
The Pennsylvania State University

The Graduate School

EFFECTIVE WEB-SERVICE COMPOSITION IN

DIVERSE AND LARGE-SCALE SERVICE NETWORKS

A Thesis in

Industrial Engineering

by

Seog-Chan Oh

c© 2006 Seog-Chan Oh

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2006

The thesis of Seog-Chan Oh was reviewed and approved∗ by the following:

Soundar R.T. Kumara

Distinguished Professor of Industrial Engineering

Thesis Co-Advisor, Chair of Committee

Dongwon Lee

Assistant Professor of College of Information Sciences and Technology

Thesis Co-Advisor

Tom M. Cavalier

Professor of Industrial Engineering

Timothy W. Simpson

Professor of Mechanical and Industrial Engineering

Ling Rothrock

Assistant Professor of Industrial Engineering

Richard J. Koubek

Professor of Industrial Engineering

Head of the Harold and Inge Marcus Department of Industrial and Manu-

facturing Engineering

∗Signatures are on file in the Graduate School.

Abstract

Web services are considered to be a potential silver bullet for the envisioned Service
Oriented Architecture, in which loosely coupled software components are published,
located and executed as parts of distributed applications. Web services intend to
take the public web and today’s distributed systems to unexplored efficiencies
while suggesting flexible interfaces for promoting a wide spectrum of activities in
tomorrow’s service networks. The main research focus of web services is to achieve
interoperability between distributed and heterogeneous applications. Therefore,
flexible composition of web services to fulfill the requirements of tasks is one of
the most important objectives in this research field. Applications including B2B
E-commerce and E-government as well as in the public web, are expected to benefit
greatly from web service composition.

Until now, service composition has been an impromptu, tedious, and fallible
process involving continuous low-level programming. Furthermore, as the number
of available web services increases, finding the right web services to fulfill the given
goal becomes intractable. In this dissertation, we propose an AI planning-based
framework for the automatic composition of web services. For this purpose, we
explore the following issues. First, we formulate the web-service composition prob-
lem in terms of AI planning and network optimization problems to investigate its
complexity. Second, we analyze publicly available web service sets using complex
network analysis techniques. Third, we develop a novel web-service benchmark
called WSBen. Fourth, we develop a novel AI planning-based heuristic web-service
composition algorithm named WSPR. Finally, we conduct extensive experiments
to verify WSPR against state-of-the-art AI planners. It is our hope that WSPR
and WSBen will provide useful insights for researchers to develop web-service dis-
covery and composition algorithms, and software.

iii

Table of Contents

List of Figures viii

List of Tables xii

List of Symbols xv

Acknowledgments xix

Chapter 1
Introduction 1
1.1 Introduction to Web Services . 2
1.2 Motivating Example . 5
1.3 Research Objectives . 7
1.4 Organization of the Thesis . 9

Chapter 2
Problem Definition 12

Chapter 3
Background Literature Survey 22
3.1 Classification of WSC Problems and Related Research Work 22
3.2 Overview of Matching Approaches 27
3.3 Comparative Illustration . 29

3.3.1 Graphplan-based planning 31
3.3.2 SATPlan based reduction 33
3.3.3 Integer Linear Programming (ILP) formulation 34

iv

Chapter 4
Study of Existing Web Services 36
4.1 Parameter Usage Distributions . 38
4.2 Random and Complex Network Models 41

4.2.1 Random graph model . 43
4.2.2 Small-world network model 43
4.2.3 Scale-free network model . 45
4.2.4 Summary . 47

4.3 Real Web-service Networks . 47
4.3.1 Public web services . 48
4.3.2 ICEBE05 test sets . 53
4.3.3 Summary . 56

Chapter 5
WSBen: Web Services Discovery and Composition Benchmark
Tool 58
5.1 Overview of WSBen . 60
5.2 Illustration of WSBen . 64

5.2.1 Characteristics of baTS . 67
5.2.2 Characteristics of nwsTS 70
5.2.3 Characteristics of erTS . 73
5.2.4 Estimating the Size of Giant Component 74

Chapter 6
WSPR: Web Service PlanneRAlgorithm 81
6.1 WSPR algorithm . 81

6.1.1 Analysis of the WSPR algorithm 85
6.2 A*-variant algorithms . 91

6.2.1 WS* Algorithm . 92
6.2.2 Adaptive WS* Algorithm 94

6.3 Comparison of WSPR and A*-variants 95

Chapter 7
Experimental Validation 98
7.1 EEE05 test set . 99
7.2 ICEBE05 test set . 101
7.3 Test sets generated by WSBen . 102

7.3.1 Comparison results over baTS 103
7.3.2 Comparison results over newTS 105
7.3.3 Comparison results over erTS 106

v

7.3.4 Scalability of WSPR . 108
7.3.5 WSPR and Blackbox . 121

7.4 Summary . 122

Chapter 8
Application of Semantic Web-service Composition in Manufac-
turing 125
8.1 Research Background . 125
8.2 Motivating Scenario . 127
8.3 Semantic Web Services . 128
8.4 Overview of the Proposed Framework 131
8.5 Illustrative Example . 135

8.5.1 Specification phase . 135
8.5.2 Matchmaking and Negotiation phase 137
8.5.3 Composite service generation phase 138

8.6 Future Work . 139

Chapter 9
Conclusions and Future Research 146
9.1 Contributions . 146
9.2 Limitations and Assumptions . 149
9.3 Future Research . 150

Appendix A
WSBen with yTS framework 153
A.1 Flexible benchmark generation scheme 153

A.1.1 Result . 158

Appendix B
Additional Discussion on ICEBE05 162
B.1 Discussion on Test Sets . 162

B.1.1 Composition-1 . 163
B.1.2 Composition-2 . 165

B.2 Discussion on the Request Complexity 165

Appendix C
MISQ: A Framework for Automatic Implementation of Web-
services Composition 169
C.1 Motivation . 169

C.1.1 Motivating Example . 170

vi

C.2 Overview of MISQ . 171
C.3 Related Work . 173
C.4 MISQ Methodology . 174

C.4.1 SPN and GSPN Example 175
C.4.1.1 Procedure 1 . 177
C.4.1.2 Procedure 2 . 178
C.4.1.3 Procedure 3 . 178

C.5 Illustrative Example . 179
C.5.1 Scenario . 180
C.5.2 Applying MISQ to the example 181
C.5.3 Building atomic and composition processes. 182
C.5.4 Transforming SPA into GSPN 184
C.5.5 Simulation of GSPN . 184
C.5.6 High fidelity UML and Implementation 184

C.6 Conclusion . 187

Appendix D
WSPR Manual 192
D.1 Motivation . 192
D.2 How to use WSPR . 192

D.2.1 Installation . 192
D.2.2 Sample Test Set . 193
D.2.3 Basic Usage . 193

D.3 Available Options . 194
D.3.1 GUI version . 194

D.4 Trouble Shooting . 195

Appendix E
WSBen Manual 196
E.1 Motivation . 196
E.2 Purpose of WSBen . 196
E.3 How to use WSBen . 197

E.3.1 Installation . 197
E.3.2 Options . 197
E.3.3 Basic usage (examples) . 198
E.3.4 GUI version . 198

E.4 Trouble Shooting . 199

Bibliography 201

vii

List of Figures

1.1 How web services work . 3
1.2 Thesis organization . 11

2.1 STRIPS model of the motivating example. 14
2.2 Gs(Vs, Es) of the motivating example. 15

3.1 Taxonomy for classifying WSC problems and solutions 24
3.2 Relationships between WSC problems and other related problems

with their solutions . 25
3.3 STRIPS representation. 31
3.4 Planning using Graphplan. 32

4.1 Web-service networks . 36
4.2 Parameter usage distribution for public web services 41
4.3 Parameter usage distribution for EEE05 and ICEBE05 41
4.4 Characteristic path length L(p) and clustering coefficient C(p) for

the family of randomly rewired graphs. (left) Watts-Strogatz model.
(right) Newman-Watts-Strogatz model 45

4.5 Web services on the network diameter path in Gf
op 49

4.6 Gp of public web services. (left) Gp. (right) outgoing edge distribu-
tion of Gp . 49

4.7 Gop of public web services. (left) Gop. (right) outgoing edge distri-
bution of Gop . 50

4.8 Gf
op of public web services. (left) Gf

op. (right) outgoing edge distri-
bution of Gf

op . 50
4.9 Gws of public web services. (left) Gws. (right) outgoing edge distri-

bution of Gws . 51
4.10 Gp of ICEBE05 test set. (left) Gp. (right) outgoing edge distribution 54

viii

4.11 Gop of ICEBE05 test set. (left) Gop. (right) outgoing edge distribu-
tion . 55

4.12 Gf
op of ICEBE05 test set. (left) Gf

op. (right) outgoing edge distribu-
tion . 55

5.1 Overview of WSBen . 61
5.2 Test set generation with 〈 8,Barabasi-Albert(8,2),0.8,1.5,100 〉 . . . 64
5.3 Overview of baTS, nwsTS, and erTS 66
5.4 Gp of baTS at |W | = 1, 000. (left) Gp. (right) outgoing edge degree

distribution . 67
5.5 Gop of baTS at |W | = 1, 000. (left) Gop. (right) outgoing edge

degree distribution . 68
5.6 Gf

op of baTS at |W | = 1, 000. (left) Gf
op. (right) outgoing edge

degree distribution . 68
5.7 Gp of nwsTS at |W | = 1, 000. (left) Gp. (right) outgoing edge degree

distribution . 69
5.8 Gop of nwsTS at |W | = 1, 000. (left) Gop. (right) outgoing edge

degree distribution . 69
5.9 Gf

op of nwsTS at |W | = 1, 000. (left) Gf
op. (right) outgoing edge

degree distribution . 70
5.10 Gp of erTS at |W | = 1, 000. (left) Gp. (right) outgoing edge degree

distribution . 70
5.11 Gop of erTS at |W | = 1, 000. (left) Gop. (right) outgoing edge degree

distribution . 71
5.12 Gf

op of erTS at |W | = 1, 000. (left) Gf
op. (right) outgoing edge degree

distribution . 71
5.13 How gf

op changes by increasing |W | 78
5.14 Comparison of actual and estimated size of giant components. (A:

Random , B: Scale-free, C: NWS) 79

6.1 Comparison of three algorithms (left) #W (right) Time 96

7.1 Scalability and effectiveness of WSPR over the baTS test sets. (left)
#W . (right) Time . 119

7.2 Scalability and effectiveness of WSPR over the nwsTS test sets.
(left) #W . (right) Time . 119

7.3 Scalability and effectiveness of WSPR over the erTS test sets. (left)
#W . (right) Time . 120

7.4 A solution of WSPR to nwsTS with |W | = 3, 000 120
7.5 A solution of Blackbox to nwsTS with |W | = 3, 000 121

ix

8.1 Activity diagram for the motivating example 128
8.2 Top-level OWL-S classes and their relationships 129
8.3 Overview of the proposed approach for service composition 133
8.4 Partial ontologies in EXPRESS-G format. (left) Manufacturing pro-

cess. (right) Vehicle . 134
8.5 The service description of the motivating scenario 135
8.6 Combination into the OWL-S framework 136
8.7 Partial OWL encoding of the manufacturing process ontology . . . 141
8.8 Partial OWL encoding of the vehicle ontology 142
8.9 Partial service profile of AthertonMfg encoded in OWL-S 143
8.10 Partial service profile of BeaverTransportation encoded in OWL-S 144
8.11 Partial WSDL of AthertonMfg . 144
8.12 Partial OWL-S process model for contracting suppliers 145

A.1 Gcl generating process from 〈10, bell(0.3, 0.5), 1, bell(0.3, 0.5), |W |〉 . 154
A.2 Gf

op at |W | = 1, 000. (left) uTS. (center) bTS. (right) sTS 156
A.3 Outgoing edge degree distribution of Gf

op at |W | = 3, 000. (left)
uTS. (center) bTS. (right) sTS . 156

A.4 Outgoing edge degree distribution of Gp at |W | = 3, 000. (left) uTS.
(center) bTS. (right) sTS . 158

A.5 Results of uTS in first replication. (left) #W . (right) Time. 159
A.6 Results of bTS in first replication. (left) #W . (right) Time. 159
A.7 Results of sTS in first replication. (left) #W . (right) Time. 160
A.8 95% confidence intervals (CI) of the mean rank for #W between

algorithms. (left) uTS . (center) bTS. (right) sTS 160
A.9 Solutions to bTS at |W | = 9, 000 in first replication. (left) WSPR.

(right) Blackbox . 161

B.1 Comparison of test sets in ICEBE in terms of Time 167

C.1 Use case of FirstBroker example 170
C.2 Overview of MISQ . 172
C.3 The process of the choice decision 176
C.4 Mapping SPA operations into GSPN processes 179
C.5 Sequence diagram of the example 181
C.6 Sequence diagram of the example 182
C.7 Sequence diagram of the example 183
C.8 Profit change according to |WS| and Fee(B) 184
C.9 Dependency Diagram of the example 185
C.10 Definition package of the example 186

x

C.11 Broker package of the example . 187
C.12 Activity diagrams of the example (1) 188
C.13 Activity diagrams of the example (2) 188
C.14 Activity diagrams of the example (3) 189
C.15 WSDL of the example . 190
C.16 BPEL of the Broker . 191

D.1 GUI version of WSPR . 195

E.1 GUI version of WSBen . 199

xi

List of Tables

1.1 Web service examples . 6

4.1 Features of public web-service networks 48
4.2 Scale-free network properties . 49
4.3 Small-world network properties of giant components in the public

web services . 51
4.4 Summary of giant components in public web services 52
4.5 Features of the ICEBE05 web-service networks 53
4.6 Small-world network properties of giant connected component in the

ICEBE05 web services . 54
4.7 Summary of giant components in ICEBE05 55

5.1 Features of web-service networks in baTS 70
5.2 Small-world properties of web-service networks in baTS 70
5.3 Summary of giant components in baTS web-service networks 71
5.4 Features of web-service networks in nwsTS 72
5.5 Small-world properties of web-service networks in nwsTS 72
5.6 Summary of giant components in nwsTS web-service networks . . . 73
5.7 Features of web-service networks in erTS 74
5.8 Small-world properties of giant components in erTS web service

networks . 74
5.9 Summary of giant components in erTS web-service networks 74

6.1 Comparison of three algorithms in terms of #W and Time 96

7.1 Results of the EEE05 test set . 101
7.2 Results of the Composition2-100-32 test set of ICEBE05 102
7.3 Results of baTS with |W | = 1000 103
7.4 Results of baTS with |W | = 3, 000 104

xii

7.5 Results of baTS with |W | = 5, 000 104
7.6 Results of nwsTS with |W | = 1, 000 105
7.7 Results of nwsTS with |W | = 3, 000 105
7.8 Results of nwsTS with |W | = 5, 000. Time in second 106
7.9 Results of erTS with |W | = 1, 000 106
7.10 Results of erTS with |W | = 3, 000 107
7.11 Results of erTS with |W | = 5, 000 107
7.12 Results of baTS with |W | = 1, 000 109
7.13 Results of baTS with |W | = 3, 000 109
7.14 Results of baTS with |W | = 5, 000 109
7.15 Results of baTS with |W | = 10, 000 110
7.16 Results of baTS with |W | = 20, 000 110
7.17 Results of baTS with |W | = 30, 000 111
7.18 Results of baTS with |W | = 50, 000 111
7.19 Results of nwsTS with |W | = 1, 000 112
7.20 Results of nwsTS with |W | = 3, 000 112
7.21 Results of nwsTS with |W | = 5, 000 112
7.22 Results of nwsTS with |W | = 10, 000 113
7.23 Results of nwsTS with |W | = 20, 000 113
7.24 Results of nwsTS with |W | = 30, 000 114
7.25 Results of nwsTS with |W | = 50, 000 114
7.26 Results of erTS with |W | = 1, 000 114
7.27 Results of erTS with |W | = 3, 000 115
7.28 Results of erTS with |W | = 5, 000 115
7.29 Results of erTS with |W | = 10, 000 115
7.30 Results of erTS with |W | = 20, 000 116
7.31 Results of erTS with |W | = 30, 000 116
7.32 Results of erTS with |W | = 50, 000 117
7.33 Effectiveness of WSPR over the baTS test sets in terms of #W . . 117
7.34 Effectiveness of WSPR over the nwsTS test sets in terms of #W . . 117
7.35 Effectiveness of WSPR over the erTS test sets in terms of #W . . . 117
7.36 Scalability of WSPR over the baTS test sets in terms of Time . . . 118
7.37 Scalability of WSPR over the nwsTS test sets in terms of Time . . 118
7.38 Scalability of WSPR over the erTS test sets in terms of Time . . . 118

8.1 OWL primitives in DL terms . 132

B.1 Comparison of #W over requests (Composition-1) 164
B.2 Comparison of 11 requests over 9 test sets in terms of fT ime and

bT ime (Composition-1) . 164

xiii

B.3 Comparison of #W over requests (Composition-2) 165
B.4 Comparison of 11 requests over 9 test sets in terms of fT ime and

bT ime (Composition-2) . 166

xiv

List of Symbols

W Set of web services, w ∈ W , p. 99

w Web service, p. 12

wi Set of input parameters of w, p. 12

wo Set of output parameters of w, p. 12

P Set of parameters, p ∈ P , p. 12

r Request of service discovery or composition, p. 12

ri Set of initial parameters of r, p. 12

ro Set of goal parameters of r, p. 12

Π Propositional STRIPS model consisting of 4-tuple, p. 12

Ψ State space model corresponding to Π, p. 13

S Set of states, s ∈ S are collection of parameters in P , p. 13

s0 Initial state s0 ∈ S is such that s0 = ri, p. 13

SG Goal states s ∈ SG are such that ro ⊆ s, p. 13

Ω(s) Set of web services w ∈ W such that wi ∈ s, p. 13

f Transition function f(w, s) = s′ that maps a state s into a
state s′ such that s′ = s ∪ wo for w ∈ Ω(s), p. 13

xv

c(w) Invocation cost of w, p. 13

Gs(Vs, Es) State node network, p. 15

bi Amount of flow that enters the network at node si ∈ Vs,
i = 0, . . . , n, p. 16

fli,j Amount of flow which is either 0 or 1 on arc (si, sj) ∈ Es,
p. 16

ci,j Cost per unit flow on arc (si, sj) ∈ Es. ci,j is c(w) when
sj = f(w, si), p. 16

λi,λ
∗ λi is the cost of the path from si to sn. λ∗i is the minimum

cost of λi. λ∗i s are also called labels, p. 17

U Set of variables used in an instance of 3SAT, p. 19

T (k),F (k),V (k) Propositional conditions (parameters) associated with uk ∈
U , p. 19

C(j) Propositional condition (parameter) to represent whether the
jth clause of an instance of 3SAT is satisfied or not, p. 19

wtk,wfk,wvk1,wvk2 Four web services associated with uk ∈ U , p. 19

Keep(A) Maintenance action of an action A in Graphplan. It is also
called the no-op of A, p. 33

Xe,i Decision variable such that if effect e is true in period i of
Graphplan, then 1, otherwise 0, p. 34

Ya,i Decision variable such that if action a is carried out in period
i of Graphplan, then 1, otherwise 0, p. 34

Ye,i Decision variable to represent a maintenance action for effect
e of Graphplan during period i, p. 34

Gp(Vp, Ep) Parameter node network, p. 37

Gop(Vop, Eop) Operation node network, p. 37

Gws(Vws, Ews) Web-service node network, p. 37

Gf
op(V

f
op, E

f
op) Full-matching operation node network, p. 38

xvi

#(p) Parameter usage defined as the frequency of the parameter p
in the web service repository W , p. 38

R(N,k) Regular network, p. 43

L Average shortest distance between reachable pairs of vertices
in a network. L(p) is defined as L of the randomly rewired
Watts-Strogatz graph with probability p. Lrandom is identical
to L(1), p. 44

C Average clustering coefficient. C(p) is defined as C of the
randomly rewired Watts-Strogatz graph with probability p.
Crandom is identical to C(1), p. 44

Pw(v) Pw(v) ∝ v(−γ). It is used to approximate the number of nodes
that have v number of neighbor nodes, p. 45

#In(p) Number of web services that contain a parameter p in their
input parameter, p. 59

#Out(p) Number of web services that contain a parameter p in their
output parameter, p. 59

Pr(p2|p1) Co-occurrence probability, where p1 and p2 are parameters,
p. 59

Gcl(Vcl, Ecl) Parameter cluster network, p. 59

xTS, yTS Two input parameter frameworks of WSBen, p. 60

J Set of clusters, p. 60

Gr Graph model used to specify the underlying topology of a
parameter cluster network, p. 60

η Parameter condense rate, p. 60

Mp Minimum number of parameters a cluster can contain, p. 60

Paj Set of parameters contained in cluster j, p. 63

baTS Test set framework instanced from xTS.
baTS = 〈 100,Barabasi-Albert(100,6),0.8,5,|W | 〉, p. 65

xvii

nwsTS Test set framework instanced from xTS.
nwsTS = 〈100,Newman-Watts-Strogatz(100,6,0.1),0.8,5,|W |〉,
p. 65

erTS Test set framework instanced from xTS.
erTS=〈100,Erdos-Renyi(100,0.06),0.8,5,|W |〉, p. 65

gri(p) Cost of achieving p ∈ P from a state ri. The forward search-
ing step of WSPR obtains gri(p) for all p ∈ P , p. 82

Ow(p) Set of web services: Ow(p) = {w ∈ W |p ∈ wo}, p. 83

PDws(p) Inverted index that contains the set of predecessor web ser-
vices of p. It is used for the regression search of WSPR, p. 83

subGoal Set of parameters that are required to be searched. subGoal is
composed in the intermediate process of the regression search
of WSPR, p. 84

wSpace Set of web services w ∈ W , such that wi ∈ PDws(p), where
p ∈ subGoal, p. 84

hsg(w) Heuristics used for selecting a web service in the regression
searching process of WSPR, p. 84

soln Sequence of web services that is a solution to r, p. 89

Time Performance measure to see how long an algorithm takes to
find a solution in milliseconds, p. 99

#W Performance measure to see the number of web services in a
solution, p. 99

Co(j) Co-occurrence probability of parameters in a cluster j ∈ J ,
p. 153

Rl(j) Association distribution of a cluster j ∈ J , p. 154

uTS Test set framework instanced from yTS.
uTS = 〈100, uni(0.2), 1, uni(0.2), |W |〉, p. 155

bTS Test set framework instanced from yTS.
bTS = 〈100, bell(0.3, 0.5), 1, bell(0.3, 0.5), |W |〉, p. 155

sTS Test set framework instanced from yTS.
sTS =〈100, skew(0.5, 0.5), 1, skew(0.5, 0.5), |W |〉, p. 155

xviii

Acknowledgments

Writing this dissertation marks the happy conclusion of the journey that I started
many years ago. Throughout the journey, I greatly and sincerely benefited from
the support and companionship of many people.

First and foremost, I would like to express my gratitude to Dr. Soundar Ku-
mara, Distinguished Professor of Industrial Engineering, the Pennsylvania State
University for his support and encouragement throughout my Ph.D study. He is an
enthusiastic researcher who is always looking for novel perspectives and motivating
his students toward innovations. I have tried to learn his insightful perspectives
for the last four years since I started working with him. I would also like to thank
my co-advisor, Dr. Dongwon Lee, for providing the unmeasurable guidance and
feedback on the research problems and issues studied in this dissertation. As I
retrospect, I realize that I have learned so many things from him, technical or non-
technical, directly or indirectly, that practically shaped who I am now as a scholar.
I would also like to thank the other committee members, Dr. Tom Cavalier, Dr.
Timothy Simpson, and Dr. Ling Rothrock, for their guidance and suggestions
during my research.

I would specially like to thank to my senior friend, Yunho Hong, and his wife,
Hyeyim Na, have given me meaningful advice and invaluable support whenever I
was in trouble. In finishing my Ph.D study, I would like to give thanks to many
colleagues in the LISQ research group, whom I have spent many hours together
for last four years; Seokcheon Lee, Changsu Ok, Seungki Moon, Jindae Kim, Hari
Prasad, Nathan Gnanasambandam, Usha Nandini Raghavan, Chunglin Chang,
Yiyu Chen, and Christopher Carrino. Thanks to the students, I was actually able
to enjoy being in the office at the Leonhard Building. I have always admired Hari’s
clean logical thinking and sharp insights. Seungki and I had much fun together in
playing raquetball, eating snacks, and chatting over coffee.

During my Ph.D study, I was fortunate to have chances to work closely with

xix

many bright students in the PIKE research group: Hyunyoung Kil, Byungwon On,
Ergin Elmacioglu, and Eric Larson. They all contributed to my dissertation one
way or the other. Without Hyunyoung’s unmeasurable support, I could not have
finished my dissertation. Without Byungwon’s generous encouragement, I could
not have finished my work. Thanks to Ergin’s support of his deep knowledge, I
was able to finish my experiments. I am indebted to Eric with whom I attended
the EEE05 web service contest that later became the basis for me to win the first
runner-up award in the ICEBE05 web service contest.

I especially like to thank my seniors who graduated from IE department, Penn
State: Dr. Shangtae Yee at General Motors, Dr. Taioun Kim at Kyungseong
University, Dr. Younghan Lee at Dongguk University, and Dr. Cheunghwa Lee,
although they would never realize how much influential they were to me.

My dear friends, Kwangho Shin, Seongmo Kim, Dr. Youngbong Jang, Dr.
Seonghwan Min, Dr. Kwangku Seo, helped me to maintain sanity during the
Ph.D program by way of occasional emails and phone calls. My senior, Jeongwok
Kim, Director of the consulting division at Accenture in South Korea, has always
been tremendous comforts to me, for which I deeply appreciate.

Sincerely, I would like to thank my mother and brothers and sisters, from the
bottom of my heart, for their prayers and confidence in me. I am really proud of
them all. Finally, I would like to express that this dissertation is dedicated to my
late father who will always be immortal in my heart.

Finally, I would like to acknowledge the partial support provided by DARPA
Grant #:MDA972-01-1- 0038, NSF Grant #:CMMI-0537992. The findings and
reporting are my own conclusion and does not reflect the positions of the above
funding agencies.

xx

Chapter 1
Introduction

Web services are often considered to be one of the most important and vital build-

ing blocks for the “Semantic Web” [15]. As such, the industrial support for web

services has grown dramatically in recent years. For example, it is expected that

by 2007, 72% of all application development software will support web services,

and 45% of all types of software will be web-services enabled [25]. As a growing

number of web services are available on the web and in organizations, finding and

composing the right set of web services becomes ever more important.

The main research focus of web services is to achieve interoperability between

distributed and heterogeneous applications. Therefore, flexible composition of web

services in order to fulfill the requirements of the tasks is one of the most im-

portant objectives in this research field. To date, however, enabling composite

services has largely been an ad hoc, time-consuming, and error-prone process in-

volving repetitive low-level programming. As a result, in recent years, a plethora

of research and products on web service composition problems have appeared1. In

addition, the web-services research community has hosted competition programs

(e.g., EEE05 [37] and ICEBE05 [54]) to solicit algorithms and software to discover

pertinent web services and compose them to make value-added functionality. How-

ever, little research has addressed the composition problem when the number of

web services becomes very large and the underlying web-service network topolo-

gies are diverse. The current work is differentiated by the fact that it improves the

1At the time this thesis is written (May 1, 2006), there are about 900 and 80 scholarly articles
mentioning “web-services composition” at Google Scholar and CiteSeer, respectively.

2

previous AI planning methods with a novel heuristic and develops test sets based

on the characteristics of real web services.

1.1 Introduction to Web Services

A web service [114] is a piece of XML-based software interface that can be invoked

over the Internet and can be roughly viewed as a next-generation successor of

the Common Object Request Broker Architecture (CORBA) [29] or the Remote

Procedure Call (RPC) [52] technique. The main benefits of web services are as

follows:

• Inter-operability: the XML standard allows applications on any platform to

communicate with other web-service applications. While other factors may

change, the web services interface remains accessible.

• Ease of use: as long as developers adhere to web-service standards, they are

free to use their own programming language, architecture, and implementa-

tion strategy.

• Reusability : web services are component-based so that they allow interfaces

with potentially unlimited sources.

• Ubiquitous computing: web services are accessible everywhere because they

use the Internet. An added advantage is that they have been developed to

comply with existing Internet-based security measures, such as firewalls.

The web-service architecture is constructed so that web services allow any piece

of software to communicate with a standard XML messaging system. For imple-

menting the XML-based communication, the following XML-based technologies

are necessary:

• WSDL: Web Services Description Language (WSDL) [115] is an XML-based

format for specifying the interface to a web service. The WSDL details

the service’s available operations and parameter types, as well as the actual

SOAP endpoint for the service. In essence, WSDL is the “user’s manual” for

web services.

3

Figure 1.1: How web services work

• SOAP: Simple Object Access Protocol (SOAP) [112] is an XML-based pro-

tocol for exchanging information in a decentralized and distributed environ-

ment. It defines a mechanism to exchange commands and parameters be-

tween clients and servers. Like web services as a whole, SOAP is independent

of the platform, object model, and programming language being used.

• UDDI: Universal Description, Discovery and Integration (UDDI) [113] is the

meeting place for web services. The UDDI registry stores descriptions about

companies and the services they offer in a common XML format. As such,

the UDDI acts effectively a “yellow pages” for web services.

In Figure 1.1, we explain how web services work. Typically, it starts with a

Service Provider, which is a web service.

1. First, the Service Provider registers its detailed service specification (a

WSDL file) to a Directory Server, which has the role of the yellow pages

server. This process corresponds to ¬ in Figure 1.1.

2. Second, a Service Consumer (e.g., software agent, program, or human)

then finds the Service Provider that can satisfy certain needs from the

Directory Server by using UDDI protocol. The WSDL file containing a

4

detailed specification about the Service Provider is obtained. This process

corresponds to ­ and ® in Figure 1.1.

3. Third, using the known API and data types specified in the WSDL file, the

Service Consumer sends a request to the Service Provider via a standard

message protocol, SOAP, and in return, receives a response from the Service

Provider. This process corresponds to ¯ and ° in Figure 1.1.

Unlike conventional programming interfaces, web services are self-explanatory.

Specifically, by interpreting XML tags, applications can interpret the meanings

of operations and data in an easier way than before. Therefore, locating the

correct services and combining them to form more complex services becomes an

increasingly important task on the web. It is evident that when there are a large

number of web-service based agents available, it is essential to quickly discover and

combine web services to satisfy the given request. Recently, composition of services

has received much interest due to its potential to tackle many adaptive system

architecture issues that were previously hard to overcome by other computing

paradigms. Some of the issues related to the service composition are listed in the

following [73, 129]:

• Most service domains are normally large in size and service offerings are

dynamic, with new services becoming available on a daily basis.

• There are usually multiple services that offer seemingly similar features but

have some variation in details (e.g., different parameters for invocation, dif-

ferent access interfaces, different costs, different quality).

• Composition of services needs to be generated on demand by the requests

of customers. Customer requirements, such as expending of business trans-

actions, duration of service invocation, and different preferences, are very

important in a service composition. It is a complex issue to deal with, since

there are complex and often conflicting relationships among these require-

ment factors.

In the following section, an explanation of web-service composition is carried out

with an example.

5

1.2 Motivating Example

In web services enabled networks, typically a client program first locates a web

services server that can satisfy certain requests from a yellow page (UDDI), and

obtain a detailed specification (WSDL) about the service. Then, using the known

API in the specification, the client sends a request to the web service considered

via a standard message protocol (SOAP), and in return, it receives a response from

the service. As mentioned before, web services are self-explanatory; by interpreting

XML tags, applications can understand the semantics of operations. In particular,

a problem of practical interest concerns the following two issues. Given a request

r, among thousands of candidate web services found in UDDI: (1) How to find

matching services that satisfy r; and (2) How to compose multiple services to

satisfy r when a matching service does not exist. We motivate our work through

the following example.

Consider the four web services in Table 1.1, as illustrated in WSDL notation:

• Given the hotel, city, and state information, findHotel returns the address

and zip code of the hotel.

• Given the zip code and food preference, findRestaurant returns the name,

phone number, and address of the restaurant with matching food preference

and closest to the zip code.

• Given the current location and food preference, guideRestaurant returns

the address of the closest restaurant and its rating.

• Given the start and destination addresses, findDirection returns detailed

step-by-step driving direction and a map image of the destination address.

Now, consider the following two requests from “State College, PA, USA”:

• r1: find the address of the hotel “Atherton”, and

• r2: find a Thai restaurant near the hotel “Atherton” along with a driving

direction.

To fulfill r1, invoking the web service findHotel is sufficient. That is, by

invoking findHotel(“Atherton”, “State College”, “PA”), one can get the address

6

<message name=’findHotel_Request’>
<part name=’hotel’ type=’xs:string’>
<part name=’city’ type=’xs:string’>
<part name=’state’ type=’xs:string’>

</message>
<message name=’findHotel_Response’>

<part name=’addr’ type=’xs:string’>
<part name=’zip’ type=’xs:string’>

</message>

(a) findHotel
<message name=’findRestaurant_Request’>

<part name=’zip’ type=’xs:string’>
<part name=’foodPref’ type=’xs:string’>

</message> <message name=’findRestaurant_Response’>
<part name=’name’ type=’xs:string’>
<part name=’phone’ type=’xs:string’>
<part name=’addr’ type=’xs:string’>

</message>

(b) findRestaurant
<message name=’guideRestaurant_Request’>

<part name=’foodPref’ type=’xs:string’>
<part name=’currAddr’ type=’xs:string’>

</message> <message name=’guideRestaurant_Response’>
<part name=’rating’ type=’xs:string’>
<part name=’destAddr’ type=’xs:string’>

</message>

(c) guideRestaurant
<message name=’findDirection_Request’>

<part name=’fromAddr’ type=’xs:string’>
<part name=’toAddr’ type=’xs:string’>

</message>
<message name=’findDirection_Response’>

<part name=’map’ type=’xs:string’>
<part name=’direction’ type=’xs:string’>

</message>

(d) findDirection

Table 1.1: Web service examples

of the hotel as “100 Atherton street” with the zip code of “16801.” However, none of

the four web services can satisfy r2 alone. Both web services, findRestaurant and

guideRestaurant, can find a Thai restaurant near the hotel, but cannot provide

a driving direction. On the other hand, the web service findDirection can give a

driving direction from one location to another, but cannot locate any restaurant.

