorter, the email would have been
classified as ham rather than spam". Hence, we need to come
up with a new explanation model such as contrastive explanation
to better explain a model’s prediction to lay end-users.
Overview. To sum up, the effort towards generating an explana-
tion that is easy for end-users to understand is challenging, yet
also in great demand. Therefore, we propose a novel algorithm,
GRACE (GeneRAting Constrastive samplEs), which generates and
provides end-users with intuitive and informative explanations for
neural networks trained on general tabular data. Inspired from
Database (DB) literature [22, 27, 33], GRACE borrows the idea of
“explanation by intervention" from causality [16, 29] to come up
with contrastive explanation–i.e., why a prediction is classified asX
rather thanY . Specifically, for each prediction instance, GRACE gen-
erates an explainable sample and its contrastive label by selecting
and modifying a few instance-dependent key features under both
fidelity, conciseness and informativeness constraints. Then, GRACE
aims to provide a friendly text explanation of why X rather than Y
based on the newly generated sample. The main contributions of
the paper are:
• We introduce an explanation concept for ML by marrying “con-
trastive explanation" and “explanation by intervention", then
extend it to a novel problem of generating contrastive sample
to explain why a neural network model predicts X rather than
Y for data instances of tabular format;
• We develop a novel framework, GRACE, which finds key fea-
tures of a sample, generates contrastive sample based on these
features, and provides an explanation text on why the given
model predicts X rather than Y with the generated sample; and
• We conduct extensive experiments using eleven real-world datasets
to demonstrate the quality of generated contrastive samples and
the effectiveness of the final explanation. Our user-studies show
that our generated explanation texts are more intuitive and easy-
to-understand, and enables lay users to make as much as 60%
more accurate post-explanation decisions than that of Lime.

2 THE EXPLANATION MODEL

2.1 Contrastive Explanation

Understanding the answer to the question "Why?" is crucial in
many practical settings, e.g., in determining why a patient is di-
agnosed as benign, why a banking customer should be approved
for a housing loan, etc. The answers to these "Why?" questions
can be really answered by studying causality, which depicts the
relationship between an event and an outcome. The event is a cause

if the outcome is the consequence of the event ([22, 29]). However,
causality can only be established under a controlled environment,
in which one alters a single input while keeping others constant,
and observes the change of the output. Bringing causality into data-
based studies such as DB or ML is a very challenging task since
causality cannot be achieved by using data alone ([22]). As the first
step to understand causality in data-intensive applications, DB and
ML researchers have tried to lower the bar of explanation, aiming
to find the subset of variables that are best correlated with the out-
put. Specifically, DB literature aims to provide explanations for a
complex query’s outputs given all tuples stored in a database, while
ML researcher is keen on explaining the predictions of learned,
complex models.

2.2 Explanation by Intervention

By borrowing the notion of intervention from causality literature,
in particular, DB researchers have come up with a practical way
of explaining the results of a database query by searching for an
explainable predicate P. Specifically, P is an explanation of outputs
X if the removal of tuples satisfying predicate P also changes X
while keeping other tuples unchanged ([22, 27, 33]). Similarly, by
utilizing the same perspective, we want to formulate a definition
of explanation by intervention for ML models at instance-level as
follows.

Definition 1 (Contrastive Explanation (in ML) by Inter-
vention). A predicate P of subset of features is an explanation of a
prediction outcome X, if changes of features satisfying the predicate
P also changes the prediction outcome to Y(, X), while keeping
other features unchanged.

For example, possible predicates to explain a spam detector are
shown in Table 1. Particularly, predicateP2 : ”avg_longest_capital = 1.0”
explains why samplexxx2 is classified as spam rather than ham. Given
a prediction of a neural network model on an input, there will be
possibly many predicates P satisfying Def. 1. Hence, it is necessary
to have a measure to describe and compare how much influence
predicate(s) P have on the final explanation. Following the related
literature of explanation from the DB domain [33], we also formally
define a scoring function inflλ(P) as the measure on the influence
of P on the explanation with a tolerance level λ as.

Definition 2 (Influence Scoring Function).

inflλ(P) =
1(Y , X)

(Number of features in P)λ
(1)

where 1(·) is an indicator function,X and Y are predicted labels before
and after intervention, respectively.

The larger the score is, themore influentialP has on the explanation.
Hence, λ = 0 would imply infinite tolerance on the number of
features in P, λ > 0 would prefer a small size of P and λ < 0 would
prefer a large size of P. In practice, λ > 0 is preferable because a
predicate P containing too many features would adversely affect
the comprehension of the explanation. For example, infl1(P2) = 1.0

2.3 From Intervention to Generation

Searching for P is a non-trivial problem. From Def. 1, we want to
approach this problem from a generation perspective. Particularly,
given an arbitrary sample classified as X by a neural network,



we want to intervene and modify a small subset of its features
to generate a new sample that crosses the decision boundary of
the model to class Y. This subset of features and their new values
will result in a predicate P. This newly generated sample will help
answer the question “Why X rather than Y?". To illustrate, Table 1
shows that x̃2 is generated samples that correspond to predicate
P2 : ”avg_longest_capital = 1.0”. Using P2, we can generate an
explanation text to present to the users such as "Had the average
length of the longest capitalized words been 1.0, the
message would have been classified as ham rather than

spam".

3 OBJECTIVE FUNCTION

Let f (·) be a neural networkmodel that we aim to give instance-level
explanation. DenoteX ∈ RN×M = {x1, x2, ..xn },Y = {y1,y2, ..yn }
as the features and ground-truth labels of data on which f (xxx) is
trained, where N ,M is the number of samples and features, re-
spectively. Xi and Xj are the i-th and j-th feature, respectively, in
features set X. xxx i and xxx j are the i-th and j-th feature of xxx , respec-
tively. First, we want to generate samples that are contrastive. We
define such characteristic as follows.

Definition 3 (Contrastive Sample). Given an arbitraryxxx ∈ X,
X ∈ RN×M and neural network model f (·), x̃ is called contrastive or
contrastive sample of xxx when:

min
x̃xx

dist(xxx, x̃xx) s .t . argmax(f (xxx)) , argmax(f (x̃xx)) (2)

Then, formally, we study the following problem:
Problem: Given xxx and neural network model f (·), our goal
is to generate new contrastive sample x̃ to provide concise
and informative explanation for the prediction f (xxx).
Existing works on adversarial example generation [20, 23] usu-

ally define dist(x̃xx,xxx) as ∥xxx − x̃∥22 , which allows all features to be
changed to generate x̃xx . Though such approaches can generate re-
alistic labeled contrastive samples, they are not appropriate for
generating instance-level explanation that are easy to understand
because all features are changed.

