
The Pennsylvania State University

The Graduate School

EFFICIENT WEB SERVICE COMPOSITION: FROM

SIGNATURE-LEVEL TO BEHAVIORAL DESCRIPTION-LEVEL

A Dissertation in

Computer Science and Engineering

by

Hyunyoung Kil

© 2010 Hyunyoung Kil

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2010



The dissertation of Hyunyoung Kil was reviewed and approved∗ by the following:

Dongwon Lee

Associate Professor of Information Sciences and Technology

Dissertation Advisor, Chair of Committee

Soundar Kumara

Professor of Industrial Engineering

Swarat Chaudhuri

Assistant Professor of Computer Science and Engineering

Ae Ja Yee

Associate Professor of Mathematics

Raj Acharya

Professor of Computer Science and Engineering

Head of the Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.



Abstract

Web services are software systems designed to support machine-to-machine inter-
operation over the Web. Many researches have been carried out for web service
standards, and these efforts have significantly improved functionalities of Service
Oriented Architecture (SOA) significantly. However, there still remain a number of
research challenges. One of the remaining challenges is the web service composition
(WSC) problem, i.e., when a single web service does not satisfy a given require-
ment, one wants to automatically combine web services to satisfy the requirement
entirely. In this dissertation, we tackle this WSC problem in three levels, i.e., a
signature level, a behavior description level and a QoS description level based on
web service descriptions.

First, for a signature-level approach where each web service is described by its
signature in WSDL, we first analyze the topological landscape of a web service net-
work formed by real-world web services. We then propose a SAT-based algorithm
based on the analysis.

Second, for web services that provide behavioral descriptions in addition to
signatures, we first define a realistic model for the WSC problem, and investigate
the computational complexities for the composition of web services on restricted
(i.e., with full observation) and general cases (i.e., with partial observation). We
then prove that the WSC problem with full observation is EXP-hard and the WSC
problem with partial observation is 2-EXP-hard. To solve these high complexities,
we also propose approximation-based algorithms using abstraction and refinement.

Third, the previous two approaches consider only functional requirements spec-
ified in WSDL or BPEL. However, non-functional ones, such as Quality of Services
(QoS) constraints, help clients select a service provider with good quality. In this
case, the main aim of the WSC problem is to find a composite web service which
satisfies a given complicated task with the optimal QoS value, which is called QoS-
aware WSC problem. We first propose to apply anytime algorithm based on beam
stack search to the QoS-aware WSC problem. Moreover, to improve the basic any-
time algorithm, we propose dynamic beam width with more heuristics, i.e., short
backtracking and upper bound propagation.

iii



Table of Contents

List of Figures viii

List of Tables x

Acknowledgments xi

Chapter 1
Introduction 1

Chapter 2
Background 7
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Web Services in WSDL . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Web Services in BPEL . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Web Service Composition . . . . . . . . . . . . . . . . . . . . 14

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Signature-based Composition . . . . . . . . . . . . . . . . . . 19
2.2.3 Semantic Annotation-based Composition . . . . . . . . . . . 21
2.2.4 QoS description-based Composition . . . . . . . . . . . . . . 22
2.2.5 Process Behavior-based Composition . . . . . . . . . . . . . 24
2.2.6 Other Related Research . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3
Signature-based Web Service Composition 29
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Small World and Power-Law . . . . . . . . . . . . . . . . . . 30
3.2 Topological Analysis of Web Service Network . . . . . . . . . . . . . 32

3.2.1 Web Service on Signature . . . . . . . . . . . . . . . . . . . . 32

iv



3.2.2 The Matchmaking Framework . . . . . . . . . . . . . . . . . . 32
3.2.2.1 Flexible Matching . . . . . . . . . . . . . . . . . . . 32
3.2.2.2 Web Service Network Model . . . . . . . . . . . . . 35
3.2.2.3 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2.4 Distance Functions . . . . . . . . . . . . . . . . . . . 39

3.2.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3.1 Small World . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3.2 Power-Laws . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Observations and Limitations . . . . . . . . . . . . . . . . . . 46
3.2.4.1 Semantic Web . . . . . . . . . . . . . . . . . . . . . 46
3.2.4.2 Graph Fitting . . . . . . . . . . . . . . . . . . . . . . 48
3.2.4.3 Generative Model . . . . . . . . . . . . . . . . . . . 48

3.3 Web Service Composition using SAT Solver . . . . . . . . . . . . . . 49
3.3.1 Type-Aware Web Service Composition . . . . . . . . . . . . 49
3.3.2 Reduction to reachability problem . . . . . . . . . . . . . . . 50
3.3.3 Encoding to CNF formula . . . . . . . . . . . . . . . . . . . . 52
3.3.4 Algorithm for the optimal solution . . . . . . . . . . . . . . . 52
3.3.5 Preliminary Experiment . . . . . . . . . . . . . . . . . . . . . 54

Chapter 4
Behavior Description-based Web Service Composition 56
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Example: Travel agency system . . . . . . . . . . . . . . . . . 57
4.1.2 Web service composition on behavioral aspect . . . . . . . . 58
4.1.3 Alternating Turing Machine . . . . . . . . . . . . . . . . . . . 62
4.1.4 Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The Computational Complexities . . . . . . . . . . . . . . . . . . . . 64
4.2.1 The Complexity of WSC with complete information . . . . 65
4.2.2 The Complexity of WSC with incomplete information . . . 70

4.3 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Basic Algorithm for WSC Problem . . . . . . . . . . . . . . . 74
4.3.2 Signature-preserving Abstraction and Refinement . . . . . . 75

4.3.2.1 Signature-preserving abstraction . . . . . . . . . . 75
4.3.2.2 Abstraction and Refinement algorithm . . . . . . . 76
4.3.2.3 Automatic refinement . . . . . . . . . . . . . . . . . 78

4.3.3 Signature-subsuming Abstraction . . . . . . . . . . . . . . . . 80
4.3.4 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . 81

v



Chapter 5
QoS-aware Web Service Composition 83
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Example: QoS-based Travel agency system . . . . . . . . . . 85
5.1.2 QoS-aware Web Service Composition Problem . . . . . . . . 86
5.1.3 Reduction to a planning problem . . . . . . . . . . . . . . . . 87

5.2 Anytime Algorithm for QoS-aware WSC . . . . . . . . . . . . . . . . 89
5.2.1 Basic Algorithm: Beam Stack Search . . . . . . . . . . . . . 90
5.2.2 Beam Stack Search with Dynamic Beam Width . . . . . . . 95

5.2.2.1 Carrot-shaped Dynamic Beam Width . . . . . . . 96
5.2.2.2 Additional Heuristics . . . . . . . . . . . . . . . . . 98

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 6
Conclusion 108

Bibliography 110

vi



List of Figures

2.1 Overview of Web Service Standards . . . . . . . . . . . . . . . . . . . 8
2.2 Mechanism of Web service . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 WSDL code for finding Reservation web service . . . . . . . . . . . 11
2.4 BPEL code for a finding restaurant web service . . . . . . . . . . . 13
2.5 The activities of web service composition problem. . . . . . . . . . . 14
2.6 The classification of web service composition problem. . . . . . . . 16
2.7 The example of ontology-based web service description. . . . . . . . 18

3.1 Web service networks: (a) WSDLs, (b) conceptual networks, (c)
networks from diverse models, (d) Mp, (e) Mf

op , (f) Mp
op , and (g)

Mws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Compatible types with different structures. . . . . . . . . . . . . . . 38
3.3 The small world index, IndexSN . . . . . . . . . . . . . . . . . . . . . 44
3.4 The complexity of web services and operations. Y-axis is # of

samples (i.e., ws or op). . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 The popularity of p names. X-axis is the frequency of p names while

Y-axis is # of samples. (a) Exact matching, (b) Cosine (0.75), and
(c) WordNet (0.75) (inset). . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Out-degree distribution of three web service networks, Mp for (a)-

(c),Mf
op for (d)-(f) andMf

ws for (g)-(i): (a) Exact matching =1.15,
(b) Cosine (0.75) =1.19, (c) WordNet (0.75) =1.04, (d) Exact match-
ing =1.18, (e) Cosine (0.75) =1.12, (f) WordNet (0.75) =0.64, (g)
Exact matching =1.25, (h) Cosine (0.75) =1.24, and (i) WordNet
(0.75) =0.68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 The effect of the operation complexity to the out-degree distribution. 48
3.8 Preliminary experimental result . . . . . . . . . . . . . . . . . . . . . 55

4.1 Travel agency system . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Alternating Turing machine . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Variable dependency graph . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



5.1 Travel agency system . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Search with static beam width vs. dynamic beam width . . . . . . 96
5.3 Optimal algorithm vs. anytime algorithm on QoS-aware WSC . . . 102
5.4 Experiment result of three algorithms (Optimal, basic anytime and

dynamic anytime) on QoS-aware WSC. (a) P1, (b) P2, and (c) P3. 106
5.5 Continued result from Figure 5.5. (d) P4, (e) P5, and (f) P6. . . . 107

viii



List of Tables

2.1 Summary of the related works . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Type distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Statistics of PUB: (A) # of nodes, (B) # of nodes in a giant compo-

nent, (C) percentage of giant component, (D) average degree, and
(`) network diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Small world properties of PUB. . . . . . . . . . . . . . . . . . . . . . 43

4.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Experiment result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Experiment problems for QoS-aware WSC algorithm . . . . . . . . 101
5.2 Experiment result with different threshold: Optimal, basic anytime

and dynamic anytime algorithm on QoS-aware WSC. . . . . . . . . 103

ix



Acknowledgments

First of all, I thank my advisor, Dr. Dongwon Lee, for offering me technical and
moral support during the last six years. He has encouraged me to study various
promising research problems, and trusted me with his generosity and patience.
Without his guidance, inspiration and contribution, this dissertation would not be
achieved.

Second, I would like to express my thanks to my committee comprised of Prof.
Kumara, Prof. Swarat, and Prof. Yee for their great service on my thesis. With
generous effort and time, they assisted me to accomplish this dissertation. Their
unstinted advice for my work be a great help to my future research.

I am also thankful to Prof. Wonhong Nam for his cooperation. While working
at Penn State University as a research associate, I worked with him. His pro-
found knowledge of symbolic model checking and controller synthesis was, without
question, a great help for me to solve the problems.

Dr. Seog-Chan Oh introduced me the web service composition field and worked
together for the first problem. I want to express thanks to him for his cooperation.

Also special thanks go to all the members of the Pike group. Their friendships
and passions for the research always encourage me during my whole Ph.D program.

My allegiance to computer science is mainly due to the excellent education I
received at Korea University. I am thankful to the faculty on its Computer Science
and Engineering Department, especially, Prof. Chong Sun Hwang, my advisor at
a master program and Prof. Hae-Chang Rim, my advisor at a bachelor program.

Also this thesis would not exist without the love and support of my family,
especially, my parents and my husband. Sacrifice and diligence of my parents
influence me as the most priceless lesson, and my husband always stands by me
and cheers me up to let me get through the difficulties.

I would also like to use this opportunity to thank all my friends on Penn State
campus. Because of them, my stay at State College has been very enjoyable and
memorable.

x



Dedication

To My Mom in Heaven with all my love and respect.

xi



Chapter 1

Introduction

The World Wide Web (WWW) which began as a system for exchanging research

information between scientists, is now a part of daily life for billions people. As

it became a new medium of communication for all classes of the people, the data

and applications available on the web got to be tremendous. Since its spectacular

growth went beyond the prediction of its innovators, it is no wonder that people

cannot be satisfied with the web as it stands. As a result, a new web paradigm for

better use of WWW has been suggested, which is called semantic web.

The semantic web is an extension of the existing web as a platform where people

can define not only information but also the meaning of information through meta

data. This technology makes it possible for machines to comprehend the web

content. Based on this understanding, machines can perform more than the current

tedious works, e.g., automatically finding, sharing, and combining information on

the web.

One of key players in enabling the semantic web is a web service. web services

are software systems designed to support machine-to-machine inter-operation over

the web. Examples of web services span several application domains including pub-

lic internet applications (e.g., Google search) and e-commerce (e.g., stock trading).

Many researches have been carried out for the web service standards, e.g., WSDL

(Web Service Description Language) [1], SOAP (Simple Object Access Protocol) [2]

and UDDI (Universal Description Discovery and Integration of web services) [3].

These efforts have significantly improved flexible and dynamic functionality of Ser-

vice Oriented Architecture (SOA) in the current web services. However, abundant



2

research challenges still remain; e.g., automatic web service discovery, web service

composition, and formal verification of composed web services. Given a set of

web services and a user request, a web service discovery problem is to automat-

ically find a web service satisfying the request. Often the client request cannot,

however, be fulfilled by a single existing service. For example, a client wants to

reserve both a flight ticket and a hotel room but there are two separate web ser-

vices for flight ticket reservation and hotel reservation. In this case, one wants to

automatically combine web services to satisfy the requirement entirely, which is

called web service composition (WSC) problem. Service composition techniques

emerge from the technology of choice for building applications over distributed

systems [4, 5]. The main characteristics of web services, i.e., program accessability

and loosely-coupled relationships, motivate automatic web service composition to

be a practical solution. Since seamless composition of web services has enormous

potential in streamlining business-to-business application integration, this WSC

problem has received much interest from industry as well as academic research.

Web service composition depends on which information on the web service can

be used for composition. In this dissertation, we investigate this WSC problem

in three different service descriptions, e.g, a signature level, a behavior description

level, and a QoS description level.

In a signature level, a web service is specified in WSDL as the current web

services stands. The WSDL includes a service operation signature which provides

a syntax of the message, including an invoked operation name with each set of

input and output parameters. Given a set of web services and a desired output

data, the web service composition based on WSDL signatures is to find out a se-

quence of web services which finally generated the desired outputs by parameter

matching. In spite of its applicability to the real-world, there has been little study

as to how useful current public web services are. In particular, since web services

that are specified in WSDL and published in UDDI form a network, one can ap-

ply network analysis methods to study the characteristics of web service networks.

Therefore, as starting the signature level approach, we first analyze the topologi-

cal landscape of the web service networks formed by real-world web services. In

general, the topological structure of a network affects the processes and behaviors

occurring in the network. Accordingly, understanding the structural properties of



3

networks often help gain important insights and develop efficient algorithms [6, 7].

To investigate properties of the current web services, we collect a number of public

web services from public repositories and by using Google, and then propose a

flexible framework where different matchmakings (from strict syntactic to approx-

imate matchmaking methods) can be incorporated in a unified manner. On the

framework, the constructed web service networks with diverse granularity show

the small world and power-low-like properties. These findings provide a valuable

hint to web service composition techniques, which allows the techniques to focus

on short paths and hub nodes first. Based on these observations, we propose a web

service composition technique to find an optimal composition. Given a set of web

services and a requirement web services described in WSDL, our algorithm identi-

fies the shortest sequence of web services such that we can legally invoke the next

web service in each step and achieve the desired requirement eventually. We first

reduce the composition problem into a reachability problem on a state-transition

system where the shortest path from the initial state to a goal state corresponds

to the shortest sequence of web services. To solve the reachability problem, we

employ a state-of-the-art Sat solver, SATzilla [8]. It is the first work to employ

Sat solvers for this problem setting even though several approaches [9, 10] use AI

planning techniques for web service composition.

In the signature level approach, however, users can simply invoke the sequence

of web services computed, but they cannot react exactly to the output values re-

turned from web services in the sequence during runtime. Accordingly, researches

suggest other specification languages including additional information such as func-

tional annotations of how it behaves. As a next step, we study web service com-

position problem on the behavioral description level.

The behavioral description languages such as Web Service Business Process

Execution Language (WS-BPEL) [11] and OWL-S [12] have more prominent status

in the service composition area. Note that since OWL-S, a well-known semantic

web language, is also able to describe how and what a service process does as

process model, it can be considered as one of the behavior description languages.

These languages specify service behaviors and interactions with other services as

a sequence of activities. The behaviors of web services are specified as a state-

transition system. That means, it is formally described that on receiving a specific



4

input, what values for outputs a web service will return and what state it will

proceed to. The composition with this information computes a strategy suggesting

the order of web services—for a certain output value, which web service should be

invoked in next with a certain input value in order to satisfy a user provided goal.

In general, the strategy to guarantee achieving the goal can be represented as a

state-transition system called a coordinator. The behavioral description-based web

service composition makes more useful suggestion that can be executed in runtime.

Therefore, given a set of behavioral descriptions of web services and a goal, web

service composition problem is to synthesize a coordinator web service that controls

the set of web services to satisfy the goal.

For WSC problem on behavioral descriptions, we first define a realistic model

for the web service composition problem on behavioral descriptions with a state-

transition system, and investigate the computational complexities for web services

composition problem on restricted (i.e., with full observation) and general cases

(i.e., with partial observation); EXP-hard and 2-EXP-hard, respectively. To the

best of our knowledge, no study has investigated the computational complexity

(i.e., lower bound) of the WSC problem with complete proofs although the inves-

tigation for the complexity can provide better insights to precisely understand the

WSC problem, to know what is possible, and to identify interesting sub-problems.

These results suggest studying efficient approximation solutions to the WSC

problem. Toward this challenge, we propose two approximation-based algorithms

using abstraction and refinement. To the best of our knowledge, it is the first at-

tempt to apply an abstraction technique to the WSC problem. Even, in planning

under partial observation which has a strong connection with the WSC problem,

no study has attempted to apply abstraction techniques. The first abstraction

step is to reduce the original web services to the abstract ones with less variables,

and we then try to solve the abstract problem. If we identify a coordinator that

controls the abstract web services to satisfy a given goal, than the coordinator can

control the original web services to satisfy the goal since the abstract web services

over-approximate the concrete ones. Otherwise, we refine the abstract web services

by adding variables, and repeat to find a solution. For abstraction, we propose

two methods—signature-preserving abstraction and signature-subsuming abstrac-

tion. We report on the performance of our tool on realistic problems comparing



5

with a basic algorithm without abstraction/refinement.

Whereas the previous two approaches focus to satisfy only functional require-

ments specified WSDL or BPEL, the QoS description level approach considers

non-functional ones, such as Quality of Services (QoS) constraints. In this case,

the aim of the WSC problem is to find a composite web service which satisfies a

given complicated task with the optimal accumulated QoS value, which is called

QoS-aware WSC problem. As a natural price of a web service, QoS such as re-

sponse time and throughput helps clients to select a service provider with good

quality. Therefore, recently the QoS-aware WSC problem has received attention

of researchers, and several new standards are introduced (e.g., WS-Policy [13], the

Web Service Level Agreement (WSLA) language [14] and WS-Agreement [15] for

the specification of QoS requirements and service-level agreements of a single web

service). When a large scaled problem instance is given, this problem is intractable

since it is reduced to a global optimization problem. However, many engineering

tasks and users in the real world require real-time responsiveness, even in such a

large size of a given set of web services.

Therefore, we propose applying anytime algorithm [16] to the QoS-aware WSC

problem. While traditional algorithms provide only one answer after completely

terminating a fixed number of computations, anytime algorithms can quickly return

a set of approximate answers to any given input and the quality of their best-so-far

answers improves along with execution time. By using an anytime algorithm for

the QoS-aware WSC problem, we can identify a composite web service with high

quality earlier than optimal algorithms. To the best of our knowledge, there is no

work to employ an anytime algorithm to the WSC problems.

Our anytime algorithm proposed in this dissertation is based on the beam stack

search [17] which explores, in each level, a fixed number of candidate states called

beam width. In this searching mechanism, a bad decision in early phases requires

more searching space than a bad selection in late phases does. To reduce this

cost, we propose to dynamically assign a larger beam width to early phases so

that we can consider more qualified candidates. In addition, we propose two more

heuristics, i.e., short backtracking and upper bound propagation, to improve the

quality of current approximate solutions and overall execution time. We validate

our proposal with experiment on a number of examples that are produced by the



6

web service testset generator for web services challenge 2009 [18].

This dissertation is organized as follows. In Chapter 2, we introduce web ser-

vices as background, which includes the definitions of web services and web service

description languages. Chapter 3 presents a signature-based web service com-

position technique. We first analyze the topological structure of the web service

networks and we propose a SAT-based algorithm based on our observations. Chap-

ter 4 describes a behavior description-based web service composition. We define

realistic models for this problem, and investigate the computational complexities.

Then, we propose approximation-based algorithms using abstraction and refine-

ment. Chapter 5 presents a QoS-aware web service composition. For this problem,

we propose to apply an anytime algorithm based on beam stack search and then

heuristics for improvement. In Chapter 6, we conclude this dissertation.



Chapter 2

Background

2.1 Preliminaries

2.1.1 Web Services

Web services are considered as one of vital building blocks for Semantic Web [19].

Indeed, the concrete definition of web services has evolved in recent years. “a busi-

ness function made available via the Internet by a service provider, and accessible

by clients that could be human users or software applications” [20] and “loosely

coupled applications using open and cross-platform standards, which inter-operate

across organizational and trust boundaries” [21] are examples of various defini-

tions. The W3C Web Services Architecture Working Group defines a web service

as “a software application identified by an URI, whose interfaces and bindings are

capable of being defined, described and discovered as XML artifacts. A web service

supports direct interactions with other software agents using XML-based messages

exchanged via Internet-based protocols” [22]. However, among different web ser-

vice features which each definition emphasizes on their own view, the followings

are considered as the main features of web services [23]:

� Program accessibility: Web services are designed to be invoked by other web

services and applications, e.g., software programs on any platforms. By em-

ploying a set of XML standards to define and describe web service function-

alities, client programs as well as human users can understand and utilize



8

Composition BPEL
Publication and Discovery UDDI

Service Description WSDL
Transport Layer HTTP, FTP, SMTP

Message Exchange SOAP
Data Description XML

Figure 2.1. Overview of Web Service Standards

the service better. Then, more complicated tasks such as discovery and com-

position of web services can be facilitated or even automated.

� Loosely-coupled relationships: Any kind of data can be exchanged between

web services (e.g., (semi-)structured, textual) as long as it is embedded in

an XML-based formats. The use of XML-based messaging communication

model caters for loosely coupled relationships in the contrast with other

distributed computing technologies (like CORBA, RMI, EJB, etc.) which

generally yield tight-coupled systems by using object-based communication.

While the latter can be more suitable for intra-enterprise environments, the

technical features of web services make them more reusable and thus more

appropriate for inter-enterprise and global environments.

Both features give an advantage to automatic service composition over the Web

and stimulate companies to support web services for their enterprise applications.

Figure 2.1 shows the main web service technology standards, all based on XML.

A web service interface is described in WSDL and web services exchange messages

encoded in SOAP transported over HTTP or other Internet protocols such as FTP

and SMTP. These specifications of web services are published in UDDI, a registry of

web services, for a client (program) to find out an appropriate service. In addition,

if needs arise, service composition can be specified as a flow of activities in BPEL.

Based on these standards, a typical web service life-cycle envisions the follow-

ing scenario (see Figure 2.2): a service provider publishes the WSDL description

of its service in UDDI. Subsequently, service requesters can inspect UDDI and lo-

cate/discover web services that are of interest. Using the information provided by

the WSDL description, they can directly invoke the corresponding web service. By



9

Figure 2.2. Mechanism of Web service

relying on these standards, web services hide any implementation details, therefore

increasing cross-language and cross-platform interoperability.

In the following sections, we will introduce WSDL and BPEL as examples of

web service description languages.

2.1.2 Web Services in WSDL

As an XML-based language, the Web Services Definition language (WSDL) is

machine processable, being a structured and standardized way to describe web

interfaces of services. By interpreting XML tags, applications can understand

what the service is and how to access to the service.

The WSDL document has two major parts, an abstract interface part and an

implementation part. First, the abstract interface of the service specifies the data

types, messages and portTypes with the corresponding operations. XML schema

syntax is used to define platform-independent data types for messages to use. Mes-

sages of an operation are an abstract definition of the data being transmitted. Each

message has a name and a set of parts of certain types which can be defined as

any XML schema data type or the data type previously defined. Parts represent

input/output parameters declared in input or output messages. Operations are

grouped into port types. Port types describe abstract end points of a web service

such as a logical address under which an operation can be invoked. The implemen-



10

tation part binds the abstract interface to concrete network protocols and message

formats (e.g., SOAP, HTTP). The separation of two parts allows the reuse of these

definitions.

The following elements in a WSDL document are used to define services:

� Types: a container for data type definitions using XML schema.

� Message: an abstract, typed definition of the data being communicated.

� Operation: an abstract description of an action supported by the service.

� Port type: an abstract group of operations supported by one or more end-

points.

� Binding: a concrete protocol and data format specification for a particular

port type.

� Port: a single endpoint defined as a combination of a binding and a network

address.

� Service: a collection of related endpoints.

A WSDL definition for a service operation is published over the Internet by

its service provider. In this way, a client (program) can read it and determine

what functions are available at the server for automating communications between

applications (refer to Figure 2.2 in 2.1.1).

An example (see Figure 2.3) shows a part of the WSDL file associated with

a service operation to find a restaurant name and its address given a zip-code

and a food preference. It includes two messages: findRestaurantRequest mes-

sage with two parameters, an integer zipcode and a string foodPreference, and

findRestaurantResponse message with two parameters, a string restaurantName

and a string address. They are an input and an output message for findingRestau

rant operation which is one of operations in the portType named RestaurantServi

cePortType. The last part including <binding> and <service> tags show that the

findingRestaurant operation and its portType are binded to RestaurantService

SoapBinding and RestaurantService.

After reading this WSDL definition, a client program wishing to get the name

and address of a restaurant may invoke findRestaurant(16801, ‘‘Thai’’) op-

eration to the web service.



11

<wsdl:definitions targetNamespace="http://..." xmlns="http://schemas.xmlsoap.org/wsdl/">

<wsdl:message name="findRestaurantRequest">

<wsdl:part name="zipcode" type=‘‘xsd:integer"/>

<wsdl:part name="foodPreference" type=‘‘xsd:string"/>

</wsdl:message>

<wsdl:message name="findRestaurantResponse">

<wsdl:part name="restaurantName" type=‘‘xsd:string"/>

<wsdl:part name="address" type=‘‘xsd:string"/>

</wsdl:message>

...

<wsdl:portType name=‘‘RestaurantServicePortType">

<wsdl:operation name=‘‘findingRestaurant">

<wsdl:input message=‘‘findRestaurantRequest"/>

<wsdl:output message=‘‘findRestaurantResponse"/>

</wsdl:operation>

...

</wsdl:portType>

...

<wsdl:binding name=‘‘RestaurantServiceSoapBinding" type=‘‘ResraurantServicePortType">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name=‘‘findingRestaurant"/>

<soap:operation soapAction="" style="document"/>

...

</wsdl:binding>

<wsdl:service name=‘‘RestaurantService">

<wsdl:port name=‘‘RestaurantServicePort" binding=‘‘RestaurantServiceSoapBinding">

...

</wsdl:service>

</wsdl:definitions>

Figure 2.3. WSDL code for finding Reservation web service

2.1.3 Web Services in BPEL

Business Process Execution Language (BPEL: short for Web Services Business

Process Execution Language (WS-BPEL)) is an executable language for specifying

interactions with business processes. An example of business process might be

a scenario where a company purchases some products from other company. The

interactions between business processes can be described in two ways, an executable

business process and a business protocol between processes. An executable business

process models the actual behavior of the process as a participant in a business

interaction. A business protocol uses process descriptions to specify the public

message exchange behaviors of each of the parties involved in the protocol, without

revealing their internal implementations. The processes involved in a business

protocol are called abstract processes. A abstract process can be specified by



12

simply coupling web service interface definitions. BPEL is used to define both

kinds of processes, i.e., an executable business process and an abstract process.

