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Abstract
Fact-checking the truthfulness of claims usu-
ally requires reasoning over multiple evidence
sentences. Oftentimes, evidence sentences may
not be always self-contained, and may require
additional contexts and references from else-
where to understand coreferential expressions,
acronyms, and the scope of a reported find-
ing. For example, evidence sentences from
an academic paper may need contextual sen-
tences in the paper and descriptions in its cited
papers to determine the scope of a research
discovery. However, most fact-checking mod-
els mainly focus on the reasoning within evi-
dence sentences, and ignore the auxiliary con-
texts and references. To address this prob-
lem, we propose a novel method, Context- and
Reference-augmented Reasoning and Prompt-
ing. For evidence reasoning, we construct
a three-layer evidence graph with evidence,
context, and reference layers. We design
intra- and cross-layer reasoning to integrate
three graph layers into a unified evidence em-
bedding. For verdict prediction, we design
evidence-conditioned prompt encoder, which
produces unique prompt embeddings for each
claim. These evidence-conditioned prompt
embeddings and claims are unified for fact-
checking. Experiments verify the strength of
our model. Code and datasets are available at
https://github.com/cezhang01/correct.

1 Introduction

The proliferation of misinformation has posed
growing challenge in the realm of information reli-
ability. There is a need to develop automated fact-
checking methods (Guo et al., 2022) to verify the
truthfulness of real-world claims using evidence.

Existing fact-checking models (Zhou et al.,
2019; Liu et al., 2020) have shown promise in ag-
gregating and reasoning over multiple evidence
sentences to verify a claim. However, the evidence
sentences retrieved from a large corpus may con-
tain incomplete information when they are taken

Claim: COVID is the cause of Long COVID.Claim: Wearing masks prevents 
the spread of virus.

Evidence sentence from a 
paper: Wearing MNC will 
effectively interrupt virus 
infections in the community.
…
Contextual document from the 
same paper: Most masks 
covering the mouth are named 
mouth nose covering (MNC) 
according to …

Long COVID is an 
often debilitating 
illness that occurs in 
at least 10% of severe 
acute respiratory 
syndrome coronavirus 
2 (SARS-CoV-2) 
infections. 

SARS-CoV-2, the virus 
that causes COVID-19, 
replicates within the 
gut and acute COVID-
19 is associated with 
alteration of the gut 
microbiome. …

Evidence sentence
from a paper

Referential document
(e.g., cited paper,

hyperlinked Webpage)

Label: Support
(b) Reference-dependent evidence

Label: Support
(a) Context-dependent evidence

Figure 1: Illustration of (a) context-dependent and (b)
reference-dependent evidence from BearFact dataset.

out-of-corpus. We need to refer to additional con-
texts and references from elsewhere to understand
coreferential expressions, acronyms, and the scope
of a reported finding. For example, Fig. 1(a) il-
lustrates context-dependent evidence, where unde-
fined acronym “MNC” in evidence sentence from a
paper abstract requires additional context from the
abstract to jointly interpret the meaning of acronym
“MNC”. Fig. 1(b) presents reference-dependent
evidence, where we need to check the cited pa-
per to understand that “SARS-CoV-2 infection”
and “COVID-19 infection” are coreferential expres-
sions, so that we could accurately fact-check the
claim. Such scenario also exists in general domain
where evidence sentences from a Wikipedia page
may need contextual sentences in the same page
and text in the hyperlinked pages to complement
the insufficient information in the evidence.

Challenges and Approach. To overcome
the limitations of existing methods, we propose
Context- and Reference-augmented Reasoning and
prompting for fact-checking (CORRECT), to ad-
dress two open questions.

First, how to aggregate both contextual and ref-
erential documents into evidence reasoning? Some
models are proposed to capture contextual docu-
ments, e.g., MultiVerS (Wadden et al., 2022). Some
others are designed for referential documents, e.g.,

https://github.com/cezhang01/correct


Transformer-XH (Zhao et al., 2020) and HESM
(Subramanian and Lee, 2020). However, they incor-
porate either contextual or referential documents,
failing to aggregate both of them into unified evi-
dence embedding. Moreover, most of them simply
concatenate evidence with contextual or referential
documents, and inefficiently input the long text to
language models for evidence encoding. Though
they have shown that modeling either contexts or
references helps fact-checking, integrating both of
them for evidence reasoning is still unexplored. In
our model, we construct a three-layer graph with
evidence, context, and reference layers. We design
intra- and cross-layer reasoning to aggregate three
graph layers into unified evidence embedding.

Second, how to integrate evidence reasoning
and claim for accurate verdict prediction? Previ-
ous fact-checking methods, e.g., ProToCo (Zeng
and Gao, 2023), rely on natural language as input
prompt to language model for claim verification.
However, discrete natural language prompts are
difficult to design and may result in suboptimal
results (Zhou et al., 2022b). Recently, prompt tun-
ing (Lester et al., 2021) uses continuous and learn-
able prompt embeddings to replace discrete prompt
and has achieved decent result, but no one has ex-
plored its design for claim verification. We propose
evidence-conditioned prompt encoder, which takes
evidence embedding as input, and produces unique
prompt embeddings for each claim. We combine
prompt embeddings with claim token embeddings
to unify evidence and claim for verdict prediction.

Contributions. First, we propose a novel model,
Context- and Reference-augmented Reasoning and
Prompting (CORRECT), to integrate both contex-
tual and referential documents into evidence rea-
soning. Second, we design a three-layer evidence
graph, and propose intra- and cross-layer reason-
ing to learn unified evidence embedding. Third,
we propose evidence-conditioned prompt embed-
dings, which are combined with claims to integrate
evidence reasoning with claim for fact-checking.