Instead, we aim to generate x̃ labeled ỹ such that it is minimally
different from original input xxx in terms of only a few important
features instead of all features. Specifically, we desire to explain
“WhyX rather than Y?" by presenting a concise explanation inwhich
only a few features are corrected, e.g., the first example of Table 1
shows if only frequency of ’!’ is increased to 45.3%, while keeping
other features unchanged, the email will be classified as “Spam"
rather than “Ham". Hence, the less the number of features need to
change from xxx to generate x̃, the more “concise" the explanation
becomes. To achieve this goal, we add the constraint as

|S| ≤ K (3)
where S is the feature set of xxx that are perturbed to generate x̃xx ,
hence making |S| the number of features changed, i.e.,

|S| =

M∑
m=1

1(xm , x̃m) (4)

We not only want to change a minimum number of features,
but also want those features to be informative. For example, the
explanation “Had the frequency of ‘!’ and ‘!!!’ is more than 0.3,
the email would be classified as spam rather than ham" is not as

informative as “Had the frequency of ‘!’ and ‘wonder’ is more than
0.3, the email would be classified as spam rather than ham." Hence,
we want S to contain a list of perturbed features such that any
pairwise mutual information among them is within an upper-bound
γ . Thus, we add the constraint:

SU(Xi,Xj) ≤ γ ∀i, j ∈ S (5)
where SU(·) is Symmetrical Uncertainty function, a normalized form
of mutual information, to be introduced in Section 4.2. Finally,
we also need to ensure that the final predicate P is realistic. For
example, the age feature should be a positive integer). Therefore,
we want to generate x̃ such that it conforms to features domain
constraints of the dataset:

x̃ ∈ dom(X) (6)
Newly introduced constraints are novel from previous adver-

sarial literature, which focus more on minimizing the difference
∥xxx − x̃∥p . However, minimizing such a distance alone will not nec-
essarily make x̃more self-explanatory to users. Instead, we propose
that as long as the constraints on the maximum number of per-
turbed features, i.e., Eq. (3), their entropy, i.e., Eq. (5), and domain,
i.e., Eq. (6), is satisfied, we can generate more concise and informa-
tive explainable contrastive samples. From the above analysis, we
formalize the objective function as follows.

Objective Function: Given xxx , hyperparameter K , γ , our
goal is to generate new contrastive sample x̃ to explain the
prediction f (xxx) by solving the objective function:

min
x̃xx

dist(x̃xx,xxx)

s .t . argmax(f (xxx)) , argmax(f (x̃xx)), |S| ≤ K

SU(Xi,Xj) ≤ γ ∀i, j ∈ S, x̃ ∈ dom(X)

(7)

4 GRACE: GENERATING INTERVENTIVE

CONTRASTIVE SAMPLES FOR MODEL

EXPLANATION

This section describes how to solve the objective function and the
details of GRACE. Figure 1 gives an illustration of the framework.
It consists of three steps: (i) entropy-based forward features rank-
ing, which aims at finding instance-dependent features satisfying
the constraint; (ii) generate contrastive samples with the selected
features; and (iii) create an explanation text based on generated
sample x̃xx . Alg. 1 describes GRACE algorithm.

4.1 Contrastive Sample Generation Algorithm

Before introducing how to obtain a list of potential features to
perturb, in this section, we first describe our contrastive sample
generation algorithm by assuming that the ordered feature listU∗
is given. To solve x̃xx such that Eq. (2) is satisfied, we can continuously
perturb x̃xx by projecting itself on the decision hyperplane separating
it with the nearest contrastive classv . Particularly, at each time-step
i, we project x̃xx with orthogonal projection vector rv :

rv =
|fv (x̃xx i−1) − fC (xxx)|

∥∇fv (x̃xx i−1) − ∇fC (xxx)∥22

(
∇fv (x̃xx i−1) − ∇fC (xxx)

)
(8)

where fv (x̃xx i−1) is the confidence of f on x̃xx i−1 being classified as
class v . C ←− argmax(f (xxx)) is the current prediction label, and
contrastive classvvv can be inferred with Alg. 2, Ln. 2. Intuitively,vvv



Algorithm 1 GRACE

Input: f ,xxx , K , γ , X
Output: x̃xx, ỹ
1: Initialize: x̃xx ←− xxx , j ←− 1
2: U ←−WGradient (f ,xxx) ORWLocal (f ,xxx)
3: U∗ ←−WEntropy (X,U,γ )
4: while argmax(f (x̃xx)) = argmax(f (xxx)) AND k ≤ K do

5: x̃xx ←− GenerateContrastiveSample(f ,xxx,U∗[: k])
6: k ←− k + 1
7: ỹ←− argmax(f (x̃xx))
8: Return x̃xx, ỹ

Figure 1: GRACE with Local-Based Feature Ranking

is the contrastive class across the closest hyperplane of the decision
boundary from xxx .

Algorithm 2 GenerateContrastiveSample

Input: f ,xxx , S
Output: x̃xx

1: Initialize: x̃0 ←− xxx , i ←− 0, C ←− argmax(f (xxx))
2: v ←− argminc,C

|fc (xxx )−fC (xxx ) |
| |∇fc (xxx )−∇fC (xxx ) | |2

3: while argmax(f (x̃xx i )) = argmax(f (xxx)) AND i < STEPS do
4: rv =

|fv (x̃xx i−1)−fC (xxx ) |
∥∇fv (x̃xx i−1)−∇fC (xxx ) ∥22

(∇fv (x̃xx i−1) − ∇fC (xxx))

5: x̃xx i+1[S] ←− x̃xx i [S] + rrrv [S]
6: x̃xx i+1 ←− P(x̃xx i+1, dom(X))
7: i ←− i + 1
8: Return x̃xx

To address constraint Eq. (3), instead of perturbing all of the
features, we update x̃xx only on the first k ≤ K features from an
ordered listU∗, which will be introduced later, at each time step i
until it crosses the decision boundary:

S ←− U∗[: k], x̃xx i [S] ←− x̃xx i−1[S] + rv [S] (9)
Since feature perturbation based on rv does not always guarantee
that resulted x̃xx i still maintains in the original feature space, to
address constraint Eq. (6), we project those adjusted features back
on to the original domain of X:

x̃xx i ←− P(x̃xx i , dom(X)) (10)

where P is a projection which ensures that final x̃ looks more real
(e.g., age feature should be a whole number and > 0). The domain
space dom(X) can include the maximum, minimum, and data types
(e.g., int, float, etc.) of each feature. These can be either calculated
from the original training set or manually set by domain experts.