Therefore, one has to use a chain of web services to fully satisfy r2. There are two

possible methods to carry out this task. After obtaining the hotel address using

findHotel, one can do either:

7

1. Invoke guideRestaurant(“Thai”, “100 Atherton street, 16801, PA”) to get

the address of the closest restaurant, e.g., “410 S. Allen St. 16802, PA.”

Then, invoke the web service findDirection(“100 Atherton street, 16801,

PA”, “410 S. Allen St. 16802, PA”) to get a driving direction.

2. Invoke findRestaurant(“16801”, “Thai”) to get the address of the closest

restaurant, e.g., “410 S. Allen St. 16802, PA.” Then, invoke the web service

findDirection(“100 Atherton street, 16801, PA”, “410 S. Allen St. 16802,

PA”) to get a driving direction.

1.3 Research Objectives

The main objectives in this research are: (1) Observation of existing web services;

(2) Development of an effective web-service composition algorithm; and (3) De-

velopment of a web-service benchmark tool to test web-service composition and

discovery algorithms.

1. The observation of real web services includes:

• Observing the network properties of public web services and the ICEBE05

test sets in terms of the small-world network and scale-free network

properties.

• Exploiting the implications learned from above observation to develop

a web-service benchmark tool with which we can generate web services

to test web-service composition algorithms.

2. The development of an effective web-service composition algorithm includes:

• The algorithm design, taking into consideration the fact that a large

number of web services can be available, and diverse composition sce-

narios are possible depending on different service applications.

• The performance tests in comparison with the other prominent AI plan-

ning algorithms over diverse test sets, including the EEE05 test set, the

ICEBE05 test sets, and other sets with the proper capability to repre-

sent the diverse composition scenarios.

8

• Experimental validations based on the standard criteria for evaluating

the performance of algorithms including effectiveness, efficiency, scala-

bility, and robustness.

– Effectiveness: it is defined as the ability to achieve stated goals

or objectives, judged in terms of both output and impact. Our

objective is to compose web services to generate the desired service

with a minimum of web services.

– Computational efficiency: we will measure how quickly our pro-

posed algorithm generates the correct solutions in comparison with

other AI planners as more data are applied to the problem.

– Scalability: an algorithm has the scalability if it can adapt to in-

creased workloads and continue to function well without exponen-

tial explosion of the running time. For this purpose, we will increase

the size of test sets (the number of WSDL files) up to 50,0002.

– Robustness: an algorithm is considered robust if its performance re-

mains relatively stable, with a minimum of variation, even though

its application domain changes. We will use various test sets, in-

cluding EEE05, ICEBE05 characterized by the tree structure, and

our generated test sets featured by complex and random graph

structure.

3. The development of an web-service benchmark tool which is expected to

provide the following functions:

• Flexible web services generation frameworks.

• Supporting diverse web-service networks, including complex and ran-

dom networks.

2The reason to choose the upper test size to be 50,000 is explainable. Four companies (IBM,
Microsoft, NTT Com, and SAP) currently operate ”Universal Business Repository”(UBR), a
public instance UDDI. They manage around 50,000 replicated WSDL entries using their high
performance machines. In fact, generating 50,000 WSDL files occupies as many as 3GB, no
matter how we try to reduce the WSDL file size by maintaining only primal structure of WSDL.
Considering these facts, we decide to conduct experiments by increasing the test size up to 50,000.
Furthermore, we intend to show analytically that our proposal can run in polynomial running
time in Section 6.

9

• Other functions to simplify the benchmark process, such as exporting

test sets into AI planner readable files and generating test requests

automatically.

1.4 Organization of the Thesis

In Chapter 2, the web-service composition problem is formally defined as three

different models: (1) A STRIPS AI planning model, (2) A State Space model, and

(3) A Network optimization problem. By means of these three formulations, we ex-

plain the intractability of the web-service composition problem. In Chapter 3, we

extensively review the background literature on AI planning algorithms and web

services matchmaking methods in the context of web-service composition. In par-

ticular, we suggest four facets to classify service composition problems and present

a decision tree to help select the right solution to the various service composition

problems. In addition, we compare existing AI planners with one simple motivat-

ing problem, and discuss their benefits and limitations. In Chapter 4, we analyze

real web service sets such as public web services, the EEE05 test set, and the

ICEBE05 test set with respect to diverse network properties (scale-free and small-

world properties). Chapter 5 presents a novel web service composition benchmark

tool titled WSBen. WSPR, an AI planning-based two step heuristic algorithm,

is presented in Chapter 6. We show experimentally the benefits of the two step

approach against the simple A* variant algorithms that use only a one-step for-

ward search. Chapter 7 deals with testing and verification of our proposal, WSPR

in comparison with other prominent AI planning algorithms. Chapter 8 suggests

the application of semantic web-service composition in manufacturing, where we

propose an ontology-based framework using semantic web-service technologies to

secure the reliable and large scale interoperability among a design firm, manu-

facturers, and logistics providers. We also review existing semantic web-service

technologies and propose a rough scenario that forms the motivating base for our

proposed framework. Chapter 9 concludes the research and offers future research

recommendations.

Appendix A discusses the WSBen’s yTS framework which is not covered in

Chapter 5. We discovered that the ICEBE05 test sets have interesting charac-

10

teristics with respect to their problem complexities. This discovery is presented

in Appendix B. The web service monitoring and diagnosis is considered one of

the promising research extensions by many researchers. Appendix C presents our

previously proposed system titled MISQ, that aims at allowing users to analyze

initial business processes and to obtain optimized parameters for implementing

and monitoring their web-service composition. Appendix D and E provide WSPR

and WSBen manual, respectively.

Figure 1.2 summarizes the road map of research and shows the organization of

this thesis.

11

Figure 1.2: Thesis organization

Chapter 2
Problem Definition

A web service w has typically two sets of parameters: wi = {I1, I2, . . .} for SOAP

request (as input) and wo = {O1, O2, . . .} for SOAP response (as output). When

w is invoked with all input parameters, wi, it returns the output parameters, wo.

We assume that in order to invoke w, all input parameters in wi must be provided

(i.e., wi are mandatory).

Definition 2.0.1 (web-service Discovery Problem). Suppose that a request r has

initial input parameters ri and desired output parameters ro. The web-service Dis-

covery (WSD) problem is defined as to find a set of web services w, such that (1)

ri ⊇ wi and (2) ro ⊆ wo.

With a simple look-up table, the WSD problem can be easily solved. Therefore,

in the remainder of the thesis, we focus on the case where no single web service

can fully satisfy the request r, and therefore one has to compose multiple web

services. This type of problem is referred to as the Web-Service Composition

(WSC) problem, and can be formally defined using a planning problem in the

STRIPS1 model of the 4-tuple: Π = 〈P,W, ri, ro〉, where:

(1) P is a set of parameters. In the motivating example in Chapter 1, P =

{“hotel-name”, “hotel-city”,“hotel-address”, . . . },

(2) W is a set of web services. In the motivating example, W={“findHotel”,

“findRestaurant”,. . . },
1STRIPS [79] is the first major AI planning system which represents actions in terms of their

preconditions and effects. For details, see Chapter 3

13

(3) ri ⊆ P is the initial input parameters, and

(4) ro ⊆ P is the desired output parameters.

Note that Π = 〈P, W, ri, ro〉 is a propositional STRIPS planning in which an

initial state is a finite set of ground atomic formulas, indicating that the corre-

sponding conditions are initially true and that all other relevant conditions are

initially false. In addition, the pre-conditions and post-conditions of an operator,

as well as the goals are the ground literals [24]. Figure 2.1 illustrates the STRIPS

model of the motivating example.

We can transform a STRIPS model Π into a state space model Ψ = 〈S, s0, SG, Ω(.), f, c〉,
where:

(1) The state, s ∈ S is a collection of parameters in P ,

(2) The initial state s0 ∈ S is such that s0 = ri,

(3) The goal states s ∈ SG are such that ro ⊆ s,

(4) Ω(s) is a set of web services w ∈ W such that wi ⊆ s. That is, w can be

invoked or applicable in the state s,

(5) The transition function f(w, s) = s′ that maps a state s into a state s′ such

that s′ = s ∪ wo for w ∈ Ω(s), and

(6) c(w) is the invocation cost of w.

A solution of the state model is a finite sequence of web services w1, w2, . . . , wn,

where a sequence of states s0, s1, . . . , sn exists, such that si = f(wi, si−1) for i =

1, . . . , n, wi ∈ Ω(si−1), and sn ∈ SG. Based on Ψ, the WSC problem can be

formally defined as follows:

Definition 2.0.2 (web-service Composition Problem). Suppose that a request

r has initial input parameters ri and desired output parameters ro. The web-

service Composition (WSC) problem is to find a finite sequence of web services,

w1, w2, . . . , wn such that (1) wi is invoked sequentially from 1 to n; (2)(ri ∪ wo
1 ∪

. . . ∪ wo
n) ⊇ ro; and (3) the total cost

n∑
i=1

c(wi) is minimized.

14

Figure 2.1: STRIPS model of the motivating example.

Except for attempting to minimize the total cost, the WSC problem is a kind

of classical planning problem which refers generically to planning for restricted

state-transition systems [44]. An issue of interest in the AI planning community

primarily concerns scenarios which allow interleaving of actions from different sub-

plans within a single sequence. By contrast, the WSC problem can be considered

to be the information gathering problem [62], where web services represent infor-

mation sources and interleaving between web services is not found. This enables

a highly specialized planning algorithm. The only preconditions to web services

are knowledge preconditions. Furthermore, there are no sibling sub-goal interac-

tions, such as those characterizing the Sussman anomaly2 [79]. For that reason,

a WSC algorithm models the world state as an information state, which is a de-

scription of the information collected by the algorithm at a particular stage in

composition [94]. Therefore, the WSC problem is a relatively simple problem from

a planning perspective, but has quite different characteristics than a usual planning

problem. Classical planning problems (e.g., blocks world problem) have generally

2No combination of plans for the two individual goals can solve the conjunction of the two
goals.

15

Figure 2.2: Gs(Vs, Es) of the motivating example.

considered a small number of actions (e.g., move block) under the assumption of

a large number of objects (e.g., hundreds of blocks). On the contrary, WSC prob-

lems generally deal with a large number of actions (e.g., hundreds of travel agent

services) with a limited number of objects involved (e.g., registering one hotel).

Definition 2.0.3 (State Node Network). A state node network is a directed graph

Gs(Vs, Es), where si(∈ Vs) represents a state in S, and Ep is a set of directed edges3

(si, sj) that connects ordered pairs of si ∈ Vs and sj ∈ Vs . Every arc (si, sj) ∈ Es

is weighted by the invocation cost c(w), where w ∈ Ω(si) and sj = f(w, si) (i.e.,

sj = si ∪ wo).

Given a network Gs(Vs, Es), we consider paths in which arcs are traversed

only in the forward direction. The cost of a path is the sum of the costs of

the associated arcs. Our interest is to obtain the shortest path between s0 and

sn(∈ SG). Figure 2.2 illustrates the Gs(Vs, Es) of the motivating example. Note

that s5, s6, and s7 contain the goal parameters, “K” and “L”, where “K” and

“L” imply “mapHotelRestaurant” and “directionHotelRestaurant”, respectively.

3We will use the terms directed edge and arc in the same meaning

16

Therefore, s5, s6, and s7 belong to SG. It is evident that if c(wi) = 14 for all

wi ∈ W , then the shortest paths are: (1) s0, s1, s2, s5(w1 → w2 → w4); and (2)

s0, s1, s3, s7 (w1 → w3 → w4). Indeed, the problem of finding the shortest paths

from ri to ro in Gs can be formulated as the minimum cost flow problem.

Let bi denote the amount of flow that enters the network at node si ∈ Vs,

i = 0, . . . , n. Let fli,j denote the amount of flow which is greater than 05 on arc

(si, sj) ∈ Es. If bi > 0, the node is a source that supplies bi units of flow. If bi < 0,

the node is a sink that demands bi units of flow. Suppose s0 = ri, and sn ∈ SG.

Although we are interested in obtaining the shortest path between s0 and sn, it is

also possible to consider the issue of finding the shortest path from all states to a

given goal state by setting bi = 1, for i = 0, . . . , n − 1 and bn = −n. Simply, this

will put a supply of one unit at every other non-goal state node and a demand of

n at the goal state node so that the total supply and demand are equal. Suppose

that a cost of ci,j per unit flow on arc (si, sj) ∈ Es is c(w), where sj = f(w, si).

Then, the minimum cost flow problem is as follows:

minimize
∑

(si,sj)∈Es

ci,jfli,j (2.1)

subject to

∑

(si,sj)∈Es

fli,j −
∑

(sk,si)∈Es

flk,i = bi ∀si ∈ Vs, i = 0, . . . , n (2.2)

fli,j ≥ 0 for ∀(si, sj) ∈ Es (2.3)

4Pricing web services has been a critical issue. The emergence of web services has required
an ideal pricing mechanism. A widely accepted method is dynamic pricing, which is a general
equilibrium model with a resource-price structure. In this research, we assume that all web
services have an identical equilibrium market price of 1, meaning that at price 1, the quantity
demanded equals quantity supplied. This assumption is the same as in the previous web-service
composition contest such as EEE05 and ICEBE05. In a real system, however, determining price
of a web service is subject to the Quality-of-Service (QoS) requirements of service requests. A
better pricing model could be constructed based on real-market surveys.

5fli,j will automatically be integer due to the unimodularity property of network flow pro-
gramming. If right-hand side values in all constraints are integers (as in our case where bi=0 or
1), and if all of the pivot operations are simple additions and subtractions, then we can guarantee
that the solution values of the variables at the optimum will also all be integers. This is known
as the unimodularity property.

17

This expression indicates that flows must be feasible and each node conserves

flow. Specifically, Objective function (2.1) indicates that we are interested in get-

ting the shortest plan. Constraint set (2.2) called as the “flow conservation equa-

tion” indicates that the flow may be neither created nor destroyed in the network.

In the conservation equation,
∑

(si,sj)∈Es

fli,j represents the total flow out of node

si, while
∑

(sk,si)∈Es

flk,i indicates the total flow into node si. This equation requires

that the net flow out of node si,
∑

(si,sj)∈Es

fli,j −
∑

(sk,si)∈Es

flk,i, should be equal to bi.

Note that if bi < 0, then there should be more flow into i than out of i. Feasible

flows exist when
n∑

i=0

bi = 0.

This minimum cost flow problem can have a dual problem. With b0 = b1 =

· · · = bn−1 = 1, the dual problem with λn = 0 is

maximize

n−1∑
i=0

λi (2.4)

subject to

λi ≤ ci,j + λj for ∀(si, sj) ∈ Es (2.5)

λi refers to the cost associated with the path from si to sn. This maximization

problem suggests that in the optimal solution, λ∗, if all components are fixed except

for λ∗i , then λ∗i tends to become as large as possible and is subject to the feasibility

Constraint 2.5. Therefore, λ∗i satisfies the following Bellman equation with λ∗n = 0

λ∗i = min
(si,sj)∈Es

{ci,j + λ∗j}, i = 0, . . . , n− 1 (2.6)

λ∗i s are also called labels, and there are polynomial algorithms to solve the

equation outlined in 2.6, such as the label setting algorithm (when ci,j is non-

negative) or label-correcting algorithm [30]. However, problems exist with this

idea. These algorithms are polynomial in the size of nodes |Vs|, but the number

18

of nodes are exponential in the number of parameters |P |. This is because nodes

are states, and the state is a collection of parameters in P . Before we proceed to

investigate the complexity of the WSC problem in detail, we need to introduce two

matching operations described below.

Definition 2.0.4 (Full matching). Suppose that a state s ∈ S is given. Let a web

service w1 ∈ Ω(s). If for w2 ∈ W , wo
1 ⊇ wi

2, then w1 can “fully” match w2.

Definition 2.0.5 (Partial matching). Suppose that a state s ∈ S is given. Let a

web service w1 ∈ Ω(s). If for w2 ∈ W , (wo
1 + wi

2) and (wo
1 ∩ wi

2 6= ∅), then w1 can

“partially” match w2.

In the motivating example, findHotel partially matches findRestaurant and

guideRestaurant. In turn, findRestaurant and guideRestaurant partially match

findDirection. However, if both findHotel and findRestaurant are composed,

then findDirection can be fully matched. When only full matching is considered

in the WSC problem, it can be seen as a single-source shortest path problem which

is defined over Gs(Vs, Es) because the total number of input and output parameter

sets is 2 × |W | thereby |Vs| = 2 × |W |; each parameter set can be considered as

one atomic parameter. Thus, the computational complexity becomes tractable.

On the other hand, when both full and partial matching must be considered con-

currently, the problem becomes a decision problem to determine the existence of

a solution of k operators or less for propositional STRIPS planning [79] with re-

strictions on negation in pre- and post-conditions. This type of STRIPS planning

problem is proved to be NP-complete by Bylander [24]. We can revise the result in

Bylander [24] to prove that the WSC problem, including full and partial matching

operations, is NP-complete as follows:

Theorem 2.0.6. The web-service composition problem with full and partial match-

ing operations is NP-complete.

Proof. In this proof, the WSC problem is considered to be a decision problem of

determining whether an instance of propositional STRIPS planning has a solution

of k or fewer operators, where k is given as part of input. The first part of this proof

focuses on proving that the WSC problem is NP, and the second part concentrates

19

on proving that the WSC problem is NP-hard by building a polynomial time

reduction procedure from 3SAT6 [94] to the WSC problem.

NP: Web services without negative effects can never negate a condition.

Thus, a previous state is always a subset of succeeding states. Also, web services

within a service sequence that have no effect can always be removed. Hence, if a

solution exists, the length of the smallest solution can be no longer than the total

number of web services. Thus, the WSC problem is in NP because only a linear

number of nondeterministic choices are required. In other words, a solution to a

WSC problem can be verified in polynomial time.

NP-hard: 3SAT can be reduced to the WSC problem in polynomial time.

It is also written in 3SAT ≤p WSC. Let U = {u1, u2, . . . , um} be the set of variables

used in an instance of 3SAT. Let n be the number of clauses. The equivalent WSC

problem to the instance of 3SAT can be constructed using the following types of

parameters or conditions.

• T (k): if uk=true is selected, T (k) is true; otherwise false.

• F (k): if uk=false is selected, F (k) is true; otherwise false.

• V (k): if some value (i.e., either true or false) for uk has been selected, then

V (k) is true; otherwise false.

• C(j): if the jth clause is satisfied, it is true; otherwise false.

The initial state and goal can be specified as:

• ri = ∅

• ro = V (1) ∧ V (2) ∧ · · · ∧ V (m) ∧ C(1) ∧ C(2) ∧ · · · ∧ C(n)

That is, the goal is to select a value for each variable (i.e., V) and satisfy each of

the clauses. For each variable uk, four web services are needed:

• wtk: wtik = ∅ and wtok = T (k).

6Deciding whether a given boolean formula in conjunctive normal form has an assignment
that makes the formula “true”. A statement is in 3 conjunctive normal form if it is a conjunction
(sequence of ANDs) consisting of one or more conjuncts (clauses), each of which is a disjunction
(OR) of three or less literals. In 1971, Cook showed that the problem is NP-complete.

20

• wfk: wf i
k = ∅ and wf o

k = F (k).

• wvk1: wvi
k1 = T (k) and wvo

k1 = V (k).

• wvk2: wvi
k2 = F (k) and wvo

k2 = V (k).

These four web services are used to select a value for uk, and to ensure that a

value has been assigned to uk. Note that nothing prevents the double selection of

both true and false for one variable. To prevent the double assignment, we require

two more web services, wcj1 and wcj2. If the jth clause contains a variable uk,

wcj1 is needed. On the contrary, if the jth clause contains a negated variable ūk,

wcj2 is needed:

• wcj1: wci
j1 = T (k) and wco

j1 = C(j) where uk is contained in the jth clause.

• wcj2: wci
j2 = F (k) and wco

j2 = C(j) where ūk is contained in the jth clause.

If the 3SAT problem is satisfiable, then ro is true because all V (k) and C(j)

must be true. On the other hand, if the 3SAT problem is not satisfiable, then at

least, one of C(j) must be false, resulting that ro is false.

In addition, if the 3SAT formula is satisfiable, then 2m + n web services are

sufficient, because:

• Only one value between true and false, is selected for each variable. There-

fore, m web services are required.

• m number of web services are required to ensure that m number of variables

are set to be true or false value.

• n number of web services are required to indicate that n number of clauses

are determined to either be true or false.

On the contrary, if the 3SAT formula is not satisfiable, then both values must be

selected for some variables to achieve the goals, implying that more than 2m + n

web services are needed. Thus, the 3SAT formula is satisfiable if and only if there

is a web-service composition of size k = 2m + n

21

Therefore, when the number of web services to search is not small, finding an

optimal solution to the WSC problem (a sequence of web services from ri to ro)

is prohibitively expensive, leading to the use of approximate algorithms instead.

To address this intractable WSC problem, we will suggest a polynomial-time AI-

planning based heuristic algorithm in Chapter 6.

Chapter 3
Background Literature Survey

In this chapter we present an overview of previous research concerning the current

research topic. First, we suggest four facets to classify WSC problems, and present

a decision tree to help select the right solution to various WSC problems. Second,

we compare existing AI planners with one simple motivating WSC problem, and

discuss their benefits and limitations. In addition, we study existing web services

matchmaking methods including the exact matchmaking and semantic matchmak-

ing.

3.1 Classification of WSC Problems and Related

Research Work

We can classify the WSC problem using the following four facets :

• Manual vs. Automatic Workflow Composition: In building workflows

by means of web services, one can either do (1) Manual composition in co-

operation with domain experts; or (2) Automatic composition by software

programs. In the manual approach, human users who know the domain well

(e.g., domain ontology) select the proper web services and weave them into

a cohesive workflow. Although users may rely on GUI-based software to fa-

cilitate the composition, in essence, it is a manual and labor-intensive task,

and thus is not appropriate for large-scale WSC.

23

• Deterministic vs. Stochastic Environment: If we view the WSC as

a design-oriented process by ignoring the stochastic real-world environment,

AI-inspired planning techniques are suitable for the WSC. However since the

classical STRIPS-style planning algorithms assume deterministic behavior of

web services, additional overhead is required to monitor execution time to

recover from unexpected behavior of web services, such as failure. There are

some research efforts to suggest approaches for dynamically composing web

services in run-time with considerations to the stochastic environment.

• Simple vs. Complex Operator: The simple WSC involves only two types

of matching operations as described in Chapter 2: (1) Full-matching opera-

tor; and (2) Partial-matching operator. If WSC involves the two operators

alone, it can be considered to be a linear planning, as there are no sibling-sub

goal interactions such as those characterizing the Sussman anomaly. More

complex WSC, however, can use other operators (e.g., OR, XOR, NOT) or

constraints (e.g., request prefers sources in Asia to the ones in Europe) in

both sequential and parallel modes. Note that throughout this thesis, WSC

means the simple WSC involving only the fully- and partial matching oper-

ations.

• Small vs. Large Scale: The general WSC problem to find an optimal

workflow can be formulated as an AI planning problem, into which the sat-

isfiability (SAT) problem can be reduced [107]. We know that the SAT

problem is NP-complete and therefore is unlikely to have a polynomial al-

gorithm for the WSC problem. Note that we defined the WSC problem

as an optimization problem in Chapter 2. However, it is true that many

solutions are currently available with the capability of dealing with large

scale problems. This is possible because of their polynomial-time nature to

approximate optimal solutions.

In Figure 3.1, we present a taxonomy to help choose the right solution using the

aforementioned four facets. The manual composition approach can rely on soft-

ware programs that have functions to bind manually-generated workflows to the

corresponding concrete resources. To that end, METEOR-S [104] and Proteus [45]

were suggested. Kepler [5], in particular, provides a scientific workflow editor,

24

Figure 3.1: Taxonomy for classifying WSC problems and solutions

which allows scientists to effectively query and compose distributed data sources

on the Grid. Thus, it is possible to build scientific workflows across diverse scien-

tific domains for analysis and modeling tasks. METEOR-S, Proteus, and Kepler

adopt the idea of semi-automatic service composition and indicate the trend that

GUI-based software and human experts can work together to generate composite

services. However, we believe that by leveraging the various planning-based solu-

tions of AI community, one can solve the WSC problem better. If one knows that

an automatic composition is plausible for the given WSC problem, then she or he

may apply planning-based automatic composition solutions first to get the initial

set of candidate workflows, and subsequently perform additional fine-tuning.

Regarding AI planning solutions for WSC in Figure 3.1, STRIPS [79] is the first

major AI planning system which represents actions in terms of their preconditions

and effects. Additionally, it describes the initial and goal states as conjunctions

of positive literals. Graphplan [19] is a general purpose planner for STRIPS-style

domains, and it is based on ideas used in graph algorithms. Given a problem

statement, Graphplan uses a backward search to extract a plan (so-called, “plan

25

Figure 3.2: Relationships between WSC problems and other related problems with
their solutions

graph”) and allows for some partial ordering among actions. As a satisfiability

approach for the planning problems, the SATPlan algorithm [55] was introduced.

SATPlan belongs to the greedy local search methods for solving SAT problems.

The SATPlan algorithm translates a planning problem into propositional axioms

and applies a satisfiability algorithm to find an assignment that corresponds to a

valid plan. An excellent survey of modern planning algorithms and their appli-

cation to WSC problems is available [81, 92, 121]. Furthermore, we organize the

problems related to the WSC problem along with possible solutions as shown in

Figure 3.2.

However, it must be noted that these AI planning-based algorithms cannot

handle the case when a semantic match is desired. In other words, for the purpose

of the semantic match, a promise to use agreed-upon ontology is required between

participating parties in advance. From a planning objective point of view, Graph-

plan and SAT-based planning systems have the same objective of minimizing the

number of time steps, but not necessarily the number of actions, to reach a goal.

However, through an integer linear programming (ILP) formulation, other various

26

QoS factors (e.g., response time, service cost, or availability of sources) can be

incorporated and optimized. Clearly, an exhaustive search is unrealistic because

combinatorial explosion renders it impractical. When the scale is large but the

WSC problem is free of negation, we can use heuristic search algorithms like A*

variant algorithms [84]. This will be discussed in Chapter 6 in detail. SWORD [88]

is a rule-based expert system which can automatically determine whether a desired

composite service can be realized using existing rules. However, considering the

fast growth of web services, building a full knowledge base by converting all web

services into axioms will be greatly expensive.

Different from the deterministic environment composition above, there are some

studies to address the non-determinism inherent in real-world web services. Markov

decision processes can be used to utilize a stochastic optimization framework in

this context, but the main focus is on the abstract-level strategies instead of the

implementation-level details [36]. A multi-agent perspective can be used to com-

pose adaptive workflows in a dynamic environment [23]. However, it is likely to

be expensive to enable web services with agent-level intelligence. In the database

community, one of the recent works to support an automated service discovery

was attempted by using Information Retrieval (IR)-like similarity search [35]. The

emergent need of workflows to model e-service applications makes it essential that

workflow tasks be associated with web services. As a result, research efforts have

been carried out to enhance workflow systems in their support of web service com-

position [99].

Regarding the service matching and composability, Li and Horrocks [65] use

DAML-S to design a service matchmaker. DAML-S is used to represent knowl-

edge for promoting service capability matching. A description logic (DL) based

on DAML-S is used to implement matchmaking details. Medjahed et al. [72] pro-

pose an ontology-based framework for the automatic composition of web services.

A technique to generate composite services is based on high-level declarative de-

scriptions and applied for implementing an E-government application offering cus-

tomized services to indigent citizens. Sirin et al. [103] demonstrate how an OWL

reasoner can be integrated with an AI planner to overcome automatic web-service

composition problems. They identify the challenges of writing the service descrip-

tions and reasoning about them when an expressive language as OWL is used.

27

As an independent research branch, web-service quality testing has been estab-

lished where quality and trustworthiness of web services are considered [130]. It is

very unlikely that a business organization will dynamically select a partner from

the Internet merely based upon the information found from some public registry

without having a high confidence regarding it. Therefore, the test of quality and

trustworthiness of web-services based software is a critical work for the success of

web-service paradigms.

There is an emerging consensus that the ultimate challenge is to make web

services automatically tradable and usable by artificial agents in their rational,

pro-active interoperation in the next generation of the web [40]. This may be

solved by creating effective frameworks, standards and software for automatic web-

service discovery, execution, composition, inter-operation and monitoring [76]. In

industries, only initial and partial solutions of the ultimate problem are provided.

Existing de-facto standards for web service description (WSDL) [114], publica-

tion, registration and discovery (UDDI) [113], binding, invocation, and communi-

cation (SOAP) [112] provide merely syntactic capabilities and do not completely

solve the ultimate composition problem. More recent research and standardiza-

tion activities of the DARPA DAML community resulted in offering the semantic

service markup language DAML-S [8] based on RDF platform.

3.2 Overview of Matching Approaches

The WSC problem needs to integrate information from heterogeneous sources.

Since individual web services are created in isolation, their vocabularies have often

problems with abbreviations, different formats, or typographical errors. Further-

more, two terms with different spellings may have the same semantic meaning, and

thus are inter-changeable (e.g., “price” and “fee”). Conversely, two terms with the

same spelling may have different meanings (e.g., “title” may mean either “book

title” or “job title”).

In response to these challenges, researchers have developed diverse matching

schemes. Consider that x and y are data objects (e.g., web service parameters;

individual record field) with a vector of attributes: x = (x1, x2, . . . , xk), and

y = (y1, y2, . . . , yk) , where k is the number of attributes. We can quantify the

28

“similarity” between x and y by a distance function, d(x, y) with properties:

(1) d(x, y) ≥ 0, where equality holds if and only if x = y,

(2) d(x, y) = d(y, x), the symmetric property,

(3) d(x, y) ≤ d(x, z) + d(z, y), the triangle inequality.

By using different distance functions d(x, y), one can employ different matching

approaches. In general, matching approaches may fall into three categories:

(1) Approach-1: exact match using syntactic equivalence,

(2) Approach-2: approximate match using distance functions, and

(3) Approach-3: semantic match using ontologies (e.g., RDF [33] and OWL [109]).

In Approach-1, two objects x and y are deemed to be a match if and only if x = y.

However, with this approach, two objects with slightly different representations

(e.g., “William Jefferson Clinton” and “Bill Clinton”) cannot be matched. For

this reason, in Approach-2, if two objects are similar enough according to some

distance function (i.e., d(x, y) is above some threshold), they are deemed to be

a match. Bilenko et al. [16] reported different pros and cons of popular distance

functions, including TF-IDF, Jaccard, etc. For details of distance functions, refer

to [28].

Although Approach-2 is much more flexible than Approach-1, it is not suffi-

cient enough to identify that “price” and “fee” are interchangeable. In response,

researchers have created the vision of the semantic web, where data has structure

and ontologies describes the semantics of the data. Based on the semantic web

foundation, Approach-3 can address the ontology-matching problem to find seman-

tic mapping between two ontologies, specified by languages like DAML+OIL [108],

OWL, and RDF. Note that in this thesis, the choice of approach of matching is

irrelevant to the WSC problem. We assume that these matching tasks are pre-

processed and pre-selected.

When it comes to the web service matchmaking, current solutions are based on

the keyword matching supported by the category-browsing of UDDI. However, the

keyword-based matching considers only the name of web services and ignores their

29

real functions. To remedy this limitation, researchers have developed a set of meth-

ods which assess the similarity of web services to achieve matchmaking. Wu [127]

suggested a matchmaking process based on a lightweight semantic comparison of

signature specifications in WSDL by means of several assessment methods. Wang

and Stroulia [116] assessed the similarity of the requirement description of the

desired service with the available services via the semantic information-retrieval

(IR) method and a structure-matching approach. Maedche and Staab [67] pro-

vide multiple-phase cross-evaluation to assess the similarity between two different

ontologies. Gilles [46] introduces several similarity measures in order to extract

a new complex concept into an existing ontology by similarity rather than by

logic subsumption. Cardoso and Sheth [26] introduces a similarity function to

determine similar entity classes by using a matching process over synonym sets,

semantic neighborhoods, and distinguishing features that are classified into parts,

functions, and attributes.

Besides the web service matchmaking field, similarity measures have been

widely used in information systems [47, 63, 106], cognitive science, databases [18,

22], software engineering [64] and AI field [53]. An excellent survey of modern

matchmaking algorithms and their applications to the web service matching field

is available in [127]. Shvaiko and Euzenat [101] introduced a new classification

method by enhancing previous survey works [91]. Their work provides useful

texonomy and criteria for classifying many different recent schema and ontology

matching techniques, pointing which part of the solution space the techniques can

cover.

3.3 Comparative Illustration

In this section, we illustrate three selected automatic-composition algorithms for

the WSC problem and discuss their benefits and limitations. Among many state-of-

the-art proposals, we chose the following three for their impact on other solutions:

Graphplan, SATPlan, and Integer Linear Programming (ILP).

Traditionally, popular algorithms for STRIPS planning problems include total-

order planners, like Prodigy [90], and partial-order planners, like UCPOP [12].

In another approach, Graphplan was introduced and significantly outperformed

30

previous approaches [19]. Many researchers argue that SAT solvers are more robust

and allow for more expressiveness than specialized planning algorithms. In fact,

a variety of SAT algorithms are available to obtain results competitive with those

of Graphplan. SATPlan was suggested to convert STRIPS planning problems

directly into a conjunctive normal form (CNF), to which those SAT solvers were

applied. However, SATPlan sometimes requires hand-coded axioms to fine-tune

its performance. SATPlan can be classified into a satisfiability-based approach to

solving STRIPS planning problems.