BPEL depends on the following XML-based specifications: WSDL, XML Schema,

XPath and BPEL4WS. The BPEL process model is layered on top of the service

model defined by WSDL. That means, the BPEL4WS process model describes

behaviors and interactions between services through their WSDL interfaces, e.g.,

portTypes and operations in a WSDL document. In addition, it supports XML

schema and XPath to describe data types and links.

BPEL defines a process with a <process> tag including four basic sections:

� <partnerLinks> section defines the different parties that interact with the

business process in the course of processing the order. Each partner link

is characterized by a partner link type and a role name. This information

identifies the functionality that must be provided by the business process

and by the partner service for the relationship to succeed.

� <variables> section defines the data variables used by the process, providing

their definitions using WSDL message types, XML schema simple types, or

XML schema elements. Variables allow processes to maintain state data and

process history based on messages exchanged.

� The remaining part of the process definition is defined by the outer <sequence>

element, which contains the description of the normal process behavior for

handling a request. In general, it involves three activities performed in or-

der. The customer request is received (<receive> element), then processed

(inside a <flow> section that enables concurrent behavior), and a reply mes-

sage with the final approval status of the request is sent back to the customer

(<reply>). This main processing section supports structured-programming

constructs including if-then-else, while, sequence (to enable executing

commands in order) and flow (to enable executing commands in parallel).

� <faultHandlers> section contains fault handlers defining the activities that

must be performed in response to faults resulting from the invocation of the

assessment and approval services.



13

<?xml version="1.0" encoding="UTF-8"?>

<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/" .. >

<import importType="http://schemas.xmlsoap.org/wsdl/" location="restaurantService.wsdl"

namespace="http://XXX.com/restaurant/wsdl/restaurantService/"/>

<partnerLinks>

<partnerLink myRole="RestaurantService" name="ServiceProvider"

partnerLinkType="restaurantServiceLT" />

<partnerLink name="client" partnerLinkType="ServiceClientLT"

partnerRole="restaurantServiceClient"/>

</partnerLinks>

<variables>

<variable name="Request" messageType="findRestaurantRequest" />

<variable name="Response" messageType="findRestaurantResponse" />

</variables>

<sequence>

<receive name="acceptClientRequest" operation="receiveRequest"

partnerLink="ServiceClientLT" portType="ServiceClientPT" variable="serviceRequest">

</receive>

<assign>

<copy>

<from> serviceRequest </from>

<to> Request </to>

</copy>

...

<assign>

<invoke partnerLink="RestaurantService" operation="findingRestaurant" inputVariable="Request"

outputvariable="Response" />

<reply operation="returnReply" partnerLink="ServiceClientLT" portType="ServiceClientPT"

variable="Response">

</reply>

</sequence>

</process>

Figure 2.4. BPEL code for a finding restaurant web service

An example (see Figure 2.4) describes process to find restaurant in BPEL, us-

ing the WSDL example in Section 2.1.2. While the WSDL code describe only the

service interface including function name with input/output and protocols , BPEL

models the service process which handle a request for the operation, exploiting

definitions in WSDL, e.g., message type, port types and operation name. In this

example, after receiving a request for finding a restaurant service via a client

partnerLink, the process assigns the input message (serviceRequest) to its vari-

able (Request), invokes findingRestaurant operation whose interface is defined

in WSDL and then replies the result of the operation back. Since BPEL specifies

process activities as a sequence of working statements (as shown in this example),

it also describe a composite service well.



14

Orchestration
& Monitoring

Web service composition

AnalysisService discovery

Composition
synthesis

Service composition

ChoreographyOrchestration

Figure 2.5. The activities of web service composition problem.

2.1.4 Web Service Composition

Web service composition (wsc) is required when a client request cannot be fulfilled

by a single pre-existing web service. In such a case, one prefer integrating existing

web services to satisfy the request. In the work [4], this new value-added service and

a process to generate the service are named as a composite service and composition,

respectively, and then key activities of wsc problem are illustrated like Figure 2.5.

At first, Service Discovery is to find out one or a set of web service appropri-

ate to a given request. How to locate a web service is also an inseparable issue

in the discovery. For this, many researchers have focused on a centralized UDDI

registry as an effective method to solve a web service discovery problem. UDDI,

a standard for centralized repositories, stores information describing web services

produced by service providers, and is queried by service requesters. As an alterna-

tive of UDDI, specialized portals, such as XMethods [24], BindingPoint [25], Re-

moteMethods [26], or eSynaps [27] appear. They gather web services via the man-

ual registration and support a keyword-based service search by focused crawlers.

However, as the number of web services grows, such a centralized approach quickly

becomes impractical. As a result, systems building on ontology and/or using Peer-

to-Peer (P2P) technologies have been introduced (e.g., Hypercube ontology-based

P2P system [28] and the Speed-R [29]).

Next, Service Composition integrates the existing services for an given request.

Since various research fields tackle the composition problem with their own fla-

vors, the vocabulary representing the design issues in the composition is mixed in

many literatures. Here, we identify these terms for general understanding of the

composition issues:



15

� Orchestration vs. Choreography: Both of orchestration and choreography

describe how web services can interact at the message level, including the

business logic and execution order of the interactions. However, orchestra-

tion methods aim at synthesizing a new web service called a mediator which

has a specialized role of controlling the other services by properly exchanging

messages. WS-BPEL [11] is an example of a standard language for orches-

tration. A choreography, on the other hand, is more collaborative in nature

in that each party involved in the process describes its own role for one

shared goal. That means, the execution of the composition is distributed

to all participating web services. As a result, a specification generated by

the orchestration identifies the execution steps for the participating services

while a choreography specification describes the set of allowable conversa-

tion for a composite web service. Their difference in the topology of the

composite service clearly explains why orchestration methods are called cen-

tralized or mediated-based approaches whereas choreography methods are

called distributed or peer-to-peer.

� Composition synthesis vs. Orchestration: Orchestration is frequently used

with a limited meaning by separating a composition synthesis in litera-

tures [30, 4, 31, 32]. Composition synthesis concerns how to generate a

specification of how to coordinate the participating services. Whereas, or-

chestration here takes into account how to coordinate the various partici-

pating services by executing the specification generated by the composition

synthesis. It also includes the functionality to monitor control and data-flow

among the participants for the correct execution of the composite service.

Note that in this dissertation, we deal with this composition synthesis. How-

ever, the service composition is more generally used as a representative, we

use a web service composition problem instead of a composition synthesis in

this thesis.

In addition, there are other issues that give an influence to the design of a

composite service.

Both static and dynamic composition show the clear difference in service selec-

tion timing. In the static composition method, we can decide the services to be



16

Signture−based composition

Semantic annotation−based composition

QoS description−based composition

Process behavior−based composition

Service description

Web service composition
(Composition synthesis)

Figure 2.6. The classification of web service composition problem.

composed at design time. Whereas, in the dynamic composition, it can happen at

run time.

Finally, Analysis (Verification) in Figure 2.5 is particularly necessary because,

by using automatic algorithms, a composite service is to be created from pre-

existing services. The ultimate goal is to ensure that the eventual execution of

a composite service produces the desired behavior. Ideally, one would be able to

statically verify properties (e.g., in temporal logic) for composite services. There

have been various attempts at developing such analysis methods for web services

and workflow systems.

2.2 Related Work

2.2.1 Overview

There have been various approaches to address the web service composition (WSC)

problem. In this chapter, we present an overview of the existing research on web

service composition based on the web service description.

From an external point of view, service description with conceptual represen-

tation is one of significant features of web services to make realize the program

accessability. By reading service specifications based on a set of XML standards,

client programs as well as human clients can know what web services are and what

task they can accomplish with the web services. Indeed, it is not easy for the

programs to correctly understand the other services and make a decision without

human. However, since we can develop models and algorithms for a new composite

service on the basis of given specifications of web, how to describe a web service

has been a continuing issue to the researchers. services.



17

Figure 2.6 describes our classification of related works on the WSC problem

based on the service description aspect, i.e., signature, semantic annotation, QoS

description and process behavior based compositions. We first shortly explain each

grouping depending on each one.

� Signature-based composition

This composition method assumes that a web service is simply expressed

in terms of a syntactic interface of an operation (i.e., operation name and

inputs/outputs), or possibly pre- and post-conditions. It lacks a formal se-

mantics, e.g., a process behavior, communications of processes, or annota-

tions of client requests and service functions, for automating the use of web

service. Such WSDL like languages are the example. As a result, this kind

of composition considers each service as a black box and returns a sequence

of web services where inputs of a service may depend on the output returned

by the previous service. At each point of the selection of next web service,

the future is uniquely determined on the basis of the properties expressed

in the client’s request. Therefore, the client cannot do anything during the

computation or execution of the composite service.

The example (Figure 2.3 in Section 2.1.1) shows the instance of signature-

based composition; given a zip-code and a food preference, a composer return

a sequence of web service operations, a web service findRestaurant and a

web service findMap to get a restaurant name and its address based on

syntactic interfaces of operations.

� Semantic annotation-based composition

Semantic web community advocates this approach which mainly relies on

the specification of semantics of operations, explicit specification of goals of

composition, pre- and post-conditions of the composed services in a com-

mon service ontology. An ontology which is included in semantic web service

languages such as OWL-S enables the definition of web service content vocab-

ulary in terms of object and complex relationships between them [33]. Fig-

ure 2.7 shows the example of ontology-based web service description. Based

on the included ontology, composition algorithms can find out the web service



18

Figure 2.7. The example of ontology-based web service description.

which shows more accurate matching to the specification of the request than

signature-based composition. Interestingly, OWL-S ontology includes both

service profile (i.e., what a web service does) and service process model (i.e.,

how a web service behaves). However, the semantic web community takes

into account mainly service profile, not service process model. Therefore,

we divide the works in OWL-S into the semantic annotation-based approach

and the behavior description-base approach separately.

� QoS description-based composition

Since the number of web services on the Web increases rapidly, we can find

several services which are functionally equivalent and thus can substitute

each other. The selection among them can be done by non-functional prop-

erties, referred to as Quality of Service (QoS) attributes with each user’s

different preferences. QoS may be defined in terms of attributes such as

price, response time, availability, reputation. When a user wants to consider

constraints on the values of given QoS attributes, the composition problem

is not a reachability checking problem but a global optimization problem. If

a client wants the fast service processing, the composition algorithm should

find a composite web service which achieves a given complicate task with

the smallest total response time (Example in Section 5.1.1). Generally, this

problem is computationally hard since it should compare all possible combi-

nations of candidate web services.



19

� Process behavior-based composition

A behavioral description of a web service process is a formal specification

on what the web service executes internally and externally while interacting

with users; e.g., describing what output value it returns for a given input and

its state, and how it changes its internal state. The behaviors of web services

represented as a state-transition system formally describes that on receiving

a specific input, what output values a web service will return and what state

it will proceed to. The composition with this information generates a strat-

egy to guarantee achieving the goal can be represented as a state-transition

system called a coordinator. For example, for the web service to find out a

restaurant name and its address, rather than a simple sequence of web ser-

vices in a signature-based composition, a process behavior-based composer

can return a state-transition system specifying that for a specific zip code and

a food preference of a client web service, how internal states of web services,

findRestaurant and findMap change and what output values is computed

based on the input values, and how the web services communicates with.

From the next, we see the related work based on the service descriptions, re-

spectively. In Table 2.1, we summarize the related work.

2.2.2 Signature-based Composition

There are many researches based on signature description of web service [34, 35,

36, 37, 38, 39, 40, 41, 42]. In the work [34], Srivas et al. indicate that most of the

industrial solutions on web service composition problem describe mainly the sig-

nature of individual web service operation. They view a web service as a remote

procedure call between which the message is described with simple syntax, not

with any additional semantics. Because this problem setting is similar to a tra-

ditional work-flow scheduling problem, workflow generation techniques have been

applied to composite web services. EFlow [35] is a platform for the specification,

enactment and management of composite services by using a static workflow gen-

eration method. It models a composite service by a graph that defines the order of

execution among the nodes in the process. However, this graph should be specified

manually first. Casati et al. [35] propose a prototype of composite service definition



20

language (CSDL) considering dynamic environment. Polymorphic Process Model

(PPM) [36] uses a method combined with static and dynamic. In PPM, a sub-

process reference which is an abstract functionality information of the subprocess

helps building an abstract composite process model, and the reasoning based on a

state machine modeling a service enable a run-time service composition.

In this kind of approaches, the matchmaking techniques make a significant

role in deciding which operation should /and can be invoked. At the beginning,

the keyword-matching supported by the category browsing of UDDI are intro-

duced. However, the keyword based matching cannot fully capture real functions

of web services. To address this limitation, many researchers have developed vari-

ous methods to assess the similarity of web services for matchmaking. Paolucci et

al. [37] proposes a solution-based on DAML-S for semantic matching between ser-

vice advertisements and capabilities. However, their matching algorithm is limited

to comparing inputs and outputs of the advertisement with inputs and outputs of

the request. In the work [38], the algorithm checks syntactic features (input and

output events of component services). Wu [39] suggested a matchmaking process

based on a lightweight semantic comparison of signature specifications in WSDL

by means of several assessment methods. Wang and Stroulia [40] assessed the

similarity of the requirement description of the desired service with the available

services via the semantic information retrieval method and a structure matching

approach. A survey of modern matchmaking algorithms and their applications to

the web service matching is available in [39]. In our work, instead of proposing

a particular matchmaking method, we advocate a flexible framework that can ac-

commodate a plethora of matchmaking schemes in a unified manner. Due to the

availability, we choose Cosine and WordNet based matching schemes in [43, 44].

However, note that it is also possible to incorporate the aforementioned matching

approaches such as [39, 40] in our framework, if the implementation is available.

Dong et al. [41] suggested a web service search engine, Woogle, which has the web

service similarity search capability. Woogle first clusters parameter names into

semantically meaningful concepts, which are then used to compute the similarity

between parameter or operation names.



21

2.2.3 Semantic Annotation-based Composition

This approach is advocated by Semantic Web community which vision is to make

resources accessible by content as well as by keywords. They think, by giving the

meaning to the used term, machines can understand high level described task and

then do the exact work. As a result, machine reasoning techniques based on a

specific ontology are mainly presented.

The work [45] propose an ontology-based framework for the automatic compo-

sition of web services. It uses composability rules which compare the syntactic and

semantic features of web services to determine whether two services are compos-

able. Sirin et al. [46] use contextual information to find matching services at each

step of service composition. They further filter the set of matching services by

using ontological reasoning on the semantic description of the services (in OWL-S)

in addition to user inputs.

The METEOR-S (METEOR for Semantic web services - [47, 48, 49, 50])

project associates semantics to web services, covering most of context in the ser-

vice, and exploits them in the entire web process life cycle encompassing semantic

description/annotation, discovery, composition, and enactment of web services. It

presents semantic annotation of web services, semantic discovery infrastructure

for web services (MWSDI: METEOR-S Web Service Discovery Infrastructure),

and semantic composition of web services (MWSCF: METEOR-S Web Service

Composition Framework). Shivashanmugam et al. [50] propose semantic process

templates to capture the semantic requirements of web process on MWSCF.

SMAPLAN [51] attempts to combine semantic matching consisting of domain-

dependent and domain-independent ontologies with AI planning techniques to

achieve web services composition. For composition based on semantics, Mrissa

et al. [52] have studied a context-based mediation approach to solve semantic het-

erogeneities between composed web services.

DERI is a noticeable ongoing project titled Semantic Web enabled Web Services

(SWWS). DERI researchers recognize that to use the full potential of web services

and the technology around UDDI, WSDL and SOAP, it is indispensable to use

semantics, since current technologies provide limited support for automating web

service discovery, composition and execution. Important objectives of the SWWS

initiative include providing a richer framework for web Service description and



22

discovery, as well as, providing scalable web Service mediation middleware.

There are various matching techniques with semantic annotation of service.

LARKS [53] defines five techniques for service matchmaking: context matching,

profile comparison, similarity matching, signature matching, and constraint match-

ing. Those techniques mostly compare service text descriptions, signatures (inputs

and outputs), and logical constraints about inputs and outputs. The ATLAS

matchmaker [54] defines two methods for comparing service capabilities described

in DAML-S. The first method compares functional attributes to check whether

advertisements support the required type of service or deliver sufficient quality of

service. The second compares the functional capabilities of web services in terms of

inputs and outputs. No evaluation study is presented to determine the effectiveness

and speed of the ATLAS matchmaker. Maedche and Staab [55] provided multiple

phase cross evaluation to assess the similarity between two different ontology. The

work [56] describes the design of a service matchmaker that uses DAML-S-based

ontology. It uses techniques from knowledge representation to match service capa-

bilities. In particular, it defines a description logic (DL) reasoner; advertisements

and requests are represented in DL notations.

Although the previously mentioned works include the specification of the se-

mantic information including QoS attributes, they do not consider a value opti-

mization of a specific attribute in the composition. This kind of works are intro-

duced to 2.2.4.

2.2.4 QoS description-based Composition

Recently, non-functionality, e.g., QoS, -aware web service composition has gained

the attention of many researchers [57, 58, 59, 60, 61, 62] since it offers interesting

applications of search strategies with user’s constraints specified in a goal. To man-

age the web service composition problem with the goal including the constraints

expressed with functional and non-functional properties of the services, applicable

QoS model should be considered.

The projects such as METEOR [59, 63] and CrossFlow [64] present compre-

hensive QoS models. METEOR considers most of activities of QoS, including com-

position, analyzing, predicting, and monitoring QoS of workflow processes. They



23

use Integer programming (IP) solutions for QoS optimization with the assump-

tion linearity of the constraints and of the objective function. In the work [59],

Aggarwal et al. strengthen the need to deal with more general constraint crite-

ria, such as service dependencies or user preferences. CrossFlow proposes the use

of continuous-time Markov chain to estimate execution time and cost of a work-

flow instance. However, these works do not deal with the dynamic composition of

services which is more challenging.

The best combination of concrete services which is selected at a run time from

a view of QoS may change during execution due to the dynamic nature of the

web services environment, therefore one important requirement is that a feasible

solution should be found in a short time.

Zeng at al. focuses on dynamic and quality-driven web service composition.

In [57, 58], they use a planning technique for the composition with a global op-

timized QoS value where linear programming techniques is applied to find the

optimal selection of component services. [add more dynamic works] They also

consider data quality management in cooperative information systems [58]. They

essentially focus on the cost, response time, availability and reliability attributes,

where logarithmic reductions are used for the multiplicative aggregation functions,

and the model is claimed to be extensible with respect to other similarly behaving

attributes.

Ardagna et al. [60, 61] extends the linear programming model to include local

constraints. Linear programming methods are very effective when the size of the

problem is small. However, these methods suffer from poor scalability due to the

exponential time complexity of the applied search algorithms.

Yu et al. [62] propose heuristic algorithms that can be used to find a near-to-

optimal solution more efficiently than exact solutions based on a broker system.

Their goal of service selection is to maximize an application-specific utility function

under the end-to-end QoS constraints. In addition, to obtain both of optimality

and efficiency, Alrifai et al. [65] propose a solution that combines global opti-

mization with local selection techniques. The proposed solution finds the optimal

decomposition of global QoS constraints into local constraints by using mixed in-

teger programming (MIP) and then select the best web services that satisfy these

local constraints by distributed local selection method.



24

Other various techniques are applied. [66] present the method using GAs be-

cause GAs can easily handle any kind of constraint. Umeshwar et al. [67] proposes

a QoS optimization algorithm for web services based on traditional database query

optimization technique. It focuses on ordering the operations to participating web

services where the total response time is minimized. Yu et al. propose a query

algebra to generate Service execution plans [68].

2.2.5 Process Behavior-based Composition

Since the behaviors of web services can be formally specified as a specific structure

with abstract notion of possible activities (e.g., state-transition system), this kind

of approaches suggest various abstract service models which is efficient to their

composition algorithm.

Beradi et al. starts with a very abstract model of web services, called Colombo,

based on an abstract notion of activities [69]. However, basically, there is a finite

alphabet of activity names, but no internal structure is modeled, that is, no input,

output, or interaction with the world. In the work [70], they use a transition system

to specify the internal process flow of a web service. In the most general case,

these are potentially infinite trees, where each branch corresponds to a permitted

sequencing of executions of the activities. For the theoretical results, they restrict

attention to systems that can be specified as deterministic finite-state automata,

where the activities act as the input alphabet (i.e., where the edges are labeled by

activities). This model is called as the Roman model.

The work [71] present a composition method to apply logical inferencing tech-

niques on pre-defined plan templates. The service capabilities are annotated in

OWL-S and then manually translated into situation calculus and Golog. Golog,

the logic programming language implemented over Prolog is used to instantiate a

plan. A user submits the request to the system, expressed as a kind of generic

ConGolog [72] procedure. An agent instantiates the user specification with the

services by pruning the situation tree where each node denotes a snapshot of the

service configuration at some point. As a result, it generates a sequence of web

services which can be executed by ConGolog interpreter.

In the work [73], Narayanan and McIlraith use DAML-S ontology for describing



25

the capabilities of web services and encode the service descriptions in a Petri Net

formalism. They provide decision procedures for web service simulation, verifica-

tion and composition.

Hierarchical Task Network (HTN) planning [10] allows the expression of ag-

gregate behavior2. A planner takes a composite processes as an input, that is, as

descriptions of how to compose a sequence of single step actions and then tries

to find a collection of atomic processes instances which form an execution path

for some top-level composite process. However, it lacks of the ability to express

non-determinism and iterations in compound tasks.

The work [74] is interesting in the point of a peer-to-peer framework for mod-

eling and analyzing the global behavior of service compositions. Services exchange

messages according to a predefined communication topology, expressed as a set of

channels among services where a sequence of exchanged messages is referred to as

conversation between the services. In this framework, properties of conversations

are modeled as mealy machines to characterize the behavior of services. Given a

desired global behavior and a composition infrastructure, e.g., a set of channels, a

set of services and a set of messages, it synthesizes the specification of a sequence

of activities executed by the services such that their conversations are compliant

with the specification expressed by the regular language.

The behavior of a service can be captured by a complete or partially (incom-

pletely) specified description. Incomplete information can make the mediator not

sure what the current state is and what the next state is after performing a specific

action. Since many web services associate with private data of their own database,

the existence of incompleteness is more realistic assumption. However, only a few

use realistic models with incomplete information (partial observability).

Pistore et al. define web service compositions with incomplete information [75,

76, 77]. They present composition algorithms which take into account service

behavior and complex goals. however, it seems to disregard semantics information,

as the quality of the discovered composition mainly depends on the goodness of

the given goal (expressed by means of the EaGLe language), rather than on the

functional attributes of services. Based on these algorithms, they implement a

tool (MBP) to find a plan that satisfies a given goal over a planning domain

which are formalized as non-deterministic state transition system where an action



26

Table 2.1. Summary of the related works
Semantic QoS Process

Signature
annotation description behavior

Srivas [34], Medjahed [45, 55], Grefen [64], Sirin [10],
Casati [35], Sirin [46], Zeng [57, 58], Berardi [69, 70],

Schuster [36], Cardoso[47, 48], Aggarwal [59], McIlraith [71],
Paolucci [37], Sivashanmugam [50], Oldham [63], Giacomo [72],
Mecella [38], Akkiraju [51], Ardagna [61, 60], Narayanan [73],

Wu [39], Mrissa [52], Canfora [66], Hull [74],
Wang [40], Ankolenkar [54], Yu, Q. [68], Pistro [75, 76, 77],
Dong [41] Li [56] Alrifai [65] Brogi [79]

is a transition that may bring the system from one state to a set of possible

successor states. This state transition system combines all the transition systems

corresponding to the available services which can be modeled in OWL-S. MBP

also can deal with uncertainty on the state called a belief state. In [76], the

authors extend the previous work in order to handle asynchronous, message-based

interaction between the domain and the plan. However, they do not consider QoS

properties or complexity.

Recently, Fan et al. [78] investigate the complexity of web service composition

based on query rewriting using views, but they do not include a non-deterministic

web service in their problem setting, which is more natural. Moreover, their study

does not provide the complete proof.

In the work [79], Brogi discusses the potential advantages of exploiting behav-

ioral information for service discovery and composition, and the cost of generating

such information and to the needed trade-off between expressiveness and cost and

value of analyzing such information. It is an interesting work to understand the

requirement of service behavior representation in web service.

2.2.6 Other Related Research

The WSC problem studied in this dissertation is related to many other fields; e.g.,

game theory [80, 81], open system synthesis with temporal logics [82, 83, 84, 85],

controller synthesis for discrete systems [86, 87], and AI planning [88, 89, 90, 91].

First, composition problems have a close connection to game theory. Since the



27

coordinator cannot control the non-determinism of a given set of web services and

has to decide inputs to web services only with outputs from them, this problem can

be considered as a two-player incomplete information game where the coordinator

wants to win over web services. Reif [80] has proved that the problem of determin-

ing the outcome of universal games from a given initial position is 2-EXP-hard.

Thomas [81] has surveyed the algorithmic theory of infinite games, and its role in

automatic program synthesis and verification.

For open systems, next, various controller synthesis problems have been studied

with temporal logics [92, 93]. Most of them have considered linear time logics [92]

and often involved dealing with incomplete information [83, 84]. For branching-

time cases, Antoniotti [82] has studied the synthesis of memoryless controllers

with maximal environments. Kupferman and Vardi [85] have studied the problem

of open system synthesis under incomplete information, and proved that the prob-

lem with a specification in CTL (CTL*) [93] are EXP-complete (2-EXP-complete,

respectively).

Tsitsiklis [86] showed that a special class of the centralized supervisory control

problem under partial observation is decidable in polynomial time but a general

case is computationally intractable. Rudie and Willems [87] generalized the results

on computational complexity of the supervisory control problem given in [86]; the

question of whether there exist decentralized controllers that ensure that closed-

loop behavior precisely equals some prescribed desired behavior is decidable in

polynomial time.

Finally, the WSC problem is related to AI planning under partial observa-

tion [88, 89, 90, 91]. Herzig et al. [88] have proposed a dynamic logic EDL for

planning under partial observability. In [89], a fully automatic planning tool MBP

has been developed for this setting based on belief-states. The complexity of plan-

ning under partial observability has been studied in [90]. Moffitt [91] has explored

a means to both model and reason about partial observability within the scope of

constraint based temporal reasoning.

On the other hand, several researches have been performed in planning using

abstraction. Huang et al. [94] propose an algorithm to reduce observation variables

for strong plans. This technique, however, cannot identify such a variable until a

plan is constructed. Thus, it cannot be applied to our problem. Armano et al. [95]



28

employ abstraction techniques for a hierarchical planner. Smith et al. [96] present

an abstraction technique to generate exponentially smaller POMDP. However, to

the best of our knowledge, there is no study for WSC problems or planning on

partial observation using abstraction and refinement.

The most commonly used method in signature-based service composition is to

specify the process model in network (graph). Therefore, it is worthwhile inves-

tigating this network model with the existing network analysis techniques. For

related works for network analysis, many empirical networks are well modeled by

complex networks including the scale free and small world networks. The small

world networks are generated by Watts-Strogatz model [97]. Albert et al. [98]

proposed a set of different models for generating scale free networks, based on

the growing process of the Internet and other empirical complex networks. Den-

ning [99] surveyed various network laws with a focus on the power-law distribution

and the scale free networks. In this dissertation, we apply the developed techniques

to examine web services networks.



Chapter 3

Signature-based Web Service

Composition

A signature (from Latin signare) is a handwritten depiction of someone’s name or

even a simple ”X” that a person writes on documents as a proof of identity and

intent. A signature in computer programming means an interface of an operation

(In fact, rather than a operation, a function or a method is used often in com-

puter programming languages). An operation is commonly identified by its unique

signature which usually includes the operation name, the number and type of its

parameters, and its return type. Hence, we can say that a signature is the smallest

type of an operation.