With a fixed k , Eq. (10) does not guarantee that x̃xx will always
cross the decision boundary to classvvv . Hence, we gradually increase
k −→ K until a contrastive sample is successfully generated, i.e.,
argmax(f (xxx)) , argmax(f (x̃xx i )) or when k == K . Alg. 2 illustrates
the steps to generate contrastive samples.

One obvious challenge is how to come up with the ordered list
U∗ of features to perturb. Next, we will describe this in detail.

4.2 Entropy-Based Forward Feature Ranking

As differentxxx might require a different subset of features to perturb,
the first challenge is how to prioritize features that are highly vul-
nerable to the contrastive classvvv . To do this, we rank all features of
xxx according to their predictive power w.r.t prediction f (xxx), resulting
in an ordered listU:

U ←− W (f ,xxx) (11)
whereW (·) is a feature ranking function. The most straight forward
way is to rank all features according to their gradients w.r.t the
nearest contrastive classvvv that back-propagates through f (xxx), re-
sulting inWGradient(f ,xxx) that returns the ranking of the following
set:

{∇fvvv (xxx1),∇fvvv (xxx2), ..∇fvvv (xxxM )} (12)

While this method is straightforward, these gradients capture a
global view of feature rankings, rather than being customized to
a local vicinity of decision boundary around xxx . To overcome this
limitation, we introduce WLocal(f ,xxx) to return the ranking of the
following set:

{w1
g(xxx ),w

2
g(xxx ), ...w

M
g(xxx )} (13)

with w
j
g(xxx ) is the feature importance score of the j-th feature re-

turned from an interpretable ML model g(xxx) (e.g., feature weights
for logistic regression, Gini-score for decision tree, etc.). g(·) is
trained on a subset of data points Q surrounding xxx (Figure 1a) with
maximum likelihood estimation (MLE) as the loss function:

min
θg(x )

1
|Q|

∑
xxx ∈Q

f (xxx) log(g(xxx)) (14)

If the prediction of g(xxx) on Q is very close to that of f (xxx), impor-
tant features from g(xxx) are more prone to change in f (xxx). Q can
be collected by sampling q nearest data points to xxx from each of
the predicted classes by f (xxx) on the training set using NearestNeigh-
bors(NN) search algorithm with different distance functions. We set
q = 4 and use Euclidean distance throughout all experiments.

In the aforementioned variants ofW (·), each feature is treated
independently with each other. However, if a pair of selected fea-
tures are highly dependent on each other (e.g., frequency of "!" and
"!!"), the final generated samples will be less informative. Because
of this, also to address constraint Eq.(5), we want to generate a new
ordered listU∗ as follows:

U∗ ←− WEntropy (X,U) (15)
where WEntropy is a forward-based selection approach, which
will iteratively add each feature from U (from the most to least



Table 2: Examples of generated contrastive samples and their explanation texts

Dataset Features/Prediction Type Original Generated Changes Explanation Text

cancer95 bare_nuclei int 1 10 ↑ 9 "if there were 9 more bare nucleus, the patient would be classified as
malignant RATHER THAN benign"diagnosis benign malignant

spam
word_freq_credit float 0.470 0.225 ↓ 0.245 "The message is classified as spam RATHER THAN ham because the

word ’credit’ and ’money’ is used twice as frequent as that of ham
message"

word_freq_money float 0.470 0.190 ↓ 0.280
class Spam Ham

predictive) toU∗ one by one such that the mutual information of
any pairs of features inU∗ is within a upper-bound γ :

SU (Xi , Xj) ≤ γ ∀i, j ∈ U∗ (16)
where SU ∈ [0, 1] is an entropy-based Symmetrical Uncertainty [10]
function that measures the mutual information between the i-th
and j-th feature of X as:

SU (Xi , Xj) = 2
[

IG(Xi | Xj)

H (Xi) + H (Xj)

]
(17)

where IG(Xi | Xj) is the information gain ofXi givenXj , andH (Xi),
H (Xj) is empirical entropy of Xi and Xj , respectively. A value
SU = 1 indicates that Xi completely predicts the value of Xj [35].
In implementation, we first normalize X and adapt multi-interval
discretization [8] to convert continuous features to discrete format
before applying SU (·). Alg. 3 describes functionWEntropy in details.
One obvious challenge is how to come up with the ordered listU∗
of features to perturb. The next section will describe this in detail.

Algorithm 3 Feature Selection with Entropy:WEntropy

Input: X,U, γ
Output: Ordered list of featuresU∗

1: Initialize: U∗ ←− {}, X̂ ←− normalize(X)
2: for i inU do

3: to_add ←− True
4: for j inU∗ do
5: if SU(X̂i , X̂ j ) > γ then to_add ←− False

6: if to_add = True thenU∗ ←− U∗ ∪ {i}
7: ReturnU∗

4.3 Generating Explanation Text

After generating contrastive sample x̃xx , we take a further step and
generate an explanation in natural text. Table 2 shows generated
contrastive samples and the corresponding explanation for various
datasets with K = 5. To do this, for a specific prediction f (x) and
generated contrastive sample x̃, we first calculate their feature dif-
ferences, resulting in predicate P as defined in Def. 1. Then, we can
translate P to text by using condition-based text templates such
as ... is classified as X RATHER THAN Y because ..., or
had..., it would have been classified as X RATHER THAN
Y (Figure 1c). Different text templates can be selected randomly
to induce diversity in explanation text. The difference in features
values can be described in three different degrees of obscurity from
(i) extract value (e.g., 0.007 point lower), to (ii) magnitude com-
parison (e.g., twice as frequent), or (iii) relative comparison (e.g.,
higher, lower). Which degree of detail to best use is highly depen-
dent on the specific feature, domain, and the choice of end-users,
and they do not need to be consistent among perturbed features in
a single explanation text.

Table 3: Dataset statistics and prediction performance

Size Dataset #Class #Feat. #Data Acc .∗ F 1∗

small

eegeye 2 14 14980 0.858 0.858
diabetes 2 8 768 0.779 0.777
cancer95 2 9 699 0.963 0.963
phoneme 2 5 5404 0.774 0.772
segment 7 19 2310 0.836 0.817
magic 2 10 19020 0.862 0.859

medium
biodeg 2 41 1055 0.853 0.851
spam 2 57 4601 0.932 0.932
cancer92 2 30 569 0.958 0.958

large mfeat 10 216 2000 0.943 0.936
musk 2 166 476 0.783 0.789

(*) Accuracy and F1 scores are averaged across 10 different runs.
4.4 Complexity Analysis

According to Alg. 1, we analyze the time complexity of GRACE on
each prediction instance as follows. The predictive feature ranking
step usingWGradient takes O(M logM) with Quick Sort. Reorder-
ing the ranked list of features with WEntropy takes O(M). Gen-
erating contrastive sample step takes O(M) + ZV with K ≪ M ,
where Z is total number of classes to predict, and V is the time
complexity of forward and backward pass of f (xxx). Generating an
explanation text then takes another O(M). To sum up, the overall
time complexity of GRACE to generate an explanation for each pre-
diction instance is O(M logM) + ZV with K ≪ M (excluding the
overhead of training g(·) and searching for Q in case ofWLocal ).