The attempt to combine the strength of Graphplan in defining a search space

and the strength of modern research into SAT solvers resulted in Blackbox. Black-

box first uses a planning graph similar to Graphplan, and then converts the plan-

ning graph into a CNF formula to be fed into a SAT solver, Walksat [97]. Since

Blackbox obtains the CNF formula by converting a planning graph instead of

the STRIPS planning problems directly, Blackbox shows improvement over both

Graphplan and SATPlan, in addition to the benefits of automatic SAT encoding

without needing hand-coded axioms. Consequently, Graphplan and SATPlan are

the origin of Blackbox. We will compare Blackbox and other AI planners in Chap-

ter 7. Regarding the Walksat, this algorithm belongs to the incomplete local search

algorithms. The algorithm seeks for an assignment of the variables that satisfies

a given formula. The task is done by means of two strategies: a random walk

strategy and a greedy strategy. The algorithm starts with a random assignment of

the variables. Then it selects an unsatisfied clause at random and changes (flips)

the value of one of the variables to satisfy the clause. It will do this flipping pro-

cess until no clause is unsatisfied or until a maximum number of tries is reached.

Walksat adds a random noise; with certain probability p, the algorithm flips a

variable in the clause randomly (the random-walk strategy), and with probability

1− p, the algorithm flips the value of the variable whose change will result in the

least number of unsatisfied clauses (the greedy strategy)

ILP which has a rich history in the operational research community, has shown

good performance for AI planning problems [107]. Moreover, ILP naturally allows

the incorporation of various constraints and objectives into the planning domain.

Figure 3.3 represents a simplified version of the motivating example of Chap-

ter 1 in terms of STRIPS-style representation, where Π = 〈P, W, ri, ro〉 is: (1)

31

Figure 3.3: STRIPS representation.

P={A,B,C,D,E}; (2) W={w1,w2}; (3) ri={A,B,C} ; (4) ri={E}. We can use the

STRIPS-style notation for describing the transitions. For instance, findRestaurant

action has the precondition, “zip” and “foodPref” and the effect. In the follow-

ing, we will illustrate how these three methods attempt to solve the example in

Figure 3.3 differently.

3.3.1 Graphplan-based planning

The operation of Graphplan consists of two phases. First, a forward search is

used to build a plan graph and estimate the costs of all parameters from the

initial state ri. Second, a regression search is performed using those measures for

guidance. These two phases are in correspondence with the two step approach of

our proposed WSC algorithm, WSPR1, where we estimate the costs of parameters

in a first phase, and exploit those costs for the backward search in the second

phase. However, in the second phase, Graphplan and WSPR are quite different,

as each uses a different type of heuristic.

Graphplan can be understood as a heuristic search planner with an admissible

heuristic function and search algorithm. The search algorithm of Graphplan can

1WSPR is pronounced as “whisper”. WSPR is introduced in Chapter 6

32

Figure 3.4: Planning using Graphplan.

be considered to be a version of Iterative Deepening A* (IDA*) [59] because of the

admissible heuristic function. The form of IDA* will be discussed in Chapter 6.

Moreover, the IDA* search algorithm of Graphplan is more efficient than general

IDA* because of the planning graph. Specifically, Graphplan searches a parallel

regression space. It has been reported that Graphplan is an order-of-magnitude

faster than other planners on parallel domains [50]. However, the plan graph

restricts Graphplan to IDA* search, and it cannot be easily adapted to best-first

searches. Due to this restriction, Graphplan is unable to produce suboptimal

solutions quickly. However, it is trivial in general heuristic algorithms where simple

modification of their search algorithms achieves the desired effect. In addition,

in serial problems in which sub-goals are mostly independent, like Gripper2 [70],

Graphplan yields poor results because the heuristic function of Graphplan produces

poor estimates.

Figure 3.4 shows a planning graph for the STRIPS model in Figure 3.3. The

graph is expanded to two time steps to find a goal. All objects in the graph possess

2Consider the Gripper domain for example, where there is a robot with N grippers that moves
in a space, composed of K rooms that are all connected to each other. All the rooms are modeled
as points with connections between each pair of points and therefore the robot is able to reach
all rooms starting from any one of them with a simple movement. In the Gripper domain there
are L numbered balls which the robot must carry from their initial position to their destination.

33

their situation. For instance, w1
2 means doing the findRestaurant action in the

first step. The procedure to expand from the left to the right graph in Figure 3.4

is as follows:

• Level 0 starts with the initial state of A, B, and C.

• Level 1 consists of possible actions that have preconditions satisfied from

Level 0. Action w1
2 is possible due to A and B. Note that there are three

“maintenance actions” for A, B, and C, respectively. A maintenance action

is called as “no-op.”

• Level 2 consists of the possible effects from the actions in Level 1. A, B, and

C are possible due to maintenance actions. D becomes possible from action

w2
1.

• Level 3 contains all actions from Level 1 and additional actions. Action w1
3

becomes possible due to D which is added at Level 2.

• Level 4 consists of all possible effects from the actions in Level 3. E becomes

possible because of action w1
3. Finally, the goal requirement “direction” is

satisfied (“direction” becomes known). Graphplan then proceeds to search

backward to find a valid plan as shown in the right graph in Figure 3.4.

3.3.2 SATPlan based reduction

The planning graph on the left side of Figure 3.4 can be converted into a set of

logical statements [55]. First, the initial state at the zero can be expressed as:

A0 ∧B0 ∧C0∧ 6= D0∧ 6= E0. We also describe the goal states at the latest level as

E4. Then, we can describe the relations between actions and their preconditions

as follows:

w1
2 → A0 ∧ B0, Keep(A1) → A0, Keep(B1) → B0, Keep(C1) → C0, W 3

2 →
A2 ∧ B2, Keep(A3) → A2, Keep(B3) → B2, w3

1 → C2 ∧ D2, Keep(C3) → C2,

Keep(D3) → D2.

where Keep{Actionname} corresponds to the maintenance action (i.e., no-op)

in Graphplan. In addition, we can express the inference relations between each

fact and all previous actions that result in the fact as follows:

34

A4 → KeepA3, B4 → KeepB3, C4 → KeepC3, D4 → w3
2 ∨KeepD3, E4 → w3

1,

A2 → KeepA1, B2 → KeepB1, C2 → KeepC1, D2 → w1
2.

Finally, these logical statements are combined into one conjunction which has

a form of the satisfiability problem (SAT). As mentioned before, the SAT problem

can be solved by any off-the-shelf tools (e.g., complete methods including Truth Ta-

ble and Resolution, or incomplete methods including WalkSat). The final solution

of the problem is: A0 ∧B0 ∧ C0 ∧ w1
2 ∧KeepC1 ∧ C2 ∧D2 ∧ w3

1 ∧ E4.

3.3.3 Integer Linear Programming (ILP) formulation

The planning graph in Figure 3.4 can also be formulated as a set of constraints.

For brevity, suppose that Levels 0 and 1 are period 1, Level 2 and 3 are period 2,

and Level 4 is period 3. Then,

• Variables:

– Xe,i: if effect e is true in period i, then 1. Otherwise 0.

– Ya,i: if action a is carried out in period i, then 1. Otherwise 0.

– Ye,i: the maintenance action for effect e during period i.

• Objective function:

min
∑

(a,j)∈action set

Ya,j +
∑

(e,i)∈maintenance set

Ye,i

• Initial constraints:

XA,1 = XB,1 = XC,1 = 1, XD,1 = XE,1 = 0

• Goal constraint:

XE,3 = 1

• Constraints for action preconditions:

Yw2,1 ≤ XA,1, Yw2,1 ≤ XB,1, YA,1 ≤ XA,1, YB,1 ≤ XB,1, YC,1 ≤ XC,1, Yw2,2 ≤
XA,2, Yw2,2 ≤ XB,2, YA,2 ≤ XA,2, YB,2 ≤ XB,2, Yw1,2 ≤ XD,2, YC,2 ≤ XC,2,

YD,2 ≤ XD,2

• Backward constraints:

XA,3 ≤ YA,2, XB,3 ≤ YB,2, XC,3 ≤ YC,2, XD,3 ≤ Yw2,2 + YD,2, XE,3 ≤ Yw1,2,

XA,2 ≤ YA,1, XB,2 ≤ YB,1, XC,2 ≤ YC,1, XD,2 ≤ Yw2,1

35

The objective function is to minimize the number of actions in this program.

In order to get an optimal solution for the ILP model above, one can use any

integer linear programming solver. In this example, an optimal solution is 3 with

(Yw2,1 = 1, Yw1,2 = 1, YC,1 = 1), which is identical to the solutions obtained in

Graphplan and SATPlan formulations.

Both Graphplan and ILP are suitable for smaller planning problem with com-

plex operators. On the other hand, SATPlan can be used to find sub-optimal

compositions for a large-scale problem with complex operators. While Graphplan

and SATPlan can address only the shortest time step to reach a goal, ILP can

formulate the objective function so that diverse Quality of Service (QoS) (e.g.,

response time, service cost, or availability of sources) can be optimized.

The methods reviewed in this chapter have limitations on addressing WSC

problems in terms of computational efficiency and effectiveness as follows:

• Graphplan and SATPlan: Both AI planners are all optimal parallel planners

that minimize the number of time steps, but not necessarily the number

of actions (i.e., the number of web services). It is because both consider

WSC problem to be decision problems, not optimization problems. As a

result, both search strategy can produce poor solutions in the WSC problem

domain, yielding low effectiveness.

• ILP: Even a simple SAT problem can generate a significantly large ILP prob-

lem. Obviously, it leads to a significantly long response time, suggesting poor

computational efficiency.

WSPR, introduced in Chapter 6, will address these limitations by introducing

a two-step search scheme for computational efficiency and a novel heuristic for

effectiveness.

In Chapter 4, we will explore public web services and the ICEBE05 test sets,

and study their properties from the complex network viewpoint.

Chapter 4
Study of Existing Web Services

In this chapter, we study public web services and the ICEBE05 test sets, and

investigate their network features by using complex networks as a basis. For this

purpose, we first define the web-service networks.

A set of web services forms a network (or directed graph). There are differ-

ent kinds of models to determine nodes and edges of the network depending on

Figure 4.1: Web-service networks

37

the granularity level: web-service level (coarse granularity), operation level, and

parameter level (fine granularity) models. Figure 4.1 illustrates that three WSDL

files can be converted into a bipartite graph structure that consists of three distinct

kinds of vertices (parameter, operation, and web-service node) and directed arcs

between bipartite nodes (operation nodes and parameter nodes). An edge incident

from a parameter node to an operation node suggests that the parameter is one

of the inputs of the corresponding operation. Conversely, an edge incident from

an operation node to a parameter node implies that the parameter is one of the

outputs of the corresponding operation. The graph in Figure 4.1 has three web

services, labeled WS1, WS2, and WS3. WS1 has two operations, Op11 and Op12.

WS2 and WS3 have one operation, Op21 and Op31, respectively. The graph also

displays eleven parameters, labeled A through K. According to the node granular-

ity, we can project the upper graph into three different web-service networks.

Definition 4.0.1 (Parameter node network). A parameter node network is a di-

rected graph, Gp(Vp, Ep), in which Vp is a set of all parameter nodes and Ep is a set

of directed edges from input parameters pi ∈ Vp to output parameters pj ∈ Vp; i.e.,

there exists an operation that has an input parameter matching pi and an output

parameter matching pj.

Definition 4.0.2 (Operation node network). An operation node network is a di-

rected graph Gop(Vop, Eop), in which Vop is a set of all operation nodes and Eop is a

set of directed edges from operation opi ∈ Vop to operation opj ∈ Vop; i.e., opi can

fully or partially match opj.

Definition 4.0.3 (Web-service node network). A web-service node network is a

directed graph Gws(Vws, Ews), in which Vws is a set of all web-service nodes and

Ews is a set of directed edges from web-service node wsi ∈ Vws to wsj ∈ Vws; i.e.,

there exists one or more edges between any operation in wsi and any operation in

wsj in a operation node network.

For example, in Figure 4.1, A → Op11 → C is projected into A → C in

the parameter node network, Gp. Similarly, since Op12 partially matches Op21

and subsequently, Op21 partially matches Op31, Op12→Op21→Op31 is shown in

the operation node network, Gop. In addition, since WS1 possesses Op12, and

38

WS2 possesses Op21, WS1→WS2 appears in the web-service node network, Gws.

As mentioned previously, in operation node networks, a directed arc, (i, j) ∈ Eop

suggests that i ∈ Vop can match j ∈ Vop either fully or partially. We can also define

a new type of operation node network by restricting the partial-match and only

allowing the full-match. We differentiate this operation node network by using the

f symbol: Gf
op(V

f
op, E

f
op).

To investigate the properties of public web services, we first downloaded 1,544

raw WSDL files1 that Fan et al. [41] gathered from real-world web services registries

such as Bindingpoint [17], Salcentral [96], WebserviceList [98], WebserviceX [120],

and xMethod [128]. After weeding out invalid WSDL files that do not conform to

the WSDL DTD, 670 valid WSDL files remained. Then, we converted semanti-

cally invalid parameters such that those parameters can capture their underlying

semantics when they have evident semantic sources. For example, many operations

of WSDL files have terms like “result(s)” or “return(s)” in their output parameters

which make it hard to interpret what the terms mean; i.e., what the “results” or

“returns” means. In this case, we replaced the terms with their operation name

or web service name. Sometimes, an operation name is a sequence of concate-

nated words, therefore hard to do the replacement tasks. In such a case, we did a

proper token segmentation and extracted all primal terms from the tokens using

lexical analysis. For example, if an operation name is “getAuthornamefromPaper”

or “searchAuthornamesbyPaper”, we extracted “Authornames” and used it to re-

place “result(s)” or “returns(s)”. After these preprocessing tasks, we built a set,

P={all parameters found in the valid 670 WSDL files}, and then we measured the

parameter usage and its distribution for ∀p ∈ P . In Section 4.1, we will discuss

the parameter usage and its distribution by illustrating a couple of real examples.

4.1 Parameter Usage Distributions

In this section, we build parameter usage distributions of publicly available web

services. We define the parameter usage as the frequency of the parameter in

the corresponding web service repository, and denote it by #(p), where ∀p ∈ P .

For a better understanding of #(p) and the #(p) distribution, we illustrate the

1http://rakaposhi.eas.asu.edu/PublicWebServices.zip

39

distribution of existing public web services, as shown in Figure 4.2. In the figure,

the x-axis represents #(p) and the y-axis represents the number of parameters with

same #(p). The distribution has no humps. We also plotted a power-function,

Pw(#(p)) ∝ #(p)(−γ) over the #(p) distribution, and obtained that the exponent

γ is 1.1394. Although 1.1394 is not sufficient to assert that the distribution follows

the power law [32], the distribution is highly skewed enough to be seen as a Zipf2

distribution. Indeed, the parameters such as “license key”, “start date”, “end

date” or “password” have a large #(p), but most parameters appear just once.

This observation implies the existence of hub parameters3, which appear in web

services frequently and serve an important role in the interconnections between

web services. For example, since “license key” is such a hub parameter, if we

develop a web service which can manage people’s license keys in highly secured

manner, then we can obtain a large number of connections from many people or

other web services.

Similarly, we generated the parameter usage distributions and plotted the

power-function using the test sets provided by EEE05 and ICEBE05. As shown

in Figure 4.3(a), the test set used in EEE05 has a highly skewed Zipf distribution

without any hump. Interestingly, γ = 1.3012 of EEE05 is similar to public web

services, where γ is 1.1394. As a whole, the EEE05 test set can be used to approx-

imate public web services in terms of its #(p) distribution shape. However, the

size of the EEE05 (the number of WSDL files) is only 100 and it is too small to

represent the current state or future evolution of web services. For revealing the

difference between the EEE05 test set and public web services, we can conduct a

statistical analysis on #(p) results data. Remember that two sets are different in

terms of their sizes. Therefore, we use two-sample T-test. This analysis showed

2George Kingsley Zipf(1902-1950), was an American linguist who studied statistical occur-
rences in different languages. He is the eponym of Zipf’s law and Zipf-shaped distribution. The
Zipf’s law states that while only a few words are used very often, many or most are used rarely,
resulting in Pn ∼ 1/na, where Pn is the frequency of a word ranked nth and a is almost 1. This
means that the second item occurs approximately 1/2 as often as the first, and the third item is
1/3 as often as the first, and so on.

3In a network with a scale-free degree distribution, some nodes have a degree that is orders
of magnitude larger than the average - these nodes are often called “hubs”. The existence of hub
nodes is the most notable characteristic in a scale-free network. The hub nodes are thought to
serve specific purposes in their networks, although this depends greatly on the domain.

40

significant differences between two sets (t value4=-1.877 < -t(0.95;∞)5). The low

t value indicates a strong probability that one sample’s mean and variance are

significantly different from another, because t value implies the probability that

public web services and the EEE05 test set are samples from populations with the

same mean and variance. From this analysis, we can conclude that the EEE05 test

sets cannot approximate public web services.

Regarding the ICEBE05 test sets, we can only demonstrate three distributions

for 100-4, 100-16, and 100-32 of Composition-2 due to the lack of space footnoteSee

Appendix B for more detailed information on the ICEBE05 test sets.. However,

we can assert that the rest of the distributions have a similar shape as the other

three distributions. As opposed to the EEE05, all ICEBE05 test sets have γ ≤ 0.5

and four equal humps. For example, Figure 4.3(d) shows four humps at around

1, 100, 200, and 800 #(p) with the highest hump at 200. The shape of this

distribution differs considerably from the EEE05 and public web services. However,

before we proceed to point out that the assumptions to build those test sets are

conflicting with the state of existing public web services, one thing should be

noted. That is, many researchers claim that most applications of web services are

likely to be in intra-corporate scenarios rather than on the public web. Under the

intra-corporate scenarios, it is questionable as to whether their #(p) still follow

Zipf-like distributions. It is likely to be either a bell-shape or a uniform-shape

distribution, because in general, intra-corporate web services tend to be access-

restricted or well designed. This can avoid such extreme hub parameters because

of load balancing and efficiency problems or network survivability issues. However,

even though we allow exceptions by acknowledging the existence of different web-

service applications, we still find the appearance of #(p) distributions with four

humps of ICEBE05 to be too artificial.

4The formula for the two-sample T-test is t =
X̄public − X̄EEE√
V arpublic

nEEE
+ V arEEE

nEEE

. X̄public denotes the

average of #(p) of public web services and X̄EEE denotes the average of #(p) of public the
EEE05 test set. V arpublic and V arEEE denote the variance of #(p) of public web services and
the variance of the EEE05 test set, respectively. npublic and nEEE represent each sample size of
public web services and the EEE05 test set.

5-t(0.95;∞) = -1.645

41

Figure 4.2: Parameter usage distribution for public web services

(a) EEE05 (b) 100-4 in Composition2 of ICEBE05

(c) 100-16 in composition2 of ICEBE05 (d) 100-32 in composition2 of ICEBE05

Figure 4.3: Parameter usage distribution for EEE05 and ICEBE05

4.2 Random and Complex Network Models

A network is usually defined as a set of nodes and links. The nodes represent

entities, such as persons, machines, molecules, documents, or businesses; the links

represent relationships between pairs of entities. A link can be directed (one-

way relationship) or undirected (mutual relationship). A hop is a transition from

42

one node to another across a single link separating them. A path is a series of

hops. Networks are very general and can represent any kind of relation among

entities [32]. There are many systems to form complex networks, in which vertices

signify the elements of the system and edges represent the interactions between

them as follows:

(1) Living systems form a huge genetic network, in which vertices are proteins

and genes, the chemical interactions between them represent edges [123].

(2) At a different organizational level, a large network is formed by the nervous

system, whose vertices are the nerve cells, connected by axons [1].

(3) In social sciences, complex networks occur where vertices are individuals and

the edges are social interactions between them [117].

(4) In the World Wide Web (WWW), vertices are HTML documents connected

by links pointing from one page to another [4].

A network topology refers to interconnection patterns between nodes of the net-

work. Some common network topologies are:

• Clique or island: a connected sub-network may be isolated from other cliques.

• Hierarchical network: a network is connected as a tree.

• Hub and spoke: there is a special node, the hub, which connects to every

other node directly.

• Multi-hub network: there are several hubs connected directly to many nodes.

Some network topologies are planned, such as the electric grid, the interstate high-

way system, or the air traffic system while many others are unplanned, such as the

Internet.

We implemented a novel benchmark tool named WSBen6 that generate a col-

lection of synthetic web services (WSDL) files to test WSD and WSC algorithms.

WSBen provides three network models so that users can specify the underlying

network topology of their test sets (WSDL files). The three network models are

6WSBen will be discussed in Chapters 5, Appendix A, and Appendix E in detail.

43

random graph model, small-world network model and scale-free network model.

We will describe the three networks with focus on their network building algo-

rithms in the following sections.

4.2.1 Random graph model

Definition 4.2.1 (Random graph). Rd(N,p) is defined as a random graph on N

nodes, if each pair of nodes is connected with probability p. As a result, edges are

randomly placed among a fixed set of nodes. A random network can be constructed

by means of the Erdos-Renyi’s random-graph model [38].

A random graph model [38] is built by a simple and straightforward procedure,

where we start with N vertices and connect each pair of vertices with probability p.

As a result, links are randomly placed among a fixed set of nodes. The probability

distribution that a node has v number of edges follows a Poisson distribution,

P (v) =
e−λλv

v!
, where λ = N

(
N−1

v

)
pv(1 − p)N−1−v. When the average degree of

a node is less than 1, there is a high probability that the network is a set of

disconnected islands. Conversely if the average is 1 or greater, the chance that the

entire network is connected, increases considerably. For many years, this model

had been used to approximate real networks. However, when researchers started

measuring the connection distribution of real networks, they found that the actual

distributions do not match this random graph model. Instead, they found that

real distributions tend to follow a power-law distribution [32].

4.2.2 Small-world network model

Definition 4.2.2 (Regular Network). R(N,k) is defined as a regular network on

N nodes, if node i is adjacent to nodes [(i + j) mod N] and [(i − j) mod N] for

1 ≤ j ≤ k. If k = n, R(N,k) becomes a complete N-nodes graph, where every node

is adjacent to all the other N − 1 nodes.

Definition 4.2.3 (Small-world network). Small-world networks are characterized

by a highly clustered topology like regular lattices and small average shortest dis-

tance between nodes. Both highly clustered structure and small world property are

referred as the small-world network properties [31].

44

By using the Watts-Strogatz model [118, 119], we can construct networks that

have small-world network properties. The model depends on two parameters,

connectivity (k) and randomness (p), given the desired size of the graph (N).

The Watts-Strogatz model starts with a R(N,k) and then every edge is rewired at

random with probability p; for every edge (i, j), we decide whether we change j

node (the destination node of (i, j)) with probability p. The Watts-Strogatz model

leads to different graphs according to the different p as follows:

• When p = 0, an R(N,k) graph is built.

• When p = 1, a completely random graph is built.

• Otherwise, with 0 < p < 1, each edge (i, j) is reconnected with probability p

to a new node k that is chosen at random (no self-links allowed). If the new

edge (i, k) is added, then (i, j) is removed from the graph. The long-range

connections (short-cuts) generated by this process decrease the distance be-

tween the vertices. For intermediate values of p, there is the “small-world”

region, where the graph is highly clustered and has a small average path

length.

We can define some metrics to quantify the characteristic properties of the

small-world network as follows:

• L: the average shortest distance7 between reachable pairs of vertices. L(p)

is defined as L of the randomly rewired Watts-Strogatz graph [119] with

probability p. Lrandom is identical to L(1).

• C: the average clustering coefficient. Suppose that for a node i with vi neigh-

bors, Ci =
2Ei

vi(vi − 1)
, where Ei is the number of edges between vi neighbors

of i. C is the average clustering coefficient Ci for a network. C(p) is de-

fined as C of the randomly rewired Watts-Strogatz graph with probability p.

Crandom is identical to C(1).

WSBen can support the Newman-Watts-Strogatz model [77] as well as the

Watts-Strogatz model [119]. The difference between these two models is that the

7The distance between nodes refers to the number of hops between the nodes.

45

Figure 4.4: Characteristic path length L(p) and clustering coefficient C(p) for the
family of randomly rewired graphs. (left) Watts-Strogatz model. (right) Newman-
Watts-Strogatz model

Newman-Watts-Strogatz model adds new edges (shortcuts) without removing old

edges while the Newman-Watts model does not. Figure 4.4 shows L(p) and C(p)

for the family of randomly rewired graphs generated by both the Newman-Watts-

Strogatz model and the Watts-Strogatz model, where N = 100 and k = 6. The

data shown in the figure are averaged over 20 random realizations of the rewiring

process. As shown in the figure, for intermediate values of p, there is the “small-

world” region, where the graph is highly clustered yet has a small average path

length. Notice that Newman-Watts-Strogatz model does not result in a completely

random graph, even when p = 1 because this model keeps R(N,k) until the graph

generation procedure ends, keeping in mind that Newman-Watts-Strogatz model

does not remove any edges during its rewiring process. In the next section, we

will discuss the scale-free network model that was proposed to approximate real

networks characterized by the power-law distribution.

4.2.3 Scale-free network model

Definition 4.2.4 (Scale-free network). Networks are called scale-free networks if

the number of nodes that have v neighbor nodes is proportional to Pw(v) ∝ v(−γ),

where γ is typically greater than two with no humps.

It is generally accepted that networks with power-law connection statistics are

called scale-free networks [32]. A power-law distribution has no humps with the

power p which is greater than two. For these reasons, the connection distribution

46

of the scale-free networks are compatible with a power-law with the exponent of

two.

Barabasi and Albert [3, 4, 31] have recently proposed a set of different models

to build scale-free graphs using the base conditions as follows:

• Growth: new nodes appear at random times,

• Preferential attachment: a new node connects to an existing node with prob-

ability proportional to the number of connections already at the node.

WSBen uses the Barabasi and Albert extended model to provide the scale-free

properties. The extended model uses an algorithm to build graphs that depend

on four parameters: m0 (initial number of nodes), m (number of links added

and/or rewired at every step of the algorithm), p (probability of adding links), q

(probability of edge rewiring). The procedure starts with m0 isolated nodes and

performs one of the following three actions at every step:

(1) With the probability of p, m(≤ m0) new links are added. The two nodes

are picked randomly. The starting point of the link is chosen uniformly, and

the end point of the new link is chosen according to the following probability

distribution:

Πi =
vi + 1∑
j(vj + 1)

(4.1)

where Πi is the probability of selecting the ith node, and vi is the degree of

node i. The process is repeated m times.

• With the probability of q, m edges are rewired. For this purpose, i node

and its link lij are chosen at random. The link is deleted. Instead, another

node z is selected according to the probabilities of 4.1, and the new link liz

is added.

• With the probability of 1− p− q, a new node with m links is added. These

new links connect the new node to m other nodes chosen according to the

probabilities of 4.1.

47

Once the desired number N nodes are obtained, the algorithm stops. The

graphs generated by this algorithm are scale-free graphs, and the edges of the

graphs are constructed such that the correlations among edges do not form. When

p = q, the algorithm results in a graph, whose connectivity distribution can be

approximated by

P (v) ∝ (v + 1)−
2m(1−p)+1−2p

m
+1 (4.2)

where v is the degree of a node. Note that the current implementation of WSBen

sets m0 = m and p = q = 0 as the default configuration so that it can easily

generate simplified scale-free graphs.

4.2.4 Summary

Networks can be called small-world networks if they share the interesting properties

of both random and regular networks: highly clustered and small network diameter

`. Specially, C À Crandom and L & Lrandom, or ` ≈ log(N), where N is the size

of a network. Similarly, networks can be called scale-free networks if their γ is

greater than 2 with no humps, where γ is the exponent of a power function, Pw(v)

(the number of nodes, that have v number of neighbor nodes) that has the form of

Pw(v) ∝ v(−γ). It is generally accepted that networks with power-law connection

statistics are called scale-free networks. A power-law distribution has no humps

with the power p greater than two. For these reasons, we characterize the scale-free

networks as networks with their γ greater than two and with no humps.

4.3 Real Web-service Networks

In this section, we will build web-service networks (Gp, Gop, Gf
op and Gws) of public

web services and ICEBE05 test sets, and measure their scale-free and small-world

network properties.

48

Table 4.1: Features of public web-service networks

Features Gp Gop Gf
op Gws

of nodes 4,456 991 293 273
of arcs 10,728 3,796 1,145 752

Network Diameter 8 7 4 9

4.3.1 Public web services

Table 4.1 shows the general information about each of public web-service networks.

We found that Gf
op has the longest shortest path with 4 hops. From a data mining

perspective, we can discover what web services are on that path. The path is

a chain of five web services connected by “fully-matching” operations as shown

in Figure 4.5. The five web services commonly provide data conversion related

services. For example, the second web service in the path, “Japanese zipcode To

address Converter”, inputs “Address” and finds the “Zipcode” corresponding to

the “Address”.

This discovery however has a fundamental problem in its underlying match-

ing assumption. Note that we assumed only syntactic (text-based) matching

among web services, such that if two parameters have the same spellings, they

are matched. For example, “List,” the output parameter of “LocInfo Zip Code”

web service can simply match “List,” the input parameter of “Online Software

Shop” web service. However, it is evident that both parameters have different

semantics, as the former “List” means the list of zip codes but the latter “List”

indicates the list of software. Thus, from the semantic view, the last web service

must be removed from the path resulting in leaving only four web services in the

path. Subsequently, we find that there are no compositions with more than four

web services linked through fully-matching relations. This observation points out

that we are still in the formative stage, as far as publicly available web services are

concerned in the sense that it is not easy to discover correlations between public

web services due to the sparse population of web services.

We can investigate the scale-free network properties of public web services.

Figure 4.6, 4.7, 4.8 and 4.9 show Gp, Gop, Gf
op and Gws of public web services with

their corresponding outgoing edge distributions. In the outgoing edge distributions,

the x-axis represents the outgoing edge degree and the y-axis represents the number

49

Figure 4.5: Web services on the network diameter path in Gf
op

Figure 4.6: Gp of public web services. (left) Gp. (right) outgoing edge distribution
of Gp

Table 4.2: Scale-free network properties

Gp Gop Gf
op Gws

γ 1.3903 1.1152 1.5775 1.3073

of nodes with the outgoing edge degree. We can apply the power function, Pw(v),

to each of the outgoing edge distributions and check γ, the exponent value of Pw(v).

Even though all γ values do not exceed 2, as shown in Table 4.2, they are

highly skewed so that their shape is similar to the Zipf distribution. Note that the

x-axis of the original Zipf distribution uses the rank of the frequency of a word

50

Figure 4.7: Gop of public web services. (left) Gop. (right) outgoing edge distribution
of Gop

Figure 4.8: Gf
op of public web services. (left) Gf

op. (right) outgoing edge distribution
of Gf

op

in a specific language which is different from our distribution where the x-axis

suggests the degree of outgoing edges. This observation implies the existence of

hub nodes, such as hub parameters, hub operations and hub web services. If a

parameter is a hub node in Gp(Vp, Ep), the node has a large incoming edge degree

or outgoing edge degree, compared with other nodes. Hub operations or hub

web services can be defined in the same way as hub parameters. From the data

mining perspective, it is interesting to identify the hub nodes in each network.

For example, in Gp, the parameter with the largest outgoing edge degree (=184)

is “password”. This implies that “password” is the most frequently used input

parameter in the context of public web services. On the other hand, in Gws, the

web service with the largest outgoing edge degree is “Amazon Web Services 2.0”

with an outgoing edge degree of 59. Indeed, the web service contains as many as

51

Figure 4.9: Gws of public web services. (left) Gws. (right) outgoing edge distribu-
tion of Gws

Table 4.3: Small-world network properties of giant components in the public web
services

Networks Lactual Lrandom Cactual Crandom

Gf
op 3.4984 2.9029 0.1458 0.0767

Gp 5.6144 4.6918 0.0451 0.0009
Gop 4.4997 3.5313 0.3064 0.0099
Gws 3.35 3.2971 0.2753 0.0256

23 operations, which enable vast and diverse correlations with other web services.

We can investigate the small-world network properties of public web services.

Table 4.3 shows the average path length, L and clustering coefficient, C for four

giant connected components extracted from each of the four public web-service

networks (Gws, Gp, Gop, and Gf
op), compared to random graphs with the same

number of nodes and average degree of a node. Note that we treat all edges of

each network of Gws, Gp, Gop, and Gf
op as undirected and un-weighted, recognizing

that these are crude approximations. However, this approach is acceptable in the

complex network analysis community. For example, Watts and Strogatz considered

the electrical power grid of the western United States [86] as an undirected and un-

weighted graph in their paper [119]. In practice, high-voltage transmission lines

must be directed, starting from generators to substations through transformers.

However, when investigating the small-world network properties of a given network,

we usually restrict our attention to the network topology in itself rather than the

flow of materials on edges (e.g., information, electricity). Another reason to ignore

the directions of edges has to do with measuring the average path length, L that

52

Table 4.4: Summary of giant components in public web services

Networks # of
nodes(A)

of nodes in
giant compo-
nent(B)

B

A
× 100(%) average # of

edges per node
in giant compo-
nent

Gf
op 293 89 30.3(%) 5.21

Gp 4,456 3,117 69.9(%) 5.94
Gop 991 835 84.2(%) 7.71
Gws 273 247 90.4(%) 5.93

is averaged over the shortest path between reachable nodes. The problematic

situation arises when each of two networks (one of the web-service networks and

its random network pair) has a different number of reachable nodes. It is clear that

if the number of reachable nodes is different, it is inconsistent to simply compare

two L values. On the contrary, if we assume that both networks are undirected,

the number of reachable nodes in both networks become the same, because there

is no un-reachable node pair in each of the networks.

Similar to previous works on small-world network [119], we restrict our at-

tention to the giant connected components [20]. The information about giant

components of each web-service network are summarized in Table 4.4.

It is an interesting result that Gp, Gop, and Gws show small-world network

properties: L & Lrandom and C À Crandom. This result suggests that public web

services have such ‘short-cuts’ that connect nodes that would otherwise be much

farther apart than Lrandom. Conversely, Gf
op is shown to be close to a random

network: L & Lrandom and C & Crandom. However, this result is not consistent

with the previous observation that Gf
op has the highly skewed outgoing edge degree

distribution. In general, the degree distribution of the random network tends to

have a bell shape rather than the skewed shape. This misleading result is a side-

effect of removing directions and weights on the edges of Gf
op. Remember that we

treat all edges of each network of Gws, Gp, Gop, and Gf
op as undirected and un-

weighted in order to measure small-world network properties efficiently. Therefore,

in this case, we have to turn our attention to the original Gf
op, and conclude that

Gf
op is more close to the scale-free network than the random network.