2 Related Work

Multi-hop fact-checking. Complex claims usu-
ally require reasoning over multiple evidence sen-
tences. Many methods are based on Language Mod-
els (Vaswani et al., 2017; Devlin et al., 2019) and
Graph Neural Networks (Hamilton et al., 2017),
such as GEAR (Zhou et al., 2019), KGAT (Liu
et al., 2020), DREAM (Zhong et al., 2020), SaGP

(Si et al., 2023), DECKER (Zou et al., 2023),
CausalWalk (Zhang et al., 2024a), etc. However,
they mainly focus on the reasoning within evidence
sentences. They ignore the auxiliary contextual
and referential documents. Methods incorporat-
ing contextual documents are proposed, e.g., Para-
graphJoint (Li and Peng, 2021), ARSJoint (Zhang
et al., 2021), MultiVerS (Wadden et al., 2022),
etc. Some others integrating referential documents
include Transformer-XH (Zhao et al., 2020) and
HESM (Subramanian and Lee, 2020). However,
they incorporate either contextual or referential doc-
uments, but not both. In contrast, we construct a
three-layer evidence graph to model evidence sen-
tences, contexts, and references. There are fake
news detection models where auxiliary graph with
Wikidata is used (Hu et al., 2021; Whitehouse et al.,
2022). Fake news detection aims to detect the
whole article with meta-data, while fact-checking
focuses on claim sentences with retrieved evidence.

Some fact-checking works are based on retrieval-
augmented generation (Zeng and Gao, 2024). They
unify evidence retrieval and claim verification as a
joint approach, while our model mainly focuses on
verification, and relies on external tool for evidence
retrieval. Our setting is consistent with existing
works (Wadden et al., 2022; Zhang et al., 2024a).

Prompt-based fact-checking. Some models
verify claims by prompting LLMs (Achiam et al.,
2023). ProToCo (Zeng and Gao, 2023) inputs
both evidence sentences and claim to T5 (Raffel
et al., 2020). ProgramFC (Pan et al., 2023) decom-
poses complex claims into simpler sub-tasks and
uses natural language to prompt LLMs. Varifocal
(Ousidhoum et al., 2022) formulates fact-checking
as question generation and answering. They rely
on handcrafted natural language as prompt. The
performance heavily relies on the choice of prompt,
and it is difficult to design a prompt that produces a
decent result, as shown in (Zhou et al., 2022b). Our
model is designed with learnable prompt embed-
dings where the prompting instruction is naturally
learned by embeddings through optimization.

Prompt learning. Prompting (Brown et al.,
2020) uses natural language as the input to lan-
guage models to fulfill certain tasks. Many prompt-
ing models have been proposed, including natu-
ral language prompt (Gao et al., 2021; Shin et al.,
2020) and prompt embeddings (Lester et al., 2021;
Liu et al., 2023, 2022; Li and Liang, 2021). Prompt-
ing also benefits many tasks (Zhou et al., 2022a;
Tan et al., 2022). However, no one has explored



Table 1: Summary of mathematical notations.

Notation Description
D a fact-checking dataset
X a set of N = |X | claims
E a corpus of evidence sentences
C a set of contextual documents
R a set of referential documents

Nref(e) evidence sentence e’s referential documents
Nevid(x) claim x’s retrieved evidence sentences

Y a set of labels
h(l)
e,CLS evidence sentence e’s [CLS] token embedding

ĥ
(l)
c aggregated contextual document embedding

ĥ
(l)
r aggregated referential document embedding

Ĥ
(l)

e evidence sentence e’s augmented embedding matrix
πm,y the m-th prompt embedding for class y
hm,y the m-th base prompt embedding for class y

prompt embeddings for fact-checking.
Text-attributed graph. Texts are usually con-

nected in a graph structure, termed text-attributed
graph (Zhang et al., 2024b). Various methods have
been developed to learn text embeddings in an un-
supervised manner (Zhang and Lauw, 2020, 2023,
2021; Zhang et al., 2023; Yang et al., 2021; Jin
et al., 2023; Yang et al., 2024). Though both our
model and these works construct a text-attributed
graph, our work is different from them, since our
model is a supervised model for fact-checking.

3 Model Architecture

We introduce Context- and Reference-augmented
Reasoning and prompting for fact-checking (COR-
RECT). Table 1 summarizes math notations.

3.1 Problem Formulation

We are given a fact-checking dataset D =
{X , E , C,R}. Claim set X = {xi}Ni=1 contains
a set of N claims. Evidence set E = {ej}Ej=1 is a
corpus of E evidence sentences. For each evidence
sentence e ∈ E , we have its contextual document
c ∈ C. Usually, an evidence sentence has only one
contextual document, from which this sentence is
retrieved. We also have e’s referential documents
Nref(e) = {re,n}Re

n=1 ⊂ R. Here Re is the number
of e’s referential documents. Evidence sentence e
may have multiple referential documents, such as
papers cited by e’s paper or Webpages hyperlinked
by e. We use Nref(e) to represent the set of e’s
referential documents. We use Nevid(x) ⊂ E to
denote the set of evidence sentences for a claim x.

Given D as input, we design a model that uses
evidence sentences from E together with their
contextual documents in C and referential doc-

uments in R to verify claims. Eventually, for
each claim x ∈ X , we output its predicted label
ŷ ∈ Y = {SUPPORT, REFUTE, NEI}, indicating
whether the evidence supports, refutes, or does not
have enough information to verify the claim.

As shown in Fig. 2, CORRECT has two mod-
ules: (a-c) context- and reference-augmented evi-
dence reasoning on three-layer graph, (d) evidence-
conditioned prompting for claim verification.

3.2 Three-layer Evidence Graph Reasoning
Graph construction. For each claim x ∈ X and
its evidence sentences Nevid(x) ⊂ E , we construct
a three-layer graph with evidence, context, and ref-
erence layers in Fig. 2(a). We consider evidence
sentences, contextual documents, and referential
documents as three types of vertices. Each type of
vertices reside on their own layer. Cross-layer links
between evidence layer and context layer connect
each evidence sentence with its contextual docu-
ment. Each evidence sentence and its referential
documents are connected by cross-layer referential
links. Green links in Fig. 2(a) are cross-layer links.
For multi-evidence reasoning, we add intra-layer
links on evidence layer where evidence sentences
of a claim are fully connected, shown by black links
in Fig. 2(a). The purpose of constructing three lay-
ers instead of mixing all vertices into one layer is
to better differentiate three types of vertices.

Intra-layer reasoning. Evidence reasoning in-
cludes intra- and cross-layer reasoning. We first
show intra reasoning (orange arrows in Fig. 2(b)).

