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ABSTRACT
East Africa is experiencing the worst locust infestation in over 25
years, which has severely threatened the food security of millions of
people across the region. The primary strategy adopted by human
experts at the United Nations Food and Agricultural Organization
(UN-FAO) to tackle locust outbreaks involves manually surveying
at-risk geographical areas, followed by allocating and spraying pes-
ticides in affected regions. In order to augment and assist human
experts at the UN-FAO in this task, we utilize crowdsourced reports
of locust observations collected by PlantVillage (the world’s leading
knowledge delivery system for East African farmers) and develop
PLAN, a Machine Learning (ML) algorithm for forecasting future
migration patterns of locusts at high spatial and temporal resolution
across East Africa. PLAN’s novel spatio-temporal deep learning ar-
chitecture enables representing PlantVillage’s crowdsourced locust
observation data using novel image-based feature representations,
and its design is informed by several unique insights about this
problem domain. Experimental results show that PLAN achieves
superior predictive performance against several baseline models -
it achieves an AUC score of ∼0.9 when used with a data augmenta-
tion method. PLAN represents a first step in using deep learning to
assist and augment human expertise at PlantVillage (and UN-FAO)
in locust prediction, and its real-world usability is currently being
evaluated by domain experts (including a potential idea to use the
heatmaps created by PLAN in a Kenyan TV show). The source code
is available at https://github.com/maryam-tabar/PLAN.

CCS CONCEPTS
• Applied computing → Agriculture; • Computing method-
ologies → Supervised learning by classification.
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1 INTRODUCTION
Since 2020, several parts of the world (especially East Africa and
the Middle East) have been struggling with the worst Desert Locust
(Schistocerca gregaria) swarm infestation in over 25 years [25]. The
Desert Locust is a highly destructive pest during its swarming
phase. Each 2g adult locust can move as much as 100 kilometres/day,
consume its own weight in vegetation each day, and each swarm
can contain billions of locusts [23, 24].

The current Desert Locust crisis has significant economic, hu-
man, and environmental impacts. For example, according to World
Bank, the damages of the locust crisis could reach US$8.5 billion in
East Africa and Yemen. Apart from the economic costs, the deci-
mated crops left by these locust swarms could jeopardize the food
security of millions of people [23]. Thus, it is critically important
to accurately predict the movement of these swarms, so that appro-
priate mitigation measures can be taken.

Currently, this is achieved by the Desert Locust Information
Service (DLIS) at UN-FAO in Rome, Italy [24]. DLIS has historically
relied on highly trained staff conducting field surveys in at-risk ge-
ographical areas, followed by governments allocating and spraying
pesticides in affected regions. However, due to limited numbers of
trained staff conducting field surveys, especially in countries (e.g.,
Kenya) where desert locusts are not normally present, the DLIS
aims to augment its data collection and decision making through
crowdsourced data. As a result, in 2020, PlantVillage1, at the re-
quest of UN-FAO, developed eLocust3m2, a smartphone application

1https://plantvillage.psu.edu/
2https://play.google.com/store/apps/details?id=plantvillage.locustsurvey
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which was designed for non-experts to use to crowdsource records
of locust observations. The introduction of this eLocust3m applica-
tion into a well established system of surveillance by the DLIS offers
opportunities to enhance current locust mitigation operations.

Motivated by the widespread use of a crowdsourcing applica-
tion for data collection on Desert Locusts (eLocust3m), we propose
PLAN (Predictor of Locust Activity and movemeNt), a spatiotem-
poral deep neural network model that leverages real-world insights
to accurately forecast locust presence/absence at high spatial and
temporal resolutions across Kenya, Ethiopia, and Somalia (three
countries in East Africa which have suffered great losses due to the
Desert Locust crisis). To the best of our knowledge, there is no existing
comparable ML based tool for the prediction of locust presence/absence.
In particular, this paper makes four novel contributions: (i) through
PlantVillage, a partner of the UN-FAO, we utilize data from eLo-
cust3m, a first-of-its-kind tool which has been deployed in the field
to crowdsource data about locust observations in Kenya, Ethiopia,
and Somalia. (ii) Leveraging subject matter expertise and findings
of prior studies in the agriculture domain, we identify ten environ-
mental factors that contribute to locust breeding, migration, and
survival, and fetch remote-sensed data for each of these ten factors.
(iii) We propose a novel deep neural network architecture, called
PLAN, that takes as input a single geographical location (in terms
of latitude and longitude) and outputs accurate 𝑛-day forecasts of
locust presence/absence at that location. PLAN explicitly models
the spatio-temporal relationships inside locust movement data, and
the impact of environmental factors on locust movement using a
combination of Convolutional Neural Networks (CNNs) [19] and
Long Short Term Memory (LSTM) models [12]. (iv) Finally, we com-
prehensively evaluate the effectiveness of PLAN for this problem
domain. The experimental results show that PLAN outperforms
several classical ML baseline models (in terms of predictive per-
formance) on the n𝑡ℎ-step (𝑛 ∈ {1, 2, 3, 4}) forecasting tasks. For
example, PLAN is the only model which achieves an AUC score
of ∼0.9 for next-day locust movement forecasts. More importantly,
PLAN shows a significant improvement (23% higher F1 score) over
the best performing baseline in a cross-region test (i.e., when we
test PLAN’s performance on geographical regions which are far
away from the regions where training data was collected), which
illustrates PLAN’s capability of learning useful locust migration
patterns.