53

Table 4.5: Features of the ICEBE05 web-service networks

Features Gp Gop Gf
op

of nodes 736 1,774 1,229
of arcs 8,569 31,905 2,599

Network Diameter 7 7 7

4.3.2 ICEBE05 test sets

Similarly, we plotted graphs using synthetic WSDL files that were used in ICEBE05.

The ICEBE05 test sets are auto-generated from software by the ICEBE05 orga-

nization, and consist of two main parts: Composition-1 and Composition-2. Both

portions have nine test sets. The size of 18 test sets is one among 3,356 and 5,356

and 8,356 WSDL files. Each test set has 11 test requests. More detailed informa-

tion on ICEBE05 is provided in Appendix B. In the interest of space, we show a

graph for the first test set named “20-4” of Composition-2, and other cases show

a similar pattern. Figure 4.10, 4.11 and 4.12 show Gp, Gop, and Gf
op separately,

with their outgoing edge distributions. The shapes of graph differ considerably

from the real public web services. Each graph consists of ten islands, and those

islands (the connected component) are uniform in terms of their network topolo-

gies (# of nodes, # of arcs and the connectivity pattern). Each island is likely to

approximate workflow web-service domains (e.g., business, scientific, and medical

workflow). The parameters used in workflows tend to be domain-specific or pro-

fessional terms, and thus their Gps are likely to have a regular network property.

Moreover, the nodes in Gop and Gf
op of workflow domains are likely to be connected

to a few number of neighboring web services in the succeeding stage of workflow.

This occurs because workflows can be constructed such that the underlying net-

works do not follow scale-free network properties, in order to avoid skewed resource

consumption or increase the network survivability.

Table 4.5 shows the general information about each of the ICEBE05 web-service

networks. Note that all web services in ICEBE05 have only one operation, meaning

that Gop and Gws are identical. This is the reason that the network diameters of

Gop and Gf
op are 7 identical. Moreover, this network diameter path is identical to

one of the solutions to requests asked by ICEBE05. In fact, all test requests of

ICEBE05 can be solved using the full-matching operation alone. In the event that

54

Figure 4.10: Gp of ICEBE05 test set. (left) Gp. (right) outgoing edge distribution

Table 4.6: Small-world network properties of giant connected component in the
ICEBE05 web services

Networks Lactual Lrandom Cactual Crandom

Gp 1.7689 1.6905 0.3188 0.3055
Gop 3.1613 1.8122 0 0.1883
Gf

op 4.8629 3.4552 0 0.0345

the WSC problem has this kind of special scheme, it can be addressed quickly using

a simple shortest-path algorithm with a single source. More detailed information

about the request complexity of ICEBE05 is provided in Appendix B.

Regarding Figures 4.10 and 4.11, 86% of the nodes of Gp has an outgoing edge

degree of 7 uniformly and 77% of the nodes of Gop has an outgoing edge degree of

20 uniformly. Hence, the distribution can be fitted by the peak distribution, and

this peak shape is the strong evidence to prove that Gp and Gop do not follow the

scale-free network, which is the case with the public web services (refer Figure 4.2.

On the contrary, the outgoing edge distribution of Gf
op has γ = 1.5927, so that it

can be regarded as the Zipf-like distribution. However, it is questionable to say

that it has scale-free properties, because the largest outgoing degree is just 12.

This number is too small to view the node as a hub, considering that the total

node number of Gf
op is 1,229.

Table 4.6 shows the average path length, L and clustering coefficient, C for

the three giant connected components extracted from each of three ICEBE05 web

service networks, compared to random graphs with the same number of nodes and

55

Figure 4.11: Gop of ICEBE05 test set. (left) Gop. (right) outgoing edge distribution

Figure 4.12: Gf
op of ICEBE05 test set. (left) Gf

op. (right) outgoing edge distribution

Table 4.7: Summary of giant components in ICEBE05

Networks # of
nodes(A)

of nodes in
giant compo-
nent(B)

B

A
× 100(%) average # of

edges per node
in giant compo-
nent

Gp 736 80 10.8(%) 24.25
Gop 1,774 200 11.2(%) 36.7
Gf

op 1,229 136 11.06(%) 4.08

average degree of a node. Similar to public web service case, we treat all edges of

each network of Gp, Gop, and Gf
op as undirected and un-weighted, and we restrict

our attention to the giant connected component. The information about the giant

component of each web-service network is summarized in Table 4.7. Gp shows the

56

random network characteristics: L ≈ Lrandom and C ≈ Crandom. On the contrary,

Gop and Gf
op show special characteristics: C=0 and L ≈ Lrandom. As an extreme

case, if a graph is a tree in which no circle exists, then C becomes 0, because

there are no triangles in the graph. We can also explain the characteristics by

comparing Gop and Gf
op to typical workflows in the business, medical, and science

domains, where each node of Gop and Gf
op can map into an activity or event of the

corresponding workflow. If an activity is connected to a few number of activities in

the succeeding stage sequentially, then the first neighbors of the activity are likely

to have no connection between them. In that case, the clustering coefficient, C,

becomes 0.

4.3.3 Summary

We observe that public web services show similar features as the world wide web, in

terms of small-network and scale-free network properties. This is inferred because

public web-service networks have grown in a similar manner to that of the Inter-

net. On the contrary, the ICEBE05 web-service networks are planned and highly

artificial in the sense that their underlying topologies are the random network or

tree structures. Additionally all arcs are directed sequentially like business work-

flows, and their isolated sub-networks are uniformly partitioned such that the size

of sub-networks and the network topology are uniform. This observation generates

following implications:

1. WSC problems can arise in diverse scenarios. However, they can be captured

by investigating which of the network topologies would fit into their web-

service networks, especially using complex networks.

2. We can develop a novel web-service benchmark tool with the capability to

generate web services whose underlying network topology is characterized by

diverse models.

3. Understanding the structural properties of networks often help gain better

insights and develop better algorithms. Therefore, we can make a heuristic

search algorithm to address WSC problems by exploiting the underlying

network structure. Note that our proposed composition algorithm does not

57

exploit this network structure but uses a simple strategy in favor of fully-

matching web services. This will be discussed in detail in Chapter 6.

4. A web-service network can be relaxed into a parameter node network by

ignoring operation and web service information. This relaxation idea can

be adopted for building a new web-service composition algorithm. In fact,

WSPR conducts a polynomial-time forward search over the relaxed parameter-

based search space. This will be discussed in detail in Chapter 6.

In the following chapter, we will present a novel benchmark tool called WSBen,

that is designed to reflect the implications learnt from this chapter. We use WSBen

to generate diverse test sets which will be later used for testing WSC solutions.

Chapter 5
WSBen: Web Services Discovery

and Composition Benchmark Tool

In this chapter, we present a novel benchmark tool titled WSBen1 to test web-

service discovery and composition algorithms. WSBen [80] generates a variety of

files to speed up testing processes as follows: (1) A collection of synthetic web

services (WSDL) files with diverse characteristics and sizes; (2) Test discovery and

composition queries and solutions; and (3) External files for statistical analysis

and AI planners. Users can characterize the WSDL files generated using various

parameters, such as underlying network model, skewness, and size. To illustrate

the application of WSBen, we present a use case of WSBen in the network analysis

community, where we attempt to estimate the size of a giant component in WSBen-

generated web-service networks using random graph theory.

A web service may have a number of input and output parameters, each possi-

bly instantiated from the same concept. For example, “temperature”, “windchill”,

and “humidity” can be clustered into a single concept, such as weather. Web

services that have a goal to provide weather information can use parameters in the

weather cluster. In general, parameters are clustered together based on the follow-

ing heuristics:“parameters tend to express a similar concept if they occur together

often”. It is well known that one particular application domain (e.g., travel, reser-

vation, entertainment, and look-up services for diverse areas) can be projected into

a cluster, which contains a set of atomic parameters that tend to express the same

1See Appendix D for the WSBen manual and other instructions.

59

concept and occur together with similar frequency [35]. For example, if there is an

address cluster {“state”,“city”,“street”,“zip” }, then parameters in the address

occur together with a high frequency. More precisely, we can describe the relation-

ship between parameters in a same cluster, by using the co-occurrence probability

Pr(p2|p1) that is defined as follows:

Pr(p2|p1) =
[#In(p1, p2) + #Out(p1, p2)]

[#In(p1) + #Out(p1)]
(5.1)

where p1 and p2 are the parameters. #In(p) denotes the number of web services

that contain a parameter p in their input parameter. Similarly, #In(p1, p2) de-

scribes the number of web services that contain both p1 and p2 in their input

parameter. #Out(p) and #Out(p1, p2) are defined in the same way. If two param-

eters p1 and p2 are in the same cluster, then p1 and p2 have the same co-occurrence

probability such that Pr(p2|p1) = Pr(p1|p2).

Consequently, at a higher level, a web service can be assumed as a transforma-

tion between two different application domains, and each can be represented by

a cluster. This assumption is the basis in developing WSBen. From the perspec-

tive of graph thery, WSBen builds a Parameter Cluster Network which consists of

clusters and directed arcs connecting two different clusters. These directed arcs

become web-service templates from which WSBen generates web services as users

specify. Formally, the parameter cluster network is defined as follows:

Definition 5.0.1 (Parameter Cluster Network). A directed graph Gcl(Vcl, Ecl),

where Vcl is a set of clusters and Ecl is a set of directed edges that are incident

from input clusters i ∈ Vcl to output clusters j ∈ Vcl. Here, cluster i and j contain

a set of non-overlapping parameters denoted by Pai and Paj, respectively, where

Pai∩Paj = ∅. Each directed edge is also called a web-service template from which

WSDL files are generated.

In Chapter 4, we demonstrated that web-service networks may have different

network topologies by investigating two real cases: the public web and ICEBE05.

Thus, we believe that diverse scenarios, including the two cases in addition to

many others, need to be evaluated in testing WSD and WSC algorithms. Those

diverse scenarios can be generated by varying the parameter cluster network Gcl.

60

There are several graph models we can use as underlying topologies of parameter

cluster networks. For example, the Watts-Strogatz [118, 119] or Newman-Watts-

Strogatz model [77] can be chosen when a small-world graph is of interest. The

Barabasi-Albert [3, 11, 4] model can be used to generate a scale-free graph. WSben

supports the view that Gcl may be consistent with the complex network models as

well as the random graph model, depending on different applications. In the fol-

lowing sections, we introduce several graph models and functions that the current

implementation of WSBen supports, as well as real test sets generated by WSBen

as illustrative examples.

5.1 Overview of WSBen

The WSBen provides a set of functions to simplify the generation of test environ-

ments for WSD and WSC problems. Figure 5.1 shows the overview of WSBen. In

detail, WSBen consists of the following functionalities:

• Input framework: users specify and control the generated synthetic WSDL

files and their characteristics. WSBen provides two input frameworks: xTS

and yTS. They are different from each other in terms of their approaches

to specify Gcl. xTS applies existing complex and random network models

to specify Gcl, while yTS allows users to fine-tune implementation options

of Gcl using diverse distributions. yTS is more flexible than xTS, but ex-

perience shows that it requires more effort to handle it fluently due to its

flexibility. To avoid the confusion between xTS and yTS, we will treat the

two frameworks separately. Therefore, in this chapter, we restrict attention

to xTS = 〈|J |, Gr, η,Mp, |W |〉 and each element of xTS will be discussed in

more detail below. yTS is further discussed in Appendix A.

• Parameter cluster network, Gcl(Vcl, Ecl): If xTS is given by users, based on

the first four elements, WSBen generates Gcl. Each cluster of Gcl is filled

with some number of atomic parameters. In this network, web services are

defined as transformations between two different clusters. That is, 〈i, j〉 ∈ Ecl

becomes web service templates. The role of web-service templates in the test

set generation will be illustrated in Section 5.2.

61

Figure 5.1: Overview of WSBen

• Test set and sample requests: by randomly selecting the web service tem-

plates (arcs of the parameter cluster network), WSDL files are generated.

Once a test set is generated, users can generate sample test requests r =

〈ri, ro〉, where ri is a set of atomic parameters contained in the cluster ran-

domly selected from Vcl, and ro consists of the first five largest parameters

with gri(p)2. The generation process of test sets and test requests is illus-

trated in Section 5.2.

• Test and evaluation: it is possible to export both the web service WSDL

files and test requests into files in PDDL [69] and STRIPS format, enabling

concurrent comparison with state-of-the-art AI planners. Moreover, WSBen

can export the parameter usage3 of all parameters into external files in a

comma-separated file format (CSV), enabling users to analyze test sets sta-

tistically.

2gri(p) is the cost of achieving p ∈ P from ri by the forward search over the parameter space.
A more detailed explanation will be given in Chapters 6 and 7.

3The parameter usage is denoted by #(p). For details, see Section 4.1.

62

xTS, the 5-tuple framework for WSBen, consists of:

xTS = 〈|J |, Gr, η, Mp, |W |〉. Provided that the first four tuples are grounded, one

can build a parameter cluster network, where clusters are nodes and web-service

templates are directed edges. Each tuple of xTS is more specifically explained as

follows:

(1) |J | is the total number of parameter clusters.

(2) Gr denotes a graph model to specify the underlying topology of a parameter

cluster network. Gr can be one of following three models:

– Erdos-Renyi(|J |, p): as discussed in Section 4.2.1, this model has such a

simple generation approach that it chooses each of the possible
|J |(|J | − 1)

2
edges in the graph with |J | nodes with probability p. The result-

ing graph becomes the same as the binomial graph. Note that the

generation of this graph costs O(|J |2) because it starts with creating
|J |(|J | − 1)

2
edges.

– Newman-Watts-Strogatz(|J |, k, p): as discussed in Section 4.2.2, the

initialization is a regular ring graph with k neighbors. During the gen-

eration process, new edges (shortcuts) are added randomly with prob-

ability p for each edge. Note that no edges are removed, differing from

the Watts-Strogatz model.

– Barabasi-Albert(|J |, m): as discussed in Section 4.2.3, this graph model

is generated by adding new nodes with m edges that are preferentially

attached to existing nodes with a high degree. The initialization is a

graph with m nodes and no edges. Note that the current implementation

of WSBen is limited because it can only generate the simplified version

of the extended Barabai-Albert model, as discussed in Section 4.2.3

by setting p = q = 0 and m0 = m, resulting in graphs with γ =

2.9 ± 0.1, where γ is the exponent of a power function Pw(v) defined

over connectivity v range in the form of Pw(v) ∝ v−γ. WSBen will be

extended to fully support the features of the extended Barabai-Albert

model.

63

(3) η denotes the parameter condense rate. With η, users can control the number

of parameters in produced web services.

(4) Mp denotes the minimum number of parameters a cluster can contain. In

other words, clusters may have a different number of parameters but all

clusters must have at least Mp number of parameters.

(5) |W | denotes the total number of web services of a test set.

With |J | and Gr, the first two tuples of xTS, we can build Gcl with each empty

cluster. Thus, we need a procedure to fill each empty cluster with parameters. For

this purpose, WSBen uses the following procedure:

(1) A parameter cluster network Gcl with empty clusters is built by applying |J |
and Gr, the first two tuples of xTS.

(2) Co-occurrence probability of each cluster is measured by the following prob-

ability:

∆j =
kj

maxj∈Vcl
kj

η (5.2)

where ∆j is the co-occurrence probability of cluster j, and kj is the edge

degree of cluster j. η is the parameter condense rate which is given by users.

(3) |Paj| is measured based on the following equation.

|Paj| = Mp

∆j

(5.3)

where Paj is the set of parameters contained in cluster j.

(4) For each j cluster, atomic parameters are generated up to |Paj|, with dupli-

cated parameters forbidden (i.e., ∀i, j ∈ Vcl, Pai ∩ Paj = ∅).
Once a complete parameter cluster network, Gcl(Vcl, Ecl) is built, WSBen re-

peats the following procedure until |W | number of web services are generated:

1. A web-service template 〈i, j〉 is chosen at random from Ecl.

2. WSBen generates a WSDL file, in which each input parameter is selected

from Cluster i with probability ∆iη, and each output parameter is selected

from Cluster j with probability ∆jη.

64

Figure 5.2: Test set generation with 〈 8,Barabasi-Albert(8,2),0.8,1.5,100 〉

In Section 5.2, we illustrate each step described above through sample examples.

5.2 Illustration of WSBen

Figure 5.2 illustrates how WSBen builds Gcl and generates WSDL files based on

the Gcl. Suppose that xTS = 〈8,Barabasi-Albert(8,2),0.8,1.5,100〉 is given. Then,

the generation steps are as follows:

1. WSBen generates a graph of Barabasi-Albert(8,2). The direction of each

edge is determined at random. This means that WSBen does not have an

assumption of whether incoming and outgoing edge degree of a parameter

cluster are characterized by symmetric or asymmetric form. In practice, it is

a more reasonable assumption that the incoming and outgoing edge degree

of a parameter cluster is asymmetric. For example, a vast number of web

services use “zip-code” as their input parameter, but web services with “zip-

code” in their output parameter are sparse. Consequently, the incoming edge

and outgoing edge degree of i ∈ Vcl tend to be asymmetric. Nonetheless, the

65

current implementation of WSBen determines the direction of edges simply

at random, as there has been no concrete research or evidence to discover

this asymmetric property between the incoming and outgoing edge degrees

of a parameter cluster.

2. ∆j and |Paj| are specified. For example, Cluster 5 has nine parameters

as shown in Figure 5.2. That is, |Pa5| = 9, as ∆5 =
kj

maxj∈Vcl
kj

× η =

1

5
× 0.8 = 0.16, resulting in |Pa5| = Mp

∆t

=
1.5

0.16
' 9.

3. Paj is specified. For example P5={“17”,“18”,“19”,“20”,“21”,“22”,“23”,“24”,“25”}
as shown in Figure 5.2 because |P5| = 9 and for ∀j ∈ J , P5 ∩ Paj = ∅. Note

that the parameter names are automatically generated, and thus do not con-

tain any semantics.

4. Finally, Gcl is built and WSBen generates |W | web services by:

(a) randomly choosing 〈i, j〉 ∈ Ecl.

(b) selecting input parameters from cluster i with the co-occurrence proba-

bility of ∆i, and output parameters from cluster j with the co-occurrence

probability of ∆j.

For example, in Figure 5.2, ws1 is instantiated from a web-service template

〈3, 1〉 ∈ Ecl. Note that ∆1 = 0.16 and ∆3 = 0.8. ∆1 = 0.16 suggest that

the occurrence probability of each parameter in Cluster 1 has 0.16. Due to

the low probability, only “1” and “9” are selected from Cluster 1. Similarly,

∆3 = 0.8 means that the occurrence probability of each parameter in Cluster

3 has 0.8. Due to the high probability, all parameters in Cluster 3 that are

“13” and “14” are selected. Note that each parameter in one cluster can map

into either an input parameter or an output parameter. In the case that no

parameter is generated, dummy parameters “S” and “T” are filled in the

input and output parameters, respectively.

For experimental purposes in Chapter 7, we build three test set frameworks by

specifying xTS as follows:

(1) baTS = 〈 100,Barabasi-Albert(100,6),0.8,5,|W | 〉

66

Figure 5.3: Overview of baTS, nwsTS, and erTS

67

Figure 5.4: Gp of baTS at |W | = 1, 000. (left) Gp. (right) outgoing edge degree
distribution

(2) nwsTS = 〈100,Newman-Watts-Strogatz(100,6,0.1),0.8,5,|W |〉

(3) erTS = 〈100,Erdos-Renyi(100,0.06),0.8,5,|W |〉

Note that if the first four tuples are grounded, Gcl can be generated. For each

Gcl of baTS, nwsTS, and erTS, seven different sized test sets are generated by

varying |W | as 1,000, 3,000, 5,000, 10,000, 20,000, 30,000, and 50,000, respectively.

Consequently, 21 test sets are prepared (three frameworks × seven different test

sizes). Each Gcl of the three test set frameworks has a different |P |. For example,

baTS has 4,231 while nwsTS and erTS have 751 and 1,392, respectively. Figure 5.3

shows the Gp and its outgoing edge degree distribution for each of baTS, nwsTS,

and erTS, when |W | = 1, 000. Each of the 21 test sets has five test requests. The

test request r is constructed such that ro is farthest away from ri in a parameter

space. The procedure of generating requests will be discussed in more detail in

Chapter 7.

5.2.1 Characteristics of baTS

We can regard the scale-free network properties of baTS web service networks.

Figure 5.4, 5.5 and 5.6 show Gp, Gop and Gf
op of baTS at |W |=1,000, along with

their outgoing edge degree distributions. In the outgoing edge degree distribution

of each web-service network, the x-axis represents the number of outgoing edges

and the y-axis represents the number of the node with the same outgoing edges. In

order to check the scale-free property, we can use the power function Pw(v), where

68

Figure 5.5: Gop of baTS at |W | = 1, 000. (left) Gop. (right) outgoing edge degree
distribution

Figure 5.6: Gf
op of baTS at |W | = 1, 000. (left) Gf

op. (right) outgoing edge degree
distribution

Pw(v) ∝ v(−γ). We apply Pw(v) to each outgoing edge degree distribution and

check γ, the exponent value of Pw(v). In this case, Pw(v) represents the number

of nodes that have v number of neighbor nodes. Note that if γ is greater than

two and there is no hump, then it is evident that the distribution follows the

power law and has the scale-free property. The γ values of Gp and Gf
op are 1.1299

and 1.7847, respectively. The values do not suffice the requirement to assert that

the distributions follow the power law [32]; the distributions are skewed highly

enough to be regarded as Zipf distributions4. Regarding Gop, the outgoing edge

degree distribution of Gop clearly shows a hump at x = 2. Due to the hump, its γ

value has no meaning as far as the scale-free property is concerned.

When it comes to small-world properties, Table 5.2 shows the average path

4See Chapter 4 for the definition of the Zipf’s law and the Zipf distribution.

69

Figure 5.7: Gp of nwsTS at |W | = 1, 000. (left) Gp. (right) outgoing edge degree
distribution

Figure 5.8: Gop of nwsTS at |W | = 1, 000. (left) Gop. (right) outgoing edge degree
distribution

length L and clustering coefficient C for three giant connected components ex-

tracted from each of Gp, Gop, and Gf
op. These are compared to random graphs

with the same number of nodes and the average number of edges per node. Note

that we treat all edges of each network of Gp, Gop, and Gf
op as undirected and

un-weighted as we did in Chapter 4. The information about original web-service

networks and their giant components are summarized in Table 5.1 and Table 5.3,

respectively. The results show that Gp and Gop are close to random networks be-

cause L º Lrandom and C º Crandom. On the contrary, Gf
op becomes a tree. That

is, C = 0.

70

Figure 5.9: Gf
op of nwsTS at |W | = 1, 000. (left) Gf

op. (right) outgoing edge degree
distribution

Figure 5.10: Gp of erTS at |W | = 1, 000. (left) Gp. (right) outgoing edge degree
distribution

Table 5.1: Features of web-service networks in baTS

Features Gp Gop Gf
op

of nodes 3,553 992 319
of arcs 33,969 8,141 275

Network Diameter 10 9 4

Table 5.2: Small-world properties of web-service networks in baTS

Networks Lactual Lrandom Cactual Crandom

Gp 3.1487 3.0475 0.0351 0.0052
Gop 3.3449 2.7508 0.0041 0.0154
Gf

op 4.4588 3.3549 0 0.0263

5.2.2 Characteristics of nwsTS

In succession to the previous observation on baTS, we can continue to highlight the

characteristics of nwsTS in terms of scale-free and small-world network proper-

71

Figure 5.11: Gop of erTS at |W | = 1, 000. (left) Gop. (right) outgoing edge degree
distribution

Figure 5.12: Gf
op of erTS at |W | = 1, 000. (left) Gf

op. (right) outgoing edge degree
distribution

Table 5.3: Summary of giant components in baTS web-service networks

Networks # of
nodes(A)

of nodes in
giant compo-
nent(B)

B

A
× 100(%) average # of

edges per node
in giant compo-
nent

Gp 3,553 3,553 100(%) 19.12
Gop 992 992 100(%) 16.41
Gf

op 319 39 12.22(%) 2.25

ties. First, we can check the scale-free properties of nwsTS web-service networks.

Figure 5.7, 5.8 and 5.9 show Gp, Gop, and Gf
op of nwsTS at |W |=1,000, along with

their outgoing edge distributions. The outgoing edge degree distribution of Gf
op

with the γ value of Gf
op, 1.6818 is very skewed. In other words, there are many low

72

Table 5.4: Features of web-service networks in nwsTS

Features Gp Gop Gf
op

of nodes 751 997 823
of arcs 14,392 8,102 1,474

Network Diameter 18 19 25

Table 5.5: Small-world properties of web-service networks in nwsTS

Networks Lactual Lrandom Cactual Crandom

Gp 3.6951 2.0818 0.3661 0.0511
Gop 5.4085 2.7544 0.0348 0.0159
Gf

op 7.9318 5.3216 0.0031 0.002

x-values (outgoing edge degree) and few very high x-values. It implies that there

are a few hub operations, or web service, with large degree. It is interesting to

view that Gp and Gop have bell shape distributions. This distribution is expected

because when we form the parameter cluster network of nwsTS, the probability

to add new link to be 0.1 at which we previously demonstrated that small-world

properties arise, as shown in Figure 4.4. Due to small-world properties, nwsTS

partially holds the property of a regular network, which has the constant number

k of edges per node. Consequently, the distributions show that the more frequent

values are near the middle of their distributions which is formed due to the k value,

and the frequency tapers off gradually near the high and low extremes of the range.

Moreover, since the initial regular network of the Newman-Watts-Strogatz model

has the circular form, Gp and Gop retains the original circular form partially, as

shown in Figure 5.7 and Figure 5.7.

Regarding small-world properties, Table 5.5 shows the average path length

L and clustering coefficient C for three giant connected components extracted

from each of Gp, Gop, and Gf
op, compared to corresponding random graphs. The

information about original web-service networks and their giant components are

summarized in Table 5.4 and 5.6, respectively. The results show that Gp has

small-world properties: L º Lrandom and C À Crandom. Gop and Gf
op are close to a

random network because L º Lrandom and C º Crandom.

73

Table 5.6: Summary of giant components in nwsTS web-service networks

Networks # of
nodes(A)

of nodes in
giant compo-
nent(B)

B

A
× 100(%) average # of

edges per node
in giant compo-
nent

Gp 751 751 100(%) 38.32
Gop 997 997 100(%) 16.25
Gf

op 823 782 95.01(%) 3.65

5.2.3 Characteristics of erTS

Following the previous observation of nwsTS, we can continue to deal with web-

service networks of erTS to examine their scale-free and small-world properties.

Figure 5.10, 5.11, and 5.12 show Gp, Gop, and Gf
op of erTS at |W |=1,000, along with

their outgoing edge degree distributions. The outgoing edge degree distribution of

Gf
op with γ=1.7418 can be regarded as highly skewed toward the low extreme of

the range. This finding implies that a few hub operations (web services) exist with

large degree, but there are many operations with small edges.

It is interesting to view that Gp and Gop have different shapes in their dis-

tributions. As a whole, Gp has a uniformly shaped distribution while Gop has a

Zipf-like distribution. Note that WSBen assumes that the connectivity of a pa-

rameter cluster is in inverse proportion to the number of parameters in the cluster

node. Therefore, if a cluster j in Gcl has a small connection with other clusters,

then j has large |Paj|; i.e., a large number of parameters are contained in j.

The random network model generates Gcl such that the connection between

clusters are linked at random allowing the connectivity distribution to follow the

Law of Large Numbers statistically. Note that we set the probability of choosing

each of the possible edges between clusters in erTS to be 0.06 but the value of

0.06 is not too large to cause the Law of Large Numbers because the average

edges per cluster becomes just six(= |J | × 0.06, where |J |=100). Therefore, Gp

has the uniformly shaped distribution. Regarding Gop, the outgoing edge degree

distribution of Gop is affected by the size of the test set |W |. We pick the web-

service templates (the links between clusters) as many as 1,000 (|W |=1,000), and

the value of 1,000 is enough to cause the Law of Large Numbers so that Gop can

74

Table 5.7: Features of web-service networks in erTS

Features Gp Gop Gf
op

of nodes 1,332 997 669
of arcs 17,006 8,946 983

Network Diameter 13 12 8

Table 5.8: Small-world properties of giant components in erTS web service net-
works

Networks Lactual Lrandom Cactual Crandom

Gp 3.2703 2.5776 0.0228 0.0189
Gop 3.8451 2.7051 0.0044 0.017
Gf

op 4.4588 3.3549 0 0.0263

Table 5.9: Summary of giant components in erTS web-service networks

Networks # of
nodes(A)

of nodes in
giant compo-
nent(B)

B

A
× 100(%) average # of

edges per node
in giant compo-
nent

Gp 1,332 1,332 100(%) 25.53
Gop 997 8,946 100(%) 17.94
Gf

op 669 598 89.38(%) 3.13

have the bell-shaped distribution.

Regarding small-world properties, Table 5.8 shows the average path length

L and clustering coefficient C for three giant connected components extracted

from each of Gp, Gop, and Gf
op, compared to corresponding random graphs. The

information about original web-service networks and their giant components are

summarized in Table 5.7 and 5.9, respectively. As a whole, Gp and Gop have the

random network property, while Gf
op becomes a tree and the clustering coefficient

C = 0.

5.2.4 Estimating the Size of Giant Component

One can study the properties and behaviors of a network by synthetically gen-

erating the network and estimating its various properties. There exists a large

variety of network models roughly categorized as “random”, “small-world” and

75

“scale-free” types and these have been shown to model many real-world networks

sufficiently [2]. In this section, as a demonstration, we attempt to estimate the size

of giant component in semantic web services networks using random graph theory.

Often it is believed to be important to have a large and dense giant component in

a service network. Otherwise, isolated services nodes will never have a chance to

provide any services to clients.

A random graph is simple to define. One takes N nodes and places edges

between each pair with a probability p. This simplest model [39] is certainly

the best-studied but not a proper model for real-world networks. It generates a

poisson degree distribution for large N . However, any real-world network can be

represented by a random network created in a semi-random fashion by taking the

degree distribution of the network into account. That is, we are given a degree

distribution pk which is the probability that a randomly chosen node has degree

k. We can make a model network with the same degree distribution as follows:

we take a number of nodes and create k ends of edges for these nodes, where k

is a random number drawn independently from the distribution pk. Then we can

randomly select in pairs from these ends of edges to create edges between them.

The procedure will create a random graph with the desired degree distribution [78].

Many properties of such a random network model, including the size of a giant

component, are shown to be exactly solvable in [74, 75, 78] in the limit of large

network size. Here we use the theoretical framework derived in [78] in order to

estimate the giant component size in sample networks created by WSBen by using

generating functions [122]. The idea is instead of dealing with the degree distribu-

tion directly, a generating function G0(x) that encapsulates all the information in

the degree distribution pk is used as follows:

G0(x) =
∞∑

k=0

pkx
k (5.4)

where k presents degree and pk is the desired degree distribution of the network.

The probability pk can be obtained by the kth derivative of G0 using:

pk =
1

k!

dkG0

dxk

∣∣∣∣
x=0

(5.5)

76

So all information contained in the discrete probability function pk can be rep-

resented by one G0 generating function. This form is easier to work on rather

than working with the complexities of the actual distribution function. We can,

for instance, represent average degree, z, for any degree distribution using this

generating function as:

z =
∑

k

kpk = G′
0(1) (5.6)

One important point towards the analysis of component sizes, we need to be

able to represent degree distribution of node we reach by following a randomly

chosen edge. It is not the same as pk since there are k edges that arrive at a

node with degree k. Hence, it is proportional to kpk, and can be generated by the

following normalized function:

∑
k kpkx

k

∑
k kpk

= x
G′

0(x)

G′
0(1)

(5.7)

If we start from a randomly chosen node and follow its edges to reach its neighbors,

we need to subtract the edge connecting the node to the neighbor in order to find

the degree distribution of the remaining outgoing edges of the neighbors of that

node. Thus we can define the generating function for the degree distribution of a

randomly chosen node’s neighbors G1(x) as:

G1(x) =
G′

0(x)

G′
0(1)

=
1

z
G′

0(x) (5.8)

The average size of components to which a randomly chosen node belongs when

there is no giant component formed in a network is derived in [78] as:

〈s〉 = 1 +
G′

0(1)

1−G′
1(1)

= 1 +
z2
1

z1 − z2

(5.9)

where z1 = z is the average number of neighbors of a node and z2 is the average

number of second neighbors. The expression diverges when G′
1(1) = 1 that is the

point marking a phase transition at which a giant component first appears. By

77

rewriting the conditions, we can say a giant component exists in a network if

∑

k

k(k − 2)pk ≥ 0 (5.10)

The size of giant component, if there is one, can be calculated from the following

simple heuristic argument. Let u be the probability that a node chosen uniformly

random from the network is not in the giant component. In other words, this value

is the fraction of all nodes outside the giant component. Then this probability is

equal to the probability that none of the node’s neighbors belong to the giant

component which is just uk if the node has degree k. If we average this over the

probability distribution [78], we have the following function for u:

u = G1(u) (5.11)

then for the smallest non-negative real solution of u, the following Equation gives

the size of the giant component, S:

S = 1−G0(u) (5.12)

In order to see if this theoretical framework works, we generated 10 gf
op with

increasing network sizes for each of following cases:

1. Random: 〈50,Erdos-Renyi(100,0.06),0.8,5,|W |〉

2. Scale-free: 〈50,Barabasi-Albert(100,6),0.8,5,|W | 〉

3. NWS: 〈50,Newman-Watts-Strogatz(100,6,0.1),0.8,5,|W |〉

Figure 5.13 shows how gf
op changes by increasing |W | by 100 for each of random,

scale-free, and NWS cases.

For each of these networks, we measured the size of the giant component and

checked the phase transition using the above random network model. Expectedly,

the degree distribution of each network met the phase transition threshold given

by Equation 5.10. Thus we also calculated the size of the giant component theoret-

ically according to Equations 5.11 and 5.12 and compared with measured sizes for

78

Figure 5.13: How gf
op changes by increasing |W |

each generated network. The comparisons are shown Figure 5.14 as a sub-figure

for each network topology type.