For each evidence sentence e ∈ Nevid(x), we
let H(l)

e = [h(l)
e,CLS,h(l)

e,1,h(l)
e,2, ...] denote the output

from the l-th Transformer step. Note that previous
works call it the l-th layer, but to distinguish it from
our three-layer graph, we instead call it the l-th step.
h(l)
e,i ∈ Rd is d-dimensional token embedding. We

use graph neural network to aggregate different
evidence sentences of a claim. For each evidence
sentence e, we first project it by

h̃(l)
e,CLS = W1h(l)

e,CLS. (1)

The [CLS] token is taken as the evidence sentence
embedding, and W1 ∈ Rd×d is type-specific pa-
rameter. We design type-specific attention.

ae,e′ = softmax
(

LeakyReLU(b⊤
1 [h̃

(l)
e,CLS||h̃

(l)
e′,CLS])

)
.

(2)
e′ ∈ Nevid(x)\e is another evidence sentence for
the same claim x, [·||·] is concatenation, and b1 ∈
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Patients don’t …

Evidence sentences

Ctx. docs Ref. docs …

Base prompt
embeddings

(1) Initialize

Evidence-conditioned
prompt encoder

⊙

⊕(4) Summation

(3) Element-wise
product

(d) Evidence-conditioned prompting

𝐡'	
Evidence

embedding
Output

(6) Contrastive loss(2) Input

Figure 2: Model architecture. (a) A three-layer graph for a claim. (b) Intra- and cross-layer reasoning. (c) A nested
architecture with language model and graph reasoning for evidence encoding. (d) Evidence-conditioned prompting.

R2d is learnable parameter. Finally, we aggregate
evidence sentences to e by mean pooling.

ĥ
(l)
e = mean

(
h̃(l)
e,CLS,

∑
e′∈Nevid(x)\e

ae,e′ h̃
(l)
e′,CLS

)
.

(3)
The aggregated sentence embedding ĥ

(l)
e captures

information of both itself and other evidence sen-
tences. To summarize Eqs. 1–3, we have

ĥ
(l)
e = fGNN

(
h(l)
e,CLS, {h(l)

e′,CLS|e
′ ∈ Nevid(x)\e};W1,b1

)
.

(4)
To integrate intra-layer aggregation into the en-

coding of each evidence sentence, we introduce a
virtual token to represent the aggregated sentence

embedding ĥ
(l)
e . For evidence sentence e, we con-

catenate ĥ
(l)
e with e’s text token embeddings by

Ĥ
(l)

e = ĥ
(l)
e ||H(l)

e . After concatenation, Ĥ
(l)

e con-
tains information of both evidence sentence e’s text
and the aggregated embedding from e’s intra-layer
neighbors. We aim to propagate the aggregated
sentence embedding to other text tokens of sen-
tence e, so that the text tokens can fully unify other
sentences for multi-evidence reasoning. We will
introduce asymmetric multi-head self-attention to
achieve this goal. But before that, we first discuss
cross-layer reasoning.

Cross-layer reasoning. We present cross-layer
reasoning, which aggregates contextual and refer-
ential documents into evidence sentences (green
arrows in Fig. 2(b)). The aggregation from refer-
ential documents to evidence sentence is similarly
defined by Eq. 5. We use reference-specific param-
eters, W2 and b2, to preserve graph heterogeneity.

ĥ
(l)
r = fGNN

(
h(l)
e,CLS, {h(l)

r,CLS|r ∈ Nref(e)};W2,b2

)
.

(5)
Each referential document r ∈ Nref(e) is also en-
coded, and its [CLS] token is passed to Eq. 5

for aggregation. Similarly, we have ĥ
(l)
c as con-

textual document embedding. To integrate both
embeddings into evidence sentence for cross-layer
reasoning, we introduce two more virtual tokens.

Ĥ
(l)

e = ĥ
(l)
c ||ĥ(l)

r ||ĥ(l)
e ||H(l)

e . (6)

The augmented embedding matrix, i.e., Ĥ
(l)

e , con-
tains both intra-evidence reasoning as well as cross-
layer context and reference augmentation.

To fully unify all three graph layers into evidence

sentence e, we input Ĥ
(l)

e at Eq. 6 to the (l + 1)-th
Transformer step with our proposed asymmetric
multi-head self-attention (MSAasy).

MSAasy(H(l)
e , Ĥ

(l)

e ,Ĥ
(l)

e ) = softmax
(QK⊤

√
d

)
V,

Q = H(l)
e W(l)

Q , K = Ĥ
(l)

e W(l)
K , V = Ĥ

(l)

e W(l)
V .
(7)

Keys K and values V are augmented with virtual
tokens, but queries Q are not, to avoid context and
reference embeddings being overwritten by evi-
dence sentence embedding. The result of asym-
metric MSA is passed to a multi-layer perceptron
and layer normalization (Vaswani et al., 2017). Fi-
nally, we obtain the output from the (l+1)-th step,
H(l+1)

e , integrating evidence sentence e, other evi-
dence sentences of the same claim, e’s contextual
and referential documents, see Fig. 2(c).

We conduct such intra-layer and cross-layer rea-
soning inside each Transformer step to allow dif-
ferent graph layers to fully communicate with each
other. We repeat such nested and graph-augmented
encoding for L times, and obtain he = h(L)

e,CLS as
the graph-augmented embedding for evidence sen-
tence e. This nested architecture is shown by Fig.
2(c). For claim x, we have {he}e∈Nevid(x), a set
of graph-augmented embeddings for its evidence



sentences. Finally, we aggregate them by mean
pooling and obtain a single evidence embedding.

hE = mean(he|e ∈ Nevid(x)). (8)

3.3 Evidence-conditioned Prompting
Now we integrate evidence reasoning into claim
embedding to fully integrate their information for
fact-checking. Prompting (Liu et al., 2023) is a
powerful method in fact-checking (Zeng and Gao,
2023). However, existing models are mainly based
on natural language as input prompt to language
models for verdict prediction. Handcrafted discrete
prompt has two disadvantages: First, it is difficult
to manually design a prompt that provides a decent
performance. Previous works (Zhou et al., 2022b)
have shown that the change of a single word in
the prompt may lead to significant deterioration of
the results, and it is time-consuming to enumerate
every prompt. Second, discrete natural language
prompt is difficult to optimize, since language mod-
els are intrinsically continuous.