PLAN is meant to be an assistive tool, which can augment the
human expertise of highly trained staff at DLIS and PlantVillage in
their locust prediction and mitigation efforts. Currently, PLAN’s
real-world usability is being evaluated by domain experts, and a
potential idea is to use heatmaps (of forecast predictions) generated
by PLAN in a popular Kenyan TV show (which has an average
viewership of five million farmers every week).

2 RELATEDWORK
Historically, locust swarmmigration has been studied frommultiple
perspectives in prior work. One line of prior research focuses on
exploring the role of climatic factors in the outbreak of migratory
locust swarms [6, 28]. For example, various studies have reported
that different meteorological factors can have different levels of
impact on locust breeding, maturation, migration, and survival;

e.g., (i) high precipitation can make a region suitable for locust
breeding [28], similarly, (ii) soil moisture was also found to be a
strong indicator of locust breeding areas [10, 11], (iii) wind can
facilitate locust migration, (iv) green vegetation plays a key role in
locust survival [28], and finally, (v) increased temperature resulting
from climate change tends to exacerbate the problem of locust
swarm infestation [28].

In addition, few data-driven studies at the intersection of agricul-
ture and AI have addressed the locust crisis. Ye et al. [31] employed
CNN-based models to detect locust species from imagery data. Ki-
mathi et al. [16] used the Maximum Entropy (MaxEnt) model to
identify potential locust breeding spots from several environmental
factors. Moreover, in January 2021, the Selina Wamucii company3
has announced the ongoing development of an AI tool (called Kuzi)
for predicting locust occurrence and breeding, however, the details
of their underlying model and its predictive performance have not
been released yet [22]. Therefore, to the best of our knowledge,
there is no prior publicly available research on forecasting locust
movement patterns at high spatial and temporal resolutions. To
address this research gap, we propose PLAN, a ML algorithm that
leverages recent advances in the field of spatio-temporal forecast-
ing [29, 30], as well as findings of prior studies (in the agriculture
domain) on locust outbreaks to generate accurate predictions of
future movement patterns of locust swarms.

3 THE PROPOSED FRAMEWORK: PLAN
We now describe the data that is used to develop PLAN, followed
by a discussion on PLAN’s architecture.

3.1 Dataset

Raw Data Sources. PLAN utilizes two sources of raw data: (i)
crowdsourced locust survey data; and (ii) remote-sensed environ-
mental data. Our crowdsourced locust survey data is collected
through the “eLocust3m” (or eL3m) Android application, which
has been developed by PlantVillage for the UN-FAO. This smart-
phone application enables users to record observations of locust
presence/absence at a particular geographical location (given by
latitude and longitude) on a given date (see Figure 1). Since 2020,
eL3m has been deployed in many countries around the world, and
the various groups (PlantVillage, county governments, charities)
have employed local community members to scout the areas and
provide geocoded observations of locust presence/absence via eL3m.
In this paper, we only focus on eL3m locust presence/absence data
collected from Kenya, Ethiopia, and Somalia (three countries which
have been badly hit by the locust crisis) between March 1, 2020 to
September 30, 2020. In total, during this time period, ∼21,000 locust
presence/absence reports were recorded in these three countries
via eL3m. We use all these reports as our first raw data source. Note
that data collection through eL3m has not stopped since September
30, 2020, and in future work, we will use these larger and improved
datasets to design operational systems.

The second raw data source used by PLAN is related to the
environmental factors that can affect locust breeding, migration,
and survival. For this purpose, we take advantage of subject matter

3https://www.selinawamucii.com
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expertise and prior work in the agriculture discipline [10, 28], and
fetch raw remote-sensed data (between the dates of March 1, 2020
to September 30, 2020) for the following ten environmental factors
from publicly available data sources cited below: (1) soil moisture [2,
17, 20], (2) sand content of soil [13], (3) precipitation [9], (4) land
elevation [27], (5) wind speed at 10 meters [21], (6) wind speed at 50
meters [21], (7) U wind speed at 10 meters [15], (8) V wind speed at
10 meters [15], (9) total biomass productivity in 2019 (TBP_19) [26],
and (10) actual evapotranspiration (AET) [26].

Rationale for the Choice of Environmental Factors. Each en-
vironmental factor chosen by us has been reported in prior work as
potentially having an impact on locust breeding, migration, or sur-
vival. For example, high sand content in soil, and soil

Figure 1: The eL3m user
interface for crowdsourced
data collection.

moisture is conducive for lo-
cust egg-laying [28]; as a re-
sult, precipitation, soil mois-
ture, sand content of soil,
and AET (whichmeasures the
amount of water evaporated
from the ground and tran-
spired by crops) can serve as
strong indicators of potential
locust breeding spots, which
can help in forecasting their
movement patterns. Further,
wind is regarded as the main
means of locust migration
[28]. The wind heights most
important to locust move-
ment are 1,000 and 1,500m
above sea level. Here, we use
wind speed at 10/50 meters
and directions (i.e., U/V wind)
as they were readily available.
In future work, we will in-
tegrate winds at higher ele-
vations. Finally, certain land
characteristics are conducive
to locust presence; e.g., high locust activity is seen at lower eleva-
tions [18], and green vegetation is needed for locust survival [28].
As a result, land elevation, and TBP_19 can play important roles in
forecasting locust presence/absence in different regions.