A web service is specified in a WSDL document where its operation signatures

are inscribed. An operation signature provides the way to invoke the operation

including syntactic information such as the operation name, its input/output mes-

sage name and type, and its protocols. Based on WSDL signatures, given a set

of web services and a desired output, the web service composition is to find out

a sequence of web services which finally generated the desired outputs, by using

matching techniques.

As the first step, we study as to how useful the current public web services

are based on the graph theory. In Section 3.2, we construct web service networks

formed real-world web services (Section 3.2.2) and identify network properties (Sec-

tion 3.2.3). To construct the networks, we propose a flexible framework for web

service match in 3.2.2. Since currently there are not enough “semantic web ser-



30

vices” specified in OWL-S or WSDL-S yet, our study is limited to ones in WSDL.

In addition, because WSDL standard does not support additional semantic annota-

tions such as pre/post conditions or world state changes, our matching can be done

based on parameter matching. Based on our observations, we suggest a SAT-based

algorithm which finds out an optimal composition, that is, the shortest sequence

of the web services. We report on a preliminary implementation and experiment

for our solution with 7 sample examples for the WSC’07 competition [100]

3.1 Preliminaries

We introduce the Small world and the Power-law network properties which are

shown in many robust real-world complex systems.

3.1.1 Small World and Power-Law

In general, a network is called the small world network if it shows the properties

of both random and regular networks [101].

Definition 1 (Random Network). A random network consists of N nodes, where

each pair of nodes is connected with the probability p. As a result, edges are ran-

domly placed among a fixed set of nodes [102].

Definition 2 (Regular Network). A regular network consists of N nodes, where

a node i is adjacent to nodes [(i + j) mod N] and [(i − j) mod N] for 1 ≤ j ≤ K.

If K = N − 1, it becomes the complete N-node graph, where every node is adjacent

to every other N − 1 nodes [102].

Random networks are characterized by their short average distances among

reachable nodes. On the other hand, in regular networks, each node has highly

clustered neighbor nodes, such that the connectivity between neighboring nodes

is very high. Consequently, small world networks show both (1) highly clustered

structure and (2) small average shortest distance. To measure the connectivity

and short average distances, the following metrics are often computed.



31

� L: The average shortest distance (i.e., number of hops) between reachable

pairs of vertices. L(p) is defined as L of Watts-Strogatz graph [97] with

probability p. Lrandom is identical to L(1).

� C: The average clustering coefficient. For a node i with vi neighbors,

Ci =
2Ei

vi(vi − 1) , where Ei is the number of edges between vi neighbors of i.

C is the average clustering coefficient Ci for a network. Again, Cp is defined

as C of the Watts-Strogatz graph with the probability p. Crandom is identical

to C(1).

� IndexSN : The small world network index is defined as: IndexSN =
∣Cactual−Crandom ∣
∣Lactual−Lrandom ∣ , where Cactual and Lactual represent C and L of the measured

network, respectively, and Crandom and Lrandom represent C and L of the ran-

dom graph with the same number of nodes and average number of edges per

node as the measured network.

If a network has the small world properties, then its L and C shows: Cactual ≫
Crandom and Lactual ≳ Lrandom . That is, the average clustering coefficient is much

larger than that of a random network, while the average shortest distance is slightly

larger than or similar to that of a random network. Therefore, the more distinct

the small world properties of a network are, the bigger IndexSN of the network

becomes.

A power-law distribution often occurs in complex systems where a majority of

nodes have very few connections, while a few nodes have a high degree of con-

nections. Typical power-law function has the form of y = Cx−α, and is captured

as a straight line in log-log plots. The existence of power-law distribution has

been observed in many real and artificial networks such as power grid, WWW,

or collaboration network, and believed to be one of signs of mature and robust

networks.



32

3.2 Topological Analysis of Web Service Net-

work

In general, the topological structure of a network affects the processes and behav-

iors occurring in the network. For instance, the topology of a social acquaintance

network may affect the spread rate of gossip or disease. Similarly, the topology

of the Internet is known to be correlated with the robustness of communication

therein. Accordingly, understanding the structural properties of networks often

help gain better insights and develop better algorithms [6, 7].

Since current public web services which are specified in WSDL and published

in UDDI can form a network, we can use network analysis methods to investigate

the characteristics of web service networks. Therefore, we construct the networks

consisting of real-world web services (Sections 3.2.2), and identify network prop-

erties (e.g., the small world and power-low properties) from web service networks

(Sections 3.2.3).

3.2.1 Web Service on Signature

A web service in a WSDL file can be viewed as a collection of operations, each

of which in turn consists of input and output parameters. When an operation op

has input parameters IN = {p1,⋯, pn} and output parameters OUT = {q1,⋯, qm},

we denote the operation by op(IN,OUT). Furthermore, each parameter is a pair

of (name, type). We denote the name and type of a parameter p by p.name and

p.type, respectively. In order to decide if an operation op1 can invoke an operation

op2, one needs to check if the types of op1 and op2 are compatible or not. Since

this can be done trivially, from here forward, we assume that types of operations

are all compatible, and focus on other issues instead.

3.2.2 The Matchmaking Framework

3.2.2.1 Flexible Matching

A network consists of nodes and edges. In our framework, different entities can

be used as nodes and edges in a unified manner. First, as nodes, we consider



33

three kinds—parameters, operations, and web services—from finer to coarser gran-

ularity. Second, as edges, we use the notion of parameter matching and operation

invocation. The connection of parameter nodes can be considered as an informa-

tion production flow—a cuisine and a zip code are able to produce the name and

address of a restaurant by a web service findRestaurant, and the address can be

used to obtain the map of the restaurant by a web service findMap.

When the “meanings” of two parameters, p1 and p2, are interchangeable, in gen-

eral, they are said to be “matching” each other. The simplest way to check this is

if two parameters have the same name and type: (p1.name = p2.name)∧(p1.type =
p2.type). Since web services are designed and created in isolation, however, this

naive matching is often too rigid and thus misses cases like p1 = (“password”,

string) and p2 = (“passwd”, string). On the other hand, if web services are an-

notated with rich semantics (e.g., using RDF [103] or WSDL-S [104]), then the

so-called “semantic” matching can be easily reasoned out. However, in practice,

the majority of public web services does not have annotated semantics yet. In or-

der to cover all the spectrum of matching, therefore, we propose a generic Boolean

function, match(p1, p2), that determines if two parameters p1 and p2 are matching

or not. Formally,

Definition 3 (type-match). A boolean function, type-match(p1.type, p2.type), re-

turns True if: (1) p1.type = p2.type, or (2) p1.type is derived from p2.type in a type

hierarchy, or vice versa.

Definition 4 (name-match). A boolean function, name-match(p1.name, p2.name,D, θ),

returns True if the distance between p1.name and p2.name by a distance metric D

is below the given threshold θ: i.e., D(p1.name, p2.name) ≤ θ.

For instance, name-match(“password”, “passwd”, =, 1) represents the exact

matching, and would return False since “password” ≠ “passwd”1. Similarly, by

using string matching functions such as Edit distance or cosine metric, one can

express the approximate name matching. For instance, name-match(“password”,

“passwd”, edit-distance, 3) would return True since two names of parameters have

the edit distance of 2 (< 3). In our experimentation, we use three metric functions:

1For the equality checking (i.e. =), the threshold value other than 1 is not meaningful.



34

= (i.e., literal equality), cosine distance with TF/IDF weights [105], and Word-

Net [44] based approximate distance. Based on two boolean functions above, we

define the generic parameter match function as follows:

Definition 5 (match). A boolean function, match(p1, p2,D, θ), returns True if: (1)

name-match(p1.name, p2.name,D, θ) = True, and (2) type-match(p1.type, p2.type)
= True.

Definition 6 (Parameter Matching). When a boolean function, match(p1, p2,D, θ),

returns True, it is said that a parameter p1 matches a parameter p2: “p1 ∼ p2”.

On the other hand, the connections of operation nodes, i.e. invocations between

web service operations, represent machine to machine interoperation which is the

main goal of web services. When we want a map of a restaurant but not holding

input data for invoking to findRestaurant service, findRestaurant service can

help us to invoke findMap service by its result (an address of a restaurant).

In order to invoke an operation op1 with input parameters IN = {p1,⋯, pn}, one

may need to provide values for input parameters. When one can provide all input

parameters, op1 is said “fully invocable”. When one can provide at least one input

parameter, op1 is said “partially invocable”.

In fact, not all input parameters are required to invoke the function. Some of

them are semantically optional. For instance, Google API has a search operation

with several input parameters, but it can be invoked by null values for many of

parameters. Similarly, consider a client program wishing to invoke an operation

op1 first and then have op1 invoke another operation op2 directly (i.e., a case of

web service composition). In this case, if the output parameters of op1 satisfy all

input parameters of op2, then op1 “fully” invokes op2, and if output parameters

of op1 satisfy some input parameters of op2, then op1 “partially” invokes op2.

Definition 7 (Operation Invocation). For two operations, op1(IN1,OUT1) and

op2(IN2,OUT2),

� op1 fully invokes op2, denoted by “op1 ↦ op2”, if for every mandatory input

parameter p ∈ IN2, there exists an output parameter q ∈ OUT1 such that q ∼ p.

� op1 partially invokes op2, denoted by “op1 ⇢ op2”, if there exists a mandatory

input parameter p ∈ IN2 and an output parameter q ∈ OUT1 such that q ∼ p.



35

We denote each invocation by full- and partial-invocation, respectively.

3.2.2.2 Web Service Network Model

In this section, using the notions of nodes and edges defined in Section 3.2.2.1, we

propose a flexible web service network model as follows.

Definition 8 (Web Service Network Model). A web service network is generated

by a 4-tuple model M= (T,D, θ, I), where:

� T is the type of nodes and can be either “p” for parameters, “op” for opera-

tions, or “ws” for web services.

� D (and θ ) is the distance metric to be used in parameter matching (and its

threshold resp.).

� I is the type of operation invocation and can be either “FI” for full invocation

(denoted as Mf) or “PI” for partial invocation (denoted as Mp).

Example 1. A model M1 = (op, cosine, 0.75, FI) generates an operation node

network where parameter matching is done using cosine metric with a threshold

0.75. Furthermore, an edge from an operation op1 to op2 is added only when

op1 ↦ op2. On the other hand, another model M2 = (ws, word-net, 0.9, PI)

generates a web service node network where intra-parameter matching is done using

WordNet based approximate distance metric with a threshold 0.9. Furthermore, an

edge from a web service ws1 to ws2 is added if op1 ⇢ op2 for op1(∈ ws1) and

op2(∈ ws1)—that is, partial invocation among operations.

Consider Figure 3.1 as an example. Here, a web service network is formed by

a set of web services, each of which consists of a set of operations. An operation is

invoked with a set of input parameters and produces a set of output parameters.

There are three kinds of nodes representing web services (e.g., ws1 and ws2), oper-

ations (e.g., op11,op12 and op21) or parameters (e.g., p1,⋯, p7). Each web service

node containing a set of operation nodes is connected to parameter nodes with “di-

rected” edges. These edges show the flow of the parameters as inputs or outputs

of operations. An edge from a parameter node p to an operation node op indicates

that the parameter p is used as one of inputs for the operation op. On the other



36

......

<WS2.wsdl>
<WS1.wsdl>

<?xml version=”1.0”?>
<definition name=”WS1” ... >

<message name=”WS1_OP11_Request”>
<part name=”P1” type=”xsd:string”/>
</message>

<message name=”WS1_OP11_Response”>
<part name=”P2” type=”xsd:string”/>
<part name=”P3” type=”xsd:string”/>
</message>

<message name=”WS1_OP12_Request”>
<part name=”P3” type=”xsd:string”/>
<part name=”P4” type=”xsd:string”/>
</message>

<message name=”WS1_OP12_Response”>
<part name=”P5” type=”xsd:string”/>
<part name=”P6” type=”xsd:string”/>
</message>

<portType name=”WS1”>
<operation name=”OP11”>
<input message=”tns:WS1_OP11_Request”/>
<output message=”tns:WS1_OP11_Response”/>
</operation>

<operation name=”OP12”>
<input message=”tns:WS1_OP12_Request”/>
<output message=”tns:WS1_OP12_Response”/>
</operation>
</portType>
</definitions>

OP11

P1 P2 P3

OP12

P4 P5 P6

OP21

P5 P6 P7

ws1 ws2

OP11

P1 P2 P3

OP12

P4 P5 P6

OP21

P7

ws1 ws2Web Service 
Node

Operation 
Node

Parameter 
Node

P1

P2

P3

P4

P5

P6
P7

OP11 OP12

OP21

OP11 OP12

OP21
WS1 WS2

Parameter-node
Network, Mp

Operation-node
Network, Mop

Web-service 
node Network, Mws

fully 
invocable

partially 
invocable

(a)

(b)

(c)

(d)

(e)

(g)

(f)

Figure 3.1. Web service networks: (a) WSDLs, (b) conceptual networks, (c) networks
from diverse models, (d) Mp, (e) Mf

op , (f) Mp
op , and (g) Mws

hand, an edge from an operation node op to a parameter node p represents that

the operation op produces the parameter p as an output. For example, p1 is one

of inputs of op11 in ws1. Similarly, p5 is not only an output of op12 but also an

input of op21 in ws2.

In order to study subtle differences among node types, one can “project out”

the aforementioned web service network into three kinds as follows:

� A parameter node network, i.e., Mp = (p,D, θ, I), consists of parameter

nodes and edges representing operations that have an input parameter as

the source node and an output parameter as the target node. For instance, if

op1(IN1,OUT1) exists, then we create edges from each parameter p ∈ IN1 to

every output parameter q ∈ OUT1. When approximate matching is used



37

for intra-parameter matching, each node in Mp is in fact a set of simi-

lar nodes. That is, suppose there is an edge from p1 (“password”, string)

to p3 (“firstName”, string) in Mp. This indicates that one can retrieve

“firstName” information by providing “password” information. Now, if an

approximate matching method (e.g., edit distance) determines that a pa-

rameter p1(“password”, string) matches a parameter p2(“passwd”, string),

then p2.name is merged with p1.name to form an edge: password, passwd →
firstName. That is, the source node is a set of two nodes.

� An operation node network, i.e., Mop = (op,D, θ, I), consists of nodes rep-

resenting operations and edges representing invocations in-between. If an

operation op1 can (either partially or fully based on I) invoke an operation

op2, there is an edge op1 → op2 in Mop .

� A web service node network, i.e., Mws = (ws,D, θ, I), consists of web service

nodes and edges representing the existence of invocable operations between

web services.

Figure 3.1(d) describes a parameter node networkMp based on Figure 3.1(b).

For instance, p1 can be transformed to p2 by op11. For operation node example,

op21 can be invoked with two input parameters both of which are produced by op12

in Figure 3.1(c). Therefore, there exists an edge op12 → op21 in both operation node

networks (Figure 3.1(e) and Figure 3.1(f)). On the other hand, p3, one of outputs

for op11, is used as one of inputs for op12. However, op12 requires another input

parameter p4 not produced by op11. In the partial invocation mode, therefore, an

edge op11 → op12 is added. On the contrary, in the full invocation mode, no edge

is added. Note that in the example of Figure 1, we obtain the same web service

node network whether we use partial or full invocation mode. However, in general,

different networks will be formed depending on the choice of invocation mode.

3.2.2.3 Data Set

From web services repository and Google, we have downloaded a total of 2,100

publicly available web services (as WSDL files). We refer to those data sets as

PUB. The pre-processing of PUB data set consisted of four steps as follows:



38

string street string city

string state integer zipcode

integer zipcode localAddress address

string street string city string state

addressType2addressType1

moreAddress address

Figure 3.2. Compatible types with different structures.

(1) Data Gathering: First, 1,554 files were taken from Fan et al. [106] who down-

loaded the files from public repositories such as XMethods.org or BindingPoint.com.

Second, out of top-1,000 ranked WSDL files from Google for the query string

“wsdl filetype:wsdl”, 546 were downloaded using Google API (the rest were un-

downloadable). Note that although we could have downloaded more than the first

1,000 WSDL files from Google, we decided to disregard the rest since their qualities

degraded rather quickly (e.g., many WSDL files after top-1,000 were for testing as

in “Hello World”).

(2) Validation & De-duplication: According to WSDL standards, 740 invalid

WSDL files were removed, and 1,360 files are left out. Then, 376 duplicate WSDL

files at operation level were removed, yielding 984 valid WSDL files at the end.

(3) Type Flattening: In matching parameters, we use both name and type of pa-

rameters. However, since WSDL files are designed by different people in isolation,

using only atomic types of XML Schema can be too rigid. For instance, consider

two parameters: p1 (address, addressType1) and p2 (MyAddress, addressType2)

of Figure 3.2. Although names of two parameters are similar, their types are user-

defined and different. However, the types are in fact “compatible”. Therefore, if we

flatten these types into p1.type = {integer zipcode, string street, string city, stringstate}
and p2.type = {string street, string city, string state, integer zipcode}, then the pa-

rameters can be matched. We call this process type flattening2. After type flat-

tening, each atomic type and name are compared using type hierarchy of XML

Schema and flexible matching scheme (e.g., exact or approximate), respectively.

The detailed statistics of type flattening is in Table 3.1.

(4) Data Cleansing: The final step is to clean data to improve the quality of

parameters. For instance, a substantial number of output parameters (16%) were

2An alternative to our type flattening is to use more expensive metric such as tree edit distance.
For its simplicity, we used type flattening in this dissertation.



39

Table 3.1. Type distribution
Before Flattening After Flattening

Type
input (num) output(num) input(num) output(num)

anyType 6.97% (7) 9.03% (5) 0.2% (35) 0.2% (51)
simpleType 65.52% (6,751) 32.37% (1,792) 92.43% (19,809) 90.63% (22,946)

string 53.75% (5,538) 22.00% (1,218) 65.06% (13,943) 54.74% (13,859)
number 7.79% (803) 7.12% (394) 17.69% (3,791) 22.89% (5,796)

time 0.90% (93) 0.22% (12) 1.85% (396) 2.93% (743)
boolean 3.74% (385) 2.46% (136) 7.16% (1,535) 9.14% (2,314)

complexType 34.41% (3,545) 67.54% (3,739) 7.41% (1,588) 9.16% (2,320)
Total Number 10,303 5,536 21,432 25,317

named “return”, “result”, or “response” which are too ambiguous for clients. How-

ever, often, their more precise underline meaning can be derived from contexts. For

instance, if the output parameter named “result” belongs to the operation named

“getAddress”, then the “result” is in fact “Address”. In addition, often, naming

follows apparent pattern such as getFooFromBar or searchFooByBar. Therefore,

to replace names of parameters or operations by more meaningful ones, we removed

spam tokens like “get” or “by” as much as we could.

3.2.2.4 Distance Functions

We use three distance functions:

� Exact Matching: p1 and p2 match if (p1.name = p2.name)∧(p1.type = p2.type).

� Cosine Distance: The distance of p1 and p2 is measured as the cosine angle

of two tf/idf vectors, v1(p1) and v2(p2), made from the tokens of p1 and p2:

cos(θ) = 1 − v1(p1)⋅v2(p2)
∥v1(p1)∥⋅∥v2(p2)∥ .

� WordNet-based Distance: Since WordNet is a network of English words la-

beled with semantic classes (e.g., synonyms), it carries various semantic re-

lations among words. People have proposed various ways to measure the

approximate distance of two words in WordNet. We use one of them [44]

that scales the information content of the least common subsumer by the



40

sum of the information content of two vocabularies. Formally,

distLin(c1, c2) =
2 log pM (c1, c2)

log p(c1) + log p(c2)

where p(c) is the probability of encountering an instance of concept c for any

concept c ∈ C, and pM(c1, c2) = MINc∈S(c1,c2)p(c) where S(c1, c2) is the set of

concepts that subsume c1 and c2.

Both cosine and WordNet metrics uses thresholds to determine matchmaking

(i.e., if the calculated distance is below the threshold, we consider that there ex-

ists an edge in-between). Consider the following example for illustration of two

matching schemes.

Example 2. Consider two parameters p1 = “endRoamDate” and p2 = “EndDate”

Without loss of generality, let us assume that two parameters are the same type.

First, parameter names are tokenized to sets of lowercase tokens, e.g., “endRoam-

Date” → {“end”, “roam”, “date”} and “EndDate” → {“end”, “date”}. Then, per

each token, a tf/idf weight, w, is calculated based on the entire PUB data set as

the corpora, e.g., w(date) = 0.57, w(end) = 0.57, and w(roam) = 0.7. With tf/idf

weights, p1 and p2 are transformed to 3-dimensional vectors v1 and v2, respec-

tively: v1 = [0.57,0.57,0.7] and v2 = [0.57,0.57,0]. Finally, the distance between

“endRoamDate” and “EndDate” is cos(v1, v2) = 1 − 0.816 = 0.184.

At the end, we have generated a total of 25 (= 5 network types × 5 dis-

tance metrics) web service networks: (1) three kinds of networks—Mp, Mf
op , and

Mf
ws , and two of their counterparts of “partial invocation”—Mp

op , and Mp
ws ; (2)

five distance variations - Exact, Cosine (0.75), Cosine (0.95), WordNet(0.75), and

WordNet(0.95).

3.2.3 Main Results

We present topological landscape of web service network with respect to small

world network and power-law distribution.



41

3.2.3.1 Small World

First, we analyze the PUB data set to see whether it exhibits the characteristics

of small world network. Similar to previous works on the small world network [97],

we restrict out attention to the giant connected component. The details of giant

components of each web service network are summarized in Table 3.2. Note that

the percentage of the giant component in the original network is generally bigger in

the WordNet (0.75) than other cases. It indicates that the usage of the approximate

matching scheme reduces the number of isolated web services in the web service

network. The connection in web service network becomes important since when

a web service node is not connected to the giant component, there is no way to

provide web services to clients (i.e., no profit opportunity).

Table 3.3 shows the average shortest path, L, and clustering coefficient, C, for

giant components of 25 web service networks, compared to random graphs with

the same number of nodes and same average number of edges per node. It shows

that all web service networks generated from the PUB data set are small world

networks—Lactual ≳ Lrandom and Cactual ≫ Crandom . This suggests that the real-

world web services have short-cuts that connect nodes of networks. Otherwise,

nodes of networks would be much farther apart than Lrandom .

There are distinct differences between matching schemes in terms of the small

world properties. For example, in the parameter node network Mp, Lactual(=
3.2656) of the WordNet (0.75) is much smaller than Lactual(= 4.3185) of the ex-

act matching, while Cactual(= 0.3118) of the WordNet (0.75) is much bigger than

Cactual(= 0.2229) of the exact matching. For better understanding, Figure 3.3 illus-

trates the changes of IndexSN for different matching schemes. Recall that IndexSN

tends to increase as C increases or L decreases. In the figure, we can see that the

usage of approximate matching scheme, WordNet (0.75), generates more distinct

small world properties than the exact and cosine distance matching schemes. In the

case of Mp with the WordNet (0.75) matching, IndexSN is ten times bigger than

one of the exact matching case. This result implies that the approximate matching

scheme makes the network denser with the increased number of edges, so that L

decreases while C increases. From the web service composition perspective, this

result suggests that approximate matching scheme can facilitate more productive

and effective service compositions than when only exact syntactic matching is used.



42

Table 3.2. Statistics of PUB: (A) # of nodes, (B) # of nodes in a giant component,
(C) percentage of giant component, (D) average degree, and (`) network diameter.

Scheme Model A B C (%) D `

Mp 11,301 8,494 75.1 18.66 21
Exact Mp

op 5,180 2,993 57.7 108.01 10

matching Mf
op 5,180 1,538 29.6 28.25 11

Mp
ws 984 608 61.7 52.41 6

Mf
ws 984 431 43.8 17.25 7
Mp 10,952 8,385 76.5 18.13 21

Cosine Mp
op 5,180 3,232 62.3 110.43 10

(0.95) Mf
op 5,180 1,667 32.1 28.89 11

Mp
ws 984 656 66.6 54.42 7

Mf
ws 984 474 48.1 17.73 9
Mp 10,568 8,197 77.5 17.50 9

Cosine Mp
op 5,180 3,375 65.1 110.43 9

(0.75) Mf
op 5,180 1,696 32.7 28.92 11

Mp
ws 984 676 68.6 54.04 7

Mf
ws 984 485 49.2 17.69 9
Mp 8,870 7,077 79.7 18.82 18

WordNet Mp
op 5,180 3,742 72.2 214.51 7

(0.95) Mf
op 5,180 2,045 39.4 39.31 9

Mp
ws 984 765 77.7 86.23 6

Mf
ws 984 558 56.7 28.77 6
Mp 7,042 5,590 79.3 16.87 10

WordNet Mp
op 5,180 3,967 76.5 498.01 7

(0.75) Mf
op 5,180 2,574 49.6 110.58 8

Mp
ws 984 807 82.0 178.93 5

Mf
ws 984 667 67.7 66.25 5

3.2.3.2 Power-Laws

First, we examine how complex web services are in general. One way to measure

the complexity of web services is to measure how many operations (parameters

resp.) are involved in each web service (operation resp.) [106]. These results are

shown in Figure 3.4, fitted to a power-law function y = Cx−α (in log-log plot).

They show near3 power-law distribution with the exponent of 1.49 and 1.27, re-

spectively. In Figure 3.4(a), 37% of the web services have just one operations and

3A recent study [107] reported that most of real-world power-law distributions exhibited an
exponent of 2 ≤ α ≤ 3.



43

Table 3.3. Small world properties of PUB.
Scheme Model Lactual Lrandom Cactual Crandom

Mp 4.3185 3.4244 0.2229 0.0021
Exact Mp

op 2.8590 1.9830 0.3056 0.0362

matching Mf
op 3.7605 2.5628 0.2147 0.0180

Mp
ws 2.2710 1.9222 0.4809 0.0874

Mf
ws 2.9659 2.4250 0.2610 0.0405
Mp 4.1760 3.4442 0.2324 0.0022

Cosine Mp
op 2.8651 1.9881 0.3125 0.0340

(0.95) Mf
op 3.7538 2.5787 0.2001 0.0173

Mp
ws 2.2847 1.9254 0.4925 0.0833

Mf
ws 3.0046 2.4803 0.2499 0.0359
Mp 4.1981 3.4730 0.2397 0.0020

Cosine Mp
op 2.8671 1.9925 0.3190 0.0326

(0.75) Mf
op 3.7392 2.5910 0.1990 0.0172

Mp
ws 2.2923 1.9307 0.4822 0.0801

Mf
ws 2.9990 2.4394 0.2392 0.0375
Mp 3.6088 3.3282 0.2612 0.0027

WordNet Mp
op 2.4234 1.9425 0.3251 0.0574

(0.95) Mf
op 3.4165 2.4440 0.1493 0.0190

Mp
ws 2.1222 1.8865 0.5290 0.1138

Mf
ws 2.6215 2.1839 0.2527 0.0510
Mp 3.2656 3.3665 0.3118 0.0030

WordNet Mp
op 2.0546 1.8743 0.4818 0.1256

(0.75) Mf
op 2.6506 1.9657 0.1842 0.0429

Mp
ws 1.8484 1.7790 0.6697 0.2214

Mf
ws 2.2226 1.9023 0.3487 0.0993

71% of the web services have less than 5 operations. On the other hand, the largest

web services have over 110 operations. Similarly, in Figure 3.4(b), 181 operations

(among 5,180 operations) have less than two input/output parameters. In addi-

tion, 194 operations have no input parameter and 255 operations have no output

parameter. However, the whole distribution also shows a power-law-like property.