To mitigate these problems, we explore learn-
able and continuous prompt embedding. Below
we design a prompt encoder, which takes evidence
embedding hE as input, and produces evidence-
conditioned prompt embeddings. See Fig. 2(d).

Evidence-conditioned prompt encoder. We
consider below continuous embeddings as prompt.

Px = [hx,CLS,π1,π2, ...,πM ,hx,1,hx,2, ...]. (9)

Here {πm}Mm=1 where πm ∈ Rd is a set of
M learnable evidence-conditioned prompt embed-
dings to be explained shortly, and M is a hyperpa-
rameter, indicating the number of prompt embed-
dings. Each hx,i ∈ Rd is a d-dimensional embed-
ding of the i-th text token in claim x. In language
models, there is an embedding look-up table before
language model encoder. In this look-up table, in-
put text tokens are first mapped to the vocabulary
to obtain their token embeddings, which are then
summed up with positional encodings. hx,i in Eq.
9 is obtained by this look-up table.

Now we explain prompt embeddings {πm}Mm=1,
output from an evidence-conditioned prompt en-
coder. We first initialize M base prompt embed-
dings, {hm}Mm=1. We then project evidence embed-
ding hE in Eq. 8 to the prompt embedding space,
followed by element-wise product and summation.

αx = tanh
(WαhE + bα

τ

)
, βx = tanh

(WβhE + bβ

τ

)
,

(10)

πm = hm ⊙ (αx + 1) + βx. (11)

⊙ is element-wise product, and 1 ∈ Rd is a vector
of ones to ensure that the scaling of hm is centered
around one. τ is a temperature to scale the shape of
tanh function. πm is thus conditioned on evidence
embedding, and different claims with their own
evidence sentences should have their unique claim-
specific prompt embeddings, shown by Fig. 2(d).

Given the label set Y ={SUPPORT, REFUTE,
NEI}, which usually has three types of labels, we
apply above evidence-conditioned prompt encoder
and correspondingly obtain three sets of prompt
embeddings, {πm,y}Mm=1 where y ∈ Y . As in Eq.
9, we concatenate each set of prompt embeddings
with token embeddings of claim x, and obtain three
sets of inputs {Px,y}y∈Y to claim encoder.

H(L)
x,y = f(Px,y)

= f([hx,CLS,π1,y,π2,y, ...,πM,y,hx,1,hx,2, ...])
(12)

H(L)
x,y is the output from the claim encoder, and its

[CLS] token is taken as claim embedding hx,y =

h(L)
x,y,CLS. Claim encoder shares parameters with

evidence encoder. Due to contextualized modeling,
claim token embeddings and evidence-conditioned
prompt embeddings fully exchange information,
and the output claim embedding captures both
claim x and evidence reasoning for fact-checking.

Finally, we use contrastive loss function to pre-
dict the veracity of claim x by

L = −
∑

x∈Xtrain
log

exp(h⊤
x,yhE)

exp(h⊤
x,yhE) +

∑
y′∈Y\y exp(h

⊤
x,y′hE)

.

(13)
hE is evidence embedding of claim x obtained by
Eq. 8. Xtrain is a set of training claims. Though we
use three types of labels in Y , more types of labels
in Y can also be modeled. Algorithm 1 summarizes
the learning process.

Initialization of base prompt embeddings. Pre-
vious works (Zhou et al., 2022b) have shown the
importance of the initialization of base prompt em-
beddings {hm,y}Mm=1 where y ∈ Y . Some of them
randomly initialize the embeddings, while others
use word embeddings of discrete prompts. Random
initialization presents unstable optimization (Wen
and Fang, 2023), while it is difficult to choose the
right discrete prompts for initialization. We solve
these problems by using the three-layer graph.

For a claim x, the vertices on its three-layer
graph consistently carry the signal of claim x’s
veracity due to semantic relatedness. Thus, for



Table 2: Dataset statistics.

Name
#Claims #Contextual #Referential

Train Test Documents Documents
FEVEROUS-S 23,912 5,978 19,546 21,579

BearFact 1,158 290 1,166 12,938
Check-COVID 1,275 229 347 3,132

SciFact 809 300 1,189 9,617

each label in the label set y ∈ Y , we have train-
ing claims belonging to this label Xtrain,y = {x ∈
Xtrain|yx = y}. For each of these claims, we trun-
cate its evidence sentences, contextual and refer-
ential documents to M words, and obtain their M
word embeddings in the look-up table of language
model. We then take mean pooling for evidence
sentences, contextual and referential documents,
and obtain M pooled word embeddings for each
claim. Finally, we average all training claims be-
longing to the same label Xtrain,y, and obtain M
word embeddings, which are used to initialize M
base prompt embeddings {hm,y}Mm=1. They are de-
rived from training claims of the same label, thus
provide a more informative starting point than ran-
dom initialization for verdict prediction. We repeat
this process for every label y ∈ Y , and obtain ini-
tialization for each set of base prompt embeddings.

4 Experiments

We conduct extensive experiments and ablation
analysis to evaluate the effectiveness of the pro-
posed model CORRECT.

Datasets. We use 4 datasets in Table 2. FEVER-
OUS (Aly et al., 2021) is a general-domain dataset.
Each claim is annotated in the form of sentences
and/or cells from tables in Wikipedia pages. Since
we focus on textual fact-checking, we follow
(Pan et al., 2023) and select claims that only re-
quire sentences as evidence. We call this subset
FEVEROUS-S. BearFact (Wuehrl et al., 2024) is
a biomedical dataset with sentences from papers
as evidence. Its original dataset does not have evi-
dence for claims in NEI class. We follow (Zeng and
Gao, 2023) and select sentences that have the high-
est tf-idf similarity with those claims as evidence.
Check-COVID (Wang et al., 2023) contains claims
about COVID-19. SciFact (Wadden et al., 2020)
is a dataset with sentences in papers as evidence.
As in its original paper, for claims in NEI class, we
choose sentences from the cited abstract with top-3
highest tf-idf similarity with the claim as evidence.
Appendix B contains data preprocessing details.