For gf
op based on the random parameter cluster network in 5.14-A, the theoret-

ical value of the giant component size is very close to the measured one for each

synthetic network. This implies that even a simple random model may be very

helpful to estimate the inter-operable portion of such networks with random topol-

ogy without even analyzing the available network beyond its degree distribution.

This is expected since the model is already aimed for such networks. However,

Figure 5.14-B shows that it is not a good scale-free model. There is a considerable

gap between theory and real value for many of the synthetic networks in this type.

A prominent phenomenon called “preferential attachment” [2] is the main

mechanisms in scale-free network type for selecting a node for attaching an edge

from an origin node. This causes many nodes with small degrees, and a few nodes,

named ‘hub’ nodes, with large degree which are usually connected to many oth-

ers nodes through the network. Thus this model generates a power-law degree

distribution which is quite a deviation from a poisson distribution generated by a

79

Figure 5.14: Comparison of actual and estimated size of giant components. (A:
Random , B: Scale-free, C: NWS)

random model. However, aside from node selection for edges, the model is random

in all other ways. This could be the reason for the agreement for a few network

samples in this type. Nevertheless, the lack of enough randomness in the model

creates a gap in the theoretical and actual measurements. For network samples

with larger number of web services, the emergence of hub nodes should be more

apparent. This appearance makes the topology of these networks fit better into

80

a power-law degree distribution, implying that a random model fails to estimate

the size of the giant component sufficiently. If these sample networks were also

effectively random all over then one would expect the model to agree perfectly

with actual measurements.

The deviation between theory and actual network results becomes more dra-

matic for the NWS (small world) type shown in Figure 5.14-C. Unlike the previous

two types, a NWS network starts with a regular topology and randomness is in-

troduced into this regularity to a certain degree defined by the probability p which

is 0.1 in our case. Unless p = 1, this initial topology remains unaffected and still

regular in parts of the network.

The results show that a random network model might be a good generative

model for such web-service networks if these networks are entirely random, which

is also the basic assumption in the model [78]. Also, the results can be calculated

exactly in the limit of large network size, unlike the networks used in this exper-

imentation. Another important point is that for a given probability distribution,

there is a set of random networks which fit the given random distribution. The

theoretical calculations here should be considered as an average behavior over all

such networks.

In this chapter, we introduced WSBen by which we generated test sets in such

a way that their underlying parameter cluster networks and their test set sizes

varied. We also demonstrate the application of WSBen by illustrating a use case

in the network theory community. In the following chapter, we will present WSPR

which is the AI planning-based heuristic algorithm. We will test WSPR as well as

other prominent AI planning algorithms using the test sets generated by WSBen

in Chapter 7.

Chapter 6
WSPR: Web Service PlanneR

Algorithm

In this chapter, we present the AI planning-based two step heuristic algorithm

titled WSPR. To highlight the benefits of a two-step guided search, we compare

WSPR with two A*-variant algorithms that use heuristics based on a best-first

forward search from the initial state to the goal. The two A*-variant algorithms

are only used as a baseline to compare WSPR, and we do not explore the two

algorithms further in subsequent chapters.

6.1 WSPR algorithm

In Chapter 2, we show that the size of the state space is exponential to the size

of the parameter set, and formulate the state model for the WSC problem as

Ψ = 〈S, s0, SG, Ω(.), f, c〉, where:

(1) The state, s ∈ S is a collection of parameters in P ,

(2) The initial state s0 ∈ S is such that s0 = ri,

(3) The goal states s ∈ SG are such that ro ⊆ s,

(4) Ω(s) is the set of web services w ∈ W such that wi ∈ s. That is, w can be

invoked or applicable in the state s,

82

(5) The transition function f(w, s) = s′ that maps a state s into a state s′ such

that s′ = s ∪ wo for w ∈ Ω(s), and

(6) c(w) is the invocation cost of w.

To address this intractable WSC problem, we suggest a polynomial-time ap-

proximation algorithm, WSPR1. When a request r is given, WSPR activates its

two-step search. First, it computes the cost of achieving individual parameters

starting from ri by conducting a forward search; second, it approximates the op-

timal sequence of web services that connects ri to ro by conducting a regression

search, leveraging on the results obtained from the first step as guidance.

This two-step based approach is essentially in accordance with Graphplan [19].

However, our method is different in the sense that we use novel heuristics to min-

imize the number of web services in a solution. In contrast, Graphplan and other

AI planners originating from Graphplan typically aim at minimizing the number

of time steps, but not necessarily the number of actions (web services). Note that

there can be a crossover between STRIPS and the state models. For example, in

the forward search, we have to consider that s0 = ri and sg ⊇ r0 where sg ⊆ SG,

and in the regression search, we have to consider that sg = ro where sg ⊆ SG and

s0 ⊆ ri. s0, sg, and SG are terms for the state model, while ri and ro are used in

the STRIPS model. Since this crossover can cause confusion, we will use ro and

ri rather than s0 and SG in the algorithm. However, we will use s ∈ S to trace

the current information state in the algorithm. Therefore, it must be notified that

state s in the progression space has a different meaning than that in the regression

space. In the progression space, states can be thought as sets of preconditions, but

in the regression space, states can be thought as sets of effects. The differences are

described in detail below.

(Step1) Forward Search: In the first stage, WSPR obtains gri(p) - the cost

of achieving p ∈ P from a state ri. This cost can be characterized by the solution

of a recursive equation as follows:

gri(p) = min
w∈Ow(p)

[c(w) + max
p′∈wi

gri(p′)] (6.1)

1WSPR is pronounced like “whisper”

83

where c(w) is an invocation cost of a web service and is assumed to be 12. Ow(p)

is a set of web services: Ow(p) = {w ∈ W |p ∈ wo}. At first, gri(p) is initialized

to 0 if p ∈ ri, and to ∞ otherwise. Then, the current information state s is set to

ri (Line 1 in Algorithm 1). Every time for ∀w ∈ Ω(s), each parameter p ∈ wo is

added to s, and gri(p) is updated until for ∀p ∈ ro, gri(p) are obtained (Lines 2-6

in Algorithm 1). If Ω(s) does not increase any more, there remains no additional

search space meaning that no solution exists. We name a web service w as a

predecessor web service of p ∈ P if w is the first web service to generate p. We

denote PDws(p) to be an inverted index [30] that contains the set of predecessor

web services of p. In this thesis, we assume that the invocation cost of web services

is non-negative. However, it is possible to have a negative web-service invocation

cost if various Quality of Service (QoS) are considered (e.g., cost, quality, security).

In that case, rather than Equation (6.1), label-correcting algorithms such as the

Bellman-Ford algorithm [30] must be used.

Input : ri and ro

Output: PDws

s = (ri);C = ∅;d = 1;1

while ¬(s ⊇ ro) do2

δ={w|w ∈ Ω(s), w /∈ C};3

for p in wo(w ∈ δ) do4

if gri(p) = ∞ then5

gri(p) = d;PDws = w;s = s ∪ {p};6

C = C ∪ δ;d++ ;7

Algorithm 1: Forward search algorithm of WSPR

(Step2) Regression Search: In the second stage, WSPR approximates the

optimal sequence of web services that connects ri to ro by conducting the regres-

sion search, as directed by gri(p) and PDws(p), which are obtained from the first

2We assumed that for all web services w, the invoking cost c(w) is 1 identical. In a real
system, however, each web service may have distinct c(w). c(w) could be determined based on
real market surveys, or using a pricing model specific to web services, suggesting that c(w) = 1
can be relaxed such that c(w) > 0. This relaxation has an impact on WSPR, because current
WSPR’s heuristic measures the contribution of a web service based on how many of its output
parameters overlap with a sub-goal. The detailed modification of WSPR required to address this
relaxation is described in Chapter 9.2

84

step. In this thesis, we propose a greedy algorithm-based backward search. The

backward search is an old idea in planning that is also known as regression search.

In regression search, state s can be thought as a set of effects and we can specify

a sub-goal from state s. This algorithm denotes its sub-goal by subGoal and sets

subGoal to (ro) in the beginning (Line 1 in Algorithm 2). We can denote wSpace

to be a set of web services w ∈ W , such that wi ∈ PDws(p), where p ∈ subGoal.

Then, WSPR selects a web service from wSpace by considering their heuristics at

each backward step (Lines 3-6 in Algorithm 2). This backward selection procedure

is repeated until subGoal ⊆ ri (Line 2 in Algorithm 2). The heuristics used for

selecting a web service and its underlying hypothesis is as follows:

Hypothesis-1 : Choosing a web service with a greater contribution to match

subGoal earlier in the regression search helps reach the initial state faster.

hsg(w) = |wo ∩ sugGoal| (6.2)

hsg(w) implies that WSPR favors a web service with a bigger contribution to

match the sub-goal. However, hsg(w) has another important interpretation. A

web service w with bigger hsg(w) has a higher probability to match the sub-goal

fully, leading to preventing following search space to expand significantly. In other

words, our heuristics attempts to avoid a partial matching case, or reduce the size

of partial matching web services as much as possible.

In the case that multiple web services with the same hsg(w) value are in the

OPEN list [30], we choose a web service with the largest edge degree in the web-

service node network, to break the tie situation. The use of this tie-break rule has

an impact to increase the chance of finding better web services by fertilizing the

succeeding search space, because the web service with the larger edge degree is

likely to be connected to more web services.

In Chapter 7, we assess the performance difference provided by the WSPR

heuristics. To this end, we compare the effectiveness and efficiency of WSPR with

those of WSPR without the heuristics.

85

Input : ri, ro, and PDws

Output: w1 ⇒ · · · ⇒ wn

subGoal = ro;1

while ¬(subGoal = ∅) do2

wSpace =
⋃

p∈subGoal

PDws(p);
3

χ = arg max
w∈wSpace

hsg(w);
4

soln = soln ∪ χ;5

subGoal = [subGoal \ (χo ∪ ri)] ∪ χi;6

s = ri;7

while ¬(soln = ∅) do8

if w ∈ Ω(s) and w ∈ soln then9

Print w, “⇒”;10

s = s ∪ wo;11

soln = soln \ w ;12

Algorithm 2: Regression search algorithm of WSPR

6.1.1 Analysis of the WSPR algorithm

In this section, we analyze the WSPR’s computational complexity and prove the

WSPR’s correctness as well as an illustration of WSPR using the motivating ex-

ample of Chapter 1.

The forward search procedure has the polynomial computation time O(|W |2|P |).
First, the length of a sequence of web services to satisfy a request is limited by

|W |. Therefore, there are at most |W | iterations. Second, at each iteration of the

forward search, the maximum |W | web services and |P | parameters are examined.

Consequently, the computational complexity of the forward search procedure costs

O(|W |2|P |). On the contrary, the regression searching procedure has the polyno-

mial computation time O(|W |2log|W |). First, the regression search procedure has

at most |W | iterations, and at each iteration, the maximum O(|W |log|W |) time

is required to conduct the sorting task to select a web service w with the largest

hsg(w). The time taken to print a solution can be ignored (Line 8-12 in Algorithm

2). In general, |P | À log|W |, so that O(|W |2|P |) À O(|W |2log|W |). In other

words, the forward search takes much longer computational time than that of the

regression search. As a result, the performance of WSPR is dominated by the

86

forward search procedure. We verify this insight experimentally in Appendix B. In

this remark, we find that there are three significant dimensions to determine the

performance of WSPR: (1) The length of a sequence web service in a solution; (2)

|W | of the web service size; and (3) |P | of the parameter set size.

With r2 of the Atherton motivating example in Chapter 1, we can illustrate

the forward search algorithm as follows:

• In the beginning, s = ri
2 . Since Ω(s) = {findHotel}, we can invoke

findHotel. We can update gri(p), PDws(p), and s as follows:

(1) gri(“hotelAddress”)=1 and gri(“hotelZipcode”)=1,

(2) PDws(“hotelAddress”) = findHotel,

(3) PDws(“hotelZipcode”) = findHotel,

(4) s = s∪{“hotelAddress”,“hotelZipcod”}.

• With an updated s, we can obtain Ω(s)= {findRestaurant, guideRestaurant}.
By invoking findRestaurant and guideRestaurant, we can maintain gri(p),

PDws(p), and s as follows:

(1) gri(“restaurantRate”) = 2,

(2) gri(“restaurantAddress”) = 2,

(3) gri(“restaurantName”) = 2,

(4) gri(“restaurantPhonenumber”) = 2,

(5) PDws(“restaurantRate”) = {guideRestaurant},
(6) PDws(“restaurantAddress”)= {guideRestaurant,findRestaurant},
(7) PDws(“restaurantName”) = {findRestaurant},
(8) PDws(“restaurantPhonenumber”) = {findRestaurant},
(9) s = s∪{“restaurantRate”, “restaurantAddress”, “restaurantName”, “restau-

rantPhonenumber”}.

• With an updated s, we can obtain Ω(s)={findDirection}. Also, we can

maintain gri(p), PDws(p), and s as follows:

87

(1) gri(“mapHotelRestaurant”)=3,

(2) gri(“directionHotelRestaurant”)=3,

(3) PDws(“mapHotelRestaurant”)={findDirection},
(4) PDws(“directionHotelRestaurant”)={findDirection},
(5) s = s∪{“mapHotelRestaurant”, “directionHotelRestaurant”}.

• We can stop the procedure because s ⊇ ro
2.

We illustrate the regression planning algorithm, continued from the end of the

forward search procedure above.

• In the beginning, s = ro
2 and subGoal=s.

• Since PDws(“mapHotelRestaurant”) and PDws(“directionHotelRestaurant”)

has the same value as {findDirection} , we immediately get χ = findDirection.

In this case, we do not have to measure the heuristic value because only one

web service is concerned. Then, we can update states as follows:

(1) s=s∪{“restaurantAddress”, “hotelAddress”},
(2) subGoal={“restaurantAddress”, “hotelAddress”},
(3) soln={findDirection}.

• PDws(“restaurantAddress”) = { guideRestaurant, findRestaurant} and

PDws(“hotelAddress”)={findHotel} and

wSpace={ findHotel, findRestaurant, guideRestaurant}. Since each

web service in wSpace has hsg(w)=1 uniformly, we can randomly select

χ={findHotel}, and then we can update states as follows:

(1) s=s∪ {“hotelAddress”, “hotelZipcode”},
(2) subGoal={“restaurantAddress”},
(3) soln={ findHotel, findDirection}.

• PDws(“restaurantAddress”)={guideRestaurant, findRestaurant} and

wSpace={findRestaurant, guideRestaurant}. Since each web service in

wSpace has hsg(w)=1 uniformly, we can randomly select χ={ findRestaurant},
and then we can update states as follows:

88

(1) s=s∪{“hotelAddress”, “hotelZipcode”},
(2) subGoal={“restaurantAddress”},
(3) soln = {findHotel, findDirection}.

• PDws(“restaurantAddress”)={gudieRestaurant, findRestaurant} and

wSpace={findRestaurant, guideRestaurant}. Since each web service in

wSpace has hsg(w)=1 uniformly, we can randomly select χ={findRestaurant}
and then, we can update as follows:

(1) s=s∪{“hotelAddress”, “hotelZipcode”},
(2) subGoal=∅,
(3) soln ={findHotel,findDirection, findRestaurant}.

• Since subGoal=∅, we stop the repetitions.

• Set s = ri
2, print “findHotel”, and then print⇒. This is because Ω(s)={findHotel}.

• Set s=s∪{“hotelAddress”,“hotelZipcode”}, print “findRestaurant”, and

then print ⇒. This can be explained because Ω(s)={findRestaurant}.

• Set s=s∪{“restaurantAddress”,“restaurantRate”}, print “findDirection”,

and then print ⇒. This is because Ω(s)={findDirection}.

• Since soln=∅, we stop the regression search with a solution: “findHotel”

⇒ “findRestaurant” ⇒ “findDirection”.

We can prove the correctness of the forward search of WSPR by using the loop

invariants technique [30].

Theorem 6.1.1 (Correctness of the forward search of WSPR). The forward search

of WSPR runs on Ψ =< S, s0, SG, Ω(.), f, c > with c(w) = 1 for all w ∈ W , and it

terminates with the realization of gri(p) for all parameters p ∈ SG.

Proof. We use the following loop invariant: At the start of each iteration of the

‘while’ loop of Lines 2-7 in Algorithm 1, we obtain gri(p) for each parameter p ∈ wo,

where w ∈ δ.

It suffices to show that for each parameter p ∈ wo (where w ∈ δ), we obtain

gri(p) at the time when p is added to state s.

89

• Initialization: Initially, s = ∅, and so the invariant is trivially true.

• Maintenance: For the purpose of contradiction, let u be the first parameter

for which we do not obtain gri(u) when u is added to state s. This assumption

implies that another state occurs afterward and the state includes u , at which

we can obtain gri(u). However, this is false because c(w) = 1 for all w ∈ W .

In other words, if si+1 = f(wi, si), gri(y)=gri(x) + 1, where x ∈ (si \ si−1)

and y ∈ (si+1 \ si). Therefore, we obtain gri(p) at the time when p is first

added to state s.

• Termination: The termination condition is s ⊇ ro. This implies that s ∈
SG. Thus, we have obtained gri(p) for all parameters p ∈ SG.

Similarly, we can use the loop invariants technique to prove the correctness of

the regression search of WSPR.

Theorem 6.1.2 (Correctness of the regression search of WSPR). The regression

search of WSPR terminates after obtaining a set of web services to form a path

from ri to ro.

Proof. We use the following loop invariant: at the start of each iteration of the

‘while’ loop of Lines 2-6 in Algorithm 2, we obtain a set of web services, soln, that

can temporarily form a sequence and be executed to form the path from subGoal

to ro. Then, it suffices to show that for the web service w which was added recently

in soln, w can be invoked by subGoal. Once we show that subGoal can invoke w,

we rely on the subGoal relation described at Line 6 in Algorithm 2 to show that

the subsequent invocation holds at all times thereafter.

• Initialization: Initially, subGoal = ro and soln = ∅, making the invariant

trivially true.

• Maintenance: Let A be a web service added to soln at t time step, where

t = 1, 2, . . . , T (≥ max
p∈ro

gri(p)− 1). As soon as A is added to soln, subGoal(t)

is updated such that subGoal(t) = [subGoal(t + 1) \ (Ao ∪ ri)]∪Ai. That is,

subGoal(t) contains Ai, which is a set of preconditions necessary to invoke A.

90

Therefore, the updated subGoal(t) can always invoke A. After invoking A,

we can obtain new information state s = subGoal(t)∪(Ao∪ri). Note that ri is

always available throughout the planning process. Since s ⊇ sugGoal(t+1),

there is at least one web service whose input parameters are included in s as

long as soln 6= ∅. In this manner, we can invoke all web service in soln until

soln = ∅.

• Termination: The termination condition is subGoal \ ri = ∅. This implies

that ri satisfies subGoal. In the forward search of WSPR, we saw that there

is a state s, such that s ⊇ ro. This suggests that there is at least one path

from ri to ro. Due to the existence of paths from ri to ro, there is at least one

web service w belonging to soln at termination, such that w can be invoked

only by ri.

We can use Equation 6.1 to drive the lower bound of the optimal cost of WSC

solutions. Note that the invocation cost of a web service is assumed to be 1. Thus,

the optimal cost of a WSC problem coincides with the minimum number of web

services required to solve the WSC problem.

Theorem 6.1.3. The lower bound for the optimal cost of achieving ro from ri is

max
p∈ro

gri(p).

Proof. For a set of parameters A, let G∗(A) be the optimal cost function to achieve

A from ri. Alternatively, this can be viewed as the optimal cost of achieving a state

s where A holds. The equation characterizing the function G∗ is

G∗(A) = min
<B,w>∈R(A)

[c(a) + G∗(B)] (6.3)

where G∗(A) = 0, if A ⊆ ro. R(A) refers to the set of pairs < B,w >, such that

B is the result of regressing A through a web service w (i.e., B = A \ wo). c(w)

is the cost of invoking w. Let G be a function with the same domain as G∗. Let

us write G ≤ G∗, if G(A) ≤ G∗(A), for any set of parameters A. We try to yield

G that are lower bounds on G∗, and this trial is regarded as “relaxation”. With

91

these considerations in mind, we can form the following cost function:

gmax
ri (A) = max

p∈A
gri(p) (6.4)

It is evident that gmax
ri ≤ G∗, as the cost of achieving a set of parameters cannot

be lower than the cost of achieving each of the parameters in the set. Since ro is a

set of parameters, gmax
ri (ro) ≤ G∗(ro). Thus, maxp∈ro gri(p) is the lower bound of

the optimal cost of achieving ro from ri.

From the perspective of heuristic design, gmax
ri is called an “admissible” heuris-

tics as it never overestimates the true costs. However, it is questionable to believe

that gmax
ri is a good estimator for G∗. In fact, gmax

ri is admissible, but it is less

informative because it focuses only on the most difficult sub-goals, ignoring all

the others [21, 50]. Nonetheless, the majority of AI planners that originated from

Graphplan use a refined version of gmax
ri for their search heuristics. As mentioned

in Chapter 3, the algorithms using an admissible heuristic are often called Itera-

tive Deepening A* algorithms (IDA*). However, Graphplan and its variants are

more efficient than general IDA* because of the planning graph constructed in the

forward search step. In Chapter 7, we will use gmax
ri as a baseline to compare WSC

algorithms.

6.2 A*-variant algorithms

In this section, we suggest two web-service composition algorithms based on A*

algorithm: WS* and adaptive WS*. We compare WSPR with the two algorithms,

as well as demonstrate the superiority of the two-step guided search of WSPR

over the simple best-first search strategy adopted by the A* algorithm. Each A*-

variant algorithm has a specific heuristics to form its cost function [94]. Since

the performance of an A*-variant algorithm heavily depends on the quality of

the heuristics, it is important to use the right heuristics to strike a good balance

between accuracy and speed.

In the WSC problem, an A* algorithm can be captured as follows. Given a

state and a set of candidate web services to visit next, one chooses the service with

92

the “smallest” f(w). f(w) can be defined as follows:

f(w) = h(w) + g(w) (6.5)

where g(w) is the number of web services that is already selected between ri and

the current state s. h(w) is a heuristic to estimate the number of web services,

from the current state s to the goal state, where ro is realized. Note that we can

ignore h(w) and instead use an exhaustive search algorithm over the search space

S. However, in that case, the computational complexity increases rapidly up to

O(2|P |) because |S| is proportional to 2|P |.

6.2.1 WS* Algorithm

In this algorithm, we rely on the following “best first search” algorithm-based

hypothesis:

Hypothesis-2 : Choosing a web service with a greater contribution to match

the goal parameters earlier in the forward search helps reach the goal state faster.

h(w) =
1

|(ro \ s) ∩ wo| (6.6)

In Equation 6.6, the remaining parameters of ro that are yet to be found are

(ro \ s). Then, the intersection of this and wo is a set of parameters that w

contributes. Therefore, WS* algorithm favors the w whose contribution to find

remaining parameters is the maximum (i.e., the smallest h(w)).

From the operational perspective of A* algorithm, OPEN list of the A* algo-

rithm corresponds to δ, and CLOSE list of the A* algorithm corresponds to soln

in Algorithm 3. For a better understanding of the behavior of WS*, we make an

illustration with the “Atherton” motivating example. The procedure to run WS*

is as follows:

• At the beginning, we know ri
2={“hotelName”, “hotelCity”, “hotelState”}

and run WS* to find ro
2={“restaurantMap”, “restaurantDirection”}

1. s={“hotelName”, “hotelCity”, “hotelState”}

93

Input : ri and ro

Output: soln /* soln is a stack */

s = (ro \ ri);1

print ri, “⇒”;2

while ¬(s ⊇ ro) do3

δ = Ω(s) \ soln;4

χ = arg max
w∈δ

f(w); /* a tie breaks at random */
5

Push(soln,χ);6

s = s ∪ χo;7

for w(∈ soln) do8

print Pop(soln), “⇒” ;9

print ro ;10

Algorithm 3: WS* Algorithm

• With the current information state s, we can obtain:

1. Ω(s)={ findHotel},
2. δ = Ω(s),

3. soln = [findHotel] because |δ| = 1,

4. s = s∪ {“hotelAddress”, “hotelZip”}.

• With the updated information state s, we can obtain:

1. Ω(s)={ findHotel, findRestaurant, guideRestaurant},
2. δ = {findRestaurant, guideRestaurant} by δ = Ω(s) \ soln,

3. h(w) = ∞ for ∀w ∈ δ,

4. χ = findRestaurant (chosen at random),

5. soln = [findHotel,findRestaurant],

6. s = s∪ {“restaurantName”, “restaurantPhone”, “restaurantAddress”}.

• With the updated information state s, we can also +obtain:

1. Ω(s)={ findDirection, findHotel, findRestaurant, guideRestaurant},
2. δ = {findDirection, guideRestaurant} by δ = Ω(s) \ soln,

3. h(findDirection)=1/2 while h(guideRestaurant)=∞,

94

4. χ = findDirection,

5. soln = [findHotel,findRestaurant,findDirection],

6. s = s∪ {“restaurantMap”, “restaurantDirection”}.

• s ⊇ ro
2 and we stop the procedure.

6.2.2 Adaptive WS* Algorithm

It is not uncommon for the WS* algorithm to have multiple candidate web services

with the same h(w) value in OPEN list. Then, instead of picking one arbitrarily,

the adaptive WS* tries to “look ahead” to adaptively determine the best one. That

is, in addition to considering h(w), one may look at the h(w′) where w′ ∈ δ′ and

δ′ = [Ω(s∪wo) \ {w}] \ soln. Therefore, adaptive WS* chooses a web service such

that the combined contribution of itself and its child is the maximum. This can

be captured with the following modified heuristic function:

h(w) =
1

|(ro − s) ∩ (wo ∪ [hc(w)]o)| (6.7)

hc(w) = arg max
w′∈δ′

|(ro \ (s ∪ wo)) ∩ w′o| (6.8)

In general, the adaptive WS* algorithm requires more recourses (e.g., time or

memory) but produces more accurate solution - thanks to the better informed

heuristics. This will be experimentally validated in the next section.

Similar to WS*, we can illustrate the adaptive WS* algorithm with the Ather-

ton motivating example. The majority of the procedure is the same as the WS*

algorithm, but the main difference can be found in calculating h(w) . Assume

that we are with s ={“hotelName”, “hotelCity”, “hotelState”, “hotelAddress”,

“hotelZip”} and δ={findRestaurant, guideRestaurant}. Now, we have to choose

χ by calculating h(w), where w ∈ δ. Remember that in the WS*, both findRestaurant

and guideRestaurant had ∞ as the value of h(w), and therefore one of them was

chosen at random. On the contrary, in a tie situation, the adaptive WS* forces

findRestaurant and guideRestaurant to check their child nodes. As a result,

findRestaurant has 1/2 as the value of h(w) because δ′={ findDirection}, and

95

findDirection has the contribution of two. As a result, the combined contribu-

tion of findRestaurant and its child findDirection is bigger than the combined

contribution of guideRestaurant and its child, and findRestaurnat is chosen.

6.3 Comparison of WSPR and A*-variants

In this section, we compare A*-variants (WS* and Adaptive WS*) and WSPR.

Note that WSPR can be considered to be a guided search because it uses gri(p)

and PDws(p) obtained from the first step . On the contrary, WS* and Adaptive

WS* can be classified into unguided searches because their heuristics can become

useless if the distance between the goal state ro and the initial state ri is increased.

To compare the efficiency of the three proposed algorithms, we conducted ex-

periments using the EEE05 test set. The EEE05 test set is a synthetic test set

that contains artificially created composition scenarios, and the test set and test

requests appear to be manually created by human experts. For example, the test

request No. 15 has the following input and output sets

• Input set = {“pickupLocationName”, “pickupLocationID”, “firstName”, “last-

Name”, “middleInitial”, “custStreetAddress”, “custCityAddress”, “custStateAd-

dress”, “custZipAddress”}

• Output set = {“shipmentTrackingNumber”, “shipmentCost”}

The test set size is just 100. Although the test set is small, the EEE05 test set is

still challenging because it is not simple for humans to solve them optimally in a

short time. Note that the EEE05 contest originally offered 15 test requests, but

six test requests (i.e., No. 4, 6, 7, 9, 11, and 12) out of 15 are discarded since there

are syntax errors in the requests3.

Throughout the experiments, we used the following evaluation metrics:

1. Time: it measures how long an algorithm takes to find a solution in millisec-

onds. This is a measure of computational efficiency.

3In the EEE05 web service composition contest, generating the test set and requests were
conduced manually, leaving room for human error. In fact, six requests turned out having no
solutions due to syntax errors occurred by the error-prone manual process of data generation.
Since we were not able to fix the errors by ourselves, we discarded the problematic requests

96

Table 6.1: Comparison of three algorithms in terms of #W and Time

WS* Adaptive WS* WSPR
(Test ID)

#W Time #W Time #W Time
1(1) 4 0.156 5 1.704 4 0.01
2(2) 6 0.016 5 16 4 0.01
3(3) 3 0.01 3 0.01 3 0.01
4(5) 1 0.016 1 0.032 1 0.01
5(8) 3 0.125 2 1.141 2 0.01
6(10) 1 0.015 1 0.01 1 0.01
7(13) 10 0.562 2 0.875 2 0.01
8(14) 10 0.672 2 0.703 2 0.01
9(15) 1 0.015 1 0.047 1 0.01

Figure 6.1: Comparison of three algorithms (left) #W (right) Time

2. #W : the number of web services in a solution. This gives the quality of the

solution obtained, or the effectiveness of the solution.

The smaller both values get, the better the solutions are. All experiments were

performed on a PC with the Pentium 4 with 523Mb RAM, running Windows XP

at 1.7GHz. All algorithms were implemented in Python 2.3. The results of the

experiments on the EEE05 test set are shown in Table 6.1 and Figure 8.4.

All competitors have no difficulty in solving the problems. However, in terms

of Time and #W , WSPR outruns the other two A*-based algorithms. Regarding

two A*-variants, the adaptive WS* shows a better performance than WS* in terms

of accuracy (#W). However, the efficiency (Time) is worse than WS* as a whole.

These results are expected because the adaptive WS* builds a much bigger OPEN

list, due to the look ahead process. It is evident that a bigger OPEN list can yield a

97

greater chance to find accurate solutions, whereas it takes a longer computational

time than the WS*. Consequentially, WS* is better than the the adaptive WS* in

terms of Time, while the adaptive WS* is superior to the WS* in terms of #W .

In these experiments, we see that WSPR is uniformly better than the two A*-

based algorithms for all of the experiments. In other words, WSPR has both an

efficiency and accuracy advantage by leveraging on gri(p) and PDws(p) that are

obtained from the first step as guidance. The WS* and adaptive WS* have a clear

problem with their heuristics. As confirmed by the experimental evaluation, both

heuristics are not able to guide the search, if the goals are far from the initially given

information. Consequently, we can argue that the two step approach is superior

to the best-first forward search algorithm, like the A* algorithm, especially when

solutions require longer paths from the initial state ri to the goal state ro. In the

following chapters, we concentrate on comparing WSPR with other AI planners,

which also have same two-step structure but use different heuristics.

Chapter 7
Experimental Validation

In this chapter, we compare the performance of WSPR and other prominent AI

planners (Blackbox 4.2, IPP 4.1, and Graphplan) in terms of effectiveness and

computational efficiency. In addition, we investigate the scalability of WSPR with

respect to increasing the test set size. We also study the robustness of WSPR in

the presence of diverse test sets and composition scenarios.

To validate an algorithm for the WSC problem, one needs both test sets and

test requests. We prepared three types of test sets1 as follows:

1. EEE05 test set: human-generated test sets that are small-scale with only 100

web services but with non-trivial test requests.

2. ICEBE05 test sets: synthetically generated large-scale test sets.

3. WSBen-generated test sets: baTS, nwsTS, and erTS generated in Chap-

ter 5. They are synthetically generated large-scale test sets featured with

diverse underlying network topologies.

In the experiments described below, we compare the performance of WSPR

and three prominent AI planners: Graphplan, Blackbox and IPP.

As explained in Chapter 3, Blackbox and IPP are extended planning systems

that originated from Graphplan. In particular, Blackbox is extended to be able

1We could have generated test sets using real 1,544 web services that we had gathered in
Chapter 4. However, 1,544 web services were not large enough for us and the lack of correlation
among real web services (e.g., the network diameter of Gop is just five) makes it hard to generate
“challenging” test sets.

99

to map a plan graph into a set of clauses for which Blackbox forms a satisfiability

problem (SAT problem). For the SAT problem, Blackbox applies the local-search

SAT solver, Walksat, so that Blackbox can run even with a large number of op-

erators. Throughout the experiments, we use two evaluation metrics as we did in

Chapter 6:

1. Time: it measures how long an algorithm takes to find a solution in millisec-

onds. This is a measure of the computational efficiency.

2. #W : the number of web services in a solution. This gives the quality of the

solution obtained, or the effectiveness of the solution.

The smaller both values get, the better the solutions are. In other words, algo-

rithms that take less running time while producing right solutions that use fewer

web services are considered to be “good”. Note that all AI planners (Blackbox,

IPP, and Graphplan) are all optimal parallel planners that minimize the number

of time steps, but not necessarily the number of actions (i.e., the number of web

services). All AI planners run with their default options, except that the maxi-

mum number of nodes for Blackbox and Graphplan was set to 32,768 and 10,000,

respectively. Commonly, the time to read the operator and fact files is not in-

cluded in Time measurement. Blackbox and IPP accept only the PDDL format,

while Graphplan accepts only the STRIPS format for their operator and fact files.

Note that an operator file corresponds to a test set, and a fact file corresponds to

a test request file. WSBen provides a function to convert test sets and requests

into PDDL and STRIPS files automatically. The experiments were performed on

Linux with three Intelr XeonTM CPU, running at 2.4GHz with 8Gb RAM. We

also assess the performance difference brought by WSPR heuristics. To this end,

we include WSPR without the heuristics, named as “WSPR w/o heuristics,” in

the list of competitors.

7.1 EEE05 test set

The first set of experiments deals with the EEE05 contest set. Further information

about the EEE05 test set can be found in Section 6.3. In this experiment, all

competitors except Graphplan, solved the optimal solutions for all test queries

100

within 0.1 seconds as shown in Table 7.1. The problem of Graphplan is caused by

the conflicting two open- and closed-world assumptions.