After type flattening, around 65% of operations have less than 6 parameters while

the maximum number of the parameters in an operation is 360.

Second, in Figure 3.5, we examine the popularity of parameter names to see

if some parameter names occur more often than others. X-axis is the frequency

of parameter names while Y-axis is the number of samples. That is, (10, 100)



44

 0.1

 1

 10

WordNet 0.75WordNet 0.95Cosine 0.75Cosine 0.95Exact

In
de

xS
N

D: matching scheme

Mp   
Mopp

Mopf 
Mwsp

Mwsf 

Figure 3.3. The small world index, IndexSN

(a) α = 1.49 (b) α = 1.27

Figure 3.4. The complexity of web services and operations. Y-axis is # of samples
(i.e., ws or op).

indicates that there are 100 parameters that occur 10 times. Again, all of them

show near power-law distributions. From these distributions, we can observe a very

small number of popular “hub” parameter names. For instance, the parameter

(“name”, string) appears most frequently in our collection. In addition, as the

matching method gets more flexible, from (a) to (c) in Figure 3.5, more parameters

are involved in matching. Since the matched parameters are considered as a single

parameter, the number of distinct parameters gets smaller but the frequency of

parameter names gets bigger. For example, while p1 appears 490 times in Exact



45

(a) α=1.63 (b) α=1.58 & (c) α=1.06

Figure 3.5. The popularity of p names. X-axis is the frequency of p names while Y-axis
is # of samples. (a) Exact matching, (b) Cosine (0.75), and (c) WordNet (0.75) (inset).

matching with 11,301 distinct parameter names, p1 appears 3,278 times in WordNet

(0.75) matching with 7,042 distinct parameter names, where similar parameters

like p1 (“name”, string) and p2 (“identification”, string) are considered to be a

“match” and consolidated. Therefore, Figure 3.5(c) (inset) has the smallest α and

the largest tail among the three.

In Figure 3.6, we examine the out-degree distributions of three web service

networks of three matching schemes. Unlike previous figures, by and large, out-

degree distributions no longer follow power-law distributions well (although we still

fit them with power-law functions). Nevertheless, it is evident to see the existence

of hub parameters, operations, or web services with huge number of out-degrees

while majority has only a few.

In the parameter node networks of Mp of Figure 3.6(a)-(c), due to flexible

matching, the number of nodes decreases from (a) to (c): 11,301 for Exact match-

ing, 10,568 for Cosine (0.75), and 7,042 for WordNet (0.75). However, even though

Figure 3.6(c) has the smallest number of nodes of 7,042, it has the largest num-

ber of edges and biggest out-degree. For example, a parameter node including

(“name”, string) has 317 out-degrees (to 2.7% of nodes) in Exact matching, 306

out-degrees (to 2.9% of nodes) in Cosine (0.75), and 1,378 out-degrees (to 19.57%

of nodes) in WordNet (0.75). The distributions between Figure 3.6(a)-(b) show

little difference with respect to the number of nodes.

Unlike parameter node networks ofMp, all operation node networks ofMf
op of



46

Figure 3.6(d)-(f), have 5,180 fixed operation nodes, but, from exact to approximate

matching, the total number of edges increases from 22,253 to 25,174 to 184,429.

The fact that approximate matching schemes such as Cosine or WordNet have

more out-degrees indicates that information can flow more flexibly among web ser-

vices operations through many edges. In Figure 3.6(g)-(i), the web services node

networks of Mf
ws also have a fixed number of 984 nodes, and the out-degree in-

creases from (g) to (i). While some edges in operation node networks include intra-

connections within the same web service, the edges of Mf
ws are amount to pure

inter-connection among different web services. Consequently, more cooperation

with different web services can be expected as we have more flexible approximate

matching.

3.2.4 Observations and Limitations

Here, we briefly discuss three important observations from (and limitations of) our

experimentation.

3.2.4.1 Semantic Web

The fact that Sections 3.2.3.1 and 3.2.3.2 show the small world and power-law-like

properties more clearly as the matchmaking scheme becomes more flexible (from

Exact to Cosine to WordNet) can be interpreted as an evidence of the needs of

more semantically-rich web service networks. Many real networks (that are known

to be robust and error-tolerant) have shown both small world and power-law-like

properties well. Therefore, we may argue that as web service networks get more

mature and robust, they will show both small world and power-law-like properties

better. The ultimate case of flexible matching is to use the semantics of parameters

or operations. For instance, in the WordNet method of our experimentation, both

“play” and “start” can be treated as synonym, meaning “begin”. However, “play”

can be used as a noun with the meaning “a theatrical performance” rather than

a verb “begin”. Therefore, this kind of mis-matching would cause a problem in

discovering and composing web services (semi-)automatically. We envision that

this kind of problems be solved only when the semantic web (services) are fully

adopted in future.



47

(a)-(c) Mp

(d)-(f) Mf
op

(g)-(i) Mf
ws

Figure 3.6. Out-degree distribution of three web service networks,Mp for (a)-(c),Mf
op

for (d)-(f) and Mf
ws for (g)-(i): (a) Exact matching =1.15, (b) Cosine (0.75) =1.19, (c)

WordNet (0.75) =1.04, (d) Exact matching =1.18, (e) Cosine (0.75) =1.12, (f) WordNet
(0.75) =0.64, (g) Exact matching =1.25, (h) Cosine (0.75) =1.24, and (i) WordNet (0.75)
=0.68.



48

1
q

n
q

...
...

1
q

n
q

...
...

1
p

1
p

opm n

n

n

m
p

...
...

m
p

...
...

Figure 3.7. The effect of the operation complexity to the out-degree distribution.

3.2.4.2 Graph Fitting

Graphs in Figure 3.6, unlike other graphs in Section 3.2.3.2, follow a power-law-like

pattern only to some extent. This is due to the existence of various outliers, which

can happen for various reasons. First, the aforementioned mis-matching (“play”

vs. “begin”) can generate outliers. Second, the complexity of operations (e.g.,

the number of parameters for an operation) can significantly affect the number of

outgoing edges on Mp. For instance, in Figure 3.7, consider an operation with

m input parameters and n output parameters. After transforming the operation

and its parameters to Mp, m input parameters of the operation have the same

outgoing edges to all n output parameters, which generates m parameters with n

out-degrees. Therefore, if m is large, then the point (n,m) would sit far above the

fitting line, becoming an outlier. In Mop , the complexity of web services makes

similar results to Mp. Since operations in a web service use similar parameters

in names and types in general, the operations can invoke each other and have

the same set of outgoing edges. As a result, operations within a web service can

have the same out-degrees. Finally, we believe that outliers can happen due to

the fact that we ignore service domains. Services from different domains are often

not appropriate to invoke each other (i.e., ws1 in the airline domain may not be

meant to be used for ws2 in the insurance domain), although they could have their

inputs/outputs matched. We expect that as the size of web services increases and

service domains are taken into account for matching, fitting becomes smoother.

3.2.4.3 Generative Model

Agreement between the web service networks and theory in Section 3.2.3.2 sug-

gests that there be no statistical difference between a web service network and an

equivalent random network in terms of the giant component size. However, at the



49

same time, the existence of disagreeing points in the analysis also suggests that one

needs better models or tools (than the simple random network model) to be able

to fully explain the properties and behaviors of the web service networks. Needless

to say, more investigation is needed to fully untangle this problem.

3.3 Web Service Composition using SAT Solver

In this section, we propose a novel technique to find an optimal composition based

on techniques for the boolean satisfiability problem (SAT). Given a set of web

services and a requirement web service described in WSDL, our algorithm identifies

the shortest sequence of web services such that we can legally invoke the next web

service in each step and achieve the desired requirement eventually. We first explain

how this problem can be reduced into a reachability problem on a state-transition

system. Then, we present our encoding to a Cnf (Conjunctive Normal Form)

formula which is true if and only if there exists a path of length k from an initial

state to a goal state of the state-transition system. To solve this reachability

problem, we employ a state-of-the-art Sat solver, SATzilla [8]. A preliminary

experiment reveals promising results where the tool finds shortest sequences with

logarithmic number of invocations of a Sat solver.

3.3.1 Type-Aware Web Service Composition

In this section, we formalize the notion of web services for composition. Unlike the

web service model in the previous section, where a web service is a collection of

operations, now we assume that a web service own only one operation. Accordingly,

a web service can be used in a place of an operation. A web service is a tuple

w = (I,O) where

� I is a finite set of input parameters for w.

� O is a finite set of output parameters for w; each input/output parameter

p ∈ I ∪O has a type tp.

When a web service w is invoked with all the input parameters i ∈ I with the

type ti, it returns all the output parameters o ∈ O with the type to. Given two



50

types t1 and t2, t1 is a subtype of t2 (denoted by t1 <∶ t2) if t1 is more informative

than t2 so that t1 can substitute for t2 everywhere. In this case, t2 is a supertype

of t1. This relation is reflexive (i.e., t <∶ t for any type t) and transitive (i.e., if

t1 <∶ t2 and t2 <∶ t3 then t1 <∶ t3). We assume that the type hierarchy is given; e.g.

specified in OWL. Given two web services w1(I1,O1) and w2(I2,O2), we denote

w1 ⊒I w2 if w2 requires less informative inputs than w1; i.e., for every i2 ∈ I2 there

exists i1 ∈ I1 such that ti1 <∶ ti2 . Given two web services w1(I1,O1) and w2(I2,O2),
we denote w1 ⊑O w2 if w2 provides more informative outputs than w1; i.e., for every

o1 ∈ O1 there exists o2 ∈ O2 such that to2 <∶ to1 . A Web service discovery problem

is, given a set W of available web services and a request web service wr, to find a

web service w ∈W such that wr ⊒I w and wr ⊑O w.

However, it might happen that there is no single web service satisfying the

requirement. In that case, we want to find a sequence w1⋯wn of web services

such that we can invoke the next web service in each step and achieve the desired

requirement eventually. Formally, we extend the relations, ⊒I and ⊑O, to a sequence

of web services as follows.

� w ⊒I w1⋯wn (where w = (I,O) and each wj = (Ij,Oj)) if ∀1 ≤ j ≤ n: for

every i2 ∈ Ij there exists i1 ∈ I ∪⋃k<j Ok such that ti1 <∶ ti2 .

� w ⊑O w1⋯wn (where w = (I,O) and each wj = (Ij,Oj)) if for every o1 ∈ O
there exists o2 ∈ ⋃1≤j≤nOj such that to2 <∶ to1 .

Finally, given a set of available web services W and a service request wr, a

type-aware web service composition problem WC = ⟨W,wr⟩ we focus on in this

dissertation is to find a sequence w1⋯wn (every wj ∈W ) of web services such that

wr ⊒I w1⋯wn and wr ⊑O w1⋯wn. The optimal solution for this problem is to find

a sequence with the minimum value for n.

3.3.2 Reduction to reachability problem

Given a type-aware web service composition problem WC = ⟨W,wr⟩, the problem

can be reduced into a reachability problem on a state-transition system. A state-

transition system is a tuple S = (X,Σ, T ) where



51

� X is a finite set of boolean variables; a state q of S is a valuation for all the

variables in X.

� Σ is a set of input symbols.

� T (X,Σ,X ′) is a transition predicate over X∪Σ∪X ′. For a set X of variables,

we denote the set of primed variables of X as X ′ = {x′ ∣ x ∈ X}, which

represents a set of variables encoding the successor states. T (q, a, q′) is true

iff q′ can be the next state when the input a ∈ Σ is received at the state q.

Given a set W = {w1,⋯,wn} of web services where for each j, wj = (Ij,Oj), we

denote as TP a set of types t such that there exists p ∈ ⋃(Ij ∪Oj) and t is the type

of p. Then, we can construct a state-transition system S = (X,Σ, T ) corresponding

with W as follows:

� X = {x1,⋯, xm} where m = ∣TP ∣; each boolean variable xj represents whether

we have an instance with the type tj ∈ T at a state.

� Σ =W .

� For each j, T (q,wj, q′) = true where q = (b1,⋯, bm), q′ = (c1,⋯, cm) (each bk

and ck are true or false), and wj = (Ij,Oj) iff (1) for every i ∈ Ij, there exists

bk in q such that bk is true and its corresponding type txk is a subtype of the

type of i (i.e., txk <∶ ti), (2) if bl is true, cl is also true, and (3) ∀o ∈ Oj: for

every variable ck in q′, if its corresponding type txk is a supertype of to, ck

is true. Intuitively, if a web service wj is invoked at a state q where we have

data instances being more informative than inputs of wj, we proceed to a

state q′ where we retain all the data instances from q and acquire outputs of

wj as well as their supertypes.

In addition, from a given requirement web service wr = (Iwr ,Owr), we encode

an initial state predicate Init(X) and a goal state predicate G(X) as follows:

� Init(q) = true where q = (b1,⋯, bm) iff ∀i ∈ Iwr : for every variable bj in q, if

its type txj is a supertype of ti (i.e., ti <∶ txj), bj is true.



52

� G(q) = true where q = (b1,⋯, bm) iff for every output parameter o ∈ Owr ,

there exists bj in q such that bj is true and its type txj is a subtype of to (i.e.,

txj <∶ to).

Intuitively, we have an initial state where we possess all the data instances

corresponding to the input of wr as well as one corresponding to their supertypes.

As goal states, if a state is more informative than the outputs of wr, it is a goal

state. Finally, given a type-aware web service composition problem WC = ⟨W,wr⟩,
we can reduce WC into a reachability problem R = ⟨S, Init ,G⟩ where the shortest

path from an initial state to a goal state corresponds to the shortest sequence of

web services.

3.3.3 Encoding to CNF formula

Now, we study how to construct a formula [[R]]k which is true if and only if there

exists a path q0⋯qk of length k for a given reachability problem R = ⟨S, Init ,G⟩.
The formula [[R]]k is over sets X0,⋯,Xk of variables and W1,⋯,Wk where each

Xj represents a state along the path and Wj encodes a web service invoked in each

step. It essentially represents constraints on q0⋯qk and w1⋯wk such that [[R]]k
is satisfiable if and only if q0 is the initial state, each qj evolves according to the

transition predicate for wj, and qk reaches to a goal state. Formally, the formula

[[R]]k is as follows:

[[R]]k ≡ Init(X0) ∧ ⋀
0≤j<k

T (Xj,Wj+1,X
′
j+1) ∧G(Xk)

Since each Xj is a finite set of boolean variables, Σ and Wj are finite, and Init ,

T and G are predicates, we can easily translate [[R]]k into a Cnf formula which

is the standard input format for conventional Sat solvers.

3.3.4 Algorithm for the optimal solution

Since we can use a Sat solver with [[R]]k to check whether there exists a path of

length k from the initial state to a goal state, we are able to find a shortest path

simply by increasing the value k from 0 to ∣W ∣. In the worst case, we check the



53

Algorithm 1: WebServiceCompositionLinear
Input : a set W of web services and a web service wr.
Output: a sequence of web services.

1 (S, Init ,G) ∶= ReduceToReachabilityProblem(W,wr);
2 for (k ∶= 0;k ≤ ∣W ∣;k ∶= k + 1) do
3 f ∶= ConstructCNF(S, Init ,G, k);
4 if ((path ∶= Sat(f)) ≠ null) then
5 return ExtractWSSequence(path);
6 end if

7 end for

formula until only ∣W ∣ as k since multiple executions of any w ∈W do not provide

more data instances than a single execution of w.

Algorithm 1 presents the linear version. Given a set W of web services and a

requirement web service wr, the algorithm first reduces them into a state-transition

system, and initial and goal predicates as Section 3.3.2 (line 1), and it begins with 1

as the value of k. For each loop, it constructs a CNF formula for k as Section 3.3.3

(line 3), and checks it with an off-the-shelf Sat solver (line 4). If the formula is

satisfiable, the Sat solver returns a truth assignment; otherwise, it returns null.

Once the algorithm finds a path of the length k, it extracts a web service sequence

from the path, and returns the sequence (line 5).

However, we can improve our algorithm from this linear algorithm based on

Proposition 1.

Proposition 1. When there does not exist a path of length k from the initial state

to a goal state, there does not exist a path of length j < k from the initial state to

a goal state.

Proof 1. (By contradiction) In our problem setting, if there exists such a path π

of length j < k to a goal, then we also have a path π′ of length k to the goal by

invoking any web service w after π since the invocation of w does not lose any data

instance already acquired.

Our algorithm begins with a pivot value as k. If we find a path of length k, then

we again execute the Sat solver with [[R]](low+k)/2 to check whether there exists a

shorter path. Otherwise, we retry with [[R]](k+high)/2 as binary search algorithms.

Using this manner, we can quickly converge to the shortest path. Algorithm 2



54

Algorithm 2: WebServiceCompositionLogarithmic
Input : a set W of web services and a web service wr.
Output: a sequence of web services.

1 (S, Init ,G) ∶= ReduceToReachabilityProblem(W,wr);
2 low ∶= 0;
3 high ∶= ∣W ∣;
4 path ∶= null ;
5 k ∶= pivot ; /* pivot is predefined. */
6 while (low ≤ high) do
7 f ∶= ConstructCNF(S, Init ,G, k);
8 if ((tmp ∶= Sat(f)) ≠ null) then
9 high ∶= k − 1;

10 path ∶= tmp;

11 end if
12 else low ∶= k + 1;
13 k ∶= (high + low)/2;

14 end while
15 return ExtractWSSequence(path);

presents our logarithmic algorithm to find an optimal solution by only log∣W ∣
executions of a Sat solver which is the most expensive operation in our algorithm.

Our algorithm first reduces W and wr into a state-transition system, and initial

and goal predicates (line 1), and it begins with a predefined pivot value as k (line

5). We repeat lines 6–12 until our binary search is completed. In each loop, we

construct a CNF formula for k, and check it with a Sat solver. Once we find a

path of length k, we again search a shorter path between low and k − 1. If not, we

try to find a path between k + 1 and high. Finally, after completing the loop, our

algorithm extracts a web service sequence from the shortest path we have found,

and returns it (line 13).

3.3.5 Preliminary Experiment

We have implemented an automatic tool for the logarithmic algorithm in Sec-

tion 3.3.4. Given a type hierarchy in a OWL file, and a set of available web

services and a query web service in WSDL files, our tool generates a web service

sequence in WSBPEL to satisfy the request. Since public web service networks

have the small world property [108], we have selected a smaller value for the pivot



55

 0

 10

 20

 30

 40

 50

 60

C7C6C5C4C3C2C1

T
im

e 
(s

ec
)

Query

41.81
43.13

57.98

43.63 42.98 42.50 43.16

Figure 3.8. Preliminary experimental result

than the median (we use 10 as the pivot value). To demonstrate that our tools

efficiently identify an optimal solution, we have experimented on the sample exam-

ple for WSC’07 competition [100] which includes 413 web services and 7 queries.

For an off-the-shelf Sat solver, we employ SATzilla [8] which achieved promising

success in Sat 2007 competition [109]. All experiments have been performed on a

PC using a 2.4GHz Pentium processor, 2GB memory and a Linux operating sys-

tem. Figure 3.8 presents the total execution time4 in seconds for our preliminary

experiment of our logarithmic algorithm.

4We exclude the time for reduction to the state-transition system as the policy of WSC’08
does not include the bootstrap time in the total execution time.



Chapter 4

Behavior Description-based Web

Service Composition

In the signature-level approach, users can simply invoke the sequence of web ser-

vices computed. They cannot, however, react based on the output values returned

from web services during runtime. Therefore, for better solution, we consider ad-

ditional information, that is, the behavioral descriptions of web services.

A behavioral description of a web service is a formal specification on what the

web service executes internally and externally with interacting with users; e.g.,

describing what output value it returns for a given input and its state, and how it

changes its internal state. The behavioral description languages such as BPEL [11]

specify service behaviors and interactions with other services as a sequence of ac-

tivities. The behaviors of web services are specified as a state-transition system.

That means, it is formally described that on receiving a specific input, what val-

ues for outputs a web service will return and what state it will proceed to. The

composition with this information computes a strategy to guarantee achieving the

goal can be represented as a state-transition system called a coordinator. Hence,

given a set of behavioral descriptions of web services and a goal, web service com-

position problem is to synthesize a coordinator web service that controls the set of

web services to satisfy the goal.

In this chapter, we first define a realistic model for the web service compo-

sition problem on behavioral descriptions with a state-transition system, and in-

vestigate the computational complexities for the non-deterministic web services



57

composition problem on restricted (i.e., with full observation) and general cases

(i.e., with partial observation) with concrete proof based on an alternating Turing

machine (ATM). Furthermore, to solve such high complexities, we propose two

approximation-based algorithms using abstraction and refinement.

4.1 Preliminaries

In this chapter, we first define a realistic model for the WSC problem with a

state-transition system. For your understanding, a “Travel Agency System”, one

of popular example for the WSC problem, is described showing how our definition

can model the (composite) service. In addition, we introduce an Alternating Turing

Machine (ATM) and the complexity classes which will be used for the proof of the

complexity in the chapter 4.2.

4.1.1 Example: Travel agency system

Consider that clients want to make reservations for both of a flight ticket and a

hotel room for a particular destination and a period. However, only an airline

reservation (AR) web service and a hotel reservation (HR) web service have been

built separately. Clearly, we want to combine these two web services rather than

implementing a new one. One way to combine them is to construct a coordinator

web service which communicates with them to book up a flight ticket and a hotel

room together.

Fig 4.1 illustrates this example. AR service receives a request including depart-

ing/returning dates, an origin and a destination, and then checks if the number of

available seats for flights is greater than 0. If so, it returns the flight information

and its price; otherwise, it returns “Not Available”. Once offering the price, it

waits for “Accept” or “Refuse” from its environment (in this case, a coordinator

to be constructed). According to the answer, it processes the reservation. Like-

wise, HR service is requested with check-in/check-out dates and a location, and

then checks the number of available rooms in an appropriate hotel. If there are

available accommodations, it returns the room information and its price; other-

wise, it returns “Not Available”. AR then processes a reply “Accept” or “Refuse”



58

Travel Agency
System

Reserve/Cancel

Accept/Refuse

Offer/NotAvail

In/Out dates
Location

Accept/Refuse

Reserve/Cancel

Offer/NotAvail

AR

HRReserve both
or Cancel

Dates
From/To Cities

Dates
From/To Cities

User

Figure 4.1. Travel agency system

from its environment.

The coordinator web service to be constructed receives from a user a request in-

cluding departing/returning dates, an origin and a destination and, tries to achieve

a goal, “reserve a flight ticket and a hotel room both OR cancel it”, by controlling

these two web services. For every output from AR and HR, the coordinator has

to decide one input to them for the next action based on only output values (since

in run-time it cannot access the internal variables in AR and HR, e.g. the number

of available seats in flights), and it should accomplish the aim eventually. The co-

ordinator can be represented by a deterministic state-transition system obviously.

4.1.2 Web service composition on behavioral aspect

A web service w is a 5-tuple (X ,XI ,XO, Init ,T ) with the following components:

� X is a finite set of variables that the web service w controls; a state s of w

is a valuation for every variable in X , and we denote a set of all the states

as S .

� XI is a finite set of input variables which w reads from its environment;

X ∩XI = ∅, and every variable x ∈ X ∪XI has a finite domain (e.g. Boolean,

bounded integers, or enumerated types). A state in for inputs is a valuation

for every variable in XI , and we denote a set of all the input states as S I .



59

� XO ⊆X is a finite set of output variables its environment can read.

� Init(X ) is an initial predicate over X ; Init(s) = true iff s is an initial state.

We assume that a web service has only one initial state1.

� T (X ,XI ,X ′) is a transition predicate over X ∪ XI ∪ X ′. For a set X of

variables, we denote the set of primed variables of X as X ′ = {x′ ∣ x ∈ X},

which represents a set of variables encoding the successor states. T (s , in, s ′)
is true iff s ′ can be a next state when the input in ∈ S I is received at the

state s . T can define a non-deterministic transition relation.

Definition 9 (Deterministic/non-deterministic web service). A web service w(X ,

XI ,XO, Init ,T ) is deterministic if T is deterministic; namely, if for every state

s and every input in, there exists only one next state s ′ (i.e., T (s , in, s ′) = true).

Otherwise, w is non-deterministic.

Given a state s over X (i.e. a valuation for all the variables in X) and a variable

x ∈ X, s(x) is the value of x in s . For a state s over X , let s[Y ] where Y ⊆ X
denote the valuation over Y obtained by restricting s to Y . For every x ∈ XI , we

add a special value null into its domain. If a web service receives null as the value

for any input variable, it stays at the same state; formally, if T (s , in, s ′) = true

such that in(x) = null for some x ∈XI , then s = s ′.

Example 3. Consider a simple version of a web service w for the airline reser-

vation in Example 4.1.1, and assume that clients can request (reserve or refuse)

a flight ticket by an action req1 or req2 (accept or refuse, respectively). The web

service w can be represented as (X ,XI ,XO, Init ,T ) where:

� X = {state,avail,reply,confirm,f num,tr num} where state has the domain

{q1 , q2}, avail is boolean, reply has the domain {undecided , offer , notAvail},

confirm has the domain {undecided , reserve, cancel}, f num (flight number) has

the domain {f1 , f2}, and tr num (transaction number) has the domain {t1 , t2}.

� XI = {action} where action has the domain {req1, req2, accept , refuse}.

� XO = {reply,confirm,f num}.

1We can simply simulate multiple initial states with ε-transitions.



60

� Init(X ) ≡ (state = q1 ) ∧ (reply = undecided)

∧(confirm = undecided).

� T(X ,XI ,X ′) ≡

(((state = q1 ) ∧ (action = req1) ∧ (avail = true)) →

((state′ = q2 ) ∧ (reply′ = offer) ∧ (tr num′ = t1 )))

∧ (((state = q1 ) ∧ (action = req1)) → (f num′ = f1 ))

∧ ⋯

∧ (((state = q2 ) ∧ (action = accept)) →

((state′ = q1 ) ∧ (confirm′ = reserve)))

∧ (((state = q2 ) ∧ (action = refuse)) →

((state′ = q1 ) ∧ (confirm′ = cancel))).

Note that the process model for any web service described in Semantic Web

languages (e.g. OWL-S [12] or WSBPEL [11]) can be easily transformed into

our representation above without any information loss if it has only finite domain

variables and no recursion2.

In the WSC problem, given a set of available web services, W , every web service

in W communicates only with their coordinator but not with each other. Based

on this assumption, given a set W = {w1,⋯,wn} of web services where each wi =
(Xi,XI

i ,X
O
i , Init i,Ti), W also can be represented by a tuple (X ,XI ,XO, Init ,T )

where

� X = X1 ∪⋯ ∪Xn.

� XI =XI
1 ∪⋯ ∪XI

n.

� XO =XO
1 ∪⋯ ∪XO

n .

� Init(X) = Init1 ∧⋯ ∧ Initn.

� T (X ,XI ,X ′) = T1 ∧⋯ ∧Tn.

Since a coordinator web service is also a web service, it is a tuple c = (Xc,XI
c ,

XO
c , Initc,Tc). Although Tc can define a non-deterministic transition relation, in

this problem we want only a deterministic transition relation for c; i.e., for every

s and in, there exists only one s ′ such that Tc(s , in, s ′) = true.

2For this translation, see [110].



61

Definition 10 (Execution tree). Given a set W = (X , XI , XO, Init , T ) of web

services and a coordinator c = (Xc, XI
c , X

O
c , Initc, Tc) where XI = XO

c and

XO = XI
c , we can define an execution tree, denoted by W ∣∣c, which represents

the composition of W and c as follows:

� Each node in W ∣∣c is in S × Sc.