Baselines. We have 4 categories of baselines.
i) Multi-hop fact-checking, KGAT (Liu et al.,

2020), HESM (Subramanian and Lee, 2020),
Transformer-XH (Zhao et al., 2020), MultiVerS
(Wadden et al., 2022), and the recent CausalWalk
(Zhang et al., 2024a). MultiVerS models contex-
tual documents, and HESM and Transformer-XH
incorporate referential documents. By compar-
ing to them, we highlight the advantage of three-
layer graph for modeling both contextual and ref-
erential documents. Since our model is built on
Transformer-XH, we further extend it by model-
ing both contextual and referential documents, and
name it Transformer-XH++. The comparison show-
cases the effect of evidence-conditioned prompting.

ii) Few-shot fact-checking, GPT2-PPL (Lee
et al., 2021), ProToCo (Zeng and Gao, 2023), and
ProgramFC (Pan et al., 2023). They are mainly
designed for few-shot setting. By increasing their
training set, we could also compare to them on
fully supervised setting. ProToCo and ProgramFC
are proposed with handcrafted natural language
prompt. By comparison, we verify the usefulness
of our evidence-conditioned prompt embedding.

iii) Prompt tuning is not for fact-checking. But
for completeness, we convert P-Tuning v2 (Liu
et al., 2022), a continuous prompting, to our task.

iv) Retrieval-augmented generation for fact-
checking. Though our model is not designed with
retrieval-augmented generation, we still compare to
JustiLM (Zeng and Gao, 2024) for completeness.

Implementation details. Following (Vaswani
et al., 2017), we set L to 12 and d to 768. Number
of prompt embeddings M is 8. Temperature τ in
Eq. 10 is 100. For both our model and language
model-based baselines, we initialize the model with
pre-trained parameters in biomedical domain (Gu
et al., 2021) for scientific datasets, and in general
domain (Devlin et al., 2019) for FEVEROUS-S.
Each result is obtained by 5 independent runs. Ex-
periments are done on 4 NVIDIA A100 80GB
GPUs. More details are in Appendix C.

We present two experimental settings below.
Fully supervised v.s. Few-shot. For fully super-

vised setting, we train the model on the training set.
If the dataset provides data split, we follow the split
and obtain training and test sets. Otherwise, we
split the dataset into 80:20 for training and test, re-
spectively. Among training set, we further reserve
10% for validation. For few-shot setting, we report
5-shot experiments as the main results, i.e., for each
class in the label set y ∈ Y , we randomly sample



Table 3: Verdict prediction results on fully supervised setting with Macro F1 score. Results are in percentage.

Model
BearFact Check-COVID SciFact FEVEROUS-S

Gold Retrieved Gold Retrieved Gold Retrieved Gold Retrieved
KGAT 53.11±2.25 36.55±1.95 71.97±1.31 75.83±0.74 70.23±1.08 59.83±0.68 86.10±0.32 67.76±0.93
HESM 44.90±2.20 42.93±0.27 62.85±0.59 71.58±1.98 68.66±0.69 50.91±2.57 83.12±0.80 67.43±0.81

Transformer-XH 45.28±1.08 38.39±0.80 67.81±0.93 76.51±2.09 72.01±0.86 56.26±0.64 85.44±0.75 68.13±0.52
Transformer-XH++ 46.81±1.52 41.06±1.70 70.52±0.55 78.49±0.52 73.92±0.58 57.82±2.29 85.35±0.45 69.76±0.73

MultiVerS 51.56±1.30 38.71±1.96 66.32±1.27 70.01±2.23 81.33±1.63 62.30±0.98 78.14±1.31 65.29±0.36
CausalWalk 45.52±1.99 34.15±0.97 71.49±1.65 71.55±2.46 71.27±2.48 57.05±0.62 80.65±0.10 71.22±1.74
GPT2-PPL 25.94±1.00 25.58±0.31 28.84±0.14 29.00±0.42 27.69±1.56 30.35±1.24 54.17±0.05 54.14±0.01
ProToCo 42.63±1.62 21.51±1.22 36.68±0.80 27.76±1.35 52.94±2.54 26.75±0.91 40.12±0.51 30.78±0.85

ProgramFC 46.04±1.42 32.12±0.76 62.49±1.74 71.63±0.91 60.17±3.34 53.67±1.92 86.84±0.84 69.41±2.07
P-Tuning v2 52.54±0.55 36.94±0.13 73.03±1.76 75.60±3.01 76.56±1.77 55.48±2.04 87.01±0.36 68.87±0.76

JustiLM 47.33±3.81 33.27±1.98 58.75±3.08 60.03±1.60 69.63±1.53 51.78±0.80 81.33±1.97 65.49±0.65
CORRECT 59.88±2.03 44.25±1.73 75.34±1.02 80.59±1.00 83.20±0.80 60.26±1.31 88.41±0.19 74.95±0.38

Table 4: Verdict prediction results on fully supervised setting with Micro F1 score. Results are in percentage.

Model
BearFact Check-COVID SciFact FEVEROUS-S

Gold Retrieved Gold Retrieved Gold Retrieved Gold Retrieved
KGAT 69.42±0.87 57.36±0.52 72.05±1.58 76.47±0.65 74.44±0.96 62.33±0.88 86.21±0.28 67.99±0.78
HESM 63.68±1.39 58.62±0.32 63.47±0.25 71.90±1.85 72.44±0.77 53.36±2.33 83.30±0.75 68.36±0.86

Transformer-XH 61.26±0.72 56.55±1.50 68.56±0.87 76.91±1.51 75.89±0.51 58.67±1.53 85.61±0.80 69.78±0.41
Transformer-XH++ 64.02±1.44 58.39±1.11 70.60±0.67 78.65±0.38 77.78±0.69 60.56±1.83 85.52±0.39 70.37±0.77

MultiVerS 62.93±1.17 50.69±1.46 66.65±1.71 70.70±1.73 83.68±1.40 66.77±0.14 83.57±1.54 67.66±1.65
CausalWalk 69.31±1.69 60.00±0.69 71.86±1.54 71.68±2.48 77.34±2.30 59.00±1.20 86.42±0.92 71.51±1.66
GPT2-PPL 40.00±2.43 39.49±0.73 32.75±0.62 32.54±0.93 31.50±0.71 31.24±1.56 54.33±0.06 54.23±0.01
ProToCo 56.03±0.24 35.57±2.35 37.12±1.10 32.75±2.31 60.00±1.53 31.17±0.71 54.21±0.67 44.71±1.95