Data Characteristics. Our eL3m data has certain characteristics,
which mainly stem from the nature of crowdsourced data collec-
tion. First, as locust presence/absence is voluntarily reported by
human eL3m users, the total number of reports received in each
day varies across time. Users often submit multiple records in close
succession resulting in temporal and spatial aggregation. Figure 2
represents the total number of locust presence/absence reports re-
ceived across Kenya, Ethiopia, and Somalia over time. As illustrated
in this figure, a large number of locust presence/absence reports
were received each day from the beginning of June until mid July. In
particular, most of the reports received in June are locust presence
(or, positive) reports, whereas majority of the reports received in
July are locust absence (or, negative) reports. Second, the spatial
distribution of the data is not uniform over time; e.g., on several

Figure 2: Distribution of eL3m locust presence/absence re-
ports received from Ethiopia, Kenya, and Somalia over time.

Figure 3: Schema for image representation of a single locust
presence/absence report received on date 𝑡 .

days in June, there are many regions in Kenya from which no lo-
cust reports were received. Third, we acknowledge the presence of
some noise in the data, because people voluntarily report the lo-
cust presence/absence, and they might not report the ground-truth
intentionally/unintentionally, e.g., there are false positive reports
where users have considered it important to submit positive records
even if locusts are not present (we elaborate on this in Section 6).

In addition, remote-sensed environmental factors are available at
different temporal resolutions. For example, wind speed, soil mois-
ture, and precipitation are available at a daily resolution, whereas
AET is only available at a dekadal resolution4. On the other hand,
sand content, TBP_19, and land elevation are static features which
do not vary with time. Next, we describe data preparation steps.

Data Preparation. In our dataset, each data point corresponds
to a single eL3m locust report with a binary (present/absent) label.
Each of these data points is recorded by an eL3m volunteer at a
particular geographical location (lat, long) and date/time 𝑡 . For ex-
ample, Figure 3 illustrates all such data points recorded in Kenya on
date 𝑡 (similar maps can be drawn for different dates and countries).

In order to represent each individual data point in Figure 3 (with-
out loss of generality, we denote an arbitrary point by the blue GPS
pin), we create an image based feature representation which cap-
tures the spatio-temporal movement of locusts in nearby regions
4In a dekadal dataset, three data points is available for each month. Depending on the
length of the month, the length of each dekad ranges between 8 to 11 days.



Figure 4: The architecture of PLAN.

(surrounding the blue pin location) over the previous 𝑘 days. In
particular, for each of the previous 𝑘 days, we create a separate
7 × 7 × 2 image representation which summarizes all eL3m locust
reports (both presence and absence) received from surrounding
areas which lie in a 7 × 7 grid centered on the blue pin location.

More formally, the feature representations for a data point cor-
responding to location 𝑙 = (lat, long) and date (𝑡 + 𝑛) are cre-
ated by generating 𝑘 images of size 7 × 7 × 2, one for each date
𝑡 ′ ∈ {𝑡, 𝑡 − 1, 𝑡 − 2, . . . , 𝑡 − (𝑘 − 1)}. In order to build the image for
date 𝑡 ′, we grid the geographical area surrounding location 𝑙 and
create a 7 × 7 image, in which each pixel corresponds to a square
geographical area of size 𝑑◦×𝑑◦ (in spatial resolution degrees). This
image is centered on location 𝑙 , hence the central pixel corresponds
to a region of size 𝑑◦ × 𝑑◦ centered on location 𝑙 , and other pixels
correspond to nearby 𝑑◦ × 𝑑◦ regions. Finally, each pixel contains
two pieces of information: (1) the total number of locust presence
reports from that 𝑑◦ ×𝑑◦ region on date 𝑡 ′, and (2) the total number
of locust absence reports from that 𝑑◦ ×𝑑◦ region on date 𝑡 ′. Using
this procedure, we create 𝑘 images of size (7 × 7 × 2).

Intuitively, this time-varying image representation of data points
enables us to explicitly capture the movement of locusts across
space and time which can serve as important predictors for future
locust movement, e.g., locust presence in a region increases the
likelihood of locust presence in nearby regions in the near future
and vice versa. Thus, this set of 𝑘 images (one for each of the
previous 𝑘 days) forms the first part of feature representation for
each data point in our dataset.

The second part of feature representation for each data point
comprises of time-series values for six remote-sensed environmen-
tal variables (i.e., precipitation, soil moisture, U wind at 10 meter, V
wind at 10 meters, wind speed at 10 meters, and wind speed at 50
meters) over the previous 𝑘 days. Finally, the third part of feature
representation for each data point comprises of single values for
our static environmental variables (i.e., sand content, TBP_19, land

elevation, and AET of the last dekad). We normalize each of these
features independently via Min-Max normalization.

Our final dataset consists of 21,012 data points, out of which
42.35% correspond to locust presence reports (i.e., positive class).
Each data point consists of the following input features: (i) 𝑘 matri-
ces of size (7×7×2), which correspond to the image representation
of locust survey data in each day of the past 𝑘 days, (ii) six time-
series data of length 𝑘 , each of which corresponds to the historical
pattern of an environmental factor, and (iii) a vector of four ele-
ments which corresponds to values of our four static variables.