� The root node is (s , sc) such that Init(s) = true and Initc(sc) = true.

� For each node (s , sc), it has a set of child nodes, {(s ′, s ′c) ∣ T (s , in, s ′) =
true, in=sc[XI], Tc(sc, inc, s ′c)=true, inc=s ′[XO]}.

In the above, intuitively, the web services W , by receiving the input in from

the current state sc of the coordinator, collectively proceeds from s to the next

state s ′, and then the coordinator, by receiving the input inc from the new state

s ′ of the web services, proceeds from sc to the next state s ′c. Even though the

composition of W and c is defined as synchronous communication, we can easily

extend this model for asynchronous communication using τ -transition [76]. A goal

G ⊆ S is a set of states to reach, and specified as a predicate. Given a set W of

web services, a coordinator c, and a goal G , we define W ∣∣c ⊧ G if for every path

(s0, s0
c )(s1, s1

c )⋯ in the execution tree W ∣∣c, there exists i ≥ 0 such that s i ∈ G ;

namely, every path from the initial node (s0, s0
c ) reaches a goal state eventually.

Definition 11 (Web service composition problem). The web service composition

(WSC) problem that we focus on in this thesis is, given a set W of web services

and a goal G, to construct a coordinator web service c such that W ∣∣c ⊧ G.

Example 4. In Example 4.1.1, we wish to reserve both a flight ticket and a hotel

room. This can be represented as G ≡ (flightConfirm = reserve)∧(hotelConfirm =
reserve). Now, given a set W = {wAR,wHR} of web services and the goal G above,

a WSC problem is to construct a coordinator web service c such that W ∣∣c ⊧ G.

To study the computational complexity for web service composition problems,

we define two WSC problems and the corresponding decision problems as follows:

� WSC with complete information: a special case of WSC problems where

W = (X ,XI ,XO, Init ,T ) such that X = XO; i.e., W contains no local vari-

able.



62

# # . . .. . .

Head

a1 a2 a3 an

state = q ∶ ∀
cf = (q, a1a2, a3⋯an)

∃(2)

∀(1)

∀(2)

accept(0) ∃(−) accept(0)

accept(0)accept(0)

∃(1)

(a) Snapshot of ATM (b) Computation tree

Figure 4.2. Alternating Turing machine

� WSC with incomplete information: a general WSC problem where there

is no restriction for XO. That is, a coordinator can read only the output

variables for W .

� Decision problem for WSC with complete information: given W =
(X ,XI ,XO, Init ,T ) where XO = X and a goal G ⊆ S, is there a coordinator

web service c such that W ∣∣c ⊧ G?

� Decision problem for WSC with incomplete information: given a set

W of web services and a goal G , is there a coordinator c such that W ∣∣c ⊧ G?

4.1.3 Alternating Turing Machine

Definition 12 (Alternating Turing machine). An alternating Turing machine

(ATM) [111, 112, 113] (see Figure 4.2(a)) is a tuple A = (Q ,Σ, q0, δ, l) where:

� Q is a finite set of states.

� Σ is a finite set of tape alphabets.

� q0 ∈ Q is the initial state.

� δ ∶ Q ×Σ → 2Q×Σ∪{#}×{L,N ,R} is a transition function where {L,N ,R} repre-

sents the R/W head movement (i.e., it moves left, stays, and moves right).

� l ∶ Q → {∀,∃,accept} is a labeling function for states.



63

A configuration of an ATM A(Q ,Σ, q0, δ, l) is a tuple cf = (q , σ, σ′) where

q ∈ Q is the current state, σ ∈ Σ∗ is the tape contents left of the R/W head with

rightmost symbol under the R/W head, and σ′ ∈ Σ∗ is the tape contents strictly

right of the R/W head. Figure 4.2(a) shows an example of the configuration,

cf = (q , a1a2, a3⋯an).
Given an ATM A with an input string aσ, the initial configuration is cf 0 =

(q0, a, σ). Then, we define successor configurations, denoted by ⊢ (i.e., (q1, σ1, σ′1) ⊢
(q2, σ2, σ′2) iff (q2, σ2, σ′2) is a successor of (q1, σ1, σ′1)), as follows:

� If (q ′, a′,L) ∈ δ(q , a), (q , σa, σ′) ⊢ (q ′, σ, a′σ′).

� If (q ′, a′,N) ∈ δ(q , a), (q , σa, σ′) ⊢ (q ′, σa′, σ′).

� If (q ′, a′,R) ∈ δ(q , a), (q , σa, bσ′) ⊢ (q ′, σa′b, σ′).

� If (q ′, a′,R) ∈ δ(q , a), (q , σa, ε) ⊢ (q ′, σa′#, ε) where ε is the empty string

and # is the blank symbol.

Definition 13 (Computation tree). Given an ATM A and an input string σ, we

can construct the computation tree (where each node in the tree is a configuration

of A) as follows:

� The root node is the initial configuration.

� For each node cf = (qi, σi, σ′i), a set of child nodes for cf is {(qi+1, σi+1, σ′i+1) ∣
(qi, σi, σ′i) ⊢ (qi+1, σi+1, σ′i+1)}.

Definition 14 (d-accepting configuration). Given an ATM A and its input string

σ, to see if A accepts σ, we define d-accepting for configurations in its computation

tree by the bottom-up manner:

� (q , σ, σ′) is 0-accepting if l(q) = accept.

� (q , σ, σ′) with l(q) = ∀ is d-accepting if all successor nodes are d′-accepting

for some d′ < d and max(d′) = d−1.

� (q , σ, σ′) with l(q) = ∃ is d-accepting if at least one of its child nodes is

d′-accepting for some d′ < d and min(d′) = d−1.



64

Figure 4.2(b) illustrates a computation tree where each node (configuration)

has a label (e.g., ∀,∃ or accept) for the corresponding state and the numbers in

parentheses represent that the corresponding state is some d-accepting. In this

example, the node with ∃(−) is not some d-accepting since there is no successor

node which is some d-accepting. However, the root node (the initial configuration)

is 2-accepting. Finally, A accepts σ (i.e., σ ∈ L(A)) if the initial configuration is

d-accepting for some n ≥ 0.

4.1.4 Complexity classes

In this thesis, we consider complexity classes [111, 112, 113] in Table 4.1. DTIME(f)

is a time consumption complexity on Deterministic Turing Machines (DTMs),

and DSPACE(f) is a space consumption complexity on DTMs. Similarly, we

have ATIME(f) and ASPACE(f) as time and space consumption complexities on

ATMs, respectively.

The class PSPACE (EXPSPACE) is the set of decision problems that can be

solved by a DTM using a polynomial (exponential) amount of memory, respectively.

Similarly, the class APSPACE (AEXPSPACE) is the set of decision problems that

can be solved by an ATM using a polynomial (exponential) amount of memory,

respectively. Chandra et al. [114] have proved the interesting connection between

time complexities on DTM and space complexities on ATM:

Theorem 1. EXP = APSPACE, and 2-EXP = AEXPSPACE [114].

We will use Theorem 1 in out proofs. Note that the computational complexity

classes in Table 4.1 have the following relationship:

P ⊆ PSPACE ⊆ EXP (=APSPACE) ⊆ EXPSPACE ⊆ 2-EXP (=AEXPSPACE)

4.2 The Computational Complexities

In this section, we study the computational complexities (lower bounds) for the

behavior description-based WSC problem defined in Sec 4.1.2. Our proofs use



65

Table 4.1. Computational complexity
Time

P = ⋃k≥0 DTIME(nk)
EXP = ⋃k≥0 DTIME(2nk)

2-EXP = ⋃k≥0 DTIME(22n
k

)

Space

PSPACE = ⋃k≥0 DSPACE(nk)
APSPACE = ⋃k≥0 ASPACE(nk)

EXPSPACE = ⋃k≥0 DSPACE(2nk)
AEXPSPACE = ⋃k≥0 ASPACE(2nk)

reductions from ATMs that we defined in Sec 4.1.3, which show the space com-

plexities for the problems. Finally, based on Theorem 1, we establish the time

complexities.

4.2.1 The Complexity of WSC with complete information

Theorem 2. The WSC problem with complete information is EXP-hard.

The proof is to simulate an ATM with a polynomial tape length. That is, for

any ATM A and an input string σ, we can construct a WSC problem in polynomial

time such that A accepts σ if and only if there exists a coordinator to satisfy a

goal. We prove it using the following lemmas.

Lemma 1. Given an ATM A = (Q ,Σ, q0, δ, l) with polynomial space bound p(n)
and an input string σ = a1⋯an (where n = ∣σ∣), we can construct a WSC problem

instance with W and a goal G.

Proof 2. We can construct a set W (X ,XI ,XO, Init ,T ) of web services and a

goal G which have a polynomial size in the size of the description of A and σ as

follows. The set X of variables includes the following variables:

� state represents the current state of A; so, it has the domain, {q ∣ q ∈ Q}.

� For 1 ≤ i ≤ p(n), cl i has the contents of the ith tape cell; its domain is

Σ ∪ {#}.

� hd describes the R/W head position; its domain is {1,⋯, p(n)+1}.

� label represents the label of the current state; it has the domain, {∀,∃,accept}.



66

The set of input variables is XI = {input} where the domain of input is {A(q,i,a) ∣
q∈Q, l(q)=∀,0≤i≤p(n), a∈Σ} ∪ {E(q,i,a,j) ∣ q∈Q, l(q)=∃,0≤i≤p(n), a∈Σ,0≤j≤∣δ(a, q)∣}.

The set XO of output variables equals to X since this problem is the complete

information problem. As the initial configuration of A, the initial state predicate

Init(X ) is (state=q0) ∧ ⋀1≤i≤n(cl i=ai) ∧ ⋀n<i≤p(n)(cl i=#) ∧ (hd=1) ∧ (label=l(q0)).

Note that the input string is σ = a1⋯an. The transition predicate T (X ,XI ,X ′)
is ((hd=p(n)+1) → TV ) ∧ ((label=∀) → T∀) ∧ ((label=∃) → T∃) with the following

sub-formulae

� TV ≡ (state ′=state) ∧ (hd ′=hd) ∧ (label ′=label)

� T∀ ≡ ⋀q∈Q,1≤i≤p(n),a∈Σ(((state = q) ∧ (hd = i) ∧ (cl i = a) ∧ (input =A(q,i,a))) →
⋁1≤j≤k((state ′=qj)∧ (cl ′i=aj)∧⋀m≠i(cl ′m=clm)∧ (hd ′=hd +∆)∧ (label ′=l(qj))))

� T∃ ≡ ⋀q∈Q,1≤i≤p(n),a∈Σ,1≤j≤k(((state=q) ∧ (hd=i) ∧ (cl i=a) ∧ (input=E(q,i,a,j))) →
((state ′=qj) ∧ (cl ′i=aj) ∧ ⋀m≠i(cl ′m=clm) ∧ (hd ′=hd +∆) ∧ (label ′=l(qj))))

where (qj, aj,mj) is obtained from δ(q, a) = {(q1, a1,m1),⋯, (qk, ak,mk)}, and ∆=
−1 if mj=L, ∆=0 if mj=N and ∆=1 if mj=R. Note that the value for the variable

input is provided by a coordinator c. Finally, we have a goal, G = {s∈S ∣ s(label) =
accept}.

If the ATM A violates the space bound, the variable hd has the value p(n)+1,

and after this point we cannot reach goal states since W stays the same state and

the same head position forever by TV .

Lemma 2. If σ ∈ L(A), then there exists a coordinator c = (Xc,XI
c ,X

O
c , Initc,Tc)

such that W ∣∣c ⊧ G.

Proof 3. As Sec 12, σ ∈ L(A) means that the initial configuration of A with

respect to σ is m-accepting (m ≥ 0). Now, we show that there exists a coordinator

c such that for every path (s0, s0
c )(s1, s1

c )⋯ in the execution tree W ∣∣c, there exists

s i ∈ G. The coordinator to be constructed is c = (Xc,XI
c ,X

O
c , Initc,Tc) where

Xc = {input}, XI
c = X , and XO

c = {input}. We will provide Initc and Tc in the

later of this proof.

When A accepts σ, we can define an accepting computation tree ACT (A,σ) of

A with respect to σ from its computation tree Υ as follows:



67

� For each configuration cf = (q, σ1, σ2) ∈ Υ such that l(q) = ∀, all the successor

configuration are also included in ACT (A,σ). Note that if cf is m-accepting,

each successor is at most (m−1)-accepting.

� For each cf = (q, σ1, σ2) ∈ Υ such that l(q) = ∃ and cf is m-accepting, only one

successor configuration cf ′ which is (m−1)-accepting is included in ACT (A,σ).

When A and σ are clear from the context, we drop the subscript (A,σ) and write

ACT . Let σ[i] be the i-th symbol of the string σ. Then, ACT (A,σ) is mapped into

an execution tree W ∣∣c. For this mapping, we have two mapping functions, α and

β; α maps a configuration cf in ACT to a state s of web services W , and β maps

cf to a state sc of the coordinator c. First, for each cf = (q, σ1, σ2), we have a

corresponding state s = α(cf ) of W such that

� s(state) = q.

� For 1 ≤ i ≤ ∣σ∣, s(cl i) = σ[i] where σ = σ1σ2, and for ∣σ∣ < i ≤ p(n), s(cl i) = #.

� s(hd) = ∣σ1∣.

� s(label) = l(q).

Next, for each configuration cf = (q, σ1, σ2), we have a corresponding state

sc = β(cf ) of c such that

� If l(q) = ∀, then sc(input) = A(q,i,a) where i = ∣σ1∣ and a = σ1[i].

� In the case of l(q) = ∃, let cf ′ be the only successor of cf in ACT , which is

obtained by a transition (qj, aj,mj) among δ(q, a) = {(q1, a1,m1),⋯, (qk,
ak,mk)} where a = σ1[∣σ1∣]. Now, if l(q) = ∃, sc(input) = E(q,i,a,j) where

i = ∣σ1∣ and a = σ1[i].

According to α and β, we have an execution tree of W ∣∣c where each node

is (α(cf ), β(cf )). Now, we show by induction, that if cf in ACT is m-accepting,

every path from the corresponding node (α(cf ), β(cf )) in W ∣∣c reaches a goal state

eventually. During the induction, we also provide the transition predicate Tc of c.

Base case: If cf = (q, σ1, σ2) is 0-accepting, s = α(cf ) is a goal state since

s(label) = l(q) = accept.



68

Induction hypothesis: If cf is (m−1)-accepting, we assume that every path from

the corresponding node (α(cf ), β(cf )) in W ∣∣c reaches a goal state eventually.

Induction step: There are two cases: (1) cf = (q, σ1, σ2) is a ∀-configuration

(i.e. l(q) = ∀) and (2) cf = (q, σ1, σ2) is a ∃-configuration (i.e. l(q) = ∃).

(1) First, for ∀-configurations we can define the transition Tc for the coordinator

as ⋀q∈Q,1≤i≤p(n),a∈Σ(((state=q) ∧ (label=∀) ∧ (hd=i) ∧ (cl i=a)) → (input ′=A(q,i,a))).

Note that Tc decides, based on the value for variables in XI
c , the value for input

as the input to W . Let cf = (q, σ1, σ2) be a m-accepting ∀-configuration with

successor configurations cf 1,⋯, cf k. For cf , we have a corresponding node (s , sc)
in W ∣∣c where s = α(cf ) and sc = β(cf ). Then, according to T and Tc, we

have successor nodes (s1, sc1),⋯, (sk, sck). Since our transition predicates T and

Tc strictly follow the transition function δ of A, these nodes are consistent with

(α(cf 1), β(cf 1)),⋯, (α(cf k), β(cf k)) where each cf i is m′-accepting (m′<m). Con-

sequently, by the induction hypothesis every path from each (si, sc i) reaches a goal

state. Finally, every path from (α(cf ), β(cf )) also reaches a goal state.

(2) Let cf = (q, σ1, σ2) be a m-accepting ∃-configuration with the successor con-

figuration cf ′. Note that by the definition of ACT , m-accepting ∃-configurations

(for any m) have only one successor configuration which is (m−1)-accepting. Let

(qj, aj,mj) be the transition from cf to cf ′ which is j-th among δ(q, a) = {(q1, a1,m1),⋯, (qk, ak,mk)}
where a = σ1[∣σ1∣]. Now, we can define, for ∃-configurations, the transition Tc for

the coordinator as ⋀q∈Q,1≤i≤p(n),a∈Σ(((state =q) ∧ (label =∃) ∧ (hd =i) ∧ (cl i=a)) →
(input ′=E(q,i,a,j))). For cf , we have a corresponding node (s , sc) in W ∣∣c where

s = α(cf ) and sc = β(cf ). Then, according to T and Tc, we have one successor

node (s ′, s ′c). Again, since our transition predicates T and Tc strictly follow the

transition function δ of A, this node is consistent with (α(cf ′), β(cf ′)) where each

cf ′ is (m−1)-accepting. Consequently, by the induction hypothesis, every path from

(s ′, s ′c) reaches a goal state. Finally, every path from (α(cf ), β(cf )) also reaches

a goal state.

Similarly with Tc, we can define the initial predicate Initc for c as ((l(q0)=∀) →
(input=A(q0,1,a1)))∧((l(q0)=∃) → (input=E(q0,1,a1,j))) where a1 is the first symbol of

the input string and j is the index of the transition by which the ATM proceeds from

the initial configuration to the next in the case of ∃-initial configuration. Finally,

since the initial configuration is m-accepting, every path from the initial node of



69

W ∣∣c reaches a goal state; i.e., W ∣∣c ⊧ G.

Lemma 3. If there exists a coordinator c such that W ∣∣c ⊧ G, then σ ∈ L(A).

Proof 4. As Sec 4.1.2, the fact that there exists a coordinator c such that W ∣∣c ⊧ G

means that every path (s0, s0
c )(s1, s1

c )⋯ from the initial node in the execution tree

W ∣∣c reaches a goal state eventually. Now, we show that an ACT for A corre-

sponding to W ∣∣c can be constructed and the initial configuration is m-accepting.

We denote as ST , a finite subtree of W ∣∣c which includes, for every path

(s0, s0
c )(s1, s1

c )⋯ of W ∣∣c, its prefix ending at a goal state (i.e. (s0, s0
c )⋯(sk, skc )

such that sk ∈ G). In what follows, we construct an ACT for the ATM A from the

subtree ST . For the mapping, we have a mapping function γ which maps a state s

of web services W to a configuration cf of A. For each state s such that s(state)=q,
s(cl i)=bi where 1≤i≤p(n), s(hd)=i and s(label)=l(q), we have a corresponding con-

figuration cf = γ(s) = (q, σ1, σ2) such that σ1 = b1⋯bi and σ2 = bi+1⋯bk−1 where k is

the index of the first appearance of #.

Now, we claim that if among every path from a node (s , sc) to a goal in ST , the

length of the longest one is m, the corresponding configuration γ(s) is m-accepting.

We show by induction that our claim is correct.

Base case: If s is a goal state, cf = γ(s) is 0-accepting since s(label) = l(q) =
accept.

Induction hypothesis: We assume that if among every path from a node (s , sc)
to a goal in ST , the length of the longest one is m−1, the configuration γ(s) is

(m−1)-accepting.

Induction step: There have two cases: (s , sc) with (1) s(label) = ∀ and (2)

s(label) = ∃.

(1) Among every path from a node (s , sc) to a goal in ST such that s(label) = ∀,

let the length of the longest one be m. Let (s , sc) have successor nodes (s1, sc1),⋯,
(sk, sck) in ST . For (s , sc), we have a corresponding configuration cf = γ(s).

Then, according to δ, cf has cf 1,⋯, cf k as its successor configurations. Since

T and Tc strictly follow the transition function δ of A, these configurations are

consistent with γ(s1),⋯, γ(sk). In the successors of (s , sc), some (si, sc i) has m−1

as the longest path length and the rest have less than m−1. Thus, by the induction

hypothesis the configuration γ(si) for si is (m−1)-accepting, and the rest are less

than (m−1)-accepting. Finally, the configuration γ(s) is m-accepting.



70

(2) Among every path from a node (s , sc) to a goal in ST such that s(label) = ∃,

let the length of the longest one be m. According to our transition predicates T and

Tc, (s , sc) has only one successor (s ′, s ′c) which has m−1 as the length of the longest

path to a goal. For (s , sc), we have a corresponding configuration cf = γ(s). Then,

according to δ, cf has cf 1,⋯, cf k as its successor configurations, one of which,

say cf i, is consistent with γ(s ′). By the induction hypothesis the corresponding

configuration cf i = γ(s ′) is (m−1)-accepting. Hence, the configuration γ(s) is

m-accepting.

Finally, since the initial node (s , sc) of ST has m (for some m ≥ 0) as the

length of the longest path to a goal, the corresponding configuration γ(s), namely

the initial configuration of A, is m-accepting.

4.2.2 The Complexity of WSC with incomplete informa-

tion

Theorem 3. The WSC problem with incomplete information is 2-EXP-hard.

The proof is to simulate an ATM with exponential tape length. As Theorem

2, we prove it by the following lemmas.

Lemma 4. Given an ATM A = (Q ,Σ, q0, δ, l) with exponential space bound e(n)
and an input string σ = a1⋯an (where n = ∣σ∣), we can construct a WSC problem

instance with W and a goal G.

Proof 5. An important difference with the complete information problem is that

we are not allowed to have a variable for each tape cell since the number of tape cells

is exponential and the reduction could not be polynomial. Instead of including an

exponential number of variables cl i, we have one variable cl and its index idx . The

trick is to establish that if the index matches the current head position, W should

simulate the ATM A, and to force the above to be satisfied universally for every

index idx . Given an ATM A with σ, we construct a set W (X ,XI ,XO, Init ,T ) of

web services and a goal G as follows. The set X of variables includes the following

variables:

� state; its domain is {q ∣ q ∈ Q}.



71

� idx ; its domain is {1,⋯, e(n)}.

� cl represents the contents of the cell of which index is idx ; its domain is

Σ ∪ {#}.

� hd; its domain is {1,⋯, e(n)+1}. For idx and hd, we need only ⌈log2(e(n)+1)⌉
bits.

� label ; it has a domain, {∀,∃,accept}.

� lsb represents the symbol written by the head in the last step; it has a domain,

Σ ∪ {#}.

The set XI is {input} where the domain of input is {A(q,a) ∣ q∈Q, l(q)=∀, a∈
Σ}∪{E(q,a,j) ∣ q∈Q, l(q)=∃, a∈Σ,0≤j≤∣δ(a, q)∣}. The set XO is {state, cl}. Init(X ) is

(state=q0)∧((idx≤∣σ∣) ⇔ (cl=aidx))∧((idx>∣σ∣) ⇔ (cl=#))∧(hd=1)∧(label = l(q0)).

The initial predicate allows any value for idx , and the value for cl is determined

on idx . The transition predicate T (X ,XI ,X ′) is ((hd=e(n)+1) → TV ) ∧ ((label=
∀) → T∀) ∧ ((label=∃) → T∃) with the following sub-formulae

� TV ≡ (state ′=state) ∧ (hd ′=hd) ∧ (label ′=label)

� T∀ ≡ ⋀q∈Q,a∈Σ(((state = q) ∧ ((hd = idx) → (cl = a)) ∧ (input = A(q,a))) →
⋁1≤j≤k((hd=idx) → ((state ′=qj)∧(cl ′=aj)∧(hd ′=hd +∆)∧(label ′=l(qj))∧(lsb′=
aj))))

� T∃ ≡ ⋀q∈Q,a∈Σ,1≤j≤k(((state=q) ∧ ((hd =idx) → (cl =a)) ∧ (input =E(a,q,j))) →
(((hd=idx) → (state ′=qj)∧ (cl ′=aj)∧ (hd ′=hd+∆)∧ (label ′=l(qj))∧ (lsb′=aj))))

where (qj, aj,mj) is obtained from δ(q, a) = {(q1, a1,m1),⋯, (qk, ak,mk)} and ∆=−1

if mj=L, ∆=0 if mj=N and ∆=1 if mj=R. Finally, we have a goal, G = {s ∈S ∣
s(label) = accept}.

If the ATM A violates the space bound, the variable hd has the value e(n) + 1,

and after this point we cannot reach goal states since W stays the same state and

the same head position forever by TV .

Lemma 5. If σ ∈ L(A), then there exists a coordinator c such that W ∣∣c ⊧ G.



72

Proof 6. Given A such that σ ∈ L(A), we can construct a coordinator c =
(Xc,XI

c ,X
O
c , Initc,Tc) where Xc = {input}, XI

c = {state, lsb}, and XO
c = {input}.

As the proof of Lemma 2, we can define Tc with a conjunction of two cases: ∀-

state and ∃-state. That is, if l(q) = ∀, the transition predicate is ⋀q∈Q,a∈Σ(((state=
q)∧(cl=a)) → (input ′=A(q,a))). Otherwise, ⋀q∈Q,a∈Σ(((state=q)∧(cl=a)) → (input ′=
E(q,a,j))) where j is the index of the transition by which the ATM proceeds from

the corresponding ∃-configuration to the next in ACT (A,σ). Similarly with Tc, we

can define the initial predicate Initc as ((l(q0)=∀) → (input=A(q0,a1))) ∧ ((l(q0)=
∃) → (input=E(q0,a1,j))) where a1 is the first symbol of the input string σ and j is

obtained as the above.

Now, we show that ACT (A,σ) is mapped into an execution tree W ∣∣c. For this

mapping, we have two mapping functions, α and β; α maps a configuration cf in

ACT to a state s of web services W , and β maps cf to a state sc of the coordinator

c. First, given a configuration cf = (q, σ1, σ2) and a tape index 1≤i≤e(n), we have

a corresponding state s = α(cf , i) of W such that

� s(state) = q.

� s(cl) = σ[i] if i ≤ σ where σ = σ1σ2; otherwise, s(cl) = #.

� s(idx) = i.

� s(hd) = ∣σ1∣.

� s(label) = l(q).

The mapping function β is the same with β in Lemma 2. Now, we claim that

if cf in ACT is m-accepting, then for every 1 ≤ i ≤ e(n) every path from the

corresponding node (α(cf , i), β(cf )) reaches a goal state eventually. By using the

property that T and Tc strictly follow the transition function δ of A, we can prove

the claim by induction as Lemma 2. We omit the induction for the space limit.

Finally, since the initial configuration of ACT is m-accepting, every path from

the initial node of W ∣∣c reaches a goal state; that is, W ∣∣c ⊧ G.

Lemma 6. If there exists a coordinator c such that W ∣∣c ⊧ G, then σ ∈ L(A).



73

Proof 7. For the finite subtree ST of W ∣∣c, we construct ACT (A,σ). However,

unlike Lemma 3, we are not able to construct a configuration directly from a state

of W since W does not have all the tape contents, but only cl and lsb. Now, our

trick is to construct the computation tree by a top-down manner. Even though the

initial state of W has only cl and lsb, we can construct the initial configuration as

cf = (q0, a, σ′) where the input string σ = aσ′. Given a predecessor configuration

cf 1 = (q1, σ1, σ′1) and a state s of W such that s(state)=q, s(cl)=a1, s(idx)=i,
s(hd) =h, s(label) = l(q), and s(lsb) = a2, our mapping function γ maps s to a

configuration cf 2 = (q, σ2, σ′2) where ∣σ2∣ = h and for σ2 and σ′2, σ2σ′2 is copied from

σ1σ′1 except (σ2σ′2)[∣σ1∣] = a2.

Now, we claim that if among every path from a node (s , sc) to a goal in ST , the

length of the longest one is m, the corresponding configuration γ(s) is m-accepting.