ProgramFC 62.00±2.83 54.63±3.66 65.50±2.12 72.36±1.85 65.40±3.78 59.76±3.54 86.48±0.33 69.50±2.12
P-Tuning v2 70.69±0.49 60.34±0.15 72.93±1.85 77.32±1.96 80.34±0.94 57.44±1.83 87.16±0.33 70.56±0.54

JustiLM 62.41±1.25 48.49±2.21 59.71±2.56 61.71±2.05 72.20±1.85 54.74±0.82 81.60±0.33 68.38±1.45
CORRECT 74.60±1.11 61.84±0.11 75.33±0.93 80.83±0.76 85.17±0.71 63.50±1.17 88.51±0.19 75.35±0.28

5 instances from training set, obtaining 5 × |Y|
training instances. This setting is consistent with
existing work (Zeng and Gao, 2023). For a fair
comparison, we sample instances using 5 random
seeds. We keep the same sampling for our model
and baselines. We report the results on test set.

Gold v.s. Retrieved evidence. For gold ev-
idence setting, we observe the ground-truth evi-
dence sentences, and we verify the claim based on
the gold sentences. For retrieved evidence setting,
we do not observe any evidence sentences, and re-
trieve sentences from an evidence corpus, based on
which we make prediction. We follow (Pan et al.,
2023) and use BM25 (Robertson et al., 2009) to
retrieve top-3 evidence sentences for each claim.
In the original Check-COVID dataset, if a claim
is labeled as REFUTE based on the evidence, this
claim is reused in NEI class with another random
evidence. Thus, there are two claims with the same
content, but different evidence and labels. How-
ever, in our retrieved evidence setting, both claims
will receive the same retrieved evidence, but they
are labeled differently, making model training in-
consistent. Thus, for retrieved evidence setting, we
remove claims in NEI class for Check-COVID.

4.1 Empirical Evaluation

Fully supervised setting. We follow (Wadden
et al., 2022) and report Macro F1 score for both
gold and retrieved evidence settings in Table 3. We
also show Micro F1 score in Table 4. Transformer-
XH++ consistently outperforms Transformer-XH,
verifying that contextual and referential documents
bring useful information. By comparing COR-
RECT to Transformer-XH++, we design evidence-
conditioned prompting to integrate evidence and
claim embeddings, and further improve the perfor-
mance. Models with handcrafted prompt do not
predict verdict as accurately as our model, which
showcases the advantage of continuous prompt em-
beddings. Overall, the results on gold evidence set-
ting are higher than on retrieved evidence setting,
because the retrieved evidence sentences may not
be always correct and may contain noisy informa-
tion. The only exception is Check-COVID, because
the retrieved evidence setting has only two labels,
making the prediction task easier. MultiVerS is
slightly better than CORRECT on SciFact, because
the evidence sentences in SciFact contain sufficient
information for fact-checking as shown in (Wadden
et al., 2020, 2022), and referential documents do



Table 5: Verdict prediction results on 5-shot setting with Macro F1 score. Results are in percentage.

Model
BearFact Check-COVID SciFact FEVEROUS-S

Gold Retrieved Gold Retrieved Gold Retrieved Gold Retrieved
KGAT 36.62±2.28 29.92±3.99 35.65±4.56 47.81±2.40 39.07±2.06 35.12±2.79 50.21±0.95 50.68±1.21
HESM 35.40±3.77 26.00±2.34 35.41±4.78 42.82±6.50 38.87±1.69 34.03±5.61 51.36±0.35 51.92±0.39

Transformer-XH 29.45±2.49 31.69±2.06 40.48±2.73 49.24±1.60 47.65±3.99 33.47±1.11 52.45±2.71 49.41±1.93
Transformer-XH++ 31.34±4.07 29.74±1.30 38.73±1.35 50.56±0.64 47.53±0.65 33.79±1.87 58.19±0.75 52.78±1.60

MultiVerS 24.34±3.12 20.92±0.48 32.16±2.50 50.80±1.78 52.29±1.92 29.64±1.53 38.26±0.18 38.82±0.37
CausalWalk 32.01±3.35 31.10±1.56 31.73±5.13 43.79±3.25 39.48±5.51 34.95±5.28 59.46±1.78 55.37±5.55
GPT2-PPL 24.99±0.90 26.28±0.18 25.05±4.47 23.89±2.65 27.69±0.41 27.45±0.66 51.33±2.55 51.54±2.50
ProToCo 35.11±0.40 21.51±0.78 35.62±5.32 29.72±3.85 48.68±3.38 25.93±5.60 40.48±0.88 31.00±0.57

ProgramFC 31.42±1.20 30.88±1.98 36.17±0.73 49.06±1.14 48.69±0.46 33.18±0.89 49.13±2.57 51.62±0.62
P-Tuning v2 35.68±2.36 31.86±0.33 38.90±4.81 50.63±4.22 43.94±0.54 33.33±2.48 56.70±1.82 48.53±2.23

JustiLM 31.38±2.07 26.01±2.08 36.48±2.78 44.39±2.41 44.42±2.08 31.04±1.47 45.35±1.18 42.48±1.02
CORRECT 40.91±1.42 33.47±0.46 40.77±1.19 52.40±1.21 49.12±0.30 35.30±1.05 61.00±1.95 57.04±0.68

Table 6: Verdict prediction results on 5-shot setting with Micro F1 score. Results are in percentage.