5 EXPERIMENTS

In this section, we conduct experiments to verify the effectiveness
of GRACE. Specifically, we want to answer two questions: (i) how
good are the generated interventive contrastive samples? and (ii)
how good are the generated explanation?

5.1 Datasets

We select 11 publicly available datasets of different domains and
scales from [7] to fully evaluate and understand how well GRACE
works with neural networks trained on data with varied properties.
As shown in Table.3, the datasets are grouped into three scale
levels according to the number of features. Each dataset is split into
training, validation, and test set with a ratio of 8:1:1, respectively.
The table also includes the performance of different neural models
(Appendix A.2.1) on test set in both Accuracy and F1 score.

5.2 Compared Methods

Since our proposed framework combines the best of both worlds:
adversarial generation and neural network model explanation, we
select various relevant baselines from two aspects.
• NearestCT: Instead of generating synthetic contrastive sam-
ple for explanation for data point xxx , this approach selects the



Table 4: All results are averaged across 10 different runs. The best and second best results are highlighted in bold and underline.

Statistics Dataset # Features < 30 30 ≤ # Features < 100 100 ≤ # Features

eegeye diabetes cancer95 phoneme segment magic biodeg spam cancer92 mfeat musk

Ravg#Feats

NearestCT 13.56 6.93 5.92 4.82 16.10 9.97 20.53 17.50 29.97 204.22 147.86
DeepFool 14.00 8.00 9.00 5.00 19.00 10.00 41.00 57.00 30.00 216.00 166.00

GRACE-Local 1.15 1.55 2.7 1.25 2.42 1.68 3.07 2.95 3.95 3.28 3.74
GRACE-Gradient 1.0 1.96 2.66 1.3 3.84 1.6 1.93 1.09 4.5 2.76 2.85

R∗info−gain

NearestCT 0.69 0.44 0.64 0.12 0.19 0.04 0.44 0.62 0.02 0.58 0.28
DeepFool 0.7 0.41 0.62 0.12 0.33 0.05 0.58 0.53 0.01 0.59 0.29

GRACE-Local 0.64 0.79 0.49 0.81 0.55 0.67 0.46 0.47 0.13 0.34 0.3
GRACE-Gradient 0.64 0.62 0.52 0.78 0.23 0.71 0.76 0.95 0.04 0.50 0.4

Rinfluence

NearestCT 0.05 0.06 0.11 0.03 0.01 0.00 0.02 0.04 0.00 0.00 0.00
DeepFool 0.05 0.05 0.07 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.00

GRACE-Local 0.55 0.52 0.18 0.65 0.23 0.4 0.15 0.16 0.04 0.1 0.08
GRACE-Gradient 0.64 0.33 0.2 0.61 0.06 0.45 0.4 0.88 0.01 0.18 0.14

nearest contrastive samples of xxx from the training set to provide
contrastive explanation for the prediction f (xxx).
• DeepFool[23]: An effective approach that was originally pro-
posed for untargeted attack by generating adversarial samples.
Even though DeepFool is not designed for generating samples to
explain predictions, we consider this as a baseline that intervenes
on all features to generate contrastive samples.
• Lime [26]: A local interpretable model-agnostic explanation ap-
proach that provides explanation for individual prediction. This
approach replies on visualization of feature importance scores
(for text and tabular data), and feature heat-map (for image data)
to deliver explanation. We use an out-of-the-box toolkit1 to run
experiments for comparison. Lime is selected mainly due to its
popularity as a baseline for ML explanation approach.
• GRACE-Gradient and GRACE-Local (ours): GRACE with pre-
dictive feature ranking function W as WGradient and WLocal ,
respectively.

5.3 Evaluation of Generated Samples

In this section, we want to examine the quality of generated con-
trastive samples. Since DeepFool, NearestCT and GRACE gener-
ate intermediate samples to explain predictions, while Lime is not,
we compare and analyze Lime separately in Section 5.4 to evaluate
final generated explanation.

For each dataset, we train a neural network model f (·) using the
training set. We tune it using the validation set together with early-
stopping strategy to prevent overfitting and report its performance
on the test set. Table 3 reports the averaged performance across
10 different runs. We set K = 5,γ = 0.5, and generate x̃xx to explain
predictions f (xxx) of all samples in test set, resulting in the set of
generated contrastive samples X̃.

To thoroughly examine the proposed approach, we come up with
the following analytical questions (AQs).
AQ1 Fidelity: How accurate are the generated contrastive sam-

ples’ labels, i.e., whether they can cross neural networkmodel’s
decision boundary as expected?

AQ2 Conciseness: How concise are generated samples, i.e., how
many features needed to be perturbed to successfully generate
contrastive samples?

1https://github.com/marcotcr/lime

AQ3 Info-gain: How informative are generated samples?
AQ4 Influence: Derived from Def. 2, how well do the generated

samples answer the questionWhy X rather than Y?.

5.3.1 AQ1 (Fidelity) Fidelity, measured by Rfidelity, shows how ac-
curately contrastive samples are generated according to the neural
network model’s boundary, i.e., the accuracy of generated samples’
labels w.r.t their predictions by the neural network model:

Rfidelity =
1
|X̃ |

∑
(x̃,ỹ)∈X̃

1(ỹ = argmax(f (x̃))) (18)

Different from the two baselines, two variants of GRACE have
to satisfy the domain constraints, minimize the number of fea-
tures, and their entropy, all at the same time. Nevertheless, with
K = 5, our method shows an average Rfidelity of around 0.8 for
both GRACE-Gradient and GRACE-Local. As the # of perturbed
features increases, the Fidelity scores for both GRACE-Gradient
and GRACE-Local also increase, which satisfies the expectation
(Figure 2).