The closed world assumption is the presumption that what is not currently

known to be true is false. The opposite of the closed world assumption is the

open world assumption. In the open world assumption, what is not stated is

currently unknown. In general, the open world assumption is much preferred in

many modern systems such as RDF and OWL. However, SQL and XML systems

adopt the closed world assumption. Therefore, RDF and OWL consider that every

tuple not explicitly contained in the semantic web or ontology is implicitly assumed

to represent a fact that is unknown rather than false; SQL and XML consider these

tuples to be false. For a simple example, suppose that we have a statement: Mary

is a citizen of France, and we are asked by a question: Is Mary a citizen

of Canada?. According to the closed world assumption, the answer is ‘No’. On

the contrary, under the open world assumption, the answer is ‘Unknown’ (Mary

could have dual citizenship).

In the closed world assumption, web services must have a rule: ro ⊃ ri. Oth-

erwise, parameters p which is in ri but not in ro becomes false. On the contrary,

in the open world assumption, all parameters ri hold true all the way through the

planning process once the web service containing ri is invoked. In the web services

context, the closed world assumption is not appropriate because most web service

does not have input parameters duplicated into output parameters. Therefore, we

applied the open world assumption for all planners.

However, under the open world assumption, Graphplan makes an assertion er-

ror when it discovers web services w, such that wi∩wo 6= ∅ due to its strict internal

reasoning system. It is true that the EEE05 test set has several web services w such

that wi ∩ wo 6= ∅. For example, a web service named findWeather has an input

parameter set {“forecastDate”, “forecastCityAddress”} and an output parameter

set {“forecastDate”, “forecastCityAddress”, “forecastTemparature”}, with “fore-

castDate” and “forecastCityAddress” occurring in both sets. While Graphplan

cannot handle re-occurring parameter p that is p ∈ (wi∩wo) under the open world

assumption, other AI planners can handle this abnormal situation intelligently.

The result of the experiments on EEE05 test set is shown in Table 7.1. Note

that EEE05 contest originally offered 15 test requests, but six test requests (Test

101

Table 7.1: Results of the EEE05 test set

Blackbox IPP WSPR
test ID

#W Time #W Time #W Time
1 4 0.04 4 0.11 4 0.01
2 4 0.04 4 0.12 4 0.01
3 6 0.07 6 0.21 6 0.01
5 1 0.01 1 0.06 1 0.01
8 2 0.01 2 0.08 2 0.01
10 1 0.01 1 0.06 1 0.01
13 2 0.01 2 0.08 2 0.01
14 2 0.01 2 0.08 2 0.01
15 1 0.01 1 0.07 1 0.01

Number. 4, 6, 7, 9, 11, and 12) out of 15 are discarded since there are syntax errors

in the requests. The three competitors had no obstacles to generate the optimal

solution. In terms of #W , the three competitors have the same values. In terms

of Time, WSPR outperforms others but the differences between competitors are

insignificant, suggesting that the EEE05 test set is simple.

7.2 ICEBE05 test set

The second set of experiments deals with the ICEBE05 contest set. ICEBE05

provides 18 test sets with their complexities varied in different dimensions2 [83].

Note that all test requests of ICEBE05 can be solved by the full-matching opera-

tion, so that #W = max
p∈ro

gri(p)3. We found that “Composition2-100-32” was the

most difficult test set among 18 test sets, as discussed in Appendix B. Note that

we converted ICEBE05 test sets into PDDL and STRIPS file format to feed AI

planners through WSBen, which provides the conversion function. The results of

the experiments with “Composition2-100-32” are shown in Table 7.2. As shown

in the table, all competitors, except Graphplan, had no problem in solving the

optimal solutions for all test requests within a reasonable time. We found that

Graphplan fails to read the operation file when the number of operations in the

2See Appendix B for the analysis result of the computational complexity of ICEBE05 test
sets.

3It is the lower bound of the WSC solution. See Theorem 6.1.3.

102

Table 7.2: Results of the Composition2-100-32 test set of ICEBE05

Blackbox IPP WSPR
test ID

#W Time #W Time #W Time
1 6 4.36 6 11.66 6 4.92
2 6 4.35 6 11.55 6 4.86
3 6 5.81 6 12.73 6 4.92
4 7 5.8 7 12.76 7 6.06
5 7 5.8 7 12.75 7 6.07
6 7 5.86 7 12.83 7 6.02
7 8 7.25 8 13.81 8 7.31
8 8 7.34 8 13.85 8 7.24
9 8 6.97 8 13.93 8 7.18
10 8 7.04 8 13.96 8 7.26
11 1 3.42 1 11.86 1 0.68

file exceeds 5,000; “Composition2-100-32” has 8,356 web services (or operations,

in the PDDL and STRIPS operation files). Regarding #W , all competitors had

no problem to generate the minimal length solution to each of the test requests.

In terms of Time, Blackbox and WSPR shows similar results, while IPP shows

the worst performance which is due to the high overhead of its internal heuristic

algorithm.

7.3 Test sets generated by WSBen

The third set of experiments deals with baTS, nwsTS and erTS. As described in

Section 5.2, we build three test set frameworks by specifying the xTS of WSBen

as follows:

(1) baTS = 〈 100,Barabasi-Albert(100,6),0.8,5,|W | 〉

(2) nwsTS = 〈100,Newman-Watts-Strogatz(100,6,0.1),0.8,5,|W |〉

(3) erTS = 〈100,Erdos-Renyi(100,0.06),0.8,5,|W |〉

Each domain of baTS, nwsTS, and erTS has seven different sizes of test sets by

varying |W | as 1,000, 3,000, 5,000, 10,000, 20,000, 30,000, and 50,000. Conse-

quently, 21 test sets were prepared. For each of 21 test sets, we generated five test

103

Table 7.3: Results of baTS with |W | = 1000

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 4 5.92 4 0.01 4 9.800 4 0.062
r2 2 4.15 2 0.01 2 9.74 2 0.078
r3 7 67.141 7 0.01 7 10.56 7 0.035
r4 35 445.19 37 0.17 35 23.02 35 3.35
r5 4 0.59 4 0.01 4 9.72 4 0.062

requests. Each test request has a different solution length so that we can compare

competitors with different test scenarios (i.e., short versus long solution length).

In order to create a test requests r, we used WSBen, which is designed to generate

test requests automatically. For this purpose, WSBen operates as follows:

1. WSBen selects a Cluster j ∈ Gcl at random.

2. WSBen copies all parameters in the Cluster j (i.e., Paj) into ri, and then ro

is constructed so that it consists of the first five largest parameters in terms

of gri(p). Consequently, parameters in ro are farthest away from parameters

in ri in a parameter space.

WSBen repeats the above procedure five times, resulting in generating five requests

for each test set.

7.3.1 Comparison results over baTS

The results of the five test requests of baTS with |W | = 1, 000 are shown in Table

7.3. The AI planners and WSPR have no difficulty in computing solutions with

a small #W . On the other hand, IPP solves the fourth request by using two

more web services than the others. Regarding Time, Graphplan shows the best

performance, while Blackbox and IPP show poor performance. Overall, baTS with

|W | = 1, 000 is proved not to be a challenging test set for most of the planners

because the performance differences between competitors are not significant.

The results over the five test requests of baTS with |W | = 3, 000 are shown in

Table 7.4. While WSPR has no trouble in finding solutions, AI planners fail to

solve some cases. Blackbox, IPP, and Graphplan fail to solve the second request.

104

Table 7.4: Results of baTS with |W | = 3, 000

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 61 478.695 - - - - 37 11.75
r2 - - - - - - 66 16.78
r3 5 5 5 0.09 5 26.22 5 24.453
r4 9 27.78 9 0.11 9 28.56 9 2.626
r5 4 1.4 4 0.04 4 23.97 4 0.75

Table 7.5: Results of baTS with |W | = 5, 000

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 - - - - - - 59 22.358
r2 - - - - - - 50 24.921
r3 - - - - - - 68 20.062
r4 69 609.326 - - - - 45 19.53
r5 - - - - - - 83 29.125

Additionally, IPP and Graphplan also fail to solve the first request. Regarding

Time, Graphplan demonstrates the best performance in solving the last three

requests.

Table 7.5 shows the results of the five test requests of baTS with |W | = 5, 000.

Graphplan and IPP run out of memory for all cases. Blackbox also fails except for

the fourth request, but the solution length of the fourth request is longer than that

of WSPR. WSPR finds all solutions without difficulty. Regarding Time, WSPR

solves all requests within 30 seconds, but Blackbox takes 609 seconds to solve the

fourth request. The experiment results of baTS with |W | = 5, 000 implies that the

comparison of AI planners and WSPR is in vain once the number of web services

exceeds 5,000. Judging from the results above, the WSPR heuristics with the

strategy in support of locating a fully-matching web service first in a tie situation,

is in effect when the underlying network topology follows the scale-free network

topology.

105

Table 7.6: Results of nwsTS with |W | = 1, 000

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 2 0.1 2 0.01 2 0.03 2 0.062
r2 33 69.307 33 0.78 49 3.26 27 1.687
r3 28 5.990 28 0.62 35 2.9 34 1.437
r4 33 9.130 34 0.81 49 3 27 1.781
r5 56 1.800 56 1.02 - - 24 1.312

Table 7.7: Results of nwsTS with |W | = 3, 000

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 48 571.633 - - 48 29.52 17 7.812
r2 35 114.678 - - 35 28.57 18 7.687
r3 24 192.997 - - 24 30.19 19 7.375
r4 26 11.884 - - 26 28.39 16 6.515
r5 31 111.21 - - - - 31 7.352

7.3.2 Comparison results over newTS

The results of the five test requests of nwsTS with |W | = 1, 000 are shown in

Table 7.6. The AI planners and WSPR have no difficulty in generating solutions,

but IPP fails to solve the fifth request. Regarding #W , each competitor shows

various results. As a whole, WSPR presents better solution, except for the fourth

request. As a result, it can be said that WSPR shows better solutions in 80% of the

cases in terms of #W . Regarding Time, Graphplan shows the best performance,

while Blackbox and IPP show poor performance.

The results over the five test requests of nwsTS with |W | = 3, 000 are shown

in Table 7.7. Graphplan runs out of memory for all cases. IPP also fails to solve

the fifth request. WSPR overruns other planners in both #W and Time. Note

that Time values in this domain are generally longer than those of baTS. This is

because that the average network diameter of nwsTS is longer than that of baTS.

Table 7.8 shows the results of the five test requests of nwsTS with |W | = 5, 000.

Graphplan runs out of memory for all cases. IPP also fails to solve the fifth request.

WSPR finds all solutions, and four out of the five solutions are better than the

other planners. Regarding Time, WSPR overruns Blackbox and IPP. Compared

106

Table 7.8: Results of nwsTS with |W | = 5, 000. Time in second

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 47 61.96 - - 47 22.02 30 7.875
r2 29 58.4 - - - - 40 8.718
r3 39 30.98 - - 39 21.42 28 7.828
r4 38 7.14 - - 38 21.6 26 7.015
r5 39 3.54 - - 39 20.33 26 6.577

Table 7.9: Results of erTS with |W | = 1, 000

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 41 40.54 41 1.67 41 7.67 39 1.469
r2 12 0.46 12 0.01 12 1.58 12 0.187
r3 1 0.2 1 0.04 1 1.42 1 0.077
r4 74 193.539 - - - - 59 2.219
r5 55 7.630 55 5.6 - - 38 1.421

to baTS, Blackbox and IPP can still run even though #W and Time are poorer

than WSPR. According to the results above, the WSPR heuristics is in effect when

the underlying network topology follows the small-world network.

7.3.3 Comparison results over erTS

The results of the five test requests of erTS with |W | = 1, 000 are shown in

Table 7.9. Graphplan fails to solve the fourth request and IPP fails to solve the

fourth and fifth requests. WSPR and Blackbox have no problem in computing

solutions, but WSPR overruns Blackbox in terms of #W and Time.

Table 7.10 shows the results of the five test requests of erTS with |W | = 3, 000.

Graphplan fails in all cases and IPP fails to solve the first and second requests.

WSPR and Blackbox have no trouble in finding the solutions, but WSPR overruns

Blackbox in terms of #W , except for the third case. Regarding Time, WSPR

demonstrates better performance than others in three cases.

Table 7.11 shows the results of the five test requests of erTS with |W | = 5, 000.

Graphplan fails in all cases and IPP fails to solve the fifth request. WSPR and

Blackbox have no problem in obtaining solutions, but WSPR overruns Blackbox

107

Table 7.10: Results of erTS with |W | = 3, 000

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 75 38.09 - - - - 56 5.703
r2 50 16.02 - - - - 56 4.858
r3 22 18.68 - - 22 24.78 19 4.766
r4 23 4.38 - - 23 21.06 22 4.672
r5 38 4.01 - - 38 21 26 4.625

Table 7.11: Results of erTS with |W | = 5, 000

Blackbox Graphplan IPP WSPR
test requests

#W Time #W Time #W Time #W Time
r1 43 7.85 - - 43 44.21 19 13.719
r2 24 96.111 - - 24 47.46 13 9.094
r3 42 95.63 - - 42 48.47 15 8.202
r4 48 80.592 - - 48 47.75 22 8.984
r5 17 8.5 - - - - 12 8.625

in terms of #W . Regarding Time, WSPR shows better performances than others

in three cases. From the results, we can infer that the WSPR heuristics is in effect

even when the underlying network topology follows the random network.

In the experiments above, we assessed the performance of WSPR in comparison

with three AI planners: Graphplan, Blackbox, IPP. As a whole, WSPR presents

better solutions in 80% of the cases in terms of #W and also shows competitive

results in Time performance. On the contrary, AI planners show unstable perfor-

mances or failures as the test size increases. In particular, most AI planners do not

operate at all when the underlying web-service network follows the scale-free net-

work topology and the test size exceeds 5,000. One of the reasons for the failure of

AI planners is that the heuristics implicitly represented by the plan graph is a very

poor estimator in the web-service domain. Here, sub-goals are mostly independent,

like in the Gripper domain4 [70]. As a result, Graphplan based planners, such as

IPP, that perform a form of IDA* search must perform many iterations before

finding a solution. Even though Blackbox is an AI planner based on Graphplan,

Blackbox can run a large size where IPP and Graphplan cannot operate. It is ev-

4See Section 3.3.1 for the explanation of the Gripper domain

108

ident because Blackbox uses the local search SAT solver, Walksat5. However, the

results show that WSPR maintains a better performance than Blackbox in terms

of #W . The comparison between Blackbox and WSPR will be further analyzed

in Section 7.3.5.

From the above experiments using diverse test sets, we can understand how

different network models of Gcl influences the performance of WSC algorithms. In

general, given the same number of clusters, the Barabasi-Albert model generates

Gcl with a greater number of parameters and a larger variance of the number of

parameters between clusters than the Newman-Watts-Strogatz and Erdos-Renyi

models do. Due to the greater number of parameters and larger variance, baTS

based on the Barabasi-Albert model needs more partial-matching web services to

fulfill the given requests than others. As such, the increasing need for partial-

matching web services leads to increasing #W and T . This is the reason three AI

planners almost failed to run in the baTS case.

7.3.4 Scalability of WSPR

We change our focus from the comparison of WSPR and AI planners to the assess-

ment of scalability of WSPR. From Table 7.12 to Table 7.18, we list the comparison

results of WSPR and WSPR w/o heuristics over nine test sets in baTS domain.

As shown in Table 7.12, both algorithms have no complications in computing

solutions in the case of baTS at |W |=1,000. On the other hand, WSPR w/o

heuristics takes one more web service to solve the fourth request. Regarding Time,

they both take a similar amount. Therefore, the time to compute the heuristics is

trivial in this case.

Table 7.13 shows that both algorithms have no difficulty in computing solutions

when |W |=3,000. As for #W , WSPR overruns WSPR w/o heuristics. Regarding

Time, they both are almost the same, except that WSPR takes twenty times

longer in the third test request than WSPR w/o heuristics. This implies we can

face intractable tie situations where large number of web services have the same

heuristic value, thereby requiring considerable computational time to break the

tie.

5See Section 3.3 for the explanation of the Walksat

109

Table 7.12: Results of baTS with |W | = 1, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 4 0.062 4 0.078 1
r2 2 0.078 2 0.078 1
r3 7 0.035 7 0.39 4
r4 35 3.35 36 3.437 7
r5 4 0.062 4 0.078 1

Table 7.13: Results of baTS with |W | = 3, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 37 11.75 51 11.671 7
r2 66 16.78 82 17.233 7
r3 5 24.453 5 1.39 4
r4 9 2.626 11 2.562 5
r5 4 0.75 5 0.75 3

Table 7.14: Results of baTS with |W | = 5, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 59 22.358 89 22.626 7
r2 50 24.921 82 24.405 8
r3 68 20.062 100 23.766 7
r4 45 19.53 63 19.23 6
r5 83 29.125 126 28.724 9

The results of the five test requests of baTS with |W | = 5, 000 are shown in

Table 7.14. Both algorithms have no obstacles in calculating solutions. However,

similar to the baTS with |W | = 1, 000 case, WSPR overruns WSPR w/o heuristics.

Regarding Time, both yield similar results.

As shown in Table 7.15, both algorithms have no trouble in computing solutions

of the five test requests of baTS with |W | = 10, 000. WSPR overruns WSPR w/o

heuristics in terms of #W and Time. It is interesting to see that WSPR is rather

reduced in #W as compared to the previous small size test sets. We can infer that

as the number of web services increases, the chance to match web services fully

increases accordingly.

110

Table 7.15: Results of baTS with |W | = 10, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 14 34.967 40 35.469 5
r2 33 35.671 59 44.312 5
r3 12 31.578 53 31.671 4
r4 19 25.032 42 26.219 4
r5 37 33.687 51 34.937 6

Table 7.16: Results of baTS with |W | = 20, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 23 69.109 60 69.5 5
r2 20 61.453 109 62.89 5
r3 14 69.437 33 70.014 5
r4 22 77.218 73 74.125 5
r5 19 56.187 71 58.875 4

Table 7.16 displays that both algorithms have no barrier in finding solutions

in baTS with |W | = 20, 000. Like in the previous cases, WSPR overruns WSPR

w/o heuristics in terms of #W . Regarding Time, they both have similar results.

Interestingly, as a whole, Time in |W | = 20, 000 takes two times longer than that

reported in |W | = 10, 000. This result indicates that WSPR and WSPR w/o

heuristics are polynomial algorithms proportional to |W |.
The results of the five test requests of baTS with |W | = 30, 000 are shown

in Table 7.17. Like in previous cases, both algorithms do not have a problem in

computing solutions, but WSPR overruns WSPR w/o heuristics in terms of #W .

It is interesting to view that in the first and second requests, #W of WSPR reaches

the lower bound of optimal #W . Since optimal values cannot be lower than those

bounds6, it is evident that WSPR finds the optimal solutions in these two cases.

Regarding Time, both have similar results. As a whole, Time is three times longer

than that reported in |W | = 10, 000. Thus, it can be proved experimentally that

WSPR and WSPR w/o heuristics are polynomial algorithms proportional to |W |.
As shown in Table 7.18, like in the previous cases, both algorithms have no

6See Theorem 6.1.3

111

Table 7.17: Results of baTS with |W | = 30, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 4 77.657 64 73.483 4
r2 4 74.5 36 83.703 4
r3 6 94.828 26 133.343 4
r4 17 80.297 61 78.139 4
r5 12 79.391 21 76.78 4

Table 7.18: Results of baTS with |W | = 50, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 12 121.891 31 242.516 4
r2 20 172.375 76 179.875 6
r3 13 118.467 32 123.187 4
r4 8 155.375 52 162.718 5
r5 13 115.141 53 115.78 4

difficulty in computing solutions, and WSPR overruns WSPR w/o heuristics in

terms of both #W and Time. It is interesting to observe that the Time of WSPR

w/o heuristics at the first request takes twice as long as that of WSPR. It suggests

that the efficiency brought by the heuristics of WSPR becomes more distinctive

with the increase of |W |. As a whole, both algorithms are approximately five

times slower in Time as compared to Time when |W |=10,000. Accordingly, it

can be further proved experimentally that WSPR and WSPR w/o heuristics are

polynomial algorithms proportional to |W |.
From Table 7.19 to Table 7.25, we list the comparison results of WSPR and

WSPR w/o heuristics for the nine test sets in nwsTS domain.

The results of the five test requests of nwsTS with |W | = 1, 000 are shown

in Table 7.19. Both algorithms do not have a problem in computing solutions.

However, WSPR overruns WSPR w/o heuristics, as in baTS domain. Regarding

Time, they both are approximately the same.

As shown in Table 7.20, both algorithms have no trouble in computing solutions

in |W | = 3, 000. Like in previous cases, WSPR overruns WSPR w/o heuristics,

and regarding Time, both are almost the same. This means that WSPR computes

112

Table 7.19: Results of nwsTS with |W | = 1, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 2 0.062 2 0.047 1
r2 27 1.687 44 1.609 15
r3 34 1.437 39 1.391 12
r4 27 1.781 42 1.702 15
r5 24 1.312 30 1.234 10

Table 7.20: Results of nwsTS with |W | = 3, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 17 7.812 24 8.733 9
r2 18 7.687 34 7.894 9
r3 19 7.375 43 7 8
r4 16 6.515 26 6.171 7
r5 31 7.352 55 7.5 9

Table 7.21: Results of nwsTS with |W | = 5, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 30 7.875 64 7.562 11
r2 40 8.718 54 7.875 12
r3 28 7.828 47 7.5 11
r4 26 7.015 43 6.78 10
r5 26 6.577 43 6.28 9

its heuristics in regression search without loss of computation time.

Table 7.21 shows that both algorithms have no difficulty in calculating solutions

when |W | = 5, 000, but WSPR overruns WSPR w/o heuristics. Regarding Time,

both are almost same.

The results of the five test requests of nwsTS with |W | = 10, 000 are shown in

Table 7.22. The results coincide with previous results in that both algorithms have

no obstacles in computing solutions, but WSPR overruns WSPR w/o heuristics in

terms of #W and Time. It is interesting to see that in the first, fourth, and fifth

requests, WSPR finds optimal solutions.

The results of the five test requests of nwsTS with |W | = 20, 000 are disclosed

113

Table 7.22: Results of nwsTS with |W | = 10, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 13 17.485 35 17.719 13
r2 31 18.782 76 18.233 14
r3 32 19.906 83 19.343 15
r4 8 11.875 18 11.062 8
r5 15 20.062 73 18.53 15

Table 7.23: Results of nwsTS with |W | = 20, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 10 27.03 21 26.562 10
r2 8 22.671 18 21.25 8
r3 11 25.812 31 25.953 11
r4 9 21.842 30 22.062 9
r5 10 25.78 31 24.358 10

in Table 7.23. Both algorithms have no difficulty in computing the solutions.

Similar to the previous cases, WSPR overruns WSPR w/o heuristics in terms of

#W . Regarding Time, both have similar results. Interestingly, WSPR finds the

optimal solution for all cases. It highlights the superiority of WSPR in terms of

its effectiveness.

As displayed in in Table 7.24, both algorithms have no difficulty in computing

solutions. Similar to the previous cases, WSPR overruns WSPR w/o heuristics in

terms of #W . Regarding Time, both have similar results. WSPR finds the optimal

solution in the second and fourth cases. Note that #W of WSPR is roughly three

times less than that for WSPR w/o heuristics. Interestingly, as a whole, both

algorithms become three times slower in Time than in |W | = 10, 000. Thus, it can

be proved experimentally that WSPR and WSPR w/o heuristics are polynomial

algorithms proportional to |W | in this domain.

Table 7.25 shows the results of the five test requests of nwsTS with |W | =

50, 000. The results are similar to previous cases. WSPR overruns WSPR w/o

heuristics in terms of both #W and Time. In the second and fifth requests,

WSPR finds optimal solutions. Be aware that WSPR is roughly five times slower

114

Table 7.24: Results of nwsTS with |W | = 30, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 12 37.625 30 38.766 10
r2 10 36.719 70 38.171 10
r3 15 36.531 45 37.717 11
r4 10 40.985 33 36.5 10
r5 17 50.672 55 45.296 13

Table 7.25: Results of nwsTS with |W | = 50, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 22 78.108 52 74.655 11
r2 7 67.78 15 60.468 7
r3 9 61.703 17 56.483 8
r4 8 53.812 15 61.766 7
r5 10 81.812 29 82.094 10

Table 7.26: Results of erTS with |W | = 1, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 39 1.469 45 1.453 8
r2 12 0.187 12 0.001 3
r3 1 0.077 12 0.187 1
r4 59 2.219 62 0.062 14
r5 38 1.421 92 2.202 8

in Time than in |W | = 10, 000. We can prove again experimentally that WSPR

and WSPR w/o heuristics are polynomial algorithms proportional to |W |.
From Table 7.26 to Table 7.32, we list the comparison results of WSPR and

WSPR w/o heuristics of the nine test sets in erTS domain. The results of the five

test requests of erTS with |W | = 1, 000 are shown in Table 7.26. Both algorithms

do not have trouble in computing the solutions. However, WSPR overruns WSPR

w/o heuristics. Regarding Time, both are nearly the same.

As shown in Table 7.27, both algorithms have no problem in calculating solu-

tions, and WSPR overruns WSPR w/o heuristics. The Time of WSPR is slightly

faster than WSPR w/o heuristics. From less Time and smaller #W , we can infer

115

Table 7.27: Results of erTS with |W | = 3, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 56 5.703 59 6.296 11
r2 56 4.858 89 5.405 8
r3 19 4.766 24 6.233 9
r4 22 4.672 25 6.344 8
r5 26 4.625 36 5.891 8

Table 7.28: Results of erTS with |W | = 5, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 19 13.719 46 11.14 7
r2 13 9.094 23 10.516 7
r3 15 8.202 40 10.609 8
r4 22 8.984 42 11.263 9
r5 12 8.625 24 10.202 7

Table 7.29: Results of erTS with |W | = 10, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 12 12.532 33 11.922 6
r2 15 11.532 30 10.031 6
r3 8 12.53 18 11.437 6
r4 14 11.358 34 11.312 7
r5 15 10.812 35 11.062 6

that the heuristics of WSPR rather saves the computation time by reducing #W .

Table 7.28 reveals that both algorithms have no trouble in computing the so-

lutions, and WSPR overruns WSPR w/o heuristics. As a whole, #W of WSPR

is twice less than that of WSPR w/o heuristics, meaning that the heuristics of

WSPR is in effect. Regarding Time, both are similar.

The results of the five test requests of erTS with |W | = 10, 000 are displayed

in Table 7.29. Like in previous cases, both algorithms have no difficulty in finding

solutions, and WSPR overruns WSPR w/o heuristics in terms of #W .

As shown in Table 7.30, both algorithms do not have trouble in computing

solutions when |W | = 20, 000. Like in previous results, in terms of #W , WSPR

116

Table 7.30: Results of erTS with |W | = 20, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 15 36.859 36 38.094 9
r2 10 21.125 31 21.469 5
r3 19 32.516 37 33.577 8
r4 15 29.297 33 33.25 8
r5 10 30.172 25 31.375 7

Table 7.31: Results of erTS with |W | = 30, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 14 47.985 71 71.062 9
r2 12 48.75 30 47.985 9
r3 20 51.344 56 50 10
r4 14 55.437 35 42.812 7
r5 14 45.687 54 45.921 9

overruns WSPR w/o heuristics by using just half the number of web services

required by WSPR w/o heuristics. Regarding Time, WSPR is slightly faster.

Table 7.31 shows the results of the five test requests of erTS with |W | = 30, 000.

The results are similar to previous cases in that both algorithms have no difficulty

in computing solutions, and WSPR overruns WSPR w/o heuristics in terms of

#W . Regarding Time, both have similar results. Interestingly, as a whole, WSPR

is approximately five times slower in Time than in |W | = 10, 000. Thus, it can

be proved experimentally that WSPR and WSPR w/o heuristics are polynomial

algorithms proportional roughly to 2× |W | in this domain.

The results of the five test requests of erTS with |W | = 50, 000 are shown in

Table 7.32. Similar to the previous cases, WSPR overruns WSPR w/o heuristics

in terms of #W . In the second and third requests, WSPR finds optimal solutions.

Interestingly, WSPR is roughly ten times slower in Time as |W | increase from

|W | = 10, 000 to |W | = 50, 000. This result further supports that WSPR and

WSPR w/o heuristics are polynomial algorithms proportional roughly to 2× |W |.
Tables 7.33, 7.34 and 7.35 demonstrates how effectively WSPR and WSPR w/o

heuristics can solve requests as the test size increases from 1,000 to 50,000. The

117

Table 7.32: Results of erTS with |W | = 50, 000

WSPR WSPR w/o heuristics Lower bound
test requests

#W Time #W Time #W
r1 8 87.032 30 88.25 7
r2 7 85.407 28 82.733 7
r3 8 120.233 33 116.108 8
r4 11 103.984 37 108.484 8
r5 11 94.468 35 92.769 7

Table 7.33: Effectiveness of WSPR over the baTS test sets in terms of #W

|W | (1,000) 1 3 5 10 20 30 50
WSPR 10.4 24.2 61 23 19.6 8.6 13.2

WSPR w/o heuristics 10.6 30.8 92 49 69.2 41.6 48.8
Lower bound 2.8 5.2 7.4 4.8 4.8 4 4.6

Table 7.34: Effectiveness of WSPR over the nwsTS test sets in terms of #W

|W | (1,000) 1 3 5 10 20 30 50
WSPR 22.8 20.2 30 19.8 9.6 12.8 11.2

WSPR w/o heuristics 31.4 36.4 50.2 57 26.2 46.6 25.6
Lower bound 10.6 8.4 10.6 13 9.6 10.8 8.6

Table 7.35: Effectiveness of WSPR over the erTS test sets in terms of #W

|W | (1,000) 1 3 5 10 20 30 50
WSPR 29.8 35.8 16.2 12.8 13.8 14.8 9

WSPR w/o heuristics 32.4 46.6 35 30 32.4 49.2 32.6
Lower bound 6.8 8.8 7.6 6.2 7.4 8.8 7.4

#W of WSPR and WSPR w/o heuristics at each size is averaged over the solutions

to the five requests. The lower bound of #W is also averaged over the five lower

bounds for each of solutions. Regarding #W , WSPR and WSPR w/o heuristics

do not have trouble in addressing requests even when |W | = 50, 000. However

WSPR overruns WSPR w/o heuristics completely. Conclusively, WSPR is more

effective than WSPR w/o heuristics.

Regarding Time, Tables 7.36, 7.37 and 7.38 show how efficiently WSPR and

WSPR w/o heuristics can solve requests as the test size increases from 1,000 to

50,000 in each of baTS, nwsTS and erTS. WSPR and WSPR w/o heuristics

118

Table 7.36: Scalability of WSPR over the baTS test sets in terms of Time

|W | (1,000) 1 3 5 10 20 30 50
WSPR 0.7 11.2 23.1 32.1 66.6 81.3 136.6

WSPR w/o heuristics 0.8 6.7 23.7 34.5 67.0 89.0 164.8

Table 7.37: Scalability of WSPR over the nwsTS test sets in terms of Time

|W | (1,000) 1 3 5 10 20 30 50
WSPR 1.25 7.34 7.6 17.62 24.62 40.5 68.64

WSPR w/o heuristics 1.19 7.45 7.19 16.97 24.03 39.29 67.09

Table 7.38: Scalability of WSPR over the erTS test sets in terms of Time

|W | (1,000) 1 3 5 10 20 30 50
WSPR 1.0746 4.9 9.7 11.7 29.9 49.8 98.2

WSPR w/o heuristics 0.7 6.0 10.7 11.1 31.5 51.5 97.6

scale up smoothly. Thus, WSPR and WSPR w/o heuristics are efficient and we

can conclude that the two step search approach is in effect for increasing the

computational efficiency.

Figure 7.1 shows how WSPR and WSPR w/o heuristics operate in the baTS

domain as the test size increases from 1,000 to 50,000. Note that the #W and

Time at each size are averaged over the solutions to the five requests. The line

with triangle-mark at the bottom in the left graph of Figure 7.1 links values where

each value is averaged over the five lower bounds of optimal solutions at each

size. Regarding #W , WSPR and WSPR w/o heuristics have no difficulties to

address requests even when |W | = 50, 000. However, WSPR overruns WSPR w/o

heuristics completely. Regarding Time, WSPR and WSPR w/o heuristics scale up

smoothly, with WSPR being slightly faster than WSPR w/o heuristics. We can

simply assert that WSPR will continue to perform with this increasing smooth

pattern in terms of Time, even if |W | continues to increase. Thus, the time to

compute the heuristics in the regression searching step is trivial and WSPR is

scalable when the underlying web-service network topology follows the scale-free

network topology.

Figure 7.2 deals with the nwsTS domain by showing how WSPR and WSPR

w/o heuristics operate as the test size increases from 1,000 to 50,000. Regarding

119

Figure 7.1: Scalability and effectiveness of WSPR over the baTS test sets. (left)
#W . (right) Time

Figure 7.2: Scalability and effectiveness of WSPR over the nwsTS test sets. (left)
#W . (right) Time

#W , as in baTS domain, WSPR and WSPR w/o heuristics have no trouble in

addressing requests, even when |W | = 50, 000, but WSPR overruns WSPR w/o

heuristics completely. Regarding Time, similar to the baTS case, WSPR and

WSPR w/o heuristics scale up smoothly without differences between them. In

this domain, we can also simply assert that WSPR will continue to work with

this increasing smooth pattern in terms of Time even if |W | continues to increase.

Thus, WSPR is scalable when the underlying web-service network topology follows

the small-world network.

Figure 7.3 deals with the erTS domain by showing how effectively and effi-

ciently WSPR and WSPR w/o heuristics can solve requests as the test size in-

creases from 1,000 to 50,000. The results are similar to baTS and nwsTS. That

is, we can hold our assertion that WSPR will continue to work with this smooth

120

Figure 7.3: Scalability and effectiveness of WSPR over the erTS test sets. (left)
#W . (right) Time

Figure 7.4: A solution of WSPR to nwsTS with |W | = 3, 000

increasing pattern in terms of Time, even if |W | becomes large. As a result, WSPR

remains scalable even in the case where the underlying web-service network topol-

ogy follows the random network.