Model
BearFact Check-COVID SciFact FEVEROUS-S

Gold Retrieved Gold Retrieved Gold Retrieved Gold Retrieved
KGAT 44.66±0.25 36.78±3.86 37.55±2.86 50.98±1.13 42.22±3.06 36.78±3.52 51.13±1.55 51.66±1.38
HESM 48.85±2.42 28.97±3.26 36.68±5.15 50.11±3.22 39.56±2.45 35.89±4.67 56.33±0.91 53.68±0.37

Transformer-XH 32.53±3.13 40.80±3.32 41.67±2.19 51.63±1.16 48.89±2.84 35.11±1.95 52.94±2.65 51.56±0.73
Transformer-XH++ 37.93±4.10 35.06±3.66 41.40±1.78 52.41±1.22 50.00±0.85 36.67±1.65 59.97±1.50 53.23±1.19

MultiVerS 40.86±0.74 39.49±1.70 41.01±1.29 49.82±1.56 54.99±1.90 43.33±1.74 51.39±1.33 51.84±1.54
CausalWalk 45.52±3.47 41.38±3.24 37.70±4.59 43.79±3.25 44.02±2.70 41.78±2.71 60.60±1.98 55.20±4.18
GPT2-PPL 36.38±4.14 40.69±0.49 33.19±0.67 34.62±0.72 29.44±2.50 29.00±1.46 53.02±1.11 53.11±1.12
ProToCo 51.03±2.44 33.80±2.44 41.05±2.47 34.50±2.31 51.55±2.27 36.78±1.35 54.72±1.32 42.45±2.73

ProgramFC 38.45±2.19 38.28±0.49 37.55±0.38 50.00±1.08 49.93±0.36 36.17±1.25 52.94±2.67 51.94±0.25
P-Tuning v2 48.70±1.95 41.90±3.10 41.05±3.88 52.07±3.09 45.78±1.07 37.67±1.85 58.02±1.68 52.06±0.76

JustiLM 42.70±1.64 37.72±5.08 40.82±2.20 46.73±1.53 47.41±1.07 33.00±1.58 52.54±1.71 49.38±1.60
CORRECT 51.72±1.04 42.76±0.73 43.37±1.82 54.46±0.76 53.00±1.30 44.36±0.84 63.33±0.91 57.14±0.82

not bring much additional benefit.
Few-shot setting. We report 5-shot results in

Table 5 for Macro F1 score and Table 6 for Micro
F1 score. Overall, HESM and Transformer-XH per-
form better than others, since referential documents
contain useful information to complement evidence
sentences for accurate prediction. Our model fur-
ther improves them, verifying the strength of both
contextual and referential documents. P-Tuning
v2 outperforms models with handcrafted prompt,
since continuous prompt embeddings can better
adapt to the training data. By comparing to it, we
design an evidence-conditioned prompt encoder
to integrate contextual and referential documents
into prompt embeddings, and produce more ac-
curate results. We vary the number of shots in
{1, 3, 5, 10, 15} in Fig. 3. Though our model is
competitive with MultiVerS on SciFact, we are still
better than it on other datasets, due to the advantage
of both contextual and referential documents.

4.2 Model Analysis

Effect of intra- and cross-layer reasoning. We
respectively remove each graph layer from the com-

plete model. Macro F1 score is shown in Fig. 4(a).
The model with all three layers performs the best,
indicating that all three layers bring useful infor-
mation. Intra-layer reasoning on evidence sentence
layer plays the most important role, since evidence
sentences provide the most immediate information
for verification. Contexts and references are impor-
tant, and disregarding them deteriorates the results.

Different numbers of prompt embeddings M .
We vary the number of prompt embeddings M in
Fig. 4(b). When M = 2, we cannot fully cap-
ture the interaction between evidence and claims,
causing a low accuracy. After we increase M , we
observe an improvement. An overly high M hurts
the result, because overfitting problem appears.

Prompt initialization and encoder. Our prompt
encoder has both initialization of base prompt
embeddings and evidence-conditioned prompt en-
coder. i) To test the effect of initialization, we
replace it with random initialization and report the
results in Fig. 4(c). Our initialization produces
better results, because evidence graph separates
different sets of prompt embeddings and provides
a more informative starting point. ii) We remove
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Claim: COVID is the cause of Long COVID.

Long COVID is an often 
debilitating illness that 
occurs in at least 10% of 
severe acute respiratory 
syndrome coronavirus 2 
(SARS-CoV-2) infections. 

Patients with COVID-19 
experience prolonged 
symptoms, Long COVID …

Evidence sentence
from a paper

Cited papers

SARS-CoV-2, the virus that 
causes COVID-19, 
replicates within the gut …

A systematic review of 
studies describing prognosis 
of chronic fatigue …

define unexplained dyspnea 
in patients with post-acute 
sequelae of SARS-CoV-2 …
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Figure 5: Case study on BearFact dataset.

prompt encoder from our model, and only retain
base prompt embeddings. Fig. 4(c) shows that
removing prompt encoder hurts the results, indicat-
ing that prompt encoder is necessary to combine
evidence and claim for accurate prediction.

Effect of prompting. We design two ablated
models. i) We replace prompting with an MLP
classifier, which concatenates evidence and claim
embeddings as input, and produces predicted la-
bel. Here claim embedding is obtained without
prompt embeddings. ii) We directly consider evi-
dence embedding as prompt embedding, and do not
assume base prompt embeddings. Fig. 4(d) shows
that prompting performs better than MLP classifier,
because prompt embeddings and claim token em-
beddings are input to claim encoder together, and
the contextualized encoding helps exchange infor-

mation between evidence and claim for accurate
prediction. Base prompt embeddings are also help-
ful, since they store general fact-checking knowl-
edge and help generalize across different claims.

Case study. To intuitively understand that our
model captures useful information in referential
documents, we conduct a case study and visually
show the attention values between an evidence sen-
tence and its cited papers in graph neural networks.
Fig. 5 shows that the highest attention scores ap-
pear between the evidence sentence and referen-
tial documents that indeed contain useful informa-
tion. This visualization verifies that referential doc-
uments are crucial to improve claim verification.

5 Conclusion

We propose a context- and reference-augmented
reasoning and prompting model for fact-checking.
To model contextual and referential documents,
we construct a three-layer graph with intra- and
cross-layer reasoning. To integrate evidence into
claims, we design evidence-conditioned prompt-
ing, which produces unique prompt embeddings for
each claim. A future work is to extend three-layer
graph to a multi-modal graph for fact-checking.
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Limitations

Here we identify two limitations of our work in
terms of dataset and evidence type.