Figure 2: Percentage of perturbed features v.s fidelity

5.3.2 AQ2 (Conciseness) We not only want to generate samples
with high fidelity, but also want to perturb as few features as pos-
sible. Thus, we introduce conciseness that measures the ability to
generate x̃xx by changing as few features as possible. To do this, we
want to see how fidelity correlates with the average number of
perturbed features, denoted as Ravg#Feats:

Ravg#Feats =
1
|X̃ |

∑
x̃∈X̃

|Sx̃xx | (19)

where Sx̃xx returns the list of features to perturb in xxx to generate x̃xx .
Table 4 shows that our GRACE framework dominates the two

baselines DeepFool and NearestCT on Ravg#Feats by large mar-
gin. Specifically, with K = 5, our approach is able to generate
contrastive samples with much less number of perturbed features,

https://github.com/marcotcr/lime


averaging around less than 2.5 features across all datasets. Interest-
ingly, GRACE-Gradient was able to change on average less than 3
out of a total of 216 and 166 features in the case of mfeat and musk
dataset, respectively.

Moreover, while our method only needs to use as few as 12.5%
of total # of features to achieve fidelity of around 0.95 (Figure 2),
DeepFool and NearestCT baseline needs to change almost 100%
of the total # of features to achieve a similar score.

5.3.3 AQ3 (Info-gain) Since we want to generate samples that are
informative, we hope to minimize the averaged mutual information
of all pairs of selected features across all samples in X̃. Hence,
we formulate Rinfo−gain to measure such characteristic of being
informative as follows:

Rinfo−gain = 1 −
1
|X̃ |

∑
x̃∈X̃

∑
i∈Sx̃

∑
j∈Sx̃

SU (Xi,Xj)

|Sx̃ |2
(20)

To be fair with other baselines, we instead report R∗info−gain =
Rinfo−gain × Rfidelity to take into account the fidelity score. Even so,
thanks to the entropy-aware feature selection mechanism, GRACE
is able to generate contrastive samples that are much more infor-
mative compared to DeepFool’s in most of the datasets (Table 4).
This shows that samples generated by our framework are not only
contrastive but also informative to the final explanation.

5.3.4 AQ4 (Influence) Extended from influence score with toler-
ance parameter λ = 1 (Def. 2), we aim to measure how well the
generated samples can influence the explanation of a specific pre-
diction. Denoted by Rinfluence, the influence score first captures
whether generated samples are still within the original domain
space, or Rdomain as follows:

Rdomain =
1
|X̃ |

∑
x̃̃x̃x ∈X̃

1(x̃̃x̃x ∈ dom(X)) (21)

Moreover, the influence score is also proportional to how faith-
ful generated samples are to the neural network model’s decision
boundary (Rfidelity), how informative they are (Rinfo−gain), how con-
cise in terms of number of perturbed features (Ravg#Feats), resulting
in a Rinfluence calculated as follows:

Rinfluence =
Rfidelity × Rinfo−gain × Rdomain

Ravg#Feats
(22)

Intuitively, Rinfluence describes the capability to generate new con-
trastive samples that are both informative, concise, and valid within
the original domain space. Hence, the larger the score, the better.

Regarding Rdomain, table 4 shows that DeepFool performs worst
on Rdomain, averaged about 0.86, since the generation might move x̃
much further away from the original distribution, while other meth-
ods always ensure that generated samples are within the original
domain space. As regards as Rinfluence, GRACE is able to generate
highly more influential contrastive samples than DeepFool and
NearestCT even when taking Rfidelity into account, which is the
strongest point of both two baselines.

5.4 Evaluation of Generated Explanation

In this section, we want to compare GRACE with Lime [26] from
end-users’ perspectives on their generated explanation. Before in-
troducing user-studies to compare between two methods, we first
draw some observations in a case-study below.

Table 5: User-study with hypothesis testing to compare ex-

planation generated by GRACE against Lime

Alternative Hypothesis t-stats p-value df
H1 GRACE is more intuitive and friendly 2.3115 0.0104* 42
H2 GRACE is more comprehensible 3.0176 0.0013** 42
H3 GRACE leads to more accurate actions 4.4875 3.39e−5** 37
*reject Null hypothesis with p-value<0.05 (95% CI) on one-tailed t-test
**reject Null hypothesis with p-value<0.0 1 (99% CI) on one-tailed t-test

5.4.1 Case-study: breast-cancer diagnosis :
We select cancer95 dataset to experiment. Following the same

experimental setting in Section 5, we apply Lime and GRACE on
the trained neural network model to explain its predictions on the
test set. Figure Sup1 depicts explanation produced by Lime on a
patient diagnosed as malignant by the model. Following guideline
published by Lime’s author 2, explanation for each feature can
be interpreted as follows: "if bare_nuclei is less than or
equal 6.0, on average, this prediction would be 0.15
less malignant". With the same prediction, GRACE generates an
explanation text as follows:"Had bare_nuclei been 7.0 point
lower and clump_thickness been 9.0 point lower, the
patient would have been diagnosed as benign rather than
malignant"

Method wise, both are instance-based explanation algorithms, or
both explain individual predictions. From Figure Sup1, by present-
ing top-k important features, Lime does not convince if and how a
single or combinations of features are vulnerable to the contrastive
class, but this is very vivid and concise in case of GRACE. Moreover,
while both methods provide some intuition on decisive thresholds
at which the prediction would change its direction, the thresholds
provided by Lime is only a local approximation, while that provided
by GRACE (e.g., 7.0 point lower for bare_nuclei) is faithful to the
neural network model (fidelity score is 1.0). Overall, the explanation
generated by GRACE is more concise and faithful to the decision
boundary of the neural network model.

5.4.2 User-Study 1: Intuitiveness, friendliness & comprehensibility :
We have recruited participants on Amazon Mechanical Turk (AMT)
and asked them to compare two explanation methods: Lime and
GRACE. Without assuming or requiring any ML background on
the participants, we want to test two alternative hypothesises: ex-
planation generated by GRACE is (ℋ1) more intuitive and friendly,
and (ℋ2) more comprehensible than that generated by Lime to
general users. To test these, using the same prediction instance,
we first generate explanation text by Lime and GRACE. While by
default Lime returned explanation for top 10 features, we limit only
5 features that are the most significant. On the contrary, GRACE
only needs 2 features for generating contrastive explanation. Since
Lime method originally does not generate explanation text, we then
translate its result to text interpretation as described in previous
case-study. Finally, we ask the participants to rank on a scale from
1 to 10 for each question (i) and (ii). We did the surveys for each
method separately.