3.2 PLAN’s Network Architecture
We now describe PLAN, a deep learning framework for generating
accurate forecasts of locust presence/absence at different geograph-
ical locations in Kenya, Ethiopia and Somalia (our three countries
of interest). PLAN takes the (latitude, longitude) of the target lo-
cation and the current date 𝑡 as input, and generates as output a
binary forecast about whether locusts will be present (or not) at
that (latitude, longitude) 𝑛 days into the future (i.e., on day 𝑡 + 𝑛).

Figure 4 illustrates the architecture of PLAN. At a high level,
PLAN consists of three components: (i) a CNN+LSTM network
for capturing spatio-temporal relationships from our image-based
feature representations; (ii) an LSTM network for capturing tempo-
ral relationships in time-series environmental variables; and (iii) a
Feed-Forward neural network (FNN) for extracting relevant features
from the static environmental factors. In the following paragraphs,
each component is explained in detail.

Module A: CNN + LSTMModel. Wemodel spatio-temporal rela-
tionships in eL3m locust reports as follows. (i) For each data point,
we build 𝑘 image representations of locust report data (as described
in Section 3.1) to summarize the locust reports received from sur-
rounding regions over the last 𝑘 days. (ii) Each image is passed
through a separate CNN network followed by a fully-connected
(FC) layer, which outputs dense latent representations of the spatial



relationships that exist in that image. (iii) The output from each FC
layer is then fed as input to the hidden state of an LSTM network
which captures locust migration patterns over space and time. Each
of our CNN networks (in Figure 4) consists of three convolutional
layers with 16 filters of size 3 × 3 and the FC layer has 64 neurons.
Similarly, the hidden state size of the LSTM network is 256.

Module B: LSTMModel. We model the impact of environmental
factors on locust movement as follows. (i) For each data point, we
concatenate the time-series values of six environmental factors (i.e.,
soil moisture, precipitation, wind speed at 10/50 meters, and U/V
wind at 10 meters) at that data point’s geographical location over
the previous 𝑘 days. (ii) This 6×𝑘 time-series data is passed through
an LSTM network with ℎ hidden states (with hidden state size = 64),
which enables capturing time-varying patterns of environmental
factors at a specific geographical location.

Module C: FNN Model. Prior studies in the agriculture domain
show that locust presence could be associated with land character-
istics. For example, sandy soil is favourable for locust breeding, and
high locust activity is seen at lower elevations, etc. [18, 28]. As a
result, PLAN takes four of such factors (i.e., land elevation, sand
content of soil, TBP_19, and AET in the last dekad) as input and
uses a FNN consisting of a FC layer to extract relevant features of
the target region from these factors.

Finally, the output representations discovered by the last hidden
layers of LSTMs in Modules A and B as well as the output of Module
C are fed into a softmax layer to generate a predicted forecast of
locust presence/absence 𝑛 days into the future.

4 EXPERIMENTS
First, we discuss our baselines, evaluation approach, and experi-
mental settings. Then, we evaluate PLAN’s performance as follows:
(1) We compare PLAN with several baseline models to show its
superior predictive performance on various forecasting tasks. (2)
We conduct ablation analysis to show the impact of different parts
of PLAN’s architecture on its predictive performance. (3) We con-
duct cross-region tests to evaluate PLAN’s performance when being
tested on the data of a distant geographical region which is far away
from the training region. (4) To tackle data sparsity, which stems
from the unavailability of reports from many geographic regions,
we propose a model-agnostic data augmentation algorithm, and
then, assess its effectiveness in this problem domain.

Baselines. To evaluate the effectiveness of PLAN, we compare its
performance with the following baselines: (i) Logistic Regression
(Logit), (ii) Support-Vector Machine (SVM) with RBF kernel [4], (iii)
AdaBoost [8], and (iv) Extreme Gradient Boosting (XGBoost) [3].
Building these baseline models requires one further pre-processing
step as they cannot handle imagery data; i.e., we flatten the image
representations of the eL3m locust report data, and concatenate
them with all environmental factors to build the input feature rep-
resentations for these baseline models.

Note that we choose these classical ML models as baselines, as there
is no comparable prior work on sophisticated deep learning models
to predict locust movement. Thus, any deep learning model that we
compare PLAN against would have to be developed from scratch.
Further, we note that during ablation analysis, we compared PLAN

against several variant neural network architectures to evaluate the
contribution of different modules in PLAN’s superior performance.

Evaluation Approach. To evaluate the performance of various
models, we take advantage of the walk-forward testing approach
[1, 5, 14] and adapt it to our problem domain. At a high level, walk-
forward testing extends the idea behind K-fold cross-validation to
sequential time-series data. This method enables a more robust
and trustworthy assessment of the performance of various fore-
casting models, because each model is evaluated under a series of
time-varying conditions. In our domain, given the heterogenous
distribution of eL3m locust reports over time (see Figure 2), walk-
forward testing enables us to evaluate our models performance
across a number of sequenced and time-shifted train/test splits.

However, in walk-forward testing, the overall predictive perfor-
mance of a forecastingmodel (in terms of F1) is computed by averag-
ing the F1 score achieved by the model across different time-shifted
test sets (similar to macro-averaging in multi-class classification).
Unfortunately, in our problem domain, the total number of eL3m lo-
cust reports per day changes over time (see Figure 2). Consequently,
the different time-shifted test sets created during walk-forward
testing have different number of data points. Therefore, it is not
fair to report the average F1 score (or other evaluation metrics)
computed on each time-shifted test set as the overall predictive
performance of the model. To address this challenge, we combine
all time-shifted test sets (and the predictions on those test sets)
into a single larger test set. We compute all evaluation metrics on
this single test set, and use these metrics to evaluate and compare
different forecasting models. Prior literature has shown that this
approach to computing the overall performance produces unbiased
estimates of predictive performance in several situations, e.g., this
approach is commonly used with k-fold cross validation, etc. [7].