By using the property that our T and Tc strictly follow the transition function δ

of A, we can prove the claim by induction as Lemma 3.We omit the induction.

Finally, since the initial node (s , sc) of ST has m (for some m ≥ 0) as the

length of the longest path to a goal, the corresponding configuration γ(s), namely

the initial configuration of A, is m-accepting.

4.3 Approximation Algorithms

Our findings in the previous section 4.2 suggest that much more efforts to find “al-

ternative” solutions to the WSC problem such as an approximation algorithm be

needed. Toward this challenge, we propose two approximation-based algorithms

using abstraction and refinement. The first step is to reduce the original web ser-

vices to the abstract ones with less variables and then try to solve the abstract

problem. If we identify a coordinator that controls the abstract web services to

satisfy a given goal, the coordinator can control the original web services to satisfy

the goal since the abstract web services over-approximate the concrete ones. Oth-

erwise, we refine the abstract web services by adding variables, and repeat to find a

solution. For abstraction, we propose two methods—signature-preserving abstrac-

tion and signature-subsuming abstraction. Our experiment on 3 sets of realistic

problems (8 instances) shows that our technique outperforms a basic algorithm

without abstraction/refinement.



74

4.3.1 Basic Algorithm for WSC Problem

In this section, we study a basic algorithm for the general WSC problem defined

in Section 4.1. Several researches [115, 76] have successfully applied a planning

technique with partial observation [116] to WSC problems. Thus, we also employ

the same method for our baseline algorithm; Algorithm 3 for the WSC problem

is based on the automated planning algorithm on partial observation [116]. In a

general case of WSC, a coordinator web service is not able to identify the exact

state of target web services. Hence, we model this uncertainty by using a belief

state, which is a set of possible states of target web services but indistinguishable.

The underlying idea of Algorithm 3 is to construct an and-or searching tree from

initial belief states to goal belief states. That is, from any node (a belief state) of

the tree, for non-determinism of output values of web services, we extend the tree

with a set of child nodes via and-edges. In this case, all the child nodes should

reach a goal belief state. For coordinator’s selecting input values, we construct a

set of child nodes via or-edges. In this case, at least one child is required to reach

a goal belief state.

To initialize the and-or searching tree, Algorithm 3 first constructs a root node

(a belief state) corresponding to the given initial predicate, Init , and assigns “un-

decided” to the result value for the root (lines 1–2). If the states corresponding

to Init are already included in goal states, we assign “true” to the result value

for the root. Next (lines 5–12), until determining the result value for the root, we

repeat: (1) to select a node which is not determined yet as “true” or “false”, (2)

to extend the tree from the selected node by computing a set of possible successor

nodes, and (3) to check if the node can reach a goal state based on the and-or

constraint. Once we identify the result of each node, we propagate the result to its

ancestor node. Finally, if the algorithm identifies the result of root node as true,

it constructs a coordinator web service from the tree, and returns the coordinator.

Otherwise, it returns null. The complexity of the algorithm is O(22n) where n is

the number of variables in W , since the number of states of W is 2n and thus the

number of belief states is 22n (recall Theorem 3).



75

Algorithm 3: WSC with partial observation
Input : A set W of web services and a goal G .
Output: A coordinate web service c.

1 tree ∶= InitializeSearchingTree(Init);
2 tree.root .result ∶= undecided ;
3 if (States(Init) ⊆ States(G)) then
4 tree.root .result ∶= true;
5 end if
6 while (tree.root .result = undecided) do
7 node ∶= SelectNode(tree);
8 childNodes ∶= ExtendTree(tree,node);
9 if (CheckSuccess(childNodes)) then

10 node.result ∶= true;
11 end if
12 else if (CheckFailure(childNodes)) then
13 node.result ∶= false;
14 end if
15 PropagateResult(tree,node);

16 end while
17 if (tree.root .result = true) then
18 return ConstructCoordinator(tree);
19 end if
20 else return null ;

4.3.2 Signature-preserving Abstraction and Refinement

Theorems 2 and 3 imply that the WSC problem is computationally hard. Hence,

more efforts to devise efficient approximation solutions to the WSC problem are

needed. In addition, the complexity of Algorithm 3 also provides the same implica-

tion. Therefore, we propose two approximation-based methods using abstraction

and refinement in Sections 4.3.2 and 4.3.3.

4.3.2.1 Signature-preserving abstraction

Given a set W of web services, we define signature-preserving abstract web services

that have the same signature (i.e., the same I/O variables) but less variables than

W .

Definition 15 (Signature-preserving abstract web services). Given a set of web

services W (X , XI , XO, Init , T ) and a set Y of variables such that XIO ⊆ Y ⊆XA,



76

the signature-preserving abstraction of W with respect to Y is WY (XY , XI
Y , X

O
Y ,

InitY , TY ) where:

� XY = Y ∖XI , XI
Y =XI , and XO

Y =XO.

� For every sY ∈ SY , InitY (sY ) = true iff ∃s ∈ S. (Init(s) = true)∧(sY = s[XY ]).

� For every sY , s′Y ∈ SY , TY (sY , in, s′Y ) = true iff ∃s, s′ ∈ S. (T (s, in, s′) =
true) ∧ (sY = s[XY ]) ∧ (s′Y = s′[XY ]).

Since WY preserves the signature of W , once we construct a coordinator c

which can be composed with WY based on Definition 10, c also can be composed

with W . Moreover, since the abstraction WY over-approximates the concrete web

services W (i.e., WY contains all the behaviors of W ), WY satisfies the following

property.

Theorem 4 (Soundness). Given a set W of web services and a goal G, if a

coordinator web service c satisfies W ′∣∣c ⊧ G where W ′ is a signature-preserving

abstraction of W (e.g., WY in Definition 15), then c also satisfies W ∣∣c ⊧ G.

Example 5 (Abstraction). Figure 4.3(a) illustrates the concrete state space with

6 states, where there are three internal variables—state,avail,tr num. Symbols

above arrows represent a value of an input variable. In this example, from the

state s1, we have a strategy to guarantee to reach GOAL—invoking req and order.

Figure 4.3(b) shows an abstract state space with respect to {state,avail}. s1 and

s4 in the original space are mapped to s7 and s9, respectively. Two states, s2 and

s3, (s5 and s6) collapse into s8 (s10, respectively). Although the number of states

decreases, every path in the original state space is mapped to one of paths in the

abstract space. Moreover, from the state s7 corresponding to s1, we still have a

strategy to guarantee to reach GOAL. Figure 4.3(c) shows a coarser abstraction.

However, from the state s11 corresponding to s1, we no longer have a strategy to

guarantee to reach GOAL since we abstract out too much.

4.3.2.2 Abstraction and Refinement algorithm

Algorithm 4 presents a high-level description of our method based on signature-

preserving abstraction. In a nutshell, we abstract a given web services W into W ′



77

req

req

req

req

order

order

GOAL
order

order

state = q2

avail = true
tr num = t1

state = q2

tr num = t1
avail = false

s1

state = q1

avail = true

state = q1

avail = false

s2 s3

state = q2

avail = true
tr num = t2

state = q2

tr num = t2
avail = false

s4 s5 s6

(a) Original states for {state,avail,tr num}

order
GOAL

req

req

order

state = q2

avail = true

state = q2

avail = false

state = q1

state = q1

s7

avail = true

avail = false

s8

s9 s10

(b) Abstract states for {state,avail}

order
GOAL

order

req

state = q2

s12s11

state = q1

(c) Abstract states for {state}
Figure 4.3. Abstraction

and try to find a solution for the abstraction W ′. If we identify such a coordinator,

it can indeed control the original web services W to satisfy a given goal. Otherwise,

we repeat the search with more accurate abstraction.

First, we abstract W with only input and output variables, i.e., Y = XI ∪
XO (lines 1–2). Since, at this point, WY does not include any internal variable

(i.e., XY = XO
Y ), we can exploit, in this case, the algorithm for WSC with full

observation, WSCFullObs, which is more efficient algorithm (EXP-hard). For the

sake of space, we do not show the details of WSCFullObs. If we find a coordinator c

such that WY ∣∣c ⊧ G , then c also satisfies W ∣∣c ⊧ G by Theorem 4. Otherwise, we

refine our current abstraction WY by adding more variables, and try to find c for the

new abstraction (lines 6–10). How to select additional variables will be elaborated

in Section 4.3.2.3. We repeat the abstration/refinement step until we identify a

coordinator c satisfying WY ∣∣c ⊧ G or the variable set used for abstraction equals



78

Algorithm 4: Signature-preserving Abs/Ref WSC

Input : A set W of web services and a goal G .
Output: A coordinate web service c.

1 Y ∶=XI ∪XO;

2 WY ∶= Abstraction(W , Y ); // WY has only XI and XO.
3 if ((c ∶= WSCFullObs(WY ,G)) ≠ null) then
4 return c;
5 end if
6 ConstructDependencyGraph(W ,G);
7 while ((newVars ∶= SelectNewVars(W ,G)) ≠ null) do
8 Y ∶= Y ∪ newVars;
9 WY ∶= Abstraction(W , Y );

10 if ((c ∶= WSCPartialObs(WY ,G)) ≠ null) then
11 return c;
12 end if

13 end while
14 return null ;

intput var

goal var
output var

reply

tr numf num

action avail

state

confirm

Figure 4.4. Variable dependency graph

to the original variable set. The latter case implies that no solution exists for the

given problem. Although from the second loop, we should employ the algorithm

for WSC with partial observation, WSCPartialObs, with O(22n) complexity, once

we identify a coordinator using small abstract web services, searching space is

shrunken (double-)exponentially in the number of variables that we save.

4.3.2.3 Automatic refinement

If we fail to identify a coordinator for abstract web services (line 3 or 9 in Al-

gorithm 4), it is caused either by too coarse abstraction or by the fact that a

coordinator for the original web services does not exist. For the latter case, since

we check it with the original web services in the worst case, Algorithm 4 will

correctly conclude that there is no solution.



79

Theorem 5 (Completeness). Given a set of web services W and a goal G, if there

does not exist a coordinator c to satisfy W ∣∣c ⊧ G, Algorithm 4 eventually returns

null .

However, in the former case, although there exists a coordinator for the original

web services W , WSCFullObs or WSCPartialObs returns null for the abstraction

WY . The reason is that removing too many variables, including ones with signif-

icant information to reach a goal, gives too much freedom to the abstraction. It

induces some infeasible paths to states not satisfying the goal. For instance, in

Figure 4.3(c), since we remove the variable avail, s1 (s2 and s3) is indistinguish-

able from s4 (s5 and s6, respectively). Thus, an infeasible edge from s12 to s11 by

order is introduced, by which we no longer have a strategy to guarantee to reach

a goal. Therefore, we have to refine the current abstraction to find a solution by

adding more variables. Since the infeasible paths to states not satisfying the goal

prevent us from identifying a solution coordinator, it is important to accurately

keep track of the values of variables appearing in the given goal predicate. With

this reason, the most significant criterion for selecting variables to be added is the

relevance to variables in the goal predicate. To evaluate each variable’s relevance

to the goal variables, we construct a variable dependency graph.

Definition 16 (Variable dependency graph). Given a set of web services W and

a goal G, a variable dependency graph is a directed graph G(V,E) where a set V

of vertexes is {x ∣ x ∈ X ∪XI} and a set E of directed edges is {(x▷ y) ∣ x, y ∈ V,
the value of y depends on the value of x}.

For instance, the pseudo-codes “y ∶= x” and “if (x = true) then y ∶=0” imply

that the value of y depends on x. Figure 4.4 illustrates a fraction of the variable

dependency graph for W and G in Example 4. It shows only variables of wAR.

For example, since the values of state,reply and tr num depend on the values of

state,action and avail (see the first part of T in Example 3), we have corre-

sponding directed edges (state▷ state), (action▷ state), (avail▷ state),⋯,
and (action▷ tr num) in Figure 4.4. In the dependency graph, it is clear that

variables with stronger dependency to the variables in the goal predicate locate

closer to the goal variables. Thus, in each iteration of Algorithm 4, the procedure

SelectNewVars returns a set of variables that have the closest hop to the variables



80

in the goal predicate (i.e., 1-hop, 2-hop, and so on). For instance, since confirm

is a variable in the goal predicate, the set of variables that have 1-hop dependency

is {action, avail, state}.

4.3.3 Signature-subsuming Abstraction

In Section 4.3.2, we restricted the target of abstraction to internal variables;

namely, abstract web services have the same I/O variables with original ones.

However, in many cases, we have observed that some of output variables do not

provide any important information for a coordinator to decide its move. For in-

stance, the airline reservation web service in Example 3 simply copies the request

value (i.e., req1 and req2 ) to the flight number (i.e., f1 and f2 ), and returns it to

clients for reference. In this case, even without this output, the coordinator can

successfully control given web services to satisfy the goal. Hence, in this section, we

consider, as the target of abstraction, output variables as well as internal variables.

First, we define signature-subsuming abstract web services for given web ser-

vices, which have the same input variables, but less internal variables and output

variables.

Definition 17 (Signature-subsuming abstract web services). Given a set of web

services W (X , XI , XO, Init , T ), and a set Y of variables such that XI ⊆ Y ⊆XA,

the signature-subsuming abstraction of W with respect to Y is WY (XY , XI
Y , X

O
Y ,

InitY , TY ) where XY = Y ∖XI , XI
Y = XI , XO

Y = Y ∩XO, and InitY and TY are

defined as the same as Definition 15.

Since signature-subsuming abstract web services WY have less output variables

than the original web services W , any coordinator c which can be composed with

WY is also able to be composed with W by ignoring redundant output variables

of W (i.e., ignoring XO ∖XO
Y ). Moreover, since WY contains all the behaviors of

W , Theorem 4 is still valid.

For selecting output variables to be used in abstraction, we again employ the

variable dependency graph in Section 4.3.2.3. In general, output variables that

depend on internal variables that in turn depend on variables in a goal predi-

cate, tend to provide important information on the state of web services for the

coordinator to control the web services. For instance, in Figure 4.4, reply has



81

Table 4.2. Experiment result
Problem Total I/O Basic Signature Saved Signature Saved

var var preserving var subsuming var

TAS-a 38 9 5.8 2.9 6 0.1 6/4
TAS-b 42 8 61.4 55.3 2 13.8 2/1
TAS-c 69 10 >7200.0 >7200.0 6 162.0 6/2

P&S-a 44 9 50.4 49.8 11 3.2 11/2
P&S-b 55 10 320.0 364.6 19 42.3 19/3
P&S-c 63 10 >7200.0 >7200.0 20 1214.0 20/3

VOS-a 61 15 208.3 195.7 14 18.2 14/4
VOS-b 74 15 3323.0 2321.3 23 520.8 23/4

a dependency on state and avail that have a dependency on the goal variable

confirm, and reply is an important output by which a coordinator infer whether

a flight seat is available. On the other hand, f num that represents a flight number

has dependency only on an input variable, action, and it does not provide any

information to help a coordinator. Therefore, we find such a set X SO ⊆ XO of

significant output variables which have a dependency on internal variables with

a dependency on variables in a goal predicate, and then use XSO for the initial

abstraction. That is, in signature-subsuming abstraction, we start Y ∶= XI ∪X SO

as line 1 in Algorithm 4. The rest of output variables (i.e., XO ∖XSO) are used in

the last iteration.

4.3.4 Empirical Validation

We have implemented automatic tools for signature-preserving/signature-subsuming

abstraction and refinement. Given a set of web service descriptions in WS-BPEL

files, and a goal predicate, our tools automatically construct a coordinator web

service which can control the given web services to achieve the goal. To demon-

strate that our tools efficiently synthesize coordinators, we compared the basic

algorithm [115] and our methods with 3 sets of realistic examples (8 instances);

Travel agency system (TAS), Producer and shipper (P&S), and Virtual online

shop (VOS). Since there are no public benchmark test sets, we have selected web

service examples popularly used in web service composition researches. TAS was

explained in Example 4.1.1. We have three instances, TAS-a, TAS-b, and TAS-c,

where we have 4, 9, and 16 options, respectively, for input values for flight reser-



82

vation and hotel reservation each. Producer and shipper (P&S) [115, 76] includes

two web services, Producer and Shipper. Producer produces furniture items, and

Shipper delivers an item from an origin to a destination. We have three instances,

P&S-a, P&S-b, and P&S-c where there are 4, 6, and 8 options, respectively, for

furniture order and delivery order each. Virtual online shop (VOS) [117] includes

Store and Bank web services where Store sells items and Bank transfers money

from one account to another account. This example includes two instances, VOS-

a and VOS-b where there are 3 and 4 options, respectively, for item orders and

money transfer each.

All experiments have been performed on a PC using a 2.4GHz Pentium proces-

sor, 2GB memory and a Linux operating system. Table 4.2 presents the number of

total variables (Total var) and input/output variables (I/O var) in boolean. It also

shows the total execution time in seconds for the basic algorithm (Basic) [115] and

our methods (Signature-preserving and Signature-subsuming), and the number of

boolean variables that we saved (Saved var). In the signature-subsuming case, the

table presents the number of internal variables/IO variables which we saved. Our

experiment shows that our technique outperforms the basic algorithm in terms of

execution time.

Although we have employed modest size of examples, our abstraction technique

can be useful even for larger size examples since in general, the number of variables

which have relevance with goal variables is limited. For instance, with 100 web

services with 10 variables each (total 1,000 variables), a goal that users want is

often associated with only a fraction of available web services and variables (say

5%, 50 variables). In such a case, our techniques can eliminate 95% of irrelevant

variables, improving the convergence speed considerably.



Chapter 5

QoS-aware Web Service

Composition

Recently, the web service composition (WSC) requires discovering service providers

that satisfy not only functional requirements but also nonfunctional ones, includ-

ing Quality of Services (QoS) constraints. In this case, one indeed desires not the

shortest sequence of web services for a solution but the composite web service with

the optimal accumulated QoS value. We call it QoS-aware web service composition

(QoS-aware WSC) problem. It is computationally hard to identify such a com-

posite web service since this problem is reduced to a global optimization problem.

However, many engineering tasks in the real world require real-time responsive-

ness, and the users do not allow a long delay to algorithms. Furthermore, if the

size of a given set of web services is large, like real world web services on Web, the

problem is intractable.

To resolve this challenge, we propose to apply anytime algorithm [16] to the

QoS-aware WSC problem. While traditional algorithms provide only one answer

after completely terminating a fixed number of computations, anytime algorithms

can return many possible approximate answers to any given input. They always

provide available best-so-far answers and the quality of the answer improves along

with execution time. If enough time is allowed, the algorithm will provide the

optimal answer eventually. By using an anytime algorithm for the QoS-aware

WSC problem, we can identify a composite web service with good quality earlier

than optimal algorithms. To the best of our knowledge, there is no work to employ



84

anytime algorithm to the WSC problems.

Our anytime algorithm proposed in this dissertation is based on beam stack

search [17] which explores, in each level, a fixed number of candidate states (called

beam width). In this searching mechanism, a bad decision in early phases requires

more searching space than a bad selection in late phases do. To reduce this cost,

our proposal dynamically assigns a larger beam width to early phases so that we

can consider more qualified candidates. In addition, we propose two more heuris-

tics to improve the quality of current approximate solutions and overall execution

time. We validate our proposal with experiment on a number of examples that

are generated by the web service testset generator for Web Services Challenge

2009 [18].

5.1 Preliminaries

Quality of Services (QoS) is considered as several qualities or properties of a service,

such as response time (the time a service takes to respond to various types of

requests) and throughput (the rate at which a service can process requests). As a

natural price of a web service, QoS helps clients (applications as well as human

being) to select a service provider with good quality. Moreover, enhanced QoS of

web services will bring a highly competitive advantage for web service providers.

This implies that users and providers need to be able to engage in QoS negotiation.

As a result, recently new standards for the specification of QoS requirements and

service-level agreements of a single web service, such as WS-Policy [13], the Web

Service Level Agreement (WSLA) language [14] and WS-Agreement [15], have been

introduced.

Now, given a set of web services with their QoS values, QoS-aware WSC prob-

lem is to find out a sequence of web services with the optimal aggregated QoS

value, which is a path from the initial state to a given goal state. We reduce

the problem into a well known planning problem on a weighted graph such that

the optimal solution of the planning problem always corresponds to the optimal

solution of our QoS-aware WSC problem.



85

Reservation

    Flight 

(FR)

start

   Reservation

Transportation

(TR)

Ground Trans

Reservation

(GTR)

goal

Reservation

Hotel
Reservation

Hotel

(HR1)

(HR2)

Figure 5.1. Travel agency system

5.1.1 Example: QoS-based Travel agency system

Consider a client wants to make a reservation for a trip including flights, ground

transportation and a hotel with the fastest response time. However, since there

are many reservation web services with similar functionality but different response

time, the client wants to combine required web services with considering aggre-

gated response time of a composite service. Assume that a user provides informa-

tion necessary for the trip, including departing/returning dates, an origin and a

destination.

Fig 5.1 illustrates this example. Transportation Reservation (TR) service deals

with the reservation for all public transportation including flights and ground

transportation. On the other hand, Flight Reservation (FR) service and Ground

Trans Reservation (GTR) service treat a request only for flights and ground trans-

portation, respectively. Hotel Reservation (HR1 and HR2) services process the

reservation for hotel rooms. The response time for each web service is as fol-

lows: RTR = 100 msec, RFR = 20 msec, RGTR = 70 msec, RHR1 = 90 msec,

and RHR2 = 100 msec, respectively. In this example, we have four sequences



86

to make reservations for all of flights, ground transportation, and a hotel room:

i.e., FR-GTR-HR1, FR-GTR-HR2, TR-HR1, and TR-HR2. If considering the

length of composite web services as our aim, TR-HR1 and TR-HR2 would be

the best compositions. However, in this example based on response time, FR-

GTR-HR1 is the optimal composition since it has the minimal response time as

RFR−GTR−HR1 = 180msec.

5.1.2 QoS-aware Web Service Composition Problem

In this section, we formalize the notion of web services with QoS criteria and their

QoS-aware composition that we consider in this dissertation. A web service is a

tuple w(I,O,Q) with the following components:

� I is a finite set of input parameters for w.

� O is a finite set of output parameters for w; each input/output parameter

p ∈ I ∪O has a type tp.

� Q is a finite set of quality criteria for w.

When a web service w(I,O,Q) is invoked with all the input parameters i ∈ I
with the type ti, it returns all the output parameters o ∈ O with the type to. The

invocation of the web service w corresponds to each service quality criterion q ∈ Q,

for instance, a response time qr or a throughput qt . We assume that the signature

description for each web service is given in Web Services Description Language

(WSDL) and the quality criteria of a web service is given in Web Service Level

Agreements (WSLA). Given two types t1 and t2, t1 is a subtype of t2 (denoted by

t1 <∶ t2) if t1 is more informative than t2 so that t1 can substitute for t2 everywhere.

In this case, t2 is a supertype of t1. This relation is reflexive (i.e., t <∶ t for any type

t) and transitive (i.e., if t1 <∶ t2 and t2 <∶ t3 then t1 <∶ t3). We assume that the type

hierarchy is given; e.g., specified in OWL. Given two web services w1(I1,O1,Q1)
and w2(I2,O2,Q2), we denote w1 ⊒I w2 if w1 requires more informative inputs than

w2; i.e., for every i2 ∈ I2, there exists i1 ∈ I1 such that ti1 <∶ ti2 . Given two web

services w1(I1,O1,Q1) and w2(I2,O2,Q2), we denote w1 ⊑O w2 if w1 provides less

informative outputs than w2; i.e., for every o1 ∈ O1, there exists o2 ∈ O2 such that



87

to2 <∶ to1 . A web service discovery problem is, given a set W of available web services

and a request web service wr, to find a web service w ∈W such that wr ⊒I w and

wr ⊑O w.

However, it might happen that there is no single web service satisfying the

requirement. In that case, we want to find a sequence w1⋯wn of web services

such that we can invoke the next web service in each step and achieve the desired

requirement eventually. Formally, we extend the relations, ⊒I and ⊑O, to a sequence

of web services as follows.

� w ⊒I w1⋯wn (where w = (I,O,Q) and each wj = (Ij,Oj,Qj)) if ∀1 ≤ j ≤ n:

for every i2 ∈ Ij there exists i1 ∈ I ∪⋃k<j Ok such that ti1 <∶ ti2 .

� w ⊑O w1⋯wn (where w = (I,O,Q) and each wj = (Ij,Oj,Qj)) if for every

o1 ∈ O there exists o2 ∈ ⋃1≤j≤nOj such that to2 <∶ to1 .

Finally, given a set W of available web services and a service request wr, the

QoS-aware web service composition problem ⟨W,wr⟩ which we focus on in this

thesis is to find a sequence w1⋯wn (every wj ∈ W ) of web services such that

wr ⊒I w1⋯wn and wr ⊑O w1⋯wn. The optimal solution for this problem is such a

sequence σ = w1⋯wn to minimize the aggregate QoS value Q(σ). Given a sequence

σ = w1⋯wn, the aggregate QoS value Q(σ) is computed as follows:

� Q(σ) = c1 ⋅Q1(σ)+⋯+ cm ⋅Qm(σ) where each ci is a given weight for the i-th

quality criterion.

� In the above, each functionQi depends on the corresponding quality criterion.

For instance, assume that the quality criterion is response time. If ∣σ∣ = 1 (i.e.,

σ = w), then Qi(σ) = rtw where rtw is the response time of w. Otherwise

(i.e., ∣σ∣ > 1), Qi(σ) = rtw1 + Qi(w2⋯wn). On the other hand, consider

throughput as the quality criterion. If ∣σ∣ = 1 (i.e., σ = w), then Qi(σ) =
thw where thw is the throughput of w. Otherwise (i.e., ∣σ∣ > 1), Qi(σ) =
Min(thw1 ,Qi(w2⋯wn)).

5.1.3 Reduction to a planning problem

Given a QoS-aware web service composition problem ⟨W,wr⟩, the problem can be

reduced into a planning problem on a weighted state-transition system. A weighted



88

state-transition system is a 6-tuple S = (S, s0, F,A,T,C) with the following com-

ponents:

� S is a finite set of states.

� s0 ∈ S is an initial states.

� F ⊆ S is a set of final states.

� A is a set of actions.

� T ∶ S ×A→ S is a transition function.

� For each state s and each action a, C(s, a) is the action cost.

The planning problem is to find a sequence of actions from the initial state to

a final state which minimizes the total cost. The solution can be represented in

terms of Bellman equation which characterizes the optimal cost function [118]:

V (s) =
⎧⎪⎪⎨⎪⎪⎩

0 if s is a final state

mina∈A QV (s, a) otherwise

where QV (s, a) = C(s, a) + V (s′) and s′ = T (s, a).
There exists a unique optimal value function V ∗(s) that solves the Bellman

equation, and the optimal solution can be represented as a strategy σ. The strategy

σ is a function mapping a state s ∈ S into an action a ∈ A.

Given a set W = {w1,⋯,wn} of web services where for each j, wj = (Ij,Oj,Qj),
we denote as TP a set of all types t such that there exists p ∈ ⋃(Ij ∪Oj) and t is

the type of p. Then, given a set W = {w1,⋯,wn} of web services and a requirement

web service wr(Iwr ,Owr ,Qwr), we can construct a weighted state-transition system

S = (S, s0, F,A,T,C) as follows:

� S = {(x1,⋯, xm) ∣ xj = true or false,m = ∣TP ∣}; each boolean variable xj

represents whether we have an instance with the type tj ∈ T at a state s.

� s0 = (x1,⋯, xm) where each xj is true if there exists an input parameter i ∈ Iwr

such that its type txj is a supertype of ti (i.e., ti <∶ txj); otherwise xj is false.