From Table 5 and Figure 4, it is significant (p-value ≤ 0.05) that
GRACE is able to generate more intuitive, friendly (H1, 6.35 v.s.
4.76 in mean ranking), and more comprehensible (H2, 7.35 v.s. 5.52
in mean ranking) explanation than Lime for general users. We
2https://github.com/marcotcr/lime

https://github.com/marcotcr/lime


Figure 3: Effects of K on Rfidelity and Ravg#Feats score

also carry out an experiment that includes a visualization design
showing the top 5 features and an explanation text for the top 2
features for each method as shown in Figure Sup1. This too results
in favorable results for GRACE over Lime.

5.4.3 User-Study 2: How much end-users indeed understand the ex-
planation? In practice, ML models usually play the role of assisting
human to make informative decisions [18]. Therefore, extending
from previous experiment, we hypothesize that a good explanation
should not only be comprehensible, but should also help materialize
in accurate decision. Here we want to test workers’ actual under-
standing from the explanation with alternative hypothesis (ℋ3):
users who are provided with explanation generated by GRACE are
better at making post-explanation decision than those provided
with explanation generated by Lime. To test this, we first present
the same prediction scenario from previous user-study, then ask
each participant to analyze the explanation and adjust the sample’s
feature values such that the model would change its prediction (e.g.,
from malignant to benign). This task requires the worker to recog-
nize from the explanation hints of both (i) what the key features
are and (ii) how the changes of those features affect the model’s
prediction. To ensure the quality of the workers, we only select
workers with “US Graduate Degree" as a qualification provided
by AMT. We use the trained model to validate the responses and
report the average accuracy. From Table 5 and Figure 4, it is highly
significant (p-value ≤ 0.01) that workers who provided with ex-
planation generated by GRACE have more accurate answers than
those provided with explanation generated by Lime (H3), show-
ing 0.75 v.s 0.16 of average accuracy, respectively. In other words,
explanation generated by GRACE is more effective in supporting
users to make tangible decisions, such as suggesting an alternative
scenarios when dealing with neural network models.

5.5 Parameter Sensitivity Analysis

5.5.1 Effects of K : One of the important factors that largely affect
the explainability of GRACE is the value of parameter K, or the
maximum number of features to change during the contrastive
samples generation process. While a small K is more preferable, it
would become more challenging for GRACE to ensure perturbed
samples to cross the decision boundary. This will eventually hurt
Rfidelity. Here we want to see how different K values affect the
generated samples’ fidelity and the number of perturbed features.
For each dataset, we next train a neural network model and test
this model with all values of K = {1, 2, 3,.. 10} and plot it against
respective Rfidelity and Ravg#Feats. Figure 3 reports two distinctive
patterns between GRACE-Gradient and GRACE-Local: (i) both

Figure 4: Comparison of generated explanation: GRACE v.s. Lime.
Scores are normalized to [0,1]

Table 6: Effects of entropy threshold γ on Rinfo−gain

Dataset Method 1.0 0.7 0.5 0.3

musk GRACE-Gradient 0.51 0.51 0.58 0.58

GRACE-Local 0.36 0.36 0.54 0.54

segment GRACE-Gradient 0.57 0.57 0.59 0.59

GRACE-Local 0.79 0.79 0.84 0.84

approaches witness gradual increment in Rfidelity and Ravg#Feats,
with neither one of them dominates the performance (e.g., cancer95
dataset), or (ii) one of them greatly out-weights the other (e.g.,
spam dataset). Overall, by increasing K, generated samples are
more faithful to the neural network model’ decision boundary. Yet
the average number of features needed to change to achieve so also
increases, hence eventually reduce explainability.

5.5.2 Effects of entropy threshold γ : Entropy threshold γ is set to
ensure that no pairs out of selected features are conveying very
similar information, hence making generated samples more infor-
mative to users. Similar to the previous experiment, we keep other
parameters the same while vary γ as {1.0, 0.7, 0.5, 0.3}. The results
are shown in Table 6. We observed that γ is not very sensitive,
showing the best value of γ ≤ 0.5, which can be explained that the
pair of features are usually more or less predictable given the other
at a specific level. However, by setting γ = 0.5, we can observe
larger improvement in case of musk and segment dataset.

6 RELATEDWORK

Regarding explanation by intervention, our Def. 1 relates to Quan-
titative Input Influence [5], a general framework to quantify the
influence of a set of inputs on the prediction outcomes. The frame-
work follows a two-step approach: (i) it first changes each individual
feature by replacing it with a random value, and then (ii) observes
how the outcome, i.e., prediction, changes accordingly. However,
we propose a more systematic way by generating a new sample
at once by directly conditioning it on a contrastive outcome (X
rather than Y ). A few prior works (e.g., [20, 32, 37]) also propose to
generate contrastive samples with (i) minimal corrections from its
original input by minimizing the distance: δ = ∥xxx − x̃∥p and with
(ii) minimal number of features needed to change to achieve such
corrections. While Wachter et al. [32] use δ with ℓ1 norm to induce
sparsity with the hope to achieve (ii), Zhang et al. [37] approach
the problem in a reverse fashion, in which they try to search for
minimal δ w.r.t to a pre-defined number of features to be changed.
Regardless, without considering the mutual information among
pair-wise of features, it does not always guarantee that generated
samples are informative to end-users. The work [31] also proposes



a method to use decision trees to search for a decisive threshold
of feature’s values at which the prediction will change, and utilize
such threshold to generate explanations for neural network model’
predictions. While sounds similar to our approach, this method
shares a similar dis-merit with Lime [26] since the generated ex-
planation is only an approximation and not faithful to the model.
In this paper, we take a novel approach to generate contrastive
samples that are not only contrastive but also faithful to the neural
network model and “informative" to end-users.

As regards as features selection, we employ a forward-based ap-
proach together with Symmetrical Uncertainty (SU) and the approx-
imation of features importance according to the neural network
model. While there are other algorithms for ranking or selecting
features (e.g., submodularity [13], ℓ1 [32], tree-based ([31], etc.), our
proposed method is selected because of it is both effective (high
fidelity and informative scores as a result) and easy to implement,
not to mention that SU can work with continuous features, and
it also considers the bias effects in which one feature might have
many diverse values than the other [35].

7 CONCLUSION AND FUTUREWORK

In this paper, we borrow “contrastive explanation" and “explanation
by intervention" concepts from previous literature and develop a
generative-based approach to explain neural network models’ pre-
dictions. We introduce GRACE, a novel instance-based algorithm
that provides end-users with simple natural text explaining neu-
ral network models’ predictions in a contrastive “Why X rather
than Y" fashion. To facilitate such an explanation, GRACE extends
adversarial perturbation literature with various conditions and
constraints, and generates contrastive samples that are concise,
informative and faithful to the neural network model’s specific
prediction. User-studies and quantitative experiments on several
datasets of varied scales and domains have demonstrated the effec-
tiveness of the proposed approach. There are several Interesting
future directions. First, in this paper, we intervene a selected subset
of features without considering conditional dependencies among
all variables after such intervention. This might create undesirable
samples that are unrealistic (e.g., “‘a pregnant man"). Thus, we plan
to address interactions among the features to generate samples that
are more realistic. Second, in this work, we assume a white-box
setting that we can access the gradients of the model. We want to
extend GRACE for other black-box settings, gradients of which are
not accessible. Since our method works exclusively for multinomial
classification task, we also plan to apply it on other ML tasks such
as regression, clustering, etc.