Experimental Setup. All experiments are run on a machine with
one NVIDIA Tesla T4 GPU, 4 vCPUs, and 15 GB RAM. Except for
Table 1, the window length 𝑤 of walk-forward testing is set to 7
days in all experiments. Finally, all experiments are run five times,
and the average performance over all runs is reported.

The hyper-parameters are set as follows. All fully connected
layers in PLAN’s architecture use Sigmoid activation functions.
The batch size is set to 64, and Adam optimizer with a learning rate
of 0.001, 𝛽1 of 0.9, and 𝛽2 of 0.999 is used. For all our experiments,
we set the value of 𝑘 = 7, i.e., both LSTM networks in Modules A
and B of PLAN’s architecture (Figure 4) take the data of the past 7
days as input. Further, we set the value of 𝑑 = 0.2◦, i.e., the spatial
resolution of each pixel in our image representations (Figure 3) is set
to 0.2◦, which makes each pixel correspond to a 22.2 km ×22.2 km
geographical region. The value of 𝑑 was set via hyperparameter
tuning, as shown in the appendix.

Predictive Performance. Table 1 compares the predictive per-
formance of PLAN against baseline models on 1𝑠𝑡 -step prediction
tasks (i.e., next day forecasts) with different choices of window
lengths𝑤 ∈ {7, 14, 21} (for walk-forward testing). The best model’s
performance is shown in bold, whereas the second best model’s
performance is shown with an asterisk. According to the results,
PLAN consistently outperforms all baseline models; in particular,
PLAN achieves an F1 score of ∼ 0.792 with a window length𝑤 = 7,



Table 1: The predictive performance of different ML models on the 1𝑠𝑡 -step prediction task with various window lengths (𝑤 ).

𝑤 = 7 days 𝑤 = 14 days 𝑤 = 21 days
Model Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC

Logit 0.7417 0.7026 0.7810 0.7366 0.6958 0.7652 0.7233 0.6823 0.7398
SVM 0.7772 0.7303 0.8433 0.7678 0.7104 0.8076 0.6853 0.5545 0.7870
AdaBoost 0.7585 0.7317 0.8282 0.7492 0.7247 0.8137 0.7408 0.7049 0.8002
XGBoost 0.7848∗ 0.7612∗ 0.8650∗ 0.7730∗ 0.7436∗ 0.8493∗ 0.7516∗ 0.7206∗ 0.8338∗
PLAN 0.8174 0.7918 0.8904 0.8060 0.7750 0.8781 0.8052 0.7814 0.8798
Improv. +4.15% +4.01% +2.93% +4.26% +4.22% +5.21% +7.13% +8.43% +5.51%

which improves upon XGBoost’s (the best performing baseline)
performance by ∼ 4%. This is a significant finding, as the high-stakes
nature of decision-making in this domain means that any increases
in predictive accuracy over baseline models could potentially lead to
widespread impact (in terms of increased food security, better man-
agement of the locust crisis, etc.) at the scale of nations.

In addition, PLAN tends to be more robust to increasing window
lengths 𝑤 as compared to baseline models. In particular, the per-
centage improvement achieved by PLAN over XGBoost (in terms
of F1) significantly increases with increasing window length sizes.
For example, PLAN improves upon XGBoost’s F1 score by 4.01%,
4.22%, and 8.43% with window length sizes of 𝑤 =7, 14 and 21
days, respectively. This finding illustrates that with increases in the
window length size𝑤 , the distribution of training and test sets are
more likely to differ from each other; as a result, the performance of
all models is likely to degrade. However, Table 1 shows that PLAN
is significantly less sensitive to potential covariate shift problems
as compared to baseline models, e.g., when the window length is in-
creased from𝑤 = 7 to𝑤 = 21, PLAN’s F1 score minimally degrades
by ∼ 1%, whereas XGBoost’s F1 score degrades by ∼4%.

Next, we evaluate the predictive performance of different models
on the n𝑡ℎ-step prediction task, as forecasting farther ahead into
the future tends to be a more difficult task. Table 2 compares the pre-
dictive performance of different models on 2𝑛𝑑 -step, 3𝑟𝑑 -step, and
4𝑡ℎ-step forecasting tasks. As expected, the performance of all ML
models degrade with increasing forecast horizons. However, PLAN
consistently outperforms baseline models at all forecast horizons.
In particular, PLAN achieves an average AUC of 0.84 (across all
horizon values) which shows its high capability of distinguishing
positive/negative samples even when forecasting farther ahead into
the future. In summary, Table 1 establishes PLAN’s superior perfor-
mance against strong classical ML baseline models on a real-world
task for which no comparable prior deep learning models exist.

Ablation Study.Having established PLAN’s superior performance,
we now conduct two sets of ablation studies to investigate the im-
pact of different parts of PLAN’s architecture on its overall perfor-
mance. Our first ablation study evaluates the impact of different
input features on PLAN’s performance. We build the following
variants of PLAN: (i) PLAN\Env: All ten input environmental vari-
ables (both time-series and static ones) along with Modules B and C
are removed from PLAN’s architecture. (ii) PLAN\eL3m: All eL3m
locust report data along with Module A is removed from PLAN’s
architecture. (iii) PLAN\LAbs: Instead of using dual-channel image
representations of eL3m locust reports (where we store both the

numbers of locust presence and absences reported at each pixel),
we experiment with single-channel image representations by only
storing locust presence numbers at each pixel in the image; as a
result, our input images become 7 × 7 × 1 sized.