For a better understanding of the difference between WSPR and WSPR w/o

heuristic in terms of #W , we can conduct a statistical analysis on #W results data.

Remember that we generate 21 test sets (seven test sets for each of baTS, nwsTS,

and erTS). An paired T-test analysis7 showed significant differences between

competitors (p = 0.008 < 0.05). The low p value indicates a strong probability

7This analysis was conducted using Data Analysis ToolPak offered by MS-Office Excel

121

Figure 7.5: A solution of Blackbox to nwsTS with |W | = 3, 000

that one method’s mean rank is significantly different from another, because p

value means the probability that WSPR and WSPR w/o heuristic are samples

from populations with the same mean. From this analysis, we can conclude that

the WSPR’s heuristic is in effect and its underlying hypothesis is is true. The

hypothesis in Chapter 6 was as follows:

Hypothesis-1 : Choosing a web service with a greater contribution to match

subGoal earlier in the regression search helps reach the initial state faster.

7.3.5 WSPR and Blackbox

Figures 7.4 and 7.5 illustrate the solutions of WSPR and Blackbox to the fourth

request of nwsTS with |W | = 3, 000, respectively. Note that WSPR and Blackbox

have the same scheme in their forward searching stage because both aim to mini-

mize the number of time steps to reach the goal. Therefore, as shown in the figure,

both WSPR and Blackbox have the same number of time steps of eight. However,

in their regression searching schemes, considerable differences exist. As mentioned

in Section 3.3, when the size of a test set becomes very large, Blackbox skips per-

forming a form of IDA* search. Instead, Blackbox converts the plan graph into a

set of clauses that form a satisfiability problem (SAT problem). For the SAT prob-

122

lem, Blackbox applies Walksat, which belongs to the incomplete local SAT search

algorithms. The algorithm8 is limited to seek an assignment of the variables that

satisfies a given formula without considering full- or partial matching. It is natural

because the SAT problem is a decision problem, not an optimization problem. As

a result, Walksat search strategy can produce poor solutions in the WSC problem

domain.

For example, at the sixth time step in Figure 7.5, Blackbox composes a set of

four web services, such as {ws38, ws366, ws369, ws710}, to match the sub-goal at

the seventh time step that is the set of input parameters of two web-services, such

as {ws371, ws1364}. This decision results in an exponentially increasing number

of web services for the subsequent sub-goal. Due to the exponentially growing

number, as previous results show, the regression search of Blackbox often fails

before it reaches the initial state. On the contrary, at the same time step, WSPR,

which is designed to favor the full-matching web services, composes a set of two

web services, such as {ws1362, ws2355}, to match the sub-goal that the set of

input parameters of two web services, such as {ws1364, ws702}. Thus, the size of

subsequent sub-goal does not explode and continues this pattern until it reaches

the initial state, thereby reducing #W .

7.4 Summary

The experiments above, based on three human or machine-generated test sets,

show that WSPR is capable of solving the problems better than other off-the-

shelf AI planners in terms of efficiency, effectiveness, and scalability. In particular,

WSPR tends to have a better performance than other AI planners when the un-

derlying web service network topology is the scale-free network. Indeed, the other

AI planners do not operate at all when the underlying web service network follows

the scale-free network and the test size exceeds 5,000. Note that the size of the

parameter set is the largest in the scale-free network case, and the computational

complexity of the WSC problem exponentially increases as the size of the param-

eter set increases. This implies that the other AI planners are not as scalable as

8See Section 3.3 for more details about two search strategies of Walksat: a random walk
strategy and a greedy strategy

123

WSPR.

WSPR also demonstrate a better performance over WSPR w/o heuristics, re-

gardless of the different topologies of underlying web-service networks and the test

set sizes. Thus, the strategy in support of locating fully-matching web service first

in a tie situation is in effect. The experiments also proved that the two stage

approach of WSPR has a significant effect on reducing computational time and es-

tablishing scalability because Time of both WSPR and WSPR w/o heuristics did

not blow up exponentially when the test set size increases. Finally, the experiments

showed the usefulness of the suggested test set framework because it helps explain

how algorithms run in different environments and test scenarios (e.g., small versus

large sizes; diverse parameter cluster network topologies such as scale-free, small-

world and random networks; and short versus long solution length). We recognize

that the AI planning community can view WSPR as a customized algorithm for

the WSC problem. As confirmed by the experimental evaluation, however, WSPR

can be seen as a robust solution for the WSC problem because it can perform well

in diverse WSC scenarios, as well as in the large number of web services.

The main findings about WSPR from these experimental results are as follows:

1. Effectiveness: it is defined as the ability to achieve stated goals or objectives,

judged in terms of both output and impact. Our objective was to compose

web services to generate the desired service with a minimum of web services.

As confirmed by the experimental evaluation, WSPR shows better results

in 80% of all the cases in terms of #W , compared to the other prominent

AI planners including Blackbox, IPP, and Graphplan. In particular, WSPR

dominated WSPR w/o heuristics. This implies that the heuristics of WSPR

with the strategy in support of locating fully-matching web service first in a

tie situation, is in effect.

2. Computational efficiency: we measured how quickly WSPR generates the

correct solutions in comparison with the other AI planners, as more data are

applied to the problem. The experimental validation showed that WSPR

outperformed the other competitors with significant differences in terms of

Time.

3. Scalability: an algorithm is scalable if it can adapt to increased workloads and

124

continues to function well. The experiments proved that WSPR and WSPR

w/o heuristics did not blow up exponentially when the test set size increases.

This implies that both algorithms are scalable and the two step approach

of WSPR is responsible for scalability. Note that WSPR and WSPR w/o

heuristics perform the two step search process but WSPR w/o heuristics does

not utilize the heuristic in the regression search step.

4. Robustness: an algorithm is considered to be robust if its’ performance re-

mains relatively stable, with a minimum of variation, even though its appli-

cation domain changes. As confirmed by the experimental evaluation, WSPR

can be seen as a robust solution to the WSC problem, because it can per-

form persistently well in diverse WSC scenarios that arise in different test

sets, including EEE05, ICEBE05 characterized by the tree structure, and

WSBen generated test sets: baTS, newTS, and erTS featured by complex

and random graph structures.

Chapter 8
Application of Semantic Web-service

Composition in Manufacturing

The process to obtain interoperability between manufacturing and logistic compa-

nies takes a long time because companies have heterogeneous information systems

that are not designed for interoperability. Semantic web-service technologies have

the potential of saving the time needed for obtaining the interoperability by au-

tomating these tasks. In this chapter, we propose an ontology-based framework

using semantic web-service technologies to secure the reliable and large scale in-

teroperability among the distributed entities of a manufacturing systems, namely:

a design firm, manufactures, and third party logistics providers. We review exist-

ing semantic web-service technologies and propose an approximate scenario that

forms the motivating base for our proposed framework. Currently, this work is

only at the conceptual stage, with a focus on proposing a software design rather

than implementing the proposed framework.

8.1 Research Background

In the past, most companies were able to reduce manufacturing costs and main-

tain consistent quality by mass production because demands were stable, markets

were homogeneous, and product life cycles were long [43]. More recently, markets

have been changed into volatile environments characterized by mass customiza-

tion. Typically, production life cycle is shortened, marketing powers are shifted

126

towards buyers who require individual customization, and markets become highly

diversified and global [56]. The use of a loosely integrated virtual enterprise based

framework holds the potential of surviving the changing market needs [61]. As a

result, the growth on both the volume and scope in the e-business for the manu-

facturing domain is fast.

However, since manufacturing and logistic companies use heterogeneous infor-

mation systems, business to business (B2B) integration is necessary for conducting

the e-business [72]. Automated transaction between companies can save time and

be less error-prone than having people process repetitive information [60]. The

use of standards (e.g., RosettaNet1) is considered to be an extendable solution

for many partners to enable such automatic transactions between them. In order

to use the standards, partners must extract the internal contents for automated

transactions from their information systems. This is because these standards pro-

vide high flexibility at the implementation level, such as message contents and how

processes are composed. Therefore, partners have to make a significant effort to

implement exactly how a standard is used, even though they agree on the stan-

dard. Consequently, the standard-based B2B integration between manufacturing

companies can take a significant amount of time and effort.

Web services have added a new level of functionality to the current web by

taking a first step towards seamless integration of distributed software compo-

nents using web standards. Nevertheless, current Web-service technologies around

SOAP, WSDL, and UDDI operate at a syntactic level, although they support in-

teroperability between the many diverse application development platforms that

exist today through common standards. They, however still require human inter-

action to a large extent. For example, the human programmer has to manually

search for appropriate web services in order to combine them in a useful manner,

which limits scalability and greatly curtails the added economic value envisioned

with the advent of web services.

Semantic web services (SWS) introduce new technologies for information sys-

tem integrations which can significantly speed up the integration process, thus en-

abling seamless interoperation between different information systems while keeping

human intervention to a minimum. In other words, if business partners describe

1http://www.rosettanet.org/Rosettanet/Public/PublicHomePage

127

their service properties, capabilities, and interfaces (how to interact with them)

in computer understandable form [61] using SWS technologies, it is possible to

use mediation technology to adapt the interaction of another business partner to

be compatible [89]. Although several initiatives, such as OWL-S [95, 110, 109],

WSMO2, and WSDL-S3, have emerged in this area aiming at addressing the prob-

lem of semantics in web services, we will mainly use OWL-S to address our problem

of achieving B2B integration between manufacturing and logistic companies who

use heterogeneous information systems.

8.2 Motivating Scenario

Consider a scenario in a design firm, where there is an order requesting the man-

ufacturing of gear by a cutting process out of forged raw material. The forging

manufacturing process has two sub-types: conventional and precision forging pro-

cesses [105]. The conventional forging process leads to raw parts with rough sur-

faces and large allowances, which is the amount of material to be removed in the

final manufacturing steps. On the other hand, in the case of the precision forging

process, raw parts are characterized by small allowances and are hardened with

semi-rough surfaces. In addition to the order of the manufacturing of a gear, the

design firm makes another order to request the delivery of the produced gears from

the manufacturer. The design firm prefers both the manufacturing and logistics

company to be co-located in Pennsylvania, where the design firm is located.

If the design firm has no manufacturers and logistics providers with prior re-

lationships, the design firm may have to use an ad hoc, time-consuming, and

error-prone process to locate the right business partners. However, if each busi-

ness partner provides its service using semantic web services encoded in computer

understandable form, then we can describe an automatic information workflow be-

tween business partners using the UML activity diagram as shown in Figure 8.1.

The activity diagram has four basic collaboration steps: (1) Service specification,

(2) Matchmaking, (3) Negotiation and bidding, and (4) Contracting.

In order to seamlessly integrate the basic collaboration steps, we propose a

2http://www.wsmo.org
3http://www.w3.org/Submission/WSDL-S/

128

Figure 8.1: Activity diagram for the motivating example

four-step based approach in Section 8.4 using the semantic web service technology.

8.3 Semantic Web Services

Web services require the description of each service so that other services can

understand its features and learn how to interact with it. The representative

language for describing operational features of web services is WSDL (Web Services

Description Language) [115]. WSDL is being standardized within the World Wide

Web Consortium(W3C). Major industry leaders are supporting and participating

in WSDL development. Therefore, WSDL is likely to gain considerable momentum

as the language for web service description. However, WSDL provides little or no

support for semantic description of web services. It mainly includes constructs that

describe web services from a syntactic point of view. To implement semantic web-

enabled web services, it is required to extend WSDL with semantic capabilities.

This is also known as “lifting”. This extension would lay the groundwork for the

automatic selection and composition of web services. A web ontology languages,

129

Figure 8.2: Top-level OWL-S classes and their relationships

such as OWL [109] may be used to specify the proposed semantics. It is an object-

oriented language describing semantics in terms of classes, properties, and axioms

(e.g., subsumption relationships between classes or properties). OWL builds on

earlier web ontology standards, such as RDF and RDF Schema, and extends those

languages with richer modeling primitives (e.g., cardinality).

OWL-S is an ontology of service concepts that supplies a web service de-

signer with a core set of markup language constructs for describing the proper-

ties and capabilities of a web service in an unambiguous, computer-interpretable

form [110, 95]. Following the layered approach to markup language development,

the current version of OWL-S builds on OWL by the W3C. OWL-S introduces

ontologies to describe the concepts in the services’ domain (e.g., flights and ho-

tels, tourism, e-business), and generic concepts to describe the services themselves

(e.g., control flow, data flow) and how they relate to the domain ontologies (via

inputs and outputs, preconditions and effects, and so on). These semantically

rich descriptions enable automated machine reasoning over service and domain

descriptions, thus supporting automation of service discovery, composition, and

execution, while reducing manual configuration and programming efforts.

OWL-S organizes a service description into four conceptual areas, as shown in

Figure 8.2: (1) Process model, (2) Profile, (3) Grounding, and (4) Service.

• Process model: A process model describes how a service performs its tasks.

It includes information about inputs, outputs (including a specification of the

130

conditions under which various outputs will occur), preconditions (circum-

stances that must hold before a service can be used), and results (changes

brought about by a service). The process model differentiates between com-

posite, atomic, and simple processes. For a composite process, the process

model shows how it breaks down into simpler component processes, and it

displays the flow of control and data between them. Atomic processes are

essentially “black boxes” of functionality, and simple processes are abstract

process descriptions that can relate to other composite or atomic processes.

• Profile: A profile provides a general description of a web service, and it is

intended to be published and shared to facilitate service discovery. Profiles

can include both functional properties (inputs, outputs, preconditions, and

results) and nonfunctional properties (service name, text description, con-

tact information, service category, and additional service parameters). The

functional properties are derived from the process model, but it is not nec-

essary to include all the functional properties from the process model in a

profile. A simplified view can be provided for service discovery, based on the

assumption that the service consumer would eventually look at the process

model to achieve a full understanding of how the service works.

• Grounding: A grounding specifies how a service is invoked by detailing how

the atomic processes in a services process model map onto a concrete mes-

saging protocol. OWL-S provides for different types of grounding to be used,

but the only type developed to date is the WSDL grounding, which allows

any web service to be marked as an semantic web services using OWL-S.

• Service: A service simply binds the other parts together into a unit that

can be published and invoked. It is important to understand that the dif-

ferent parts of a service can be reused and connected in various ways. For

example, a service provider may connect its process model with several pro-

files in order to provide customized advertisements to different communities

of service consumers. A different service provider that offers a similar ser-

vice may reuse the same process model, possibly as part of a larger com-

posite process, and connect it to a different grounding. The relationships

between service components are modeled using properties, such as presents

131

(Service-to-Profile), described By (Service-to-Process Model), and supports

(Service-to-Grounding) as shown in Figure 8.2.

Note that process models of OWL-S employs the orchestration-based service

composition approach, where one executable business process may interact with

both internal and external web services. In other words, the composed service oper-

ates as the hub station for data-flow and control-flow. Differing from the centralized

orchestration approach, the choreography-based service composition approach is

more collaborative in nature, where each party involved in the process describes the

partial role in the interaction. Consequently, there is no one party that virtually

owns the conversation initiative. In the industry standards, Web Service Chore-

ography Interface (WSCI)4 is designed for implementing the choreography-based

service composition, while the Business Process Execution Language for Web Ser-

vices (BPEL4WS)5 intends to realize the orchestration-based service composition.

Liu et al. [66] proposed a protocol called Flow-based Infrastructure for Composing

Autonomous Services (FICAS), which supports the choreography based service

composition paradigm. They showed that FICAS can reduce the amount of data

traffic significantly by moving computations closer to the data.

8.4 Overview of the Proposed Framework

Based on the motivating example in Section 8.2, we propose an approach for the

automatic composition of services provided by distributed business partners, as

shown in Figure 8.3. This approach consists of four conceptually separate phases:

service specification, matchmaking, negotiation and bidding, and generating com-

posite services. This approach is essentially in accordance with the framework

proposed by Medjahed et al. [72]. However, our proposal adopts negotiation and

bidding step to select the best business partner while Medjahed et al. use a simple

selection algorithm based on the QoS (quality of service) parameters specified in

the web-service profiles. We believe that our approach can generate more feasible

solutions than the previous approach because it can induce business partners’ in-

4http://www.w3.org/TR/wsci/
5http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

132

Table 8.1: OWL primitives in DL terms

DL Syntax OWL Syntax Serv. Descript. Lang.
A owl:Class Concept
> owl:Thing Thing
⊥ owl:Nothing Nothing

(C ⊆ D) owl:subClassOf Subsumption
(C ≡ D) owl:sameClassAs Equivalence

R owl:Property Properties
R owl:ObjectProperty ObjectProperties

(C uD) owl:intersectionOf Conjunction
(C tD) owl:disjunctionOf Disjunction
(¬C) owl:complementOf Negation

(∀R.C) owl:toClass Universal Role Rest.
(∃R.C) owl:hasClass Existential Role Rest.

R− owl:inverseOf Inverse Roles
(R ⊆ S) owl:subPropertyOf Subsumption of Roles
(R ≡ S) owl:samePropertyAs Equivalence of Roles
{o} XML Type + rdf:value Nominals

∃T.{o} owl:hasValue Value Restrictions

volvement and competition in terms of prices as well as quality. However, it may

pose problems related to convergence.

• Specification phase: The specification phase enables high-level descriptions

of the desired service. For the description purpose, we can use Description

Logics (DL) language. DL is used to express the subsumption, equality, and

set definitions between classes and objects. There are both major DL lan-

guages such as DAML-DL (DAPPA Markup Language) [108] and OWL-DL,

which are compatible because OWL-DL is based on DAML-DL. DL requires

a reasoning service. The Java-based Expert System (JESS) [42] implements

the interface APIs for DAML-DL so that JESS can translate DAML-DL

into a set of predicates (ordered-facts) consisting of property or verb, sub-

ject, and object. Suppose that partners’ service profiles are translated into

the JESS knowledge base. Then, we can filter desired service profiles via

DAML-DL as a query language. Likewise, there are OWL-DL reasoners,

such as RACER [49] and Pellet [85], which will be useful.

Another approach to describe the desired service is to use Composite Service

133

Figure 8.3: Overview of the proposed approach for service composition

Specification Language (CSSL) [72]. CSSL aims at providing the high-level

descriptions of composite services. Composers only need to have a general

idea about the service they are interested in offering (e.g., the operations

to be outsourced). They are not required to be aware of the full technical

details, such as descriptions of the component services, their characteristics

(e.g., data types), and how they are plugged together.

CSSL does not have a powerful reasoning engine like JESS, RACER, or Pal-

let. Meanwhile JESS, RACER and Pallet are not appropriate in themselves

for composing multiple service profiles. For these reasons, CSSL and DL can

be considered compatible with each other. In other words, the high-level

composite service requirement can be described in CSSL, and the detailed

atomic services of the composite service can be described in DL.

• Matchmaking phase: Once specifications are provided, the next step is to

filter service profiles that conform to the specifications defined in the previous

step. If the requirements are described in OWL-DL, RACER or Pellet can

be exploited to filter the service profiles.

134

Figure 8.4: Partial ontologies in EXPRESS-G format. (left) Manufacturing pro-
cess. (right) Vehicle

• Negotiation and bidding phase: In the previous matching phase, service re-

questers have the possibility of finding a large number of service profiles

conforming to the requirements. In this case, it is a crucial issue to locate

a partner who can provide a service (e.g., manufacturing or logistics) with

the minimum cost or the highest quality. To search for the best partner,

the service requester can send bid requests to the companies filtered in the

previous matchmaking phase, and choose the partner who offers the lowest

cost with high quality.

• Composite service generation: The last phase aims at generating a detailed

description of a composite service. This includes the list of outsourced ser-

vices, mappings between composite service and component service opera-

tions, mappings between messages and parameters, and flow of control and

data between component services. We can use an OWL-S process model to

describe how the desired composite service can be broken down into simpler

concrete services provided by business partners, as well as the flow of control

and date between the services.

135

Figure 8.5: The service description of the motivating scenario

8.5 Illustrative Example

8.5.1 Specification phase

We now describe the service request of the design firm in the motivating scenario

in terms of OWL-DL. The primitives of OWL-DL is explained in Table 8.1. When

services are discovered and selected, the business level description of the services

plays a key role. In our problem domain, this will be a description of what man-

ufacturing process are to be served, which vehicle is being used, and where they

must be located. At the service selection stage, we can describe the requirement

of the design firm as follows:

• SmyService ≡ (srvc : operationServiceu∃srvc : locationAt.{Pennsylvania}u
∃srvc : service.{oper : Forging} u ∃srvc : service.{oper : GearHobbing}) u
(srvc : V ehicleServiceu∃srvc : locationAt.{Pennsylvania}u∃srvc : service.{oper :

LightTruck})

This service description states that the design firm requires: (1)A manufactur-

ing company which is located in Pennsylvania and has the capability to provide

136

Figure 8.6: Combination into the OWL-S framework

manufacturing operations, such as forging and gear hobbing; and (2) A logistic

company which can provide the delivery service with a light duty truck in Penn-

sylvania. The terms used in this description are defined in a service description

ontology, a manufacturing process ontology, and a vehicle ontology. Figure 8.4

shows the taxonomy hierarchy of the manufacturing process and vehicle in terms

of the EXPRESS-G format6. Based on the EXPRESS-G expression, we define the

manufacturing process ontology and the vehicle ontology in OWL in Figures 8.7

and 8.8, respectively. This OWL-DL based service description has a corresponding

class diagram that is shown in Figure 8.5.

We can also describe other service requirements using OWL-DL and the class

diagram, such as what goods are to be transported, where they will be transported

from, when the vehicle will depart, what its destination is, when it is expected to

arrive, and other relevant terms of service, including insurance liability, cost and

payment conditions.

6http://en.wikipedia.org/wiki/ISO 10303-11

137

8.5.2 Matchmaking and Negotiation phase

In this step, the design firm discovers the manufacturers and logistics providers

that match the necessary service categories (e.g., manufacturing service, logistic

service) from a web service registry (e.g., UDDI), and retrieves the service profiles

of matched partners.

Concurrently, such a concrete and detailed service description of a service is

not appropriate for service advertising and discovery because service requests and

advertisements would have to include many such classes covering all acceptable ser-

vice parameter configurations (e.g., detailed service cost per item) [89]. Instead,

service requestors and providers are abstract from concrete parameter information,

switching to less specific class descriptions. In such abstract service descriptions,

they specify the set of concrete services that they are willing to accept. For ex-

ample, we may have two companies, AthertonMfg and BeaverTransportation,

which may advertise their services using the OWL-DL for abstract service descrip-

tions as follows:

• SAthertonMfg ≡ srvc : operationServiceu∃srvc : locationAt.{Pennsylvania}u
∃srvc : service.{oper : PrecisionForging}u∃srvc : service.{oper : GearHobbing}

This states that AthertonMfg can offer manufacturing services including the

precision forging and gear hobbing operations, and is located in Pennsylvania. The

OWL-S based service capability description which corresponds to this OWL-DL

based statement are shown in Figure 8.9. AthertonMfg can register the OWL-DL

based statement directly or the OWL-S file indirectly with the service discovery

agent.

• SBeaverTranportation ≡ srvc : V ehicleServiceu∃srvc : locationAt.{Pennsylvania}u
∃srvc : service.{oper : LightTruck}

This states that BeaverTranportation can offer a deliver service using a light

duty truck carrier in Pennsylvania. The OWL-S based service capability descrip-

tion which corresponds to this OWL-DL based statement are shown in Figure 8.10.

Similar to AthertonMfg, AthertonMfg can register the OWL-DL based statement

directly or the OWL-S file indirectly with the service discovery agent.

138

When the service discovery agent receives a service request, it finds the set of

advertisements which intersects with the request and returns the set. Note that an

advertisements and a request intersect if they specify at least one common concrete

service. The discovery agent can use DL reasoners, such as RACER or DAML-

DL internally. In our motivating scenario, AthertonMfg can be discovered by the

DL reasoners because the precision forging has the subsumption relation with the

forging operation, which is the design house request. In addition, AthertonMfg

can satisfy the other requests, such as the location in Pennsylvania and other

manufacturing services of gear hobbing. Full details of the inferencing mechanism

is not explained here. One good reference for the inferencing mechanism can be

found in [49].

The list of services returned by the service discovery agent includes URIs refer-

encing the service providers, allowing the requestor to make direct contact through

the service providers’ web services. In our example, the design firm makes contact

with manufacturing and logistic service providers and selects the best ones. In or-

der to do the selection, the design firm can activate the bidding process according

to the protocols described in Figure 8.1.

For example, as shown in Figure C.15, AthertonMfg may provide an operation

named Call for Proposal that receives the call for proposal from the service re-

questor and returns a proposal. In our motivating scenario, the call for proposal of

the design firm may contain the number of gear parts that need to be manufactured

and the expected cost of manufacturing them. Similarly, BeaverTranportation

can offer an operation to process the call for proposal from the service requestor

and returns a proposal. In our scenario, the call for proposal of the design firm to

BeaverTranportation may contain when the light duty truck carrier will be used

and how much the using cost will be.

8.5.3 Composite service generation phase

The last phase aims at generating a detailed description of a composite service.

At this point, suppose that the design firm of the motivating scenario have chosen

AthertonMfg and BeaverTranportation for its manufacturing and delivery out-

sourcing respectively, by establishing the bidding process. Figure 8.12 shows a com-

139

posite process to be used for making contracts with both outsourced companies.

To create an instance of a composite process in OWL-S, process:CompositeProcess

construct is used. In Figure 8.12, Contract Process is the instance of a composite

process and has a process:sequence primitive. By definition, a sequence in OWL-

S is a sequence that performs other atomic or composite processes. Note that

the atomic process named MakeMfgContract is grounded into the MakeContract,

which is the operation of AthertonMfg web service as shown in Figure 8.6. Sim-

ilarly, MakeVehicleContract is grounded into the MakeContract which is the

operation of BeaverTransportation web service.

Regarding the execution of the OWL-S composite model, we can build an

in-house application by using OWL-S API7. OWL-S API supports the execution

engine for OWL-S process models. The OWL-S execution engine is used to invoke

Web Services for gathering information that is used in the planning process. To

our knowledge, it is the only open-source API designed specifically for working

with OWL-S ontologies.

8.6 Future Work

The framework presented in this chapter is a suggestion and not a deployed ap-

plication. For this reason, certain simplifications have been made which need to

be revisited for future work. First, we need to employ AI planning techniques

to automate the composition of web services. AI Planners use the description of

the preconditions and effects of a service to do various sorts of reasoning about

how to combine services into a composite service. OWL-S supports the descrip-

tion of the preconditions and effects of services using OWL statements. Therefore,

AI planners need to have the capability to understand the semantics of OWL in

order to evaluate such preconditions. However, typical AI planners support only

syntactic-based reasoning or fairly limited semantic-based reasoning capability. As

a result, it is important to augment AI planners with the OWL-S reasoning capa-

bility to overcome these problems. In particular, we are considering the extension

of WSPR by adding the reasoning service, which can be carried out by combining

existing DL reasoners, such as RACER-DL, or developing an in-house reasoner

7http://www.mindswap.org/2004/owl-s/api

140

using JENA8 rules engine.

We also identify another challenge of writing the service descriptions effectively

because the way of describing services for providers or requesters can affect the

performance of reasoning significantly. For this purpose, we will investigate the

current projects such as Athena and IV& I. Athena (Advanced Technologies for

Interoperability of Heterogeneous Enterprise Networks and their Application) is

an integrated project sponsored by the European Commission and NIST (The US

National Institute of Standards and Technology). Its objective is to be the most

comprehensive and systematic research initiative in the field of enterprise appli-

cation interoperability, removing barriers to the exchange of information in and

among organizations. It combines the latest research results in the three key areas

of the interoperability problem space: (1)Business solutions (Enterprise modeling

in the context of collaborative enterprises and cross-organizational business pro-

cesses). (2)Knowledge representation and application solutions (Ontology-based

systems and ontology modeling tools). (3) Modern ICT solutions (Web services,

MDA approach, agent-based systems).

IV& I (Inventory Visibility and Interoperability) has sponsors including the

Automotive Industry Action Group (AIAG), Original Equipment Supplier Associ-

ation (OESA), and Odette, an industry association of European automotive man-

ufacturers and suppliers. This project aims being able to seamlessly communicate

demand throughout the supply chain. It could result in an estimated net savings

to the auto industry of $255 million. The resulting programs will operate at the

semantic level, not the data level, and exploit their approaches for the service

description.

8http://www.hpl.hp.com/semweb/

141

<rdf:RDF
xmlns:rdf=‘‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’’
xmlns:xsd=‘‘http://www.w3.org/2001/XMLSchema#’’
xmlns:rdfs=‘‘http://www.w3.org/2000/01/rdf-schema#’’
xmlns:owl=‘‘http://www.w3.org/2002/07/owl#’’
xmlns=‘‘http://www.owl-ontologies.com/unnamed.owl#’’

xml:base=‘‘http://www.owl-ontologies.com/unnamed.owl’’>
<owl:Ontology rdf:about=‘‘’’/>
<owl:Class rdf:ID=‘‘PrecisionForging’’>

<rdfs:subClassOf>
<owl:Class rdf:ID=‘‘Forging’’/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID=‘‘ConventionalForging’’>

<rdfs:subClassOf>
<owl:Class rdf:about=‘‘#Forging’’/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID=‘‘Hole’’>

<rdfs:subClassOf>
<owl:Class rdf:ID=‘‘Cutting’’/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID=‘‘Pocket’’>

<rdfs:subClassOf>
<owl:Class rdf:about=‘‘#Cutting’’/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID=‘‘Mfg_process’’/>
<owl:Class rdf:ID=‘‘Milling’’>

<rdfs:subClassOf>
<owl:Class rdf:about=‘‘#Cutting’’/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about=‘‘#Cutting’’>

<rdfs:subClassOf rdf:resource=‘‘#Mfg_process’’/>
</owl:Class>
<owl:Class rdf:ID=‘‘GearHobbing’’>

<rdfs:subClassOf rdf:resource=‘‘#Milling’’/>
</owl:Class>
<owl:Class rdf:about=‘‘#Forging’’>

<rdfs:subClassOf>
<owl:Class rdf:ID=‘‘Forming’’/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about=‘‘#Forming’’>

<rdfs:subClassOf rdf:resource=‘‘#Mfg_process’’/>
</owl:Class>

</rdf:RDF>

Figure 8.7: Partial OWL encoding of the manufacturing process ontology

142

<rdf:RDF
xmlns:rdf=‘‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’’
xmlns:xsd=‘‘http://www.w3.org/2001/XMLSchema#’’
xmlns:rdfs=‘‘http://www.w3.org/2000/01/rdf-schema#’’
xmlns:owl=‘‘http://www.w3.org/2002/07/owl#’’
xmlns=‘‘http://www.owl-ontologies.com/unnamed.owl#’’

xml:base=‘‘http://www.owl-ontologies.com/unnamed.owl’’>
<owl:Ontology rdf:about=‘‘’’/>
<owl:Class rdf:ID=‘‘RailVehicle’’>

<rdfs:subClassOf>
<owl:Class rdf:ID=‘‘LandVehicle’’/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID=‘‘WaterVehicle’’/>
<owl:Class rdf:ID=‘‘RoadVehicle’’>

<rdfs:subClassOf rdf:resource=‘‘#LandVehicle’’/>
</owl:Class>
<owl:Class rdf:ID=‘‘LightTruck’’>

<rdfs:subClassOf>
<owl:Class rdf:ID=‘‘Truck’’/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID=‘‘OtherVehicle’’>

<rdfs:subClassOf rdf:resource=‘‘#LandVehicle’’/>
</owl:Class>
<owl:Class rdf:about=‘‘#Truck’’>

<rdfs:subClassOf rdf:resource=‘‘#RoadVehicle’’/>
</owl:Class>
<owl:Class rdf:ID=‘‘Car’’>

<rdfs:subClassOf rdf:resource=‘‘#RoadVehicle’’/>
</owl:Class>
<owl:Class rdf:ID=‘‘AirVehicle’’/>
<owl:Class rdf:ID=‘‘HeavyTruck’’>

<rdfs:subClassOf rdf:resource=‘‘#Truck’’/>
</owl:Class>

</rdf:RDF>

Figure 8.8: Partial OWL encoding of the vehicle ontology

143

<rdf:RDF xmlns:rdf=‘‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’’
xmlns:rdfs=‘‘http://www.w3.org/2000/01/rdf-schema#’’
xmlns:owl=‘‘http://www.w3.org/2002/07/owl#’’
xmlns:service=‘‘http://www.daml.org/services/owl-s/1.0/Service.owl#’’
xmlns:process=‘‘http://www.daml.org/services/owl-s/1.0/Process.owl#’’
xmlns:profile=‘‘http://www.daml.org/services/owl-s/1.0/Profile.owl#’’
xmlns:actor=‘‘http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#’’
xmlns:oper=‘‘.../ProcessOntology.owl#’’
xmlns:srvc=‘‘.../ServiceDescription.owl#’’
xmlns=‘‘.../AthertonMfg.owl#’’> ... <profile:contactInformation>

<actor:Actor rdf:ID=‘‘AthertonMfg’’>
...
</actor:Actor>

</profile:contactInformation> ... <profile:ServiceProfile
rdf:ID=‘‘AtertonMfgServiceProfile’’>... <srvc:service>

<rdf:value>‘‘oper:#GearHobbing’’</rdf:value>
<rdf:value>‘‘oper:#PrecisionForging’’</rdf:value>

</srvc:hasProcess>... </profile:ServiceProfile>...