8 ACKNOWLEDGEMENT

This work was in part supported by NSF awards #1742702, #1820609,
#1909702, #1915801 and #1934782. We appreciate anonymous re-
viewers for all of their constructive comments.

References

[1] Sercan O Arik and Tomas Pfister. 2019. TabNet: Attentive Interpretable Tabular
Learning. arXiv preprint arXiv:1908.07442 (2019).

[2] Björn Barz and Joachim Denzler. 2019. Deep Learning on Small Datasets without
Pre-Training using Cosine Loss. arXiv preprint arXiv:1901.09054 (2019).

[3] Babak Ehteshami Bejnordi, Mitko Veta, Van Diest, et al. 2017. Diagnostic as-
sessment of deep learning algorithms for detection of lymph node metastases in
women with breast cancer. Jama 318, 22 (2017), 2199–2210.

[4] Lingyang Chu, Xia Hu, Juhua Hu, Lanjun Wang, and Jian Pei. 2018. Exact and
consistent interpretation for piecewise linear neural networks: A closed form
solution. In ACM SIGKDD/KDD. ACM, 1244–1253.

[5] Anupam Datta, Shayak Sen, and Yair Zick. 2016. Algorithmic transparency via
quantitative input influence: Theory and experiments with learning systems. In
2016 IEEE SP. IEEE, 598–617.

[6] Matthew F Dixon, Nicholas G Polson, and Vadim O Sokolov. [n. d.]. Deep learning
for spatio-temporal modeling: Dynamic traffic flows and high frequency trading.
Applied Stochastic Models in Business and Industry ([n. d.]).

[7] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository.
[8] Usama Fayyad and Keki Irani. 1993. Multi-interval discretization of continuous-

valued attributes for classification learning. (1993).
[9] Thomas Fischer and Christopher Krauss. [n. d.]. Deep learning with long short-

term memory networks for financial market predictions. EJOR 270 ([n. d.]).
[10] Brian P Flannery, Saul A Teukolsky, William H Press, and William T Vetterling.

1988. Numerical recipes in C: The art of scientific computing. Vol. 2.
[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training

deep feedforward neural networks. In AISTATS. 249–256.
[12] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015. Visualizing and under-

standing recurrent networks. arXiv preprint arXiv:1506.02078 (2015).
[13] Rajiv Khanna, Ethan Elenberg, Alexandros G Dimakis, Sahand Negahban, and

Joydeep Ghosh. 2017. Scalable greedy feature selection via weak submodularity.
arXiv preprint arXiv:1703.02723 (2017).

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[15] Michal Kosinski, David Stillwell, and Thore Graepel. 2013. Private traits and
attributes are predictable from digital records of human behavior. National
Academy of Sciences 110, 15 (2013), 5802–5805.

[16] David Lewis. 2013. Counterfactuals. John Wiley & Sons.
[17] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. 2015. Visualizing and

understanding neural models in nlp. arXiv preprint arXiv:1506.01066 (2015).
[18] Zachary C Lipton. [n. d.]. The mythos of model interpretability. Queue ([n. d.]).
[19] Samaneh Mahdavifar and Ali A Ghorbani. 2019. Application of deep learning to

cybersecurity: A survey. (2019).
[20] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen

Paul Smolley. [n. d.]. Least squares generative adversarial networks. In CVPR.
[21] Jan André Marais. 2019. Deep learning for tabular data: an exploratory study.

Ph.D. Dissertation. Stellenbosch: Stellenbosch University.
[22] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. 2014. Causality and explanations

in databases. VLDB Endowment 7, 13 (2014), 1715–1716.
[23] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.

Deepfool: a simple and accurate method to fool deep neural networks. In IEEE
CVPR. 2574–2582.

[24] Vitali Petsiuk, Abir Das, and Kate Saenko. 2018. Rise: Randomized input sampling
for explanation of black-box models. In BMVC.

[25] Daniele Ravì, Charence Wong, Fani Deligianni, Melissa Berthelot, Javier Andreu-
Perez, Benny Lo, and Guang-Zhong Yang. 2016. Deep learning for health infor-
matics. IEEE journal of biomedical and health informatics 21, 1 (2016), 4–21.

[26] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. [n. d.]. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In KDD.

[27] Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations
for database queries. In ACM SIGMOD. ACM, 1579–1590.

[28] Ira Shavitt and Eran Segal. 2018. Regularization learning networks: deep learning
for tabular datasets. In NIPS. 1379–1389.

[29] Craig Silverstein, Sergey Brin, Rajeev Motwani, and Jeff Ullman. 2000. Scalable
techniques for mining causal structures. (2000).

[30] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034 (2013).

[31] Jasper van der Waa, Marcel Robeer, Jurriaan van Diggelen, Matthieu Brinkhuis,
and Mark Neerincx. 2018. Contrastive explanations with local foil trees. arXiv
preprint arXiv:1806.07470 (2018).

[32] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual
explanations without opening the black box: Automated decisions and the GDPR.
Harv. JL & Tech. 31 (2017), 841.

[33] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining away outliers in
aggregate queries. Proceedings of the VLDB Endowment 6, 8 (2013), 553–564.

[34] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code similarity
detection. In ACM SIGSAC CCS. 363–376.

[35] Lei Yu and Huan Liu. 2003. Feature selection for high-dimensional data: A fast
correlation-based filter solution. In ICML. 856–863.

[36] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In ECCV. Springer, 818–833.

[37] Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. 2018. Interpreting neural
network judgments via minimal, stable, and symbolic corrections. In NIPS.

[38] Daniel John Zizzo, Daniel Sgroi, et al. 2000. Bounded-rational behavior by neural
networks in normal form games. Nuffield College.