Our second ablation study investigates the impact of different
components of PLAN’s architecture on its predictive performance
(i.e., all input features are used for the prediction task, but the ar-
chitecture is changed). We build the following variants of PLAN:
(i) PLAN\CNN: CNNs are removed from the architecture of PLAN;
instead, all image data is flattened and is passed through the FC
layers in Module A, the output of these FC layers is passed into the
LSTM network in Module A. Modules B and C are unchanged in
PLAN\CNN. (ii) PLAN\LSTM: Both LSTMs are removed from the
architecture of PLAN; instead, the outputs of FC layers in Module
A, the inputs of Module B, and the output of Module C are concate-
nated and fed into the output layer. (iii) PLAN\CNLS: All LSTMs
and CNNs are removed from the architecture, and instead, a FC
layer with the same number of neurons as the size of the LSTM
hidden state is used to replace those networks. Thus, PLAN\CNLS
is similar to a Multi-Layer Perceptron model.

Table 3 compares the predictive performance of our different
ablations on the 1𝑠𝑡 -step forecasting task. The results show that
PLAN\eL3m (which ignores eL3m data along with Module A) leads
to the greatest decrease in PLAN’s predictive performance by re-
ducing F1 scores by ∼17%. This illustrates the importance of the
crowdsourced eL3m data in the superior predictive performance
of PLAN. Further, PLAN\LAbs, which removes locust absence in-
formation from the input images (of Figure 3) results in a 5.52%
decrease in F1 score, which shows that locust presence reports (by
themselves) are not enough to generate accurate forecasts, and
incorporating locust absence reports in image based feature repre-
sentations has a significant impact on the performance of PLAN.
Additionally, PLAN\Env, which removes environmental factors,
results in a 1.17% decrease in F1 score, which is consistent with do-
main insights on the role of environmental factors in locust activity
andmovement. Results from our second ablation study show that re-
moving CNNs (i.e., PLAN\CNN) or LSTMs (i.e., PLAN\LSTM) from
the architecture leads to ∼1% reduction in F1 score. Additionally,
removing both CNNs and LSTMs results in further decrease (∼2.1%),
in F1 score. This shows that different components of PLAN play
roles of differing importance in its overall predictive performance.

Cross-Region Test. Until now, we trained PLAN on a portion of
the data collected from Kenya, Ethiopia, and Somalia, and tested



Table 2: The predictive performance of different ML models for 2𝑛𝑑 -step, 3𝑟𝑑 -step, and 4𝑡ℎ-step prediction tasks.

2𝑛𝑑 -step prediction 3𝑟𝑑 -step prediction 4𝑡ℎ-step prediction
Model Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC

Logit 0.7297 0.6933 0.7691 0.7210 0.6907 0.7692 0.7166 0.6855 0.7634
SVM 0.7569 0.7050 0.8244 0.7424 0.6887 0.8114 0.7407 0.6956 0.8017
AdaBoost 0.7438 0.7158 0.8028 0.7303 0.7014 0.7834 0.7302 0.7049 0.7992
XGBoost 0.7717 0.7522 0.8507 0.7578 0.7374 0.8346 0.7507 0.7329 0.8380
PLAN 0.7908 0.7588 0.8637 0.7726 0.7429 0.8497 0.7692 0.7340 0.8427

Table 3: The results of ablation study.

Model Accuracy F1 AUC

PLAN\Env 0.8057 0.7801 0.8822
PLAN\eL3m 0.6381 0.6162 0.7039
PLAN\LAbs 0.7398 0.7366 0.8512
PLAN\CNN 0.8050 0.7822 0.8816
PLAN\LSTM 0.8109 0.7820 0.8835
PLAN\CNLS 0.7960 0.7708 0.8686
PLAN 0.8174 0.7918 0.8904

it on another portion of the same data. Now, we evaluate the per-
formance of PLAN when trained and tested on datasets from two
geographically distant regions. We hypothesize that in this cross-
region test, Module A, (i.e., the component designed for capturing
spatio-temporal patterns of locust movement) should still be able
to learn useful location-agnostic patterns of locust migration.

For this purpose, in addition to the data from Kenya, Ethiopia,
and Somalia, we use eL3m data collected from Iran during the
same time-period (i.e., March 1, 2020 to September 30, 2020) which
consists of 5,117 locust reports. To check the aforementioned hy-
pothesis, in each iteration of walk-forward validation, we use the
same training portion of the data from Kenya, Ethiopia, and Somalia
to train the PLAN model. Then, we replace the test data with the
locust reports received from Iran in that particular test period, and
evaluate the performance of the trained model on this new test set.