89

� F = {(x1,⋯, xm) ∣ each xj is true iff there exists an output parameter o ∈ Owr

such that its type txj is a subtype of to (i.e., txj <∶ to) }.

� A =W .

� For s = (x1,⋯, xm), s′ = (x′1,⋯, x′m) (each xk and x′k are true or false), and

wj = (Ij,Oj,Qj), T (s,wj) = s′ iff (1) for every i ∈ Ij, there exists xk in s such

that xk is true and its corresponding type txk is a subtype of the type of i

(i.e., txk <∶ ti), (2) if xl is true, x′l is also true, and (3) ∀o ∈ Oj: for every

variable x′k in s′, if its corresponding type txk is a supertype of to, x′k is true.

Intuitively, if a web service wj is invoked at a state s where we have data

instances being more informative than inputs of wj, we proceed to a state s′

where we retain all the data instances from s and acquire outputs of wj as

well as their supertypes.

� For every state s, C(s, a) = c1 ⋅ q1 + ⋯ + cm ⋅ qm where each qj is given from

w which is corresponding to a. We assume that each weight constant cj is

given.

Intuitively, we have an initial state where we possess all the data instances

corresponding to the input of wr as well as ones corresponding to their supertypes.

As goal states, if a state is more informative than the outputs of wr, it is a goal

state. Finally, given a QoS-aware web service composition problem ⟨W,wr⟩, we can

reduce it into a planning problem on S = (S, s0, F,A,T,C) where the optimal cost

path from an initial state to a goal state corresponds to the optimal composition

of web services.

5.2 Anytime Algorithm for QoS-aware WSC

Most algorithms provide only one solution after completely terminating a fixed

number of computations. Sometimes, its required computation number can be so

large that it takes a long time until completion. Even, it is often for algorithms to

pass a given time-out with blaming a lack of system resource after a long waiting.

However, many engineering tasks in the real world require real-time responsiveness.

Furthermore, users do not allow a long delay to algorithms. Considering such a



90

practical issue, we prefer a solution with acceptable quality (e.g., the answer falls

within the range of tolerance) to the optimal solution requiring a long or an infinite

time if an algorithm can identify it within a given time-out. Anytime algorithm

were designed to conform to this requirement.

An anytime algorithm always provides a best-so-far answer available although

the answer may be an approximation of the optimal answer. The quality of the

answer improves with the execution time, and if enough time is allowed, the answer

will be converged to the optimal one eventually. While, in most of cases, it takes

very short time for anytime algorithms to generate the first approximate answer,

anytime algorithms require longer time to find the optimal answer than optimal

algorithms do since they explore more searching space to generate approximate

solutions earlier. The user may examine the answer at anytime, and choose to

terminate with satisfaction or to continue the execution for a better answer. Due

to these capabilities, anytime algorithm has been successfully used in AI and real-

time system literatures.

In this dissertation, we propose an anytime algorithm for QoS-aware WSC

problem, which is a global optimization problem and requires fast response time.

Our anytime algorithm is based on the beam stack search [17] that has shown an

excellent performance in AI planning literature. However, since the beam stack

search assigns a fixed value to the beam width for each search level, it considers

the same number of candidates in all the steps, which is not nature. Based on this

observation, we dynamically adjust the beam width to consider more candidates

in earlier steps than in later steps. In addition, we propose more heuristics to

improve the performance of our algorithm.

5.2.1 Basic Algorithm: Beam Stack Search

The beam stack search algorithm [17] is an anytime search algorithm based on the

beam search. We first introduce the beam search in this section.

The beam search is a well-known approximate search algorithm which explores

not all the nodes but only a set of candidate nodes in each search level. Algorithm 5

illustrates how the beam search builds its search graph. While any new node to be

searched (in open[level]) exists, it repeats to pick up a node with the minimum cost



91

Algorithm 5: Beam Search
Input : A initial node start and a goal node goal.
Output: A sequences of nodes sn.

1 open[0] ∶= start ;
2 closed[0] ∶= null ;
3 level ∶= 0;
4 while (open[level] ≠ null) ∨ (open[level + 1] ≠ null) do
5 while open[level] ≠ null do
6 node ∶= argmin{f (n) ∣ n ∈ open[level]};
7 move node from open[level] to closed[level];
8 if (node is goal) then
9 return solutionReconstruction(node);

10 end if
11 node.generateSuccessors();
12 if beamWidth < layerSize(level + 1) then
13 pruneLayer(level + 1);
14 end if

15 end while
16 level ∶= level + 1;
17 open[level + 1] ∶= null ;
18 closed[level] ∶= null ;

19 end while
20 return null ;

Algorithm 6: pruneLayer() in Beam Search

Input: A level of a search graph l

1 keep ∶= the best w nodes ∈ open[l];
2 prune ∶= {n ∣ n ∈ open[l] ∧ n /∈ keep};
3 for each n ∈ prune do
4 open[l] ∶= open[l] ∖ {n};
5 delete n;

6 end for

among the left open nodes at the current level (into closed[level]), and to check

whether it is a goal. If the node is a goal, the algorithm returns the path from a

start node to this node as a solution; otherwise, it expands the node (Algorithm 5).

To reduce its search space, the algorithm leaves only the fixed number of nodes at

each level of the search graph as promising candidates, and permanently prunes

off the other nodes (Algorithm 6). We call the set of most promising search nodes

per a level as beam and the size of the set as beam width, respectively. Note that



92

beam searches assign the same number as the beam width for every level. Since

using a fixed beam width makes the space and time complexity of the beam search

become linear in the depth of the search instead of exponential, the beam search

is widely applied to problems requiring huge search spaces.

However, its space-limited search induces a serious drawback—incompleteness.

By pruning the nodes inadmissibly without any rationale, it may miss the optimal

solution. Indeed, a beam search is a restricted version of a breadth-first search in

the sense that the size of the set of search nodes at each level is limited and non-

promising nodes can be pruned at any step in the search. With an unlimited beam

width, beam search behaves like breadth-first search which can search completely.

However, in this case, its space requirement is exponential with the depth of the

search.

To guarantee a complete search upholding efficiency of beam search, the beam

stack search algorithm prunes admissibly the search space based on upper and lower

bounds. Algorithm 7 describes how the beam stack search works. The beam stack

search has three inputs, i.e., start, goal and U . Each start and goal indicates the

starting and the terminal node of a search graph where a node represents a state

in a planning problem. A given U is an upper bound of an acceptable aggregated

QoS value. Therefore, a solution generated by the beam stack search does not

have an aggregated QoS value greater than U . Besides, each time that beam-stack

search finds an improved solution of which aggregated QoS value is lower than the

current upper bound U , it updates the current upper bound with the aggregated

QoS value of the current solution.

The basic framework of the beam stack search is similar with beam search; i.e.,

the algorithm repeats to pick up the most promising node from the current open

nodes and to check if the node is goal, until no more qualified node at the current

level or the next level exists. If it is a goal, the algorithm returns the path from a

start node to this node. Otherwise, the algorithm produces its qualified successors,

keeping a beam width at the next level. The main difference from the beam search

is a condition for a qualified node. In the beam search (let us assume that the

beam width is k), a qualified node in a beam should have an aggregated QoS value

which is in the top k ranking. In the beam stack search, in addition to the above

requirement, the aggregated QoS value of a qualified node should be in the range



93

Algorithm 7: Beam Stack Search
Input : A initial node start, a goal node goal and an allowedUpperCost U .
Output: A sequences of web services ws.

1 open[0 ] ∶= start;
2 closed[0 ] ∶= null ;
3 bestGoal ∶= null ;
4 level ∶=0;
5 while (open[level] ≠ null) ∨ (open[level + 1] ≠ null) do
6 while open[level] ≠ null do
7 node := argmin{f (n) ∣ n ∈ Open[level]};
8 Move node from open[level] to closed[level];
9 if (node is goal) then

10 bestGoal :=node;
11 U ∶= g(node);

12 end if
13 node.generateAdmittedSuccessors(beamstack .top());
14 if beamWidth < layerSize(level + 1) then
15 pruneLayer(level + 1);
16 end if

17 end while
18 if (1 < level ≤ relay) ∨ (relay + 1 < level) then
19 delete closed[level − 1];
20 end if
21 level ∶= level + 1;
22 open[level + 1] ∶= null ;
23 closed[level] ∶= null ;
24 beamstack .push([0, U));

25 end while
26 if bestGoal() ≠ null then
27 return solutionReconstruction(best − goal);
28 end if
29 else return null ;

of the current lower and upper bounds. These bounds are stored into the beam

stack and they represent what interval we have explored in each level of a search

graph. Each entry of a beam stack is [fmini
, fmaxi) where i is the index of the beam

stack and it corresponds to the i-th level of search graph. The lower and upper

bounds represent that at the corresponding level, the algorithm has searched all

nodes with the QoS value which is equal or greater than fmin and is less than fmax.

At the beginning, all fmin and fmax are initially assigned as 0 and U , respectively.



94

Algorithm 8: PruneLayer() in Beam Stack Search

Input: A level of a search graph l

1 keep ∶= the best w nodes ∈ open[l];
2 prune ∶= {n ∣ n ∈ open[l] ∧ n /∈ keep};
3 beamstack .top().fmax :=argmin{f (n) ∣ n ∈ prune};
4 for each n ∈ prune do
5 open[l] ∶= open[l] ∖ {n};
6 delete n;

7 end for

Algorithm 9: QoS-aware WSC with Beam Stack Search
Input : A set W of web services, a web service w and an allowedUpperCost U .
Output: A set of sequences of web services sws.

1 Make start and goal from w;
2 initializeBeamStack(U);
3 solPathopt ∶= null ;
4 while beamstack .top() ≠ null do
5 solPath ∶= BSSearch(start, goal,U);
6 if solPath ≠ null then
7 solPathopt ∶= solPath;
8 end if
9 while beamstack .top().fmax ≥ U do

10 beamstack .pop();
11 end while
12 if beamstack .isEmpty() then
13 return solPathopt ;
14 end if
15 beamstack .top().fmin ∶= beamstack .top().fmax ;
16 beamstack .top().fmax ∶= U ;

17 end while

If no node was inadmissibly discarded at the level, these values do not change.

However, if a node is removed due to a limited size of beam width, the beam stack

keeps the minimum QoS value of pruned nodes at the level as fmax to remember

the best discarded node at the current search iteration (Algorithm 8). At the next

search iteration, as candidates at that level, we may pick up the nodes which were

pruned at the previous iteration but are necessary to be searched. These nodes

have QoS values at least equal to or greater than fmax.

Next, Algorithm 9 shows how to solve the QoS-aware WSC problem by using



95

the beam stack search. It first generates a start and a goal state from a given

target web service w, and initializes the necessary variables (lines 1–3). While any

entry of a beam stack exists, the algorithm tries to find a better answer of which

aggregated QoS value is lower than the current U by calling the beam stack search

function, BSSearch(), in Algorithm 7 (lines 4–17). Note that since this algorithm

provides the start state to a beam stack search function as an input, the search

always starts from the root node at the search graph (line 5). When a beam stack

search function terminates, the beam stack is checked to trace if any node was

inadmissibly discarded from the deepest level at the previous search stage, which

corresponds to the top of the beam stack. If no node was inadmissibly discarded

(i.e., fmax of beam stack is equal to or greater than U), then the algorithm repeats

popping out the top item of the beam stack until a top item has a fmax less than

U (lines 9–11). After this process, if the beam stack is empty, it means that the

algorithm searches completely and the best-so-far answer is an optimal solution

(lines 12-14). Otherwise, it updates the current lower and upper bounds at the top

item of a beam stack as [fmax, U) (lines 15–16). With this updated record, at the

next search stage, the algorithm can go back to that level and hold on the nodes

of which costs are at least as bad as the best previously discarded node but may

be less than the cost of the current solution.

5.2.2 Beam Stack Search with Dynamic Beam Width

A beam stack search explores, in each level, a fixed number of nodes based on the

range of QoS values at a beam stack item. In this searching mechanism, a bad

decision in early phases requires more searching space than a bad selection in late

phases does. To reduce this cost, in section 5.2.2.1, we propose to dynamically

assign larger beam widths to early phases to consider more qualified candidates for

a better solution. Moreover, we propose two more heuristics in its implementation

to improve the quality of current approximate solutions and overall execution time

in section 5.2.2.2. Algorithm 10 and Algorithm 11 illustrate how to solve QoS-

aware WSC problem with our proposed heuristics based on the basic algorithm.



96

Figure 5.2. Search with static beam width vs. dynamic beam width

5.2.2.1 Carrot-shaped Dynamic Beam Width

An original beam stack search employs a static beam width at all levels of a search

graph regardless of a given problem. However, the size of the beam width plays a

significant role in determining the efficiency of beam stack search. A small sized

beam width causes excessive pruning of qualified successor nodes, and therefore it

requires more extensive backtracking and node re-expansion. On the other hand,

with a large sized beam width, many candidate nodes will be under consideration,

and it makes a searching space increased exponentially. In fact, with an extremely

small or large size of beam width, the beam stack search is no better than depth-

first search and breadth-first search. Therefore, we need to consider an efficient

method to control the size of beam width.

To resolve this issue, we propose to dynamically adjust a beam width; we assign

larger beam widths to early stages to consider more candidate nodes. This idea

is influenced by a following natural intuition. When finding out an unknown path

from a source to a destination, we do not know whether we have to go north,

south, east or west, especially at the beginning. A good choice at early stage leads

to a good solution path more quickly. A bad decision in early stages requires a

longer backtracking and many retrials to other paths, while a wrong decision in

late stages induces just a short backtracking. Hence, selections at early stages

are more critical than late stages. In the beam stack search, the benefit and cost

at earlier levels are also significant due to its backtracking mechanism based on

a beam stack. Once candidate nodes are determined at a level, the other nodes

excluded cannot be visited until completing whole searches for the subtrees of the

selected candidates.

In this dissertation, we propose to apply different sized beam widths during

searching, that is, our technique uses a large sized beam width first and decreases

its size gradually as going down to a search graph. As a result, a constructed

search graph for one search iteration appears like a carrot in shape (in Figure 5.2).



97

To determine the beam width values, we should consider various features.

Among them, the number of all nodes in each level of a search graph is one of

main factors to determine the size of the searching space. To exactly identify the

number of nodes in each level, we should construct the whole search graph, and

this work requires a significant amount of computations. Therefore, by assuming

that every node has a similar number of successors, we can approximate these

values. In the level 0, we have only one node which is the initial node. We then

compute the number of successors of the initial node called numSucc. We approx-

imate the number of successors of each node as this value, numSucc. Now, in the

level 1, we have exactly numSucc nodes, and there are approximately numSucc2

nodes, numSucc3 nodes, numSucc4 nodes, ⋯ in the level 2, the level 3, the level

4, ⋯, respectively. Based on the above approximation, we decide the beam width

beamWidth(i) for each level i as following:

� beamWidth(1) = numSucc. We consider all nodes for the most careful choice

at the highest level.

� beamWidth(2) = Rinc ⋅ beamWidth(1), where Rinc is the increasing rate for

the level 2 (1 < Rinc < numSucc); in our experiment, we take 1.5 as the

decreasing rate. In the 2nd level, since the approximate number of nodes

is numSucc × numSucc, for a linear complexity we need to restrict the beam

width. However, we do not decrease the beam width but increase it linearly

by a user provided constant Rinc. This strategy is helpful to find a short-

length composition.

� For i ≥ 3, beamWidth(i) = Rdec ⋅beamWidth(i−1), where Rdec is the decreasing

rate (0 < Rdec < 1); in our experiment, we take 0.9 as the decreasing rate.

Since choices at deeper levels are not relatively significant, we decrease the

beam width by using a user provided constant Rdec.

� widthmin is the minimum value of a beam width where 0 < widthmin <
numSucc; in our experiment, we take 0.3 ⋅ numSucc as the minimum value.

Since we decrease the size of a beam width along with the level, it may be

down to 0 without the minimum restriction. Besides, if a beam width is too

small, it may generate excessive backtracking and retrial. Finally, for every



98

i, if beamWidth(i) < widthmin , then beamWidth(i) = widthmin .

5.2.2.2 Additional Heuristics

In addition to dynamic beam width, we propose two more heuristics to improve the

basic anytime algorithm: short backtracking and upper bound propagation to fmax.

By avoiding the duplicated state expansion and unnecessary state inclusion, these

techniques help to efficiently find approximate solutions with better QoS values.

Short backtracking heuristic

One of the main aims of the beam stack search is to save the memory consump-

tion [119]. This technique keeps in memory only four levels of the search graph

which are most recently considered. By this fact, the level to which the algorithm

has to backtrack may be removed from memory, and in this case, the algorithm

must recover the missing level where we want to backtrack. Unfortunately, the

construction of the target level requires us to construct all the upper levels of the

target level. In the other word, the algorithm must return to the initial node and

construct again successor nodes at each level until the target level is rebuilt.

To avoid this problem, we propose a short backtracking technique. Our search

function, DBSSearch H (see Algorithm 10) and QoS-aware WSC algorithm QoSWSC DH

(see Algorithm 11) include this technique based on basic algorithms (Algorithm 7,

8 and 9). Our search function, DBSSearch H, stores in memory sets of the closed

states for all visited levels, unlike the basic search function where all closed sets

are removed before searching the next level (line 23 in Algorithm 7). At the next

invocation to DBSSearch H, our WSC algorithm passes the level corresponding to

beamstack[top-1] to DBSSearch H as an input parameter (line 20 and line 6 in

Algorithm 11), where the level is the parent level of the deepest level in which

inadmissible pruning occurs. Then, our heuristic search function DBSSearch H

easily obtains the open set of the target level where we should backtrack by simply

moving the nodes in the closed set to the open set (lines 5–7 in Algorithm 10),

and resumes searching at the level corresponding to beamstack[top] by generat-

ing new successors according to the updated minimum and maximum values of

beamstack[top].



99

Algorithm 10: DBSSearch H: Dynamic Beam Stack Search with Heuristics
Input : A initial node start, a goal node goal and an allowedUpperCost U .
Output: A sequences of web services ws.

1 open[0] ∶= start ;
2 closed[0] ∶= null ;
3 bestGoal ∶= null ;
4 beamWidth ∶= determineBeamWidth(level);
5 if closed[level] ≠ null then
6 Move all nodes of closed[level] to open[level];
7 end if
8 while (open[level] ≠ null) ∨ (open[level + 1] ≠ null) do
9 while open[level] ≠ null do

10 node := argmin{f (n) ∣ n ∈ Open[level]};
11 Move node from open[level] to closed[level];
12 if (node is goal) then
13 U := g(node);
14 bestGoal := node;

15 end if
16 node.generateAdmittedSuccessors(beamstack .top());
17 if beamWidth < layerSize(level + 1) then
18 pruneLayer(level + 1);
19 end if

20 end while
21 level ∶= level + 1;
22 beamWidth ∶= determineBeamWidth(level);
23 open[level + 1] ∶= null ;
24 beamstack .push([0, U));

25 end while
26 if bestGoal() ≠ null then
27 return solutionReconstruction(best − goal);
28 end if
29 else return null ;

The size of memory required for our heuristic search function is SoN ⋅ BW ⋅ DL
where SoN is the size of a data structure for a node, BW is a beam width, and DL

is the deepest level we have explored during a search. Since the size of memory

required is linear in a beam width and a solution length, we believe that it is

manageably large.



100

Algorithm 11: QoSWSC DH: QoS-aware WSC using Dynamic Beam Stack
Search with Heuristics
Input : A set W of web services, a web service Wr, an allowedUpperCost U ,

initBW ratio αBW , decreaseBW ratio βBW and minBW ratio γBW .
Output: A set of sequences of web services sws.

1 Make start and goal from Wr;
2 initializeBeamStack(U);
3 solPathopt ∶= null ;
4 level ∶= 0;
5 while (beam − stack .top() ≠ null) do
6 solPath ∶= DBSSearch H (start, goal,U, level);
7 if solPath ≠ null then
8 solPathopt ∶=mathitsolPath;
9 return solPathopt ;

10 end if
11 while beamstack .top().fmax ≤ U do
12 beamstack .pop();
13 end while
14 if beamstack .isEmpty() then
15 return solPathopt ;
16 end if
17 beamstack .top().fmin ∶= beamstack .top().fmax ;
18 beamstack .top().fmax ∶= U ;
19 UpdateBiggerfmax (U);
20 level ∶= beamstack .size() − 1;

21 end while

Upper bound propagation

Each entry of the beam stack contains fmin and fmax which represent a set of states

under consideration at the corresponding level; i.e., a qualified state at the level

should have an aggregated QoS value in between fmin and fmax . These values fmax

as upper bounds, have a significant influence to the size of the search space; i.e.,

if the value is closer to the optimal value, the algorithm can ignore more states of

which the aggregation QoS value is greater than the upper bound fmax .

In the basic algorithm, we have observed an inefficient implementation. When-

ever a new better solution path is found, the basic algorithm updates only the

aggregated QoS value of the so-far-best solution U , but the value for fmax at every

level remains as the same. Without updating a tight low value for fmax, we may



101

Table 5.1. Experiment problems for QoS-aware WSC algorithm
Num. of Num. of Solution

Problem
web services parameters path length

P1 50 1000 7
P2 100 10000 5
P3 100 10000 7
P4 500 10000 4
P5 1000 10000 5
P6 1500 10000 6

redundantly explore unnecessary states. Such states more likely exist at higher

levels since the aggregated QoS value of a state in high levels is relatively small.

Its effect, however, can be significant in a whole searching space since the states

in higher levels include a number of descendants in their subtrees.

Therefore, once we identify a new better solution in a search iteration, our

method updates the value of fmax for every level with the aggregated QoS value of

the so-far-best solution U (line 19 in Algorithm 11).

5.3 Experiment

We have implemented two automatic tools implementing the algorithms in Sec-

tion 5.2, i.e., a QoS-WSC tool with the beam stack search and a QoS-WSC tool

with dynamic beam width. Given a WSDL file for a set of web services, an OWL

file for the type information, a WSLA file for the QoS information, and a WSDL

file for a requirement web service, our tools reduce the QoS-driven WSC problem

into a planning problem, and then compute an optimal strategy. Finally, our tools

translate the optimal strategy into a BPEL file for the optimal composition.

To demonstrate that our tools efficiently identify an optimal solution, we have

experimented on six WSC problems (i.e., P1, P2, ⋯, P6) produced by the Test-

SetGenerator which the Web Service Challenge 2009 competition [18] provides.

Table 5.1 shows, for each problem, the number of total web services and total

parameters, and the length of the optimal solution. All experiments have been

performed on a PC using a 2.33GHz Core2 Duo processor, 1GB memory and a

Linux operating system.



102

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100

S
ol

ut
io

n 
Q

ua
lit

y 
R

at
io

Time (sec)

Uniform cost
Dynamic anytime

Figure 5.3. Optimal algorithm vs. anytime algorithm on QoS-aware WSC

First, we shows how our anytime algorithm works in solving the QoS-WSC

problem, P4, comparing an optimal algorithm. As an optimal algorithm, we em-

ploy the uniform cost search algorithm [120], and we compare it with our dynamic

anytime algorithm with our proposed heuristics described in section 5.2.2. Fig-

ure 5.3 illustrates this comparison, where X-axis is a time in seconds when an

algorithm returns a solution and Y-axis is the solution quality ratio of each re-

turned solution (e.g., the QoS value of the optimal solution over the QoS value of

a solution returned by an anytime algorithm). Since the uniform cost algorithm

is optimal algorithm, it returns a solution once which is the optimal (find ◆ in the

plot). The uniform cost algorithm finds the optimal solution with the QoS value

of 510 at 61.4 seconds. On the other hand, our algorithm returns a set of solu-

tions: 850 at 2.6 sec (the quality ratio is 510/850=0.6), 680 at 2.7 sec (the quality

ratio is 510/680=0.75), 650 at 3.5 sec (the quality ratio is 510/650=0.78), 560 at

10.1 sec (the quality ratio is 510/560=0.91), 530 at 25.0 sec (the quality ratio is

510/530=0.96), and 510 at 57.7 sec (the quality ratio is 510/510=1). Then, our

algorithm finally concludes that the solution is the optimal at 90.0 sec. Remark

that although our algorithm has already found a solution which is the optimal at

57.7 sec, it needs more time to confirm that it is indeed optimal. Even if our any-



103

Table 5.2. Experiment result with different threshold: Optimal, basic anytime and
dynamic anytime algorithm on QoS-aware WSC.

Timeout Uniform Basic Qual. Dynamic Qual.
Problem

(sec) cost anytime ratio anytime ratio

P1 60 Solved Complete 1 Complete 1
P2 60 Not solved Incomplete 0.84 Incomplete 1
P3 60 Not solved Incomplete 0.81 Incomplete 1
P4 60 Not solved Incomplete 0.96 Incomplete 1
P5 60 Not solved Incomplete 0.68 Incomplete 0.81
P6 60 Not solved Incomplete 0.85 Incomplete 0.85

P1 120 Solved Complete 1 Complete 1
P2 120 Solved Incomplete 1 Complete 1
P3 120 Solved Incomplete 0.94 Incomplete 1
P4 120 Solved Incomplete 0.96 Complete 1
P5 120 Not solved Incomplete 0.68 Incomplete 0.81
P6 120 Not solved Incomplete 0.85 Incomplete 0.96

P1 300 Solved Complete 1 Complete 1
P2 300 Solved Complete 1 Complete 1
P3 300 Solved Complete 1 Complete 1
P4 300 Solved Complete 1 Complete 1
P5 300 Not solved Incomplete 0.81 Incomplete 0.87
P6 300 Not solved Incomplete 0.96 Incomplete 0.96

P1 600 Solved Complete 1 Complete 1
P2 600 Solved Complete 1 Complete 1
P3 600 Solved Complete 1 Complete 1
P4 600 Solved Complete 1 Complete 1
P5 600 Not solved Incomplete 0.87 Incomplete 0.87
P6 600 Solved Incomplete 0.96 Incomplete 1

time algorithm takes longer to complete with the optimal solution, it finds several

solutions with high quality (i.e., over the quality ratio of 0.9) at 10.1, 25.0, and

57.7 seconds much earlier than the uniform cost returns the solution at 61.4 sec.

Even, it identifies solutions with moderate quality (i.e., between the quality ratio

of 0.6 and 0.9) very quickly (i.e., at 2.6, 2.7, and 3.5 seconds). If an unlimited time

is allowed, we do not need to consider using an anytime algorithm. It is, however,

unreasonable assumption in a real world where service clients on web are impatient

by nature. For such a case to require a fast response, anytime algorithms which

return acceptable answers in an allowable time can be more satisfiable to users.



104

Table 5.2 presents how three search algorithms, i.e., the uniform cost search,

the basic anytime algorithm based on a beam stack search, and the dynamic any-

time algorithm with heuristics, solve the six QoS-aware WSC problems within

specific thresholds (i.e., 60, 120, 300, 600 seconds, respectively). It shows, within

each timeout, whether each algorithm solves problems and how good a so-far-best

solution is. In the case of the uniform cost algorithm, since it returns the optimal

answer only after finishing the necessary computation, we report only whether a

given problem is solved or not. For basic and dynamic anytime algorithms, even

though they can find the optimal solution, they need to visit the rest search space

to confirm if the solution is optimal. ‘Complete’ and ‘Incomplete’ indicate if the

algorithms accomplish even the confirmation step.