Table Sup1: The details of configuration and training parameters of neural network models on different datasets

Parameter eegeye diabete cancer95 phoneme segment magic biodeg spam cancer92 mfeat musk
Size of Hidden Layers [40,30] [15, 7] [15, 15] [20, 5] [30, 10] [35, 20] [60, 50] [50, 30] [50, 20] [100, 50] [100, 100]

Batch Size 512 512 512 512 512 512 512 512 512 512 512
Learning Rate 0.01 0.01 0.001 0.001 0.01 0.001 0.01 0.001 0.001 0.001 0.0001

Early-Stopping Patience 5 3 3 3 3 4 3 3 3 5 3
Maximum Epochs 500 500 500 500 500 500 500 500 500 500 500

Table Sup2: Prediction scenario from cancer95 dataset used in case-study and user-studies

Feature Bare_Nuclei BlaChr MarAdh CluThic Mitoses CelSizUni CelShaUni NorNuc SinEpCeSi Model Prediction

Patient 10.0 4.0 5.0 8.0 1.0 5.0 5.0 3.0 2.0 88% Malignant

Table Sup3: The details of parameters of GRACE

Parameter Value
K 5
γ 0.5
STEPS 200
Nearest Neighbor parameter (n_neighbors) 4
Nearest Neighbor parameter (distance function) auto

A APPENDIX ON REPRODUCIBILITY

In this section, we provide the details of experimental configuration
and the designs of our user-studies to facilitate the reproducibility
of our work.

A.1 Source Code, Software, and Dataset

Software wise, we use Python (version 3.7.3) as the main program-
ming language, Scikit-learn (version 0.21.3) and PyTorch (version
1.4.0) as the main machine learning frameworks. All eleven datasets
used in this paper are publicly available in the UCI Machine Learn-
ing Repository [7].

A.2 Evaluation of Generated Samples

In Section 5, we compare GRACE with DeepFool and NearestCT
baseline on the quality of generated contrastive samples to explain
predictions of neural network model f (·) with parameters and con-
figuration as follows.

A.2.1 Neural Network Model f (·) We employ two hidden layers
fully-connected-networks with ReLu activation function, followed
by a softmax layer to train a neural network model for each dataset
with parameters and configuration described in Table Sup1. We
initialize all the weight tensors and biases of the model using Glorot
initialization [11] and value of 0.01, respectively. We use Adam
optimizer [14] with β1 = 0.9, β2 = 0.999, and ϵ = 1e − 8 to train
the model with Cross Entropy Loss.

A.2.2 GRACE We follow the generation algorithm as described
in Section 4, particularly Alg. 1, Alg. 2, and Alg. 3. Implementation
of Symmetrical Uncertainty (SU) function is retrieved from public
repository for Fast Correlation-Based Filter Feature Selection: https:
//github.com/shiralkarprashant/FCBF. We use Logistic Regression
as the explainable ML classifier g(·) used in WGradient function
described in Section 4. We set all parameters following Table. Sup3.
The descriptions of major parameters are as follows.

(1) K : Maximum number of features to perturb (as in Alg. 1)
(2) γ : Entropy upper-bound threshold (as in Alg. 3)

(3) STEPS: Maximum number of steps to project x̃xx on the con-
trastive class: (as in Alg. 2)

A.2.3 DeepFool Since DeepFool is originally developed for image
data, we adapt a publicly available repository at https://github.com/
LTS4/DeepFool to our tabular datasets.

A.3 Evaluation of Explanation

We compare our proposed framework, GRACE, with Lime on the
quality and effectiveness of generated explanation. We randomly se-
lect a sample from cancer95 dataset and study its prediction through-
out Section 5.4. Its feature values and prediction is shown in Table.
Sup2.

A.3.1 Case-study: breast-cancer diagnosis : We study the prediction
scenario of patient described in Table. Sup2. Figure Sup1 shows the
explanation generated by Lime and GRACE for the scenario. Even
though GRACE focuses on generating explanation in natural text
and visualization is not our main contribution, we attach a potential
visualization design corresponding to the generated explanation
text as seen in Figure Sup1.

A.3.2 User-Study 1: Intuitiveness, friendliness & comprehensibility
: We first present the AMT workers the prediction scenario as in
Table. Sup2. To ensure the quality of the workers, we only recruit
workers with the approval rate of assignments greater than 95%. To
ensure the quality of the responses, we filter out ones that spend
less than 1.5 minutes. Eventually, we have 37 workers participated
with a total of 44 valid responses, 23 and 21 of which are asked to
assess GRACE’s, and Lime’s explanation, respectively. An example
of the task interface is depicted in Figure Sup2.

A.3.3 User-Study 2: How much end-users indeed understand the
explanation? We also present the AMT workers the prediction sce-
nario as in Table. Sup2. To ensure the quality of the workers, we
apply two recruitment requirements provided by AMT: (i) the ap-
proval rate of assignments of any workers must be greater than
95%, (ii) the workers must have a "US Graduate Degree". To en-
sure the quality of the responses, we filter out ones that spend less
than 3 minutes. Eventually, we have 24 workers participated with
a total of 39 valid responses, 20 and 19 of which are provided with
GRACE’s, and Lime’s explanation, respectively. An example of the
task interface for GRACE is depicted in Figure Sup3.

https://github.com/shiralkarprashant/FCBF
https://github.com/shiralkarprashant/FCBF
https://github.com/LTS4/DeepFool
https://github.com/LTS4/DeepFool


Figure Sup1: Example explanation produced by Lime and our method (GRACE).

Figure Sup2: Interface of User-study 1 (GRACE: Intuitiveness, friendliness & comprehensibility).

Figure Sup3: Interface of User-study 2 (GRACE: How much end-users indeed understand the explanation?) Note that input controls for other

features (rather than Bare_nuclei, BlaChr) and the feature of the sample is omitted in the figure due to space issue.


	Abstract
	1 INTRODUCTION
	2 THE EXPLANATION MODEL
	2.1 Contrastive Explanation
	2.2 Explanation by Intervention
	2.3 From Intervention to Generation

	3 OBJECTIVE FUNCTION
	4 GRACE: GENERATING INTERVENTIVE CONTRASTIVE SAMPLES FOR MODEL EXPLANATION
	4.1 Contrastive Sample Generation Algorithm
	4.2 Entropy-Based Forward Feature Ranking
	4.3 Generating Explanation Text
	4.4 Complexity Analysis

	5 EXPERIMENTS
	5.1 Datasets
	5.2 Compared Methods
	5.3 Evaluation of Generated Samples
	5.4 Evaluation of Generated Explanation
	5.5 Parameter Sensitivity Analysis

	6 RELATED WORK
	7 CONCLUSION AND FUTURE WORK
	8 ACKNOWLEDGEMENT
	References
	A APPENDIX ON REPRODUCIBILITY
	A.1 Source Code, Software, and Dataset
	A.2 Evaluation of Generated Samples
	A.3 Evaluation of Explanation