Table 4 shows the predictive performance achieved by PLAN
and XGBoost in our cross-region test on the 1𝑠𝑡 -step prediction
task. As expected, the predictive performance of both ML models
degrades in this cross-region test. However, PLAN consistently out-
performs XGBoost on each evaluation metric, e.g., PLAN achieves
∼23% higher F1 score than XGBoost in this cross-region test. More
importantly, comparing PLAN with PLAN\Env shows that remov-
ing environmental factors from PLAN results in a significant im-
provement in its predictive performance when being tested on the
data of Iran. This improvement (that results from removing environ-
mental factors) makes sense because the climatic conditions in Iran
differ completely from conditions in Kenya, Ethiopia, and Somalia.
Consequently, training our models on environmental variables from
East Africa could add noise to the model’s forecasts when tested
on Iran. Additionally, PLAN\Env achieves an AUC of ∼0.8, which
indicates its capability in learning useful locust movement patterns
that can help it generate relatively accurate forecasts about locust
presence in regions located far away from the training region.

Table 4: The results of cross-region test (i.e., the models
are trained on the data of three East African countries and
tested on the data of Iran).

Model Accuracy F1 AUC

XGBoost 0.5276 0.3322 0.6464
PLAN 0.6576 0.4115 0.7480
PLAN\Env 0.7363 0.4819 0.8062

Model-Agnostic Data Augmentation. As locust observations
were voluntarily reported by human eL3m users, locust reports
are not available for many geographical regions on any given day.
Thus, there are many 0’s in the image representations of eL3m
locust report data, as each image summarizes the total number of
locust (presence/absence) reports received from a specific region
on a particular day. To account for this data sparsity, we implement
a model-agnostic linear interpolation approach for data augmenta-
tion, and evaluate its impact on model predictive performance.

Our linear interpolation based data augmentation approach relies
on the following intuition about locust movement: if locusts are
reported to be present (absent) in location 𝑙 on two separate days
(𝑡1 and 𝑡2) that are close in time, it is highly likely that locusts are
present (absent) at location 𝑙 on all the days between 𝑡1 and 𝑡2.

More formally, in our data augmentation procedure, to forecast
locust presence/absence in location 𝑙 at date 𝑡 , we take the following
steps after creating image representations of eL3m reports received
by date (𝑡 − 1): (1) if no locust report (neither locust presence
nor locust absence) is available for a specific region, we set the
value of the corresponding pixel to NULL in both image channels
(locust presence and absence channels of the image). (2) For each
region (i.e., pixel), we impute the time-series data of locust presence
(absence) at each pixel separately using linear interpolation. (3) If
no reports are available from specific regions, all elements of the
time-series data could be NULL. Therefore, the remaining NULL
values are replaced with 0 again. This procedure enables us to
impute values for pixels which contain [0, 0] (i.e., pixels which
have no locust presence and absence reports at all). Furthermore,
to forecast locust presence/absence in location 𝑙 at date 𝑡 , we do
not rely on the reports received after date (𝑡 − 1), and therefore,
this data augmentation approach is consistent with the time-series
nature of the problem.

Table 5 shows the impact of data augmentation on the predic-
tive performance of ML models on the 1𝑠𝑡 -step forecasting task.
Each evaluation metric’s value before/after data augmentation is



Table 5: Impact of data augmentation on the predictive performance of different ML models.

Accuracy F1 AUC
Model Before After Gain (%) Before After Gain (%) Before After Gain (%)

Logit 0.7417 0.7709 +3.93% 0.7026 0.7303 +3.94% 0.7810 0.8130 +4.09%
SVM 0.7772 0.7859 +1.11% 0.7303 0.7259 -0.60% 0.8433 0.8544 +1.31%
AdaBoost 0.7585 0.7978 +5.18% 0.7317 0.7608 +3.97% 0.8282 0.8651 +4.45%
XGBoost 0.7848 0.8099 +3.19% 0.7612 0.7749 +1.79% 0.8650 0.8819 +1.95%
PLAN 0.8174 0.8306 +1.61% 0.7918 0.8036 +1.49% 0.8904 0.9021 +1.31%
Avg +3.00% +2.11% +2.62%

reported in the Before/After columns, respectively. The percent-
age of improvement achieved by applying data augmentation is
reported in the Gain column. Table 5 shows that incorporating data
augmentation results in a significant improvement in the predictive
performance of all ML models; in particular, it improves the accu-
racy and F1 score by about 3.0% and 2.1%, respectively (on average),
which shows this data augmentation technique’s effectiveness in
this domain. Importantly, PLAN achieves an AUC of ∼0.9 with this
data augmentation technique. Thus, we propose to use PLAN with
this data augmentation technique in future operational systems.

5 REAL-WORLD USAGE OF PLAN
One possible way in which PLAN can be used to assist farmers,
policymakers, and human experts at UN-FAO is through the gener-
ation of high-resolution heatmaps (containing accurate forecasts of
locust swarm movement). These heatmaps can give all three stake-
holders an improved understanding of the future susceptibility of
locust swarm infestation for different geographical regions, which
in turn, can hopefully help them make a more well-informed locust
mitigation plan. For example, these heatmaps can help decision
makers in strategically allocating scarce resources (e.g., helicop-
tors, pesticides, etc.) among high-risk geographical areas in order
to ensure efficient resource usage and a corresponding reduction
in locust swarm populations. In particular, our collaboration with
PlantVillage enables us to potentially brodcast PLAN’s heatmaps
daily on Shamba Shape Up5, a popular farming based television
show which reaches five million farmers in Kenya every week.