Dataset. Our model is proposed to incorporate
contextual and referential documents of evidence
sentences. We assume that the contextual and ref-
erential documents of evidence sentences are avail-
able in the dataset, or the dataset provides identi-
fiers for evidence sentences, such as PubMed ID,
so that we can use these identifiers to search their
contextual and referential documents online. In Ap-
pendix B, we provide details on how to use identi-
fiers to obtain contextual and referential documents.
If the given dataset does not provide contextual or
referential documents, or the identifiers of evidence
sentences are not available, our model will reason
within evidence sentences for fact-checking.

Evidence type. Following existing textual fact-
checking models, we propose our model to reason
over textual evidence sentences only. Our model is
not proposed for tabular or multi-modal evidence,
thus cannot reason over these types of evidence for
fact-checking. One potential future work would
be to extend our three-layer evidence graph to a
multi-modal graph for evidence reasoning.

Ethics Statement

We do not foresee any undesired implications stem-
ming from our work. Conversely, we hope that our
work can advance AI Ethics research.
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A Pseudo-code of Training Process

We summarize the training process at Algo. 1.

B Dataset Preprocessing Details

Here we present details of dataset preprocessing.
FEVEROUS1 (Aly et al., 2021) is a general-

domain dataset, and each claim is annotated in
the form of sentences and/or cells from tables in
Wikipedia pages. In this paper we mainly focus
on textual evidence sentences, thus we follow Pro-
gramFC (Pan et al., 2023) and obtain claims that
only require textual evidence for verification, and
name this subset FEVEROUS-S. Claims in this
dataset have two labels only, SUPPORT and RE-
FUTE. In the original dataset, each evidence sen-
tence may contain hyperlinks to other Wikipedia
pages, and such hyperlinks in sentences are indi-
cated with double square brackets. We thus retrieve
words or phrases inside double square brackets,
and use them as entries to query Wikipedia dump

1https://fever.ai/dataset/feverous.html

https://fever.ai/dataset/feverous.html


Algorithm 1 Training Process of CORRECT

Input: A fact-checking dataset D with claims
X , evidence sentences E , contextual documents C,
and referential documents R. Number of prompt
embeddings M and temperature τ .

Output: Predicted labels Ŷtest for test claims.

1: Initialize model with pre-trained parameters in
biomedical domain or general domain.

2: while not converged do
3: Construct three-layer evidence graph for

each claim x ∈ X .
4: for evidence sentence e ∈ Nevid(x) do
5: Initialization H(l=1)

e = TRM(H(l=0)
e ).

6: for l = 1, 2, ..., L− 1 do
// Evidence graph reasoning

7: Intra-layer reasoning by Eqs. 1–4.
8: Cross-layer reasoning by Eq. 5.

// Asymmetric MHA step
9: Virtual token concatenation Eq. 6.

10: H(l+1)
e = TRMasy(Ĥ

(l)

e ) by Eq. 7.
11: end for
12: end for
13: Obtain an evidence embedding by Eq. 8.

// Evidence-conditioned prompting
14: Initialize |Y| sets of base prompt embed-

dings {hm,y}Mm=1 where y ∈ Y .
15: Input evidence embedding hE to evidence-

conditioned prompt encoder and obtain |Y|
sets of prompt embeddings {πm,y}Mm=1 where
y ∈ Y by Eqs. 10–11.

16: Input {Px,y}y∈Y to claim encoder and ob-
tain |Y| claim embeddings {hx,y}y∈Y .

17: Minimize loss function L in Eq. 13.
18: end while

to obtain their corresponding pages as referential
documents. FEVEROUS uses the December 2020
dump, including 5.4 million full Wikipedia articles.
If a Wikipedia page has overly many sentences, we
reserve its top-20 sentences, since almost all the
evidence sentences appear within top-20 sentences
in FEVEROUS. Similarly, the full content of the
Wikipedia page is contextual document of each ev-
idence sentence. If a page has overly long content,
we reserve its top-20 sentences.

BearFact2 (Wuehrl et al., 2024) is a biomedical
claim verification dataset. Evidence sentences are

2https://www.ims.uni-stuttgart.de/en/research/
resources/corpora/bioclaim/

obtained from paper abstracts in PubMed database3.
Original dataset does not provide evidence sen-
tences for claims in NEI class. Thus we follow
existing work (Zeng and Gao, 2023) and select evi-
dence sentences that have the highest tf-idf similar-
ity with claims as their evidence. We consider the
full abstract as the contextual document for each
evidence sentence, as in MultiVerS (Wadden et al.,
2022). In addition, we use S2ORC (Lo et al., 2020)
to obtain cited papers with abstracts as referential
documents. Specifically, the original dataset pro-
vides PubMed ID for each evidence sentence. We
use PubMed IDs as identifiers to search in S2ORC
database and obtain cited papers. If a paper has
overly many citations, we reserve its top-20 cita-
tions to avoid data redundancy.

Check-COVID4 specifically focuses on COVID-
19 claims taken from news articles. Each evidence
sentence is from a paper abstract with CORD ID
as identifier. We thus use CORD IDs to search in
S2ORC database and obtain cited papers. Simi-
larly, we consider the full abstract as contextual
document. The original dataset provides sentences
for claims in NEI class.

SciFact5 (Wadden et al., 2020) is another
biomedical fact-checking dataset with sentences
in paper abstracts as evidence. Similarly, the full
content of the abstract is considered as contextual
document. In addition, each evidence sentence is
coupled with S2ORC ID, which is used to obtain
its citations using S2ORC database. The original
dataset does not have sentences for claims in NEI
class. Thus we follow the original paper (Wadden
et al., 2020) and choose top-3 sentences in the same
abstract with the highest tf-idf similarity with the
claim as evidence.

C Experiment Environment

All the experiments were conducted on Linux
server with 4 NVIDIA A100-SXM4-80GB GPUs.
Its operating system is 20.04.5 LTS (Focal Fossa).
We implemented our proposed model CORRECT
using Python 3.9 as programming language and
PyTorch 1.14.0 as deep learning library. Other
frameworks include numpy 1.22.2, sklearn 0.24.2,
and transformers 4.43.3.

3https://pubmed.ncbi.nlm.nih.gov/
4https://github.com/posuer/Check-COVID/tree/

main/Check-COVID
5https://github.com/allenai/scifact/tree/

master
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