Within 60 seconds, all algorithms do not complete solving all problems except

P1. However, while the optimal algorithm does not provide any answer at all,

anytime algorithms generate approximate solutions of which QoS quality ratios

are from 0.68 to 1. As the longer timeouts are given, the uniform cost algorithm

solves more problems, i.e., it solves 1, 4, 4, and 5 problems with 60, 120, 300, and

600 seconds, respectively. Likewise, anytime algorithms complete more problems

or return solutions with higher quality. The basic anytime algorithm completes

1, 1, 4, and 4 problems with 60, 120, 300, and 600 seconds, respectively, and

for incomplete problems, it improves qualities of the solutions, e.g., for P5, the

quality ratios of solutions returned are 0.68, 0.68, 0.81, and 0.87 with 60, 120,

300, and 600 seconds, respectively. The dynamic anytime algorithm completes 1,

3, 4, 4 problems with 60, 120, 300, 600 seconds, respectively, and for incomplete

problems, it improves qualities of the solutions, e.g., for P6, the quality ratios of

solutions returned are 0.85, 0.96, 0.96, and 1 with 60, 120, 300, and 600 seconds,

respectively. For the problem P5, the optimal algorithm cannot solve it even in 600

seconds, which means that the algorithm does not return anything to users after

a long waiting. On the other hand, even within 60 seconds, basic and dynamic

anytime algorithms provide approximate solutions of which quality ratio are 0.68

and 0.81, respectively, and their quality ratios are improved with longer timeouts

(up to 0.87 within 600 seconds).

In all the cases, our dynamic anytime algorithm outperforms the basic anytime

algorithm; it finds higher quality solutions earlier and accomplishes the whole



105

search faster than the basic algorithm.

Figure 5.4 and Figure 5.5 illustrate how three algorithms work on six problems;

the format is same as Figure 5.3. Anytime algorithms identify a set of approxi-

mate solutions, and the quality of their solutions is improved as time passes. In

Figure 5.4 (b) and (c), and Figure 5.5 (f), the dynamic anytime algorithm notably

outperforms the basic anytime algorithm, especially, at the beginning. The fact is

caused by a large beam width at the early stage in the dynamic anytime algorithm.

In the problem P3 (see Figure 5.4 (c)), while the basic anytime algorithm finds

solutions with aggregated QoS values, 1260 and 1220, at 3.0 seconds and 37.8 sec-

onds, respectively, the dynamic anytime algorithm first produces a solution with

1220 at 3.0 seconds, and then continues searching the better solution. Since the

dynamic anytime algorithm carefully selects a branch among more candidate states

at the early stage than the basic algorithm, it can bypass the solution with 1260

and find a higher quality solution with 1220 much earlier. Furthermore, since in

a beam stack search, bad choices at early levels make a significant cost due to its

backtracking mechanism, the ability to bypass unfavorable solutions is a valuable

property of the dynamic anytime algorithm.



106

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50

S
ol

ut
io

n 
Q

ua
lit

y 
R

at
io

Time (sec)

Uniform cost
Basic anytime

Dynamic anytime

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120

S
ol

ut
io

n 
Q

ua
lit

y 
R

at
io

Time (sec)

Uniform cost
Basic anytime

Dynamic anytime

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150  200

S
ol

ut
io

n 
Q

ua
lit

y 
R

at
io

Time (sec)

Uniform cost
Basic anytime

Dynamic anytime

(c)

Figure 5.4. Experiment result of three algorithms (Optimal, basic anytime and dynamic
anytime) on QoS-aware WSC. (a) P1, (b) P2, and (c) P3.



107

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140  160  180

S
ol

ut
io

n 
Q

ua
lit

y 
R

at
io

Time (sec)

Uniform cost
Basic anytime

Dynamic anytime

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000  1200  1400

S
ol

ut
io

n 
Q

ua
lit

y 
R

at
io

Time (sec)

Uniform cost
Basic anytime

Dynamic anytime

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000  1200

S
ol

ut
io

n 
Q

ua
lit

y 
R

at
io

Time (sec)

Uniform cost
Basic anytime

Dynamic anytime

(f)

Figure 5.5. Continued result from Figure 5.5. (d) P4, (e) P5, and (f) P6.



Chapter 6

Conclusion

As one of vital blocks in enabling the Semantic Web, web services have received

much interest from industry as well as academic research. Especially, automatic

composition of web services is one of essential topics to fulfill the original goal of

web services. In this dissertation, we studied this web service composition (WSC)

problem in three different service description levels, i.e., a signature level, a behavior

description level, and a QoS description level.

For a signature-level approach where each web service is described with its

signature in WSDL, we first analyzed topological aspects of the real-world web

services. Regardless of the matching schemes and network types, all of web service

networks showed small world properties well and power-law distribution to some

extent. Furthermore, as more flexible matchmaking was employed, the properties

of small world and power-law network got more clearly. Since many robust real-

world complex systems also show the similar properties of small world and power-

law network, we argue that the usage of more flexible approximate matching as

in semantic web services would make the network more robust and useful. Based

on these observations, we proposed a SAT-based algorithm finding the shortest

sequence of web services while respecting parameter types of web services. Our

preliminary experiment revealed promising results where the tool found shortest

sequences with logarithmic number of invocations of a Sat solver.

For a behavioral description based approach, we first formally defined a re-

alistic model for the WSC problem on behavioral descriptions and investigated

the computational complexities for the composition of web services on restricted



109

(i.e., with full observation) and general cases (i.e., with partial observation). We

then proved that the WSC problem with full observation is EXP-hard and the

WSC problem with partial observation is 2-EXP-hard. Our findings suggested

that much more efforts to identify alternative solutions to the WSC problem be

needed. As one of solutions for these high complexity problems, we proposed

approximation-based algorithms using abstraction and refinement with two abstrac-

tion methods—signature-preserving abstraction and signature-subsuming abstrac-

tion. Our experiment on realistic problems showed promising results of our ab-

straction and refinement algorithms, comparing with a basic algorithm without

abstraction/refinement.

For a QoS description based approach, we proposed applying anytime algo-

rithm based on beam stack search to the QoS-aware WSC problem. And then, to

improve the basic anytime algorithm, we proposed a carrot-shaped dynamic beam

width with two more heuristics, short backtracking and upper bound propagation.

Our experiment demonstrated that in many cases, anytime algorithms can identify

composite web services with high quality much earlier than a general optimal algo-

rithm. In addition, our heuristics can improve the quality of current approximate

solutions and overall execution time.



Bibliography

[1] W3C (2007), “Web Services Description Language (WSDL) Version 2.0,”
http://www.w3.org/TR/wsdl20-primer/.

[2] W3C (2007), “SOAP Version 1.2,” http://www.w3.org/TR/soap/.

[3] Oasis (2004), “UDDI Version 3.0.2,” http://uddi.xml.org/.

[4] Alonso, G., F. Casati, H. Kuno, and V. Machiraju (2003) Web
Services: Concepts,Architecture, and Applications, Springer-Verlag (ISBN:
3540440089).

[5] Medjahed, B., B. Benatallah, A. Bouguettaya, A. Ngu, and A. El-
magarmid (2003) “Business-to-Business Interactions: Issues and Enabling
Technologies,” VLDB Journal, 12(1), pp. 59–85.

[6] Albert, R. and A.-L. Barabasi (2000) ““Topology of Evolving Networks:
Local Events and University”,” Phys. Rev. Lett., 85, pp. 5234–5237.

[7] Newman, M. E. J., S. H. Strogatz, and D. J. Watts (2001) ““Ran-
dom Graphs with Arbitrary Degree Distributions and Their Applications”,”
Phys.Rev. E, 64(2), p. 026118.

[8] Xu, L., F. Hutter, H. H. Hoos, and K. Leyton-Brown (2007)
“SATzilla-07: The design and analysis of an algorithm portfolio forSAT,” in
The 13th International Conference on Principles and Practice of Constraint
Programming CP 2007, pp. 712–727.

[9] Srivastava, B. and J. Koehler (2003) “Web service composition: Cur-
rent solutions and open problems,” in In ICAPS Workshop on Planning for
Web Services, pp. 28–35.

[10] Sirin, E., B. Parsia, D. Wu, J. Hendler, and D. Nau (2004) “HTN
planning for web service composition using SHOP2,” Journal of Web Seman-
tics, 1(4), pp. 377–396.

[11] Oasis (2007), “Web services business process execution language version
2.0,” http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.



111

[12] W3C (2004), “OWL-S: Semantic markup for web services,”
http://www.w3.org/Submission/OWL-S/.

[13] W3C (2006), “Web Services Policy (WS-Policy) Version 1.2,”
http://www.w3.org/Submission/WS-Policy/.

[14] IBM (2004), “WSLA (Web Service Level Agreements) project,”
http://www.research.ibm.com/wsla/documents.html.

[15] OGF (2007), “Web Services Agreement Specification (WS-Agreement),”
http://www.ogf.org/documents/GFD.107.pdf.

[16] Zilberstein, S. (1996) “Using Anytime Algorithms in Intelligent Systems,”
AI Magazine, 17(3), pp. 73–83.

[17] Zhou, R. and E. A. Hansen (2005) “Beam-Stack Search: Integrating
Backtracking with Beam Search,” in ICAPS, pp. 90–98.

[18] “The Web Service Challenge,” http://ws-challenge.org/.

[19] Berners-Lee, T., J. Hendler, and O. Lassila (2001) “The semantic
web,” Scientic American, 284(5), pp. 34–43.

[20] Casati, F. and M. Shan (2001) “Models and languages for describing
and discovering e-services,” in Proceedings of ACM Sigmod International
Conference on Management of Data, p. 626.

[21] Tsur, S., S. Abiteboul, R. Agrawal, U. Dayal, J. Klein, and
G. Weikum (2001) “Are Web services the next revolution in e-commerce?”
in Proceedings of the 27th International Conference on Very Large Data
Bases, pp. 614–617.

[22] W3C (2002), “W3C Web Services Activity,”
http://www.w3c.org/2002/ws/.

[23] Medjahed, B. (2004) Semantic Web Enabled Composition of Web Services,
Ph.D. thesis, Virginia Tech.

[24] xMethod “http://www.xmethod.com,” .

[25] Bindingpoint “http://www.bindingpoint.com (Last accessed May 1,
2006),” .

[26] RemoteMethods “http://www.RemoteMethods.com,” .

[27] eSynaps “http://www.robtex.com/dns/esynaps.com.html,” .



112

[28] Schlosser, M. T., M. Sintek, S. Decker, and W. Nejdl (2002) “A
Scalable and Ontology-Based P2P Infrastructure for Semantic Web Ser-
vices,” in Peer-to-Peer Computing, pp. 104–111.

[29] “Speed-R: Semantic P2P environment for diverse Web Service registries,”
http://webster.cs.uga.edu/mulye/SemEnt/Speed-R.html.

[30] Haas, H. (2004) Architecture and future of web services: from SOAP to
semantic web services.

[31] Hull, R. (2003) “E-Service Composition: Models and Formalisms,” in De-
scription Logics.

[32] Berardi, D., D. Calvanese, D. Giacomo, Giuseppe, M. Lenzerini,
and M. Mecella (2005) “Automatic Service Composition Based on Behav-
ioral Descriptions,” Int. J. of Cooperative Information Systems, 14(4), pp.
333–376.

[33] Semantic Web (2010), “Ontology,” http://semanticweb.org/wiki/Ontology.

[34] Srivastava, B. and J. Koehler (2003) “Web Service Composition: cur-
rent solutions and open problems,” in In ICAPS workshop on Planning for
Web Services.

[35] Casati, F., S. Ilnicki, and L. Jin (2000) “Adaptive and dynamic service
composition in EFlow,” in Proceedings of 12th International Conference on
Adavanced Information Systems Engineering (CAiSE).

[36] Schuster, H., D. Georgakopoulos, A. Cichocki, and D. Baker
(2000) “Modeling and composing service-based and reference process-based
multi-enterprise process,” in Proceedings of 12th International Conference on
Adavanced Information Systems Engineering (CAiSE).

[37] Paolucci, M., T. Kawamura, T. R. Payne, and K. P. Sycara (2002)
“Semantic Matching of Web Services Capabilities,” in International Seman-
tic Web Conference, pp. 333–347.

[38] Mecella, M., B. Pernici, and P. Craca (2001) “Compatibility of e
-Services in a Cooperative Multi-platform Environment,” in TES, pp. 44–57.

[39] Wu, J. and Z. Wu (2005) ““Similarity-based Web Service Matchmaking”,”
in IEEE Int’l Conf. on Services Computing (SCC), Orlando, FL, USA.

[40] Wang, Y. and E. Stroulia (2003) ““Semantic Structure Matching for As-
sessing Web Service Similarity”,” in IEEE Int’l Conf. on Services Computing
(SCC), Trento, Italy.



113

[41] Dong, X., A. Halevy, J. Madhavan, E. Nemes, and J. Zhang (2004)
““Similarity Search for Web Services”,” in VLDB, Toronto, Ontario, Canada.

[42] Oh, S.-C., D. Lee, and S. Kumara (2008) “Effective Web Service Compo-
sition in Diverse and Large-Scale Service Networks,” IEEE Trans. on Services
Computing (TSC), 1(1), pp. 15–32.

[43] Bilenko, M., W. Cohen, S. Fienberg, J. Mooney, and R. Raviku-
mar (2003) “Adaptive name matching in information integration,” IEEE
Intelligent Systems, 18(5), pp. 16–23.

[44] Fellbaum (Eds), C. (1998) “WordNet: An Electronic Lexical Database”,
The MIT Press.

[45] Medjahed, B., A. Bouguettaya, and A. K. Elmagarmid (2003)
“Composing Web services on the Semantic Web,” VLDB J., 12(4), pp. 333–
351.

[46] Sirin, E., J. A. Hendler, and B. Parsia (2003) “Semi-automatic Compo-
sition ofWeb Services using Semantic Descriptions,” in WSMAI, pp. 17–24.

[47] Cardoso, J. and A. P. Sheth (2003) “Semantic E-Workflow Composi-
tion,” J. Intell. Inf. Syst., 21(3), pp. 191–225.

[48] Cardoso, J. and A. P. Sheth (2003) “Semantic Web Processes: Seman-
tics Enabled Annotation, Discovery, Composition and Orchestration of Web
Scale Processes,” in WISE, pp. 375–376.

[49] Y. Kalfoglou, W. M. Schorlemmer, A. P.Sheth, S. Staab, and
M. Uschold (2005) “Semantic Interoperability and Integration,” in Se-
mantic Interoperability and Integration, vol. 04391 of Dagstuhl Seminar Pro-
ceedings, IBFI, Schloss Dagstuhl, Germany.

[50] Sivashanmugam, K., K. Verma, A. P. Sheth, and J. A. Miller (2003)
“Framework for Semantic Web Process Composition,” Special Issue of the
International Journal of Electronic Commerce.

[51] Akkiraju, R., B. Srivastava, A.-A. Ivan, R. Goodwin, and T. F.
Syeda-Mahmood (2006) “SEMAPLAN: Combining Planning with Seman-
tic Matching to Achieve Web Service Composition,” in AAAI.

[52] Mrissa, M., C. Ghedira, D. Benslimane, Z. Maamar, F. Rosen-
berg, and S. Dustdar (2007) “A context-based mediation approach to
compose semantic Web services,” ACM Transactions on Internet Technol-
ogy, 8(1), p. 4.



114

[53] Sycara, K. P., M. Klusch, S. Widoff, and J. Lu (1999) “Dynamic
Service Matchmaking Among Agents in Open Information Environments,”
SIGMOD Record, 28(1), pp. 47–53.

[54] Ankolekar, A., M. H. Burstein, J. R. Hobbs, O. Lassila, D. L.
Martin, S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne,
K. P. Sycara, and H. Zeng (2001) “DAML-S: Semantic Markup for Web
Services,” in The Emerging Semantic Web.

[55] Maedche, A. and S. Staab (2002) ““Measuring Similarity between On-
tologies”,” in European Conf. on Knowledge Acquisition and Management
(EKAW), Siguenza, Spain.

[56] Li, L. and I. Horrocks (2003) “A software framework for matchmaking
based on semantic web technology,” in WWW, pp. 331–339.

[57] Zeng, L., B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.
Sheng (2003) “Quality driven web services composition,” in WWW, pp.
411–421.

[58] Zeng, L., B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang (2004) “QoS-Aware Middleware for Web Services Composi-
tion,” IEEE Trans. Software Eng., 30(5), pp. 311–327.

[59] Aggarwal, R., K. Verma, J. A. Miller, and W. Milnor (2004) “Con-
straint Driven Web Service Composition in METEOR-S,” in IEEE SCC, pp.
23–30.

[60] Ardagna, D. and B. Pernici (2007) “Adaptive Service Composition in
Flexible Processes,” IEEE Trans. Software Eng., 33(6), pp. 369–384.

[61] Ardagna, D. and B. Pernici (2005) “Global and Local QoS Constraints
Guarantee in Web Service Selection,” in ICWS, pp. 805–806.

[62] Yu, T., Y. Zhang, and K.-J. Lin (2007) “Efficient algorithms for Web
services selection with end-to-end QoS constraints,” ACM Trans. Web, 1(1),
p. 6.

[63] Oldham, N., C. Thomas, A. P. Sheth, and K. Verma (2004)
“METEOR-S Web Service Annotation Framework with Machine Learning
Classification,” in SWSWPC, pp. 137–146.

[64] Grefen, P. W. P. J., K. Aberer, H. Ludwig, and Y. Hoffner (2001)
“CrossFlow: Cross-Organizational Workflow Management for Service Out-
sourcing in Dynamic Virtual Enterprises,” IEEE Data Eng. Bull., 24(1), pp.
52–57.



115

[65] Alrifai, M. and T. Risse (2009) “Combining global optimization with
local selection for efficient QoS-aware service composition,” in WWW, pp.
881–890.

[66] Canfora, G., M. D. Penta, R. Esposito, and M. L. Villani (2005)
“An approach for QoS-aware service composition based on genetic algo-
rithms,” in GECCO, pp. 1069–1075.

[67] Dayal, U., K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman,
M. L. Kersten, S. K. Cha, and Y.-K. Kim (eds.) (2006) Proceedings of
the 32nd International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, ACM.

[68] Yu, Q. and A. Bouguettaya (2008) “Framework for Web service query
algebra and optimization,” ACM Trans. Web, 2(1), pp. 1–35.

[69] Berardi, D., D. Calvanese, G. D. Giacomo, R. Hull, and M. Me-
cella (2005) “Automatic Composition of Web Services in Colombo,” in
SEBD, pp. 8–15.

[70] Berardi, D., D. Calvanese, G. D. Giacomo, R. Hull, and M. Me-
cella (2005) “Automatic Composition of Transition-based Semantic Web
Services with Messaging,” in VLDB, pp. 613–624.

[71] McIlraith, S. A. and T. C. Son (2002) “Adapting Golog for Composition
of Semantic Web Services,” in KR, pp. 482–496.

[72] Giacomo, G. D., Y. Lespérance, and H. J. Levesque (2000) “Con-
Golog, a concurrent programming language based on the situation calculus,”
Artif. Intell., 121(1-2), pp. 109–169.

[73] Narayanan, S. and S. A. McIlraith (2002) “Simulation, verification and
automated composition of web services,” in WWW ’02: Proceedings of the
11th international conference on World Wide Web, pp. 77–88.

[74] Hull, R. and J. Su (2005) “Tools for composite web services: a short
overview,” SIGMOD Record, 34(2), pp. 86–95.

[75] Pistore, M., P. Traverso, P. Bertoli, and A. Marconi (2005) “Au-
tomated synthesis of executable web service compositions from BPEL4WS
processes,” in WWW ’05: Special interest tracks and posters of the 14th
international conference on World Wide Web, pp. 1186–1187.

[76] Pistore, M., P. Traverso, and P. Bertoli (2005) “Automated compo-
sition of web services by planning in asynchronous domains,” in Proceedings
of International Conference on Automated Planning and Scheduling (ICAPS
2005), pp. 2–11.



116

[77] Bertoli, P., M. Pistore, and P. Traverso (2006) “Automated web ser-
vice composition by on-the-fly belief space search,” in Proceedings of Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2006),
pp. 358–361.

[78] Fan, W., F. Geerts, W. Gelade, F. Neven, and A. Poggi (2008)
“Complexity and composition of synthesized web services,” in PODS ’08:
Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pp. 231–240.

[79] Brogi, A. (2010) “On the Potential Advantages of Exploiting Behavioural
Information for Contract-based Service Discovery and Composition,” Jour-
nal of Logic and Algebraic Programming, pp. 1–10.

[80] Reif, J. (1984) “The complexity of two-player games of incomplete infor-
mation,” Journal on Computer and System Sciences, 29, pp. 274–301.

[81] Thomas, W. (2002) “Infinite games and verification,” in Proceedings of the
International Conference on Computer Aided Verification (CAV’02), LNCS
2404, Springer, pp. 58–64.

[82] Antoniotti, M. (1995) Synthesis and verification of discrete controllers
for robotics and manufacturing devices with temporal logic and the control-D
system, Ph.D. thesis, New York University.

[83] Pnueli, A. and R. Rosner (1989) “On the synthesis of a reactive mod-
ule,” in Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 1989), pp. 179–190.

[84] Vardi, M. (1995) “An automata-theoretic approach to fair realizability and
synthesis,” in Proceedings of International Conference on Computer Aided
Verification (CAV’95), pp. 267–278.

[85] Kupferman, O. and M. Vardi (1997) “Synthesis with incomplete infor-
mation,” in Proceedings of the 2nd International Conference on Temporal
Logic, pp. 91–106.

[86] Tsitsiklis, J. N. (1989) “On the Control of Discrete Event Dynamical
Systems,” Mathematics of Control, Signals and Systems, 2(2), pp. 95–107.

[87] Rudie, K. and J. C. Willems (1995) “The Computational Complexity
of Decentralized Discrete-Event Control Problems,” IEEE Transactions on
Automatic Control, 40(7), pp. 1313–1319.

[88] Herzig, A., J. Lang, D. Longin, and T. Polacsek (2000) “A logic for
planning under partial observability,” in Proceedings of National Conference
on Artificial Intelligence (AAAI-00), pp. 768–773.



117

[89] Bertoli, P. and M. Pistore (2004) “Planning with Extended Goals and
Partial Observability,” in Proceedings of the 14th International Conference
on Automated Planning and Scheduling (ICAPS 2004), pp. 270–278.

[90] Rintanen, J. (2004) “Complexity of planning with partial observabil-
ity,” in Proceedings of International Conference on Automated Planning and
Scheduling (ICAPS 2004), pp. 345–354.

[91] Moffitt, M. (2007) “On the partial observability of temporal uncertainty,”
in Proceedings of National Conference on Artificial Intelligence (AAAI-07),
pp. 1031–1037.

[92] Pnueli, A. (1981) “The Temporal Semantics of Concurrent Programs.”
Theoretical Computer Science, 13, pp. 45–60.

[93] Emerson, E. (1990) “Temporal and modal logic,” in Handbook of The-
oretical Computer Science (J. van Leeuwen, ed.), vol. B, Elsevier Science
Publishers, pp. 995–1072.

[94] Huang, W., Z. Wen, Y. Jiang, and L. Wu (2007) “Observation reduction
for strong plans,” in Proceedings of the 23th International Joint Conference
on Artificial Intelligence (IJCAI’07), pp. 1930–1935.

[95] Armano, G., G. Cherchi, and E. Vargiu (2003) “A parametric hierar-
chical planner for experimenting abstraction techniques,” in Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI’03),
pp. 936–941.

[96] Smith, T., D. R. Thompson, and D. Wettergreen (2007) “Generating
exponentially smaller pomdp models using conditionally irrelevant variable
abstraction,” in Proceedings of International Conference on Automated Plan-
ning and Scheduling (ICAPS 2007), pp. 304–311.

[97] Watts, D. J. and S. H. Strogatz (1998) ““Collective Dynamics of ’Small-
World’ Networks”,” Nature, 393(4), pp. 440–442.

[98] Albert, R., H. Jeong, and A.-L. Barabasi (1999) ““The Diameter of
the World Wide Web”,” Nature, 401, pp. 130–131.

[99] Denning, P. J. (2004) ““Network Laws”,” Comm. ACM, 47(11), pp. 15–
20.

[100] Blake, M. B., W. K.-W. Cheung, M. C. Jaeger, and A. Wombacher
(2007) “WSC-07: Evolving the web services challenge,” in CEC/EEE, pp.
505–508.



118

[101] Milgram, S. (1967) “The Small World Problem,” Psychology Today, 1(6),
pp. 61–67.

[102] Watts, D. J. (1999) “The Dynamics of Networks between Order and Rad-
nomness”, Princeton Univ. Press, Princeton, NJ.

[103] RDF-Schema http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

[104] WSDL-S http://lsdis.cs.uga.edu/library/download/wsdl-s.pdf.

[105] Baeza-Yates, R. and B. Ribeiro-Neto (1999) “Modern Information Re-
trieval”, Addison–Wesley.

[106] Fan, J. and S. Kambhampati (2005) ““A Snapshot of Public Web Ser-
vices”,” SIGMOD Record, 34(1), pp. 24–32.

[107] Newman, M. E. J. (2005) ““Power Laws, Pareto Distributions and Zipf’s
Law”,” Contemporary Physics, 46, pp. 323–351.

[108] Kil, H., S.-C. Oh, and D. Lee (2006) ““On the topological landscape of
web services matchmaking”,” in In VLDB Workshop on Semantic Match-
making and Resource Retrieval (SMR).

[109] “The International SAT Competitions,” http://www.satcompetition.org/.

[110] Narayanan, S. and S. McIlraith (2003) “Analysis and simulation of web
services,” Computer Networks, 42(5), pp. 675–693.

[111] Balcázar, J. L., J. D́ıaz, and J. Gabarró (1988) Structural complexity
1, Springer-Verlag.

[112] Balcázar, J. L., J. D́ıaz, and J. Gabarró (1990) Structural complexity
2, Springer-Verlag.

[113] Papadimitriou, C. M. (1994) Computational complexity, Addison-Wesley.

[114] Chandra, A., D. Kozen, and L. Stockmeyer (1981) “Alternation,”
Journal of the ACM, 28(1), pp. 114–133.

[115] Traverso, P. and M. Pistore (2004) “Automated composition of seman-
tic web services into executable processes,” in Proceedings of International
Semantic Web Conference (ISWC’04), pp. 380–394.

[116] Bertoli, P., A. Cimatti, M. Roveri, and P. Traverso (2002) “Strong
planning under partial observability,” Artificial Intelligence, 170(4), pp. 337–
384.



119

[117] Barbon, F., P. Traverso, M. Pistore, and M. Trainotti (2006)
“Run-time monitoring of instances and classes of web service compositions,”
in In ICWS, pp. 63–71.

[118] Bellman, R. (1957) Dynamic Programming, Princeton University.

[119] Zhou, R. and E. A. Hansen (2004) “Breadth-First Heuristic Search,” in
ICAPS, pp. 92–100.

[120] Russell, S. and P. Norvig (2003) Artificial Intelligence: A Modern Ap-
proach, 2nd ed., Prentice-Hall.



Vita

Hyunyoung Kil

Hyunyoung Kil was born in Seoul, Republic of Korea in 1975. She received her
B.S. degree and M.S. degree from the Department of Computer Science and Engi-
neering, Korea University, Seoul, Korea, in 1998 and in 2001, respectively. Then,
she received her M.S. degree from the Department of Computer Science, University
of Pennsylvania, Philadelphia, PA, USA in 2003. Then, she joined Ph.D program
in the Department of Computer Science and Engineering at the Pennsylvania State
University, State College, PA, USA in 2004. Her current research focuses on Auto-
matic web service composition, automated planning and controller synthesis, and
digital library.