Figure 5 illustrates a heatmap of 1𝑠𝑡 step forecasts (for June 10𝑡ℎ ,
2020) generated by PLAN. This heatmap is generated by running
PLAN’s prediction model for each geographical location in Kenya
on June 10𝑡ℎ , 2020. This heatmap shows North West Kenya and
East Kenya as two potential hotspots of locust presence on June
10𝑡ℎ (characterized by high predicted likelihood of locust presence),
whereas it shows Central Kenya as a potential source of locust
absence reports (characterized by low predicted likelihood of locust
presence). In this figure, the light blue circles and light green crosses
shows the eL3m locust presence and absence reports (respectively)
received on June 10𝑡ℎ , 2020 across Kenya. These circles align well
with our forecasted hotspot in North West Kenya, whereas the
crosses align well with Central Kenya. Thus, this indicates that
PLAN’s predictions have high recall in this example.

5https://shambashapeup.com/

Figure 5: Plan’s forecasts about the likelihood of locust pres-
ence across Kenya in June 10, 2020 along with the ground
truth reports received from Kenya at this particular date.

In order to understand why PLAN forecasted East Kenya as an-
other hotspot, we plot dark blue circles and dark green crosses
to represent eL3m locust presence and absence reports (respec-
tively) received from June 11𝑡ℎ to 13𝑡ℎ , 2020 across Kenya. Interest-
ingly, the dark blue circles align extremely well with the forecasted
hotspot in East Kenya, whereas most of the dark green crosses align
well with Central Kenya. We hypothesize that this is due to delays
in data reporting by human volunteers, i.e., locusts arrived in East
Kenya on June 10𝑡ℎ , but they were reported by eL3m users on June
11𝑡ℎ to 13𝑡ℎ . Since we don’t have ground truth information, it is im-
possible to completely validate this hypothesis. However, we argue
that the forecasted hotspot in East Kenya should not be viewed as
false positives output by PLAN, as eL3m locust presence reports are
recorded from the East Kenya hotspot within a period of 24 hours
of our day of forecast. This illustrates that PLAN’s predictions also
possibly have high precision.

6 IMPLEMENTATION CHALLENGES
The ubiquity of smartphones offers the possibility that well de-
signed mobile apps (such as eL3m) can enable the collection of
large amounts of data in a short period of time. For humanitarian



challenges like locusts (but also including floods, droughts and
other pests that damage crops), the potential benefits of such an ap-
plication are very high. However, the major trade-off is data quality.
Here we sought to use the data received from the crowd as-is in or-
der to develop a machine learning model that could effectively use
noisy data. We found that PLAN has led to an increased predictive
performance over baseline models. While this is recognized, we un-
derstand that a major implementation challenge is the acceptance
of such approaches by local actors such as governments in charge
of the control operations. It would be expensive in both resources
and time to deploy control operations to areas where locusts do not
generally occur, but the model predicts their presence. As such, we
think a major challenge will be to familiarise the decision makers
with the opportunities and pitfalls associated with ML augmented
desert locust predictions. We think one important role that PLAN
could play is helping human experts more readily spot false records
submitted by the crowd. This would reduce time spent in cleaning
up databases which is currently a major task for staff at DLIS and
PlantVillage. Thus, we hope that the use of PLAN would lead to
a greater acceptance of ML to augment the human expertise at
PlantVillage, UN-FAO, and other stakeholders.

7 CONCLUSION
This paper proposes PLAN, a ML algorithm for forecasting locust
movement at high spatial and temporal resolutions. PLAN utilizes
a unique crowdsourced dataset along with remote-sensed environ-
mental data, and relies on a modular neural network architecture
to provide accurate predictions of locust movement. Experimental
results show that PLAN achieves superior predictive performance
against several strong classical ML baseline models on a wide vari-
ety of locust movement forecasting tasks. PLAN represents a first
step in using deep learning to assist and augment human expertise
at PlantVillage (and UN-FAO) in locust prediction, and its real-world
usability is currently being evaluated by domain experts.
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A APPENDIX ON REPRODUCIBILITY
In this section, we provide more details on our implementation and
hyperparamter tuning. All codes are implemented in Python. We
use keras (v. 2.0.8) with the tensorflow (v. 1.3.0) backend to imple-
ment neural network models. We also use scikit-learn (v. 0.23.2),
numpy (v. 1.18.5), and pandas (v. 1.1.4) libraries. Table 6 summarizes
the value of all hyperparameters.

We conduct hyperparameter tuning to set the value of𝑑 (the pixel
width). To this end, we consider the data of the last𝑤 (𝑤 = 7) days
of each training set as the validation set (similar to the nested cross-
validation) and evaluate the performance of PLAN on the validation
set. Figure 6 represents the accuracy of PLAN on the validation set
with different pixel width (𝑑 ∈ {0.01, 0.02, ..., 0.09, 0.1, 0.2, ..., 1}).
According to the results, 𝑑 = 0.2◦ leads to the highest accuracy on
the validation set, and thus, we set the pixel width to 0.2 in our
experiments.

Table 6: The details of hyperparameters.

Hyperparameter Value

Batch size 64
𝛽1 (Adam) 0.9
𝛽2 (Adam) 0.999
Learning rate 0.001
d (pixel width) 0.2
kernel size (CNN) 3 × 3
Number of filters (CNN) 16
Size of FC (Module𝐴) 64
k (length of time-series data) 7
size of hidden state (LSTM𝐴) 256
size of hidden state (LSTM𝐵 ) 64

Figure 6: Performance of PLAN on the validation set with
various pixel width (𝑑 ∈ {0.01, 0.02, ..., 0.09, 0.1, 0.2, ..., 1}).
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