<grounding:WsdlAtomicProcessGrounding
rdf:ID=‘‘wsdlGrounding_CallforProposal’’>
<grounding:WsdlAtomicProcessGrounding
rdf:ID=‘‘wsdlGrounding_MakeContract’’>
<grounding:owlsProcess
rdf:resource=‘‘#MakeMfgContract’’>
...
</rdf:RDF>

Figure 8.9: Partial service profile of AthertonMfg encoded in OWL-S

144

<rdf:RDF xmlns:rdf=‘‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’’
xmlns:rdfs=‘‘http://www.w3.org/2000/01/rdf-schema#’’
xmlns:owl=‘‘http://www.w3.org/2002/07/owl#’’
xmlns:service=‘‘http://www.daml.org/services/owl-s/1.0/Service.owl#’’
xmlns:process=‘‘http://www.daml.org/services/owl-s/1.0/Process.owl#’’
xmlns:profile=‘‘http://www.daml.org/services/owl-s/1.0/Profile.owl#’’
xmlns:actor=‘‘http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#’’
xmlns:vc=‘‘.../VehicleOntology.owl#’’
xmlns:srvc=‘‘.../ServiceDescription.owl#’’
xmlns=‘‘.../BeaverTranportation.owl#’’> ...
<profile:contactInformation>

<actor:Actor rdf:ID=‘‘AthertonMfg’’>
...
</actor:Actor>

</profile:contactInformation>... <profile:ServiceProfile
rdf:ID=‘‘BeaverTransportation’’> ... <srvc:hasVehicle>

<rdf:value>‘‘vc:#LightTruck’’</rdf:value>
</srvc:hasProcess> ... </profile:ServiceProfile> ...
<grounding:WsdlAtomicProcessGrounding
rdf:ID=‘‘wsdlGrounding_CallforProposal’’>
<grounding:WsdlAtomicProcessGrounding
rdf:ID=‘‘wsdlGrounding_MakeContract’’> <grounding:owlsProcess
rdf:resource=‘‘#MakeVehicleContract’’> ... </rdf:RDF>

Figure 8.10: Partial service profile of BeaverTransportation encoded in OWL-S

<?xml version=‘‘1.0’’?> <definitions name=‘‘AthertonMfg’’ ... > ...
<portType name=‘‘Interface_CFP’’>

<operation name=‘‘Call_for_Proposal’’>
<input message=‘‘MessageCFPIn’’/>
<output message=‘‘MessageCFPOut’’/>

</operation>
<operation name=‘‘Make_Contract’’>

<input message=‘‘MessageContractIn’’/>
<output message=‘‘MessageContractOut’’/>

</operation>
</portType> ... </definitions>

Figure 8.11: Partial WSDL of AthertonMfg

145

<rdf:RDF xmlns:rdf=‘‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’’
xmlns:rdfs=‘‘http://www.w3.org/2000/01/rdf-schema#’’
xmlns:owl=‘‘http://www.w3.org/2002/07/owl#’’
xmlns:service=‘‘http://www.daml.org/services/owl-s/1.0/Service.owl#’’
xmlns:process=‘‘http://www.daml.org/services/owl-s/1.0/Process.owl#’’
xmlns:profile=‘‘http://www.daml.org/services/owl-s/1.0/Profile.owl#’’
xmlns:actor=‘‘http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#’’
xmlns=‘‘.../AthertonMfg.owl#’’>
...
<process:CompositeProcess
rdf:ID=‘‘Contract_Process’’>
<process:composedOf>
<process:Sequence>
<process:components rdf:parseType=‘‘Collection’’>

<process:AtomicProcess rdf:about=‘‘#MakeMfgContract’’ />
<process:AtomicProcess rdf:about=‘‘#MakeVehicleContract’’ />

</process:components> </process:Sequence> </process:composedOf>
</process:CompositeProcess>
...
</rdf:RDF>

Figure 8.12: Partial OWL-S process model for contracting suppliers

Chapter 9
Conclusions and Future Research

The service oriented architecture becomes IT infrastructure intermediary, in which

web services can be securely published, reused, and invoked as part of distributed

applications. They also offer exceptional opportunities for collaboration and coor-

dination to people across a wide range of fields including industry, academia, and

government. However, the rapidly increasing size, complexity, and intractability of

web-service networks gives rise to needs for effective method, to address the web-

service composition problem. In this thesis, we have studied several issues centered

around the web-service composition problem. First, we formulated the web-service

composition problem in terms of AI planning and the network optimization prob-

lem. Second, we investigated publicly available web service sets using complex

network analysis techniques. Third, we developed a novel web-service benchmark

tool, WSBen, and a novel AI planning-based heuristic web service composition

algorithm, WSPR. We verified the effectiveness and computational efficiency of

WSPR with respect to the quality of solutions and solution time. In addition, we

experimentally proved the scalability and robustness of WSPR in large and diverse

service networks. Finally, we proposed an ontology-based framework using seman-

tic web-service technologies to secure the reliable and large scale interoperability

among the distributed entities of a manufacturing systems.

9.1 Contributions

In detail, some of the major contributions of this research are as follows:

147

1. WSPR development: As the emergence of service-oriented architecture

provides a major boost for e-commerce agility, the number of available web

services is rapidly increasing. However, when there are a large number of web

services available and no single web service satisfies the given request, one

has to “compose” multiple web services to fulfill the goal. Toward this prob-

lem, we have developed and implemented an AI planning-based web-service

composition algorithm titled WSPR. The WSPR outperforms state-of-the-

art AI planners, such as GraphPlan and Blackbox, in composing large-scale

web services (in the range of 1,000 to 50,000) with respect to effectiveness,

computational efficiency, scalability, and robustness. WSPR won the first

runner-up award in the ICEBE05 web-service contest. The new release of

WSPR will be featured with semantic matching support and will be submit-

ted to the third 2006 web-service challenge1.

2. WSBen development: As a growing number of web services are available

on the web and in organizations, finding and composing the right set of web

services has become even more important. As a result, in recent years, a

plethora of research work and products on web-service discovery and com-

position algorithms have appeared. Despite all these efforts, there have been

very few test environments available for evaluating such algorithms and soft-

ware. To address these needs, we have designed and built WSBen, a web-

service discovery and composition benchmark tool. The WSBen has two main

characteristics: (1) Flexible web services matching framework, and (2) Di-

verse web-service network models, including the Erdos-Renyi random graph

model, the Newman-Watts-Strogatz small-world network, and the Barabasi-

Albert scale-free network. Besides the test set generation, WSBen provides

a set of functions to simplify the benchmark process, such as exporting test

sets into AI planner files including PDDL and STRIPS and generating test

requests automatically.

3. Analysis of existing web services: We observed the network properties of

1The third 2006 web-service challenge is co-located with the Conference on Electronic Com-
merce (CEC) and the Conference on Enterprise Computing, E-Commerce and E-Services (EEE).
For detail, enter the following site. http://insel.flp.cs.tu-berlin.de/wsc06/. WSPR was placed
third in this challenge

148

public web services and ICEBE05 test sets. From the observation we discov-

ered that public web services show similar features as the world wide web in

terms of the small-world network and scale-free network properties. This can

be inferred because the public web-service networks have grown in a similar

manner as the Internet. On the contrary, the ICEBE05 web service networks

are highly artificial so that their underlying topologies form tree structures

but all arcs are directed toward the same direction without cycles. This is

like business workflows, and the isolated sub-networks are uniformly parti-

tioned so that the size of sub-networks are similar and the number of edges

per node is uniformly distributed. This observation results in three reward-

ing lessons: (1) WSC problems can arise in diverse scenarios. Nevertheless,

they can be captured by investigating which network topology would fit into

their web-service networks; in particular, either small-world network or scale-

free network; (2) The WSC algorithms must run on diverse application areas

characterized by the underlying network properties; (3) Understanding the

structural properties of networks often help gain better insights and develop

better algorithms. As a potential future work, we can make another search

heuristic algorithm to address WSC problems by exploiting the underlying

network structure. For example, hub parameters (or hub web services) can

serve important roles on the inter-connections between web services.

4. Application of Semantic Web-service Composition in Manufactur-

ing: We proposed an ontology-based framework using semantic web-service

technologies to secure the reliable and large scale interoperability among the

distributed entities of a manufacturing systems, namely: a design firm, man-

ufactures, and third party logistics providers. We reviewed existing semantic

web service technologies and proposed an approximate scenario that forms

the motivating base for our proposed framework. Currently, this work is only

at the conceptual stage, with a focus on proposing a software design rather

than implementing the proposed framework. However, we are considering

the extension of WSPR by adding the OWL-DL based reasoning service in

order to implement the suggested ontology-based framework.

149

9.2 Limitations and Assumptions

A more critical analysis of this work can be carried out by discussing limitations

and assumptions of this work.

1. c(w) = 1: We assumed that for all web services w, the invoking cost c(w) is 1

identical. In a real system, however, each web service may have distinct c(w).

c(w) could be determined based on real market surveys, or using a pricing

model specific to web services, suggesting that c(w) = 1 can be relaxed such

that c(w) > 0. This relaxation has an impact on WSPR, because current

WSPR’s heuristic measures the contribution of a web-service based on how

many of its output parameters overlap with a sub-goal. The modification of

WSPR required to address this relaxation can be carried out by doing the

following:

• In the forward search step of WSPR, Line 7 in Algorithm 1 must be

modified to follow the recursive Equation 6.1 to obtain gri(p).

• In the backward search step of WSPR, web services in wSpace (Line

3 in Algorithm 2) must be sorted according to the cost for achieving

them, and then measuring hsg(w) is applied to the web services with

minimum cost.

2. Composition based on open-loop control: WSPR carries out the sequence

of web-service compositions irrespective of the consequences, meaning that

there is no feedback to constantly collect data from the previous consequences

and pass the data to WSPR for better decision making afterward. We can

extend current WSPR to combine a unsupervised learning mechanism (e.g.,

BootStrip [87]), through which WSPR can learn knowledge about problem

domains, such as space, time, action, objects, causality.

3. Single criterion for determining effectiveness: #W , the total number of web

services in a solution is used as single criteria for measuring effectiveness of

WSC algorithms. However, we can use a combination of multiple criteria for

evaluating WSC algorithms. For example, we can formulate the objective of

a WSC problem to maximize the reliability of a composite service as well as

to minimize the total cost of invoking the composite service.

150

4. Exact parameter matching approach: When WSPR determines whether two

web services are matched or not, it investigates whether their parameter

names are the same or not, meaning that WSPR just relies on the exact

parameter matching scheme. WSPR can be extended to use other parameter

matching schemes such as the approximate and semantic matching schemes

as described in Chapter 3.2.

9.3 Future Research

First, we can extend current work to address issues discussed in Chapter 9.2.

Furthermore, some of the possible future research extensions are as follows:

1. Web Services Monitoring and Diagnosis: Self-healing software is one

of the challenges for information science [102]. We can apply the self-healing

concept to composing web services. In this research, we can expect following

contributions:

• Monitoring, detection and diagnosis of anomalous situations due to

functional or non-functional errors (e.g., Quality of Service).

• Repair/reconfiguration, thus guaranteeing reliability and availability of

web services.

• Methodologies and tools for helping design services such that effective

and efficient diagnosability and repairability are guaranteed during ex-

ecution.

• Demonstration of these results on real applications.

In fact, the work proposed by the WS-Diamond project [124] aims to add di-

agnostic capabilities to web services, in order to build self-healing workflows.

This research issue is timely because the progress in model-based diagnosis

and the emergence of web service standards that occurred in the last decade

have reached sufficient foundational advances to make the proposed research

feasible. In one of our previous research projects, we proposed a methodology

titled MISQ2 to analyze initial WSC problems and obtain optimized parame-

2For details, see Appendix C.

151

ters for the composition design. In MISQ, we use UML to design agent-based

business processes and two formal modeling schemes, such as Stochastic Pro-

cess Algebra (SPA) and Generalized Stochastic Petri Nets (GSPN), for the

design analysis purpose. We believe that MISQ can be extended by adding

the soundness for automatic execution, while contributing to this web service

monitoring and diagnosis research field.

2. Semantic web-service composition: The web was originally created to

enable the sharing of information among scientists. It has since evolved to

extend its applications, including governments, businesses, and individuals,

to make their data web-accessible. However, the majority of today’s data on

the web are “understandable” only to humans or custom-developed applica-

tions. The semantic web is introduced to address this issue [14, 15]. It is

defined as an extension of the “existing” web in which information is given a

well-defined meaning. The ultimate goal of the semantic web is to transform

the web into a medium through which data can be shared, understood, and

processed by automated tools [111]. The semantics of web services are cru-

cial to enabling the automatic service composition. It is important to ensure

that selected services for composition offer the “right” features. Such features

may be syntactic (e.g., parameters included in a message sent or received by

a service). They may also be semantic (e.g., the business functionality offered

by a service operation or the domain of interest of the service) [72]. To help

capture web services’ semantic features, we can use the concept of ontology.

In Chapter 8, we proposed an ontology-based framework using semantic web-

service technologies to secure the reliable and large scale interoperability for

the supply chain domain. However, this work is only at the conceptual stage,

with a focus on proposing a software design rather than implementing the

proposed framework.

An ontology is a shared conceptualization based on the semantic proximity

of terms in a specific domain of interest. Ontologies are increasingly seen

as a key to enabling semantic-driven data access and processing. Because

we expect that ontologies play a central role in the semantic web, we can

take into account a research focused on extending syntactic service inter-

152

operability to semantic inter-operability.

3. Template-based composition of semantic web services: Our research

on the web-service composition has been focused on the generic case where

no domain knowledge exists, such as template structures to guide the planner

to find a composition. In practice, however, workflow templates are used to

design executable workflows in many applications, such as B2B applications,

scientific grid applications, the intelligent distributed manufacturing [61],

and dynamic supply chains. These applications can provide business rules

that can be encoded using templates [103]. In particular, we can explore the

following tasks in this research field:

• Highlighting the most important features related to describing work-

flow templates, with specific focus on particular application (e.g., the

intelligent distributed manufacturing).

• Presenting algorithms for matching and ranking potential services that

can be bound to abstract activities in a workflow as concrete services.

• Suggesting AI planning formalism to combine the template description

and the matching/ranking algorithm together.

4. Multi-agent based web-service composition: It is believed that the

workflow model is not good enough to represent the composition of web

service because the components of web services can be executed concur-

rently [10]. In other words, describing compositions of web services as a

workflow seems harder than describing them as a multi-agent system, where

concurrent execution of services can be easily represented. Thus, research

is necessary to describe the composition of web service into a multi-agent

framework, and monitor and diagnose the behaviors of web-service agents

before launching the composition in a real case scenario.

Appendix A
WSBen with yTS framework

In Chapter 5, we used WSBen to generate test sets that were later used for exten-

sive testing to validate the effectiveness and efficiency of WSPR. In those cases,

WSBen uses a test generation scheme, xTS = 〈|J |, Gr, η, Mp, |W |〉, where Gr is

bounded by one network model from three alternatives; (1) Barabasi-Albert model;

(2) Newman-Watts-Strogatz model; and (3) Erdos-Renyi model. However, we are

not assured that those complex and random network models can fit all possible

cases that may arise when trying to design the parameter cluster network, Gcl. To

fill the possible gap if we use only xTS, WSBen provides a more flexible test set

generation framework named yTS. In this Appendix, we introduce yTS frame-

work in detail, and use it to generate test sets that will be applied to extensive

experiments for testing the performance of WSPR and other AI planners.

A.1 Flexible benchmark generation scheme

yTS framework is defined as a five tuple: yTS = 〈J,Co, η, Rl, |W |〉. Provided

that the first four tuple are grounded, one can build a parameter cluster network,

Gcl(Vcl, Ecl). If i ∈ Vcl contains a small number of parameters but has a large

incoming or outgoing edge degree, we refer to i as a hub cluster. In detail, each

tuple of yTS is explained as follows:

(1) J is the set of clusters; |J | denotes the total number of clusters.

(2) Co(j) is the co-occurrence probability of parameters in a cluster j ∈ J . Co(j)

154

Figure A.1: Gcl generating process from 〈10, bell(0.3, 0.5), 1, bell(0.3, 0.5), |W |〉

is bound by one distribution selected from following alternatives:

– skewed : skew(j; α, β) = β exp(−α×j)

– bell : bell(j; α, β) = β exp(−α×ABS(j−|J |/2))

– uniform : uni(j; α) = α

Where, α and β are constants given by users, such that any values of the

selected alternative distribution must reside between 0 and 1.

(3) η is the parameter condense rate. This value is used to specify the size of a

cluster. That is, the total number of parameters in Cluster j is η/Co(j).

(4) Rl(j) is the association distribution of a cluster j ∈ J , and represents the

rate of outgoing edge degree of Cluster j. Rl(j) shares the alternative distri-

butions of Co(j) . For example, Rl(j) = uni(j; 0.2) means that each cluster

in Gcl has outgoing edges incident to 20% of other clusters in Vcl.

(5) |W | denotes the total number of web services in a test set.

155

We can illustrate how a Gcl can be derived from a yTS specified simply by

〈10, bell(0.3, 0.5), 1, bell(0.3, 0.5), |W |〉. The process is shown in Figure A.1 and

explained in detail as follows:

1. |J | size of empty clusters are generated.

2. The total parameter number of each cluster is specified by using Co and η.

For example, Cluster 5 has two parameters because 1/[0.5×exp(−0.5×ABS(5−|10|/2))]

≈ 2, where η is 1 and Co is bell with α = 0.3 and β = 0.5. It must be noted

that the parameter names are automatically generated (e.g., “1” or “par1”)

and thus do not contain any semantics.

3. An arc incidence matrix to define the connectivity between clusters are cre-

ated using Rl. For example, Cluster 5 has five outgoing edge degree because

Rl(5) = bell(5; 0.3, 0.5) = 0.5 so that Cluster 5 is connected to 50% of the

other clusters in Vcl.

4. Once Gcl is built, we can generate |W | size of web services by taking the

following two steps:

(a) Randomly choosing 〈i, j〉 ∈ Ecl that is a web-service template.

(b) Generating input parameters from cluster i, according to Co(i), and

output parameters from cluster j, according to Co(j).

Note that each parameter in one cluster can map into either an input pa-

rameter or an output parameter. In the case that no parameter is generated,

and instead a dummy parameter ‘S’ and ‘T’ is filled in the position of input

and output parameters, respectively.

For the experimental validation, we build three test set frameworks by materi-

alizing yTS as follows:

(1) uTS : 〈100, uni(0.2), 1, uni(0.2), |W |〉

(2) bTS : 〈100, bell(0.3, 0.5), 1, bell(0.3, 0.5), |W |〉

(3) sTS : 〈100, skew(0.5, 0.5), 1, skew(0.5, 0.5), |W |〉

156

Figure A.2: Gf
op at |W | = 1, 000. (left) uTS. (center) bTS. (right) sTS

Figure A.3: Outgoing edge degree distribution of Gf
op at |W | = 3, 000. (left) uTS.

(center) bTS. (right) sTS

For each framework of uTS, bTS, and sTS, its unique Gcl is generated, and based

on it, 9 different size of test sets are instanced by varying |W | as 1,000, 3,000, 5,000,

7,000, 9,000, 11,000, 15,000, 20,000, and 30,000 respectively. Thus, 27 test sets

are generated. Each test set has one test request. In addition, in order to achieve

necessary results for the statistical analyses, we repeat this generation process

twice. Consequently, 81 test sets are prepared. A test request is constructed, such

that ri is all atomic parameters contained in the cluster 0, and ro consists of the

first five largest parameters in terms of gri(p)1, which corresponds to the cost taken

to reach p in the forward search over the parameter space. Thus, ro are farthest

away from ri in a parameter space.

Figure A.2 shows Gf
op when |W | = 1, 000. Note that uTS and sTS have hub

nodes (i.e., hub web services) which have a large outgoing edge degree. In fact, at

the small size, hub nodes are only glimpses, but as the test set size increases, they

become more distinguishable and identifying. A directed solid line in each graph

represents an artificial solution trajectory from ri to ro, assuming that there would

1gri(p) is the cost of achieving p ∈ P from ri by the forward search over the parameter space.
A more detailed explanation will be given in Chapters 6 and 7

157

be a solution consisting of full-matching operations.

Three graphs in Figure A.3 show the outgoing edge degree distributions of Gf
op

for each of uTS, bTS, and sTS when |W | = 3, 000. They are differentiated by

each having a different range of x-axis and y-axis, such that uTS has 1-42(x) and

0-250(y); bTS has 1-67(x) and 0-300(y); and sTS has 1-79(x) and 0-600(y). Thus,

sTS has its distribution more skewed than uTS and bTS. This is inferred because

sTS is characterized by the exponential distribution, which is more skewed than

uniform and bell distributions that characterize bTS and uTS, respectively.

Figure A.4 shows the outgoing edge degree distribution of Gp for each of uTS,

bTS, and sTS. uTS has a bell shape distribution. The shape is expected, since both

Co and Rl have the same uniform distribution, and so theoretically all parameters

have the same chance of occurring. Furthermore, since |W | = 3, 000, it obeys the

Law of Large Numbers statistically so that the shape of distribution converges to

a bell or normal curve. Regarding the distributions of bTS and sTS, they follow a

Zipf-like distribution because both Co and Rl have the same skewed distribution:

Most parameters have very low chance of occurring but only a small number of

parameters contained in hub clusters have a high possibility of occurring. These

observed differences between test sets become more significant as their test-set size

increase.

The complexity of test sets is varied in different dimensions which are parti-

tioned as follows:

• Test set and parameter size: we varied |W | of uTS, bTS and sTS in the same

scale from 1,000 to 30,000. However, the total parameter number |P | of uTS,

bTS, and sTS is determined differently. As mentioned before, |P | of each

framework is set after binding the first four tuple of yTS. Since sTS and bTS

use the exponential function in Co and Rl, their |P | grows exponentially as

|J | increases. On the contrary, |P | of uTS does not change even though |J |
increases, because uTS uses the uniform function in Co and Rl. Note that

the search space (i.e., state space) is exponential to the parameter space.

• The size of alternatives of a web service w: suppose that there is a set of web

service WA, such that for wa ∈ WA, wi
a ⊆ wi and wo

a ⊇ wo. It is clear that

158

Figure A.4: Outgoing edge degree distribution of Gp at |W | = 3, 000. (left) uTS.
(center) bTS. (right) sTS

wa ∈ WA can replace wi. uTS has a greater chance to find larger alternatives

for a given web service than other frameworks, because uTS connects clusters

in such a way that the connectivity between clusters is uniformly distributed.

Thus, the computation cost to search the right web services in uTS can be

very low.

• The trajectory between ri to ro: Figure A.2 suggests artificial trajectories for

each of uTS, bTS, and sTS. A trajectory can be a solution path, or simply,

a sequence of web services starting from ri to ro. For example, in sTS case,

the solution trajectory may start in the darkest dot in the center where many

of web services are concentrated with their input parameters selected from

Cluster 0. Note that we set ri with the parameters in Cluster 0. Since the

trajectory starts from the center of Gf
op, the length of the trajectory becomes

short compared to those of uTS and bTS, where the trajectories are created

between two parameter clusters that are the farthest away from each other.

In the experiments described below, we evaluated the performance of three

prominent AI planners and our proposals: Graphplan [19], Blackbox [55], IPP [51],

WSPR, and WSPR w/o heuristic. The experimental environment is the same as

the experiments conducted in Chapter 7.

A.1.1 Result

The following set of experiments deals with uTS, bTS, and sTS. The results in-

volving uTS are shown in Figure A.5. In some tests, Graphplan and IPP fail to

solve problems when the test set size increases. Regarding Time, all competitors

159

Figure A.5: Results of uTS in first replication. (left) #W . (right) Time.

Figure A.6: Results of bTS in first replication. (left) #W . (right) Time.

solve requests within a reasonable time frame. The results concerning bTS and

uTS are shown Figures A.6 and A.7, respectively. Graphplan and IPP fail for all

cases. Regarding Time, both WSPR and WSPR w/o heuristic scale up smoothly

and clearly overrun Blackbox.

For a better understanding of the difference between competitors in terms of

#W , we can conduct a statistical analysis on #W results data. First, we ranked

competitors with respect to #W , such that the competitor with the less # is ranked

higher. Note that some competitors, in particular, Graphplan and IPP did not gen-

erate solutions in some cases, making simple average or sum over three replications

inappropriate. Remember that we generated two additional replications on each

of the 27 test sets. The statistical analysis reveals that significant differences exist

between the mean rank for many of the algorithms. An ANOVA analysis showed

significant differences across algorithms for the pooled data (p < 0.001). The low

160

Figure A.7: Results of sTS in first replication. (left) #W . (right) Time.

Figure A.8: 95% confidence intervals (CI) of the mean rank for #W between
algorithms. (left) uTS . (center) bTS. (right) sTS

p-value indicates a strong probability that at least one algorithm’s mean rank is

significantly different from the others. Therefore, in order to specify which algo-

rithms differ from the others and which do not, a multiple comparisons procedure

with the Tukey’s method2 [48] was performed.

Figure A.8 shows the 95% confidence intervals of the mean rank for each al-

gorithm. In the figure, an overlap between any two or more intervals indicates

that there is not a statistically significant difference between the corresponding

means. The center dots in the intervals represent the mean values. From this

analysis, WSPR has a considerable performance difference from other AI algo-

rithms. WSPR also shows a significant difference statistically with WSPR w/o

heuristic in all cases.

Figure A.9 supports these statistical results by illustrating solutions generated

by WSPR and Blackbox, where the test case is bTS with |W | = 9, 000 in the first

2Given multiple data sets, the Tukey’s method is applied to consider all possible pairwise
difference of means between the data sets simultaneously

161

Figure A.9: Solutions to bTS at |W | = 9, 000 in first replication. (left) WSPR.
(right) Blackbox

replication. In the figure, a solid line represents the full-matching operation while

a dotted line represents the partial-matching operation. This comparison shows

that WSPR is more capable of finding a solution consisting of a sequence of fully

matching web services than Blackbox.

Summary: The above experiments coincide with the results obtained in Chap-

ter 7, where WSPR tends to perform better than the AI planners in all cases,

especially, when a web service network topology is skewed and the number of pa-

rameters is very large. We also prove that WSPR heuristic, based on the strategy in

support of locating a fully-matching web service first in the regression search, is in

effect. Furthermore, the experiments show that the two stage approach of WSPR

results in the scalability of WSPR, because Time of both WSPR and WSPR w/o

heuristic do not blow up exponentially in the increasing test set size. Lastly, the

experiments assure the usefulness of the suggested test set generation framework,

because by using the frameworks, we can generate such difficult test sets through

which we can distinguish the algorithm performances in terms of #W and Time.

Additionally, we can investigate in detail how they operate in different environ-

ments (e.g., small versus large sizes; skewed versus uniform distributions; short

solution length versus long solution length).

Appendix B
Additional Discussion on ICEBE05

We discovered that the ICEBE05 [54] test sets have interesting characteristics

with respect to their problem complexities. This discovery is presented in this

Appendix.

B.1 Discussion on Test Sets

According to the description from the ICEBE05, the construction of test data

varies in different dimensions as follows:

• Minimal #W 1: they provide test sets such that some test sets have their

minimal #W between 2 and 4 (test set names starting with Composition-1),

and other test sets have their minimal #W between 6 to 8 (test set names

staring with Composition-2).

• The number of web services in a test set (i.e., |W |): |W | of test sets is one

among 3,356 and 5,356 and 8,356. |W | of test sets can be identified from

their test set name because 20, 50, and 100 figures included in the test set

name indicate 3,356, 5,356, and 8,356, respectively.

• Number of input and output parameters: the size of input and output pa-

rameters of web services is differentiated in the range of 4-8, 16-20, and

32-36.

1#W is the number of web services in a solution. It is counted to measure the quality of the
found solution, or the effectiveness. See Chapter 7 for details.

163

The test set names in ICEBE05 indicate the combination of the parameters by

labeled Composition-1 and Composition-2, followed by the test set size and the

number of parameters. For example, “Composition1-50-32” represents that: (1) it

is the service Composition-1 with a minimal #W between 2 to 4; (2) |W | is 5,356;

and (3) the number of input and output parameters is in the range of 32 to 36.

Both Composition-1 and Composition-2 have nine test sets that each has 11

queries. As our experiments using WSPR show, solving requests in Composition-2

is harder than Composition-1 in terms of #W and Time. For example, #W in

Composition-1 is in the range of 2 and 4 as shown in Table B.1, while #W in

Composition-2 is in the range of 6 and 8 as shown in Table B.3. In terms of

Time2, Composition-1 is in the range of 49∼703, while Time in Composition-2 is

in the range of 96∼2281. This implies that we need more resources (i.e., longer

Time and larger #W) in Composition-2 than Composition-1. We also checked how

resource consumption is divided into two phases of WSPR. For this purpose, we

denoted fT ime to represent the time consumed in forward search, and bT ime to

represent the time consumed in backward search; Time = fT ime + bT ime. Then,

we recorded fT ime and bT ime in each search.

B.1.1 Composition-1

From the perspective of #W as shown in Table B.1, we discovered that the 11th

request was the simplest while the 7th through 10th requests were the hardest;

the 11th request was solved with just one web service, while the 7th through 10th

requests required as many as four web services. From the perspective of test set’s

difficulty level, as shown in Table B.2 and (a)-(c) of Figure B.1, we found that 20-4

test set is the simplest, while 100-32 test set is the most difficult. These results are

closely related to the size of the test sets. In other words, since 20-4 and 100-32

have 3,356 and 8,356 web services, respectively, the search space of 100-32 becomes

much bigger than that of 20-4.

In terms of Time, the 9th request in 100-32 test set takes the longest (i.e., 703

ms). When it comes to resource consumption in two different phases, most resource

consumption was assigned to the forward reasoning stage. No bT ime exceeded 3

2Time measures how long an algorithm takes to find a solution. It is counted to measure the
computational efficiency.

164

Table B.1: Comparison of #W over requests (Composition-1)

Request No. 1 2 3 4 5 6 7 8 9 10 11
#W 2 2 2 3 3 3 4 4 4 4 1

Table B.2: Comparison of 11 requests over 9 test sets in terms of fT ime and
bT ime (Composition-1)

Request
No. Time 20-4 20-16 20-32 50-4 50-16 50-32 100-4 100-16 10-32

fTime 46.9 109.9 187 46.9 125 202.9 94 219 344
1 bTime 16 2 2 15.1 2 31 14.9 2 14.9

fTime 47 110 172 62 171.9 217.9 109.9 203 343.9
2 bTime 2 2 2 2 2 2 2 2 15

fTime 62 109.9 171.9 62 141 217.9 110 219 358.9
3 bTime 16 2 2 2 2 16 2 2 2

fTime 62.9 140.9 250 108.9 202.9 328.9 139.9 312 500
4 bTime 2 2 2 2 2 2 2 2 2

fTime 62.9 140 234.9 78 187.9 328.9 139.9 296.9 671.9
5 bTime 2 2 15.1 16 15.1 2 2 16 2

fTime 62.9 141 265.9 109.9 250 258.9 157 297 515
6 bTime 15.1 2 15 2 2 116.1 2 2 2

fTime 78 187 328 109.9 250 406 187.9 391 639.9
7 bTime 16 2 2 15.1 2 2 2 2 16

fTime 92.9 203 328 125 328 421 171.9 389.9 671.9
8 bTime 16 2 2 2 16 2 2 2 2

fTime 92.9 218.9 328 109.9 250 406 203 375 671
9 bTime 16 2 2 2 16 2 2 2 32

fTime 92.9 187 327.9 108.9 233.9 453.9 187 407 657
10 bTime 2 2 2 2 16.1 2 2 14.9 2

fTime 77.9 187 359 78.9 156 344 92.9 187.9 312
11 bTime 2 2 2 2 2 2 2 2 2

ms as shown in Table B.2. This is explained with two reasons:

1. All requests are solved by linearly sequential full-matching composition. Con-

sequently, in the test sets in the ICEBE05, WSPR can save O(|W |log|W |)
computations because WSPR does not need to measure hsg(w) at all. In-

stead, WSPR can just select one web service listed in wSpace. In other

words, while the first forward reasoning step keeps the computational cost

as high as O(|W |2|P |), the second regression planning step brings the cost

down to O(|W |).

2. The solution length obtained is very small. For example, in 100-32 test set,

the 10th request can be solved with four web services. That is, regression

165

Table B.3: Comparison of #W over requests (Composition-2)

Request No. 1 2 3 4 5 6 7 8 9 10 11
#W 6 6 6 7 7 7 8 8 8 8 1

planning reaches ri starting from ro in four iterative steps (¿ |W |).

B.1.2 Composition-2

Like Composition-1, from the perspective of #W , we discovered that the 11th

request was the simplest, but the 7th through 10th requests were the hardest, as

illustrated in Table 5. While the 11th request requires just one web service, the

7th through 10th requests require eight web services.

Similar to Composition-1, from the perspective of the test set’s difficulty level,

we found that 20-4 is the simplest, but 100-32 is the most difficult as shown in

Table B.4 and (d)-(f) of Figure B.1. In terms of Time, the 10th request in 100-

32 takes the longest (i.e., 2280.9 ms = 2265.6 ms + 15.3 ms). When it comes

to resource consumption in two different phases, most resource consumption was

assigned to the forward reasoning stage. No bT ime exceeded 30 ms, as shown in

Table B.4.

Summary: Although WSPR spends extra resources to maintain auxiliary

structures such as gri(p) and PDws(p) in the parameter space, overall we concluded

that it is beneficial because WSPR can be more informed in the regression searching

step due to the guidance of gri(p) and PDws(p). However, most of the execution

time of WSPR is spent in the forward reasoning stage due to the sheer number of

web services to visit. Thus, in order to improve the overall speed of WSPR, better

way is to be more informed about the parameter space need to be explored - which

is a future research question to be addressed.

B.2 Discussion on the Request Complexity

The WSC problem can be addressed by the linear planning approach in the AI

community. The linear planning approach requires only AND operator. In the

WSC context, the AND operator can be partitioned into “full-matching” oper-

166

Table B.4: Comparison of 11 requests over 9 test sets in terms of fT ime and
bT ime (Composition-2)
Request

No. Time 20-4 20-16 20-32 50-4 50-16 50-32 100-4 100-16 10-32
fTime 187.9 828.9 672 312 641 1093 500 1015.9 1734.9

1 bTime 2 2 2 2 2 15.9 16 2 2
fTime 187 780.9 671.9 328.9 655.9 1141 516 1016 1733.9

2 bTime 16 16 2 2 2 14.9 2 15 2
fTime 203 769.9 671.9 312.9 641 1094 500 1015.9 1717.9

3 bTime 2 2 16 16 2 2 15 2 16
fTime 234.9 906 780.9 359.9 750 1312.9 594 1171.9 2000

4 bTime 2 16 2 15.1 2 15 15.9 2 16
fTime 233.9 922 782 390.9 750 1282 594 1187 2000

5 bTime 2 15 15 2 15.9 15 15 16 15.9
fTime 218.9 905.9 781 359.9 750 1250 592.9 1171.9 2000

6 bTime 15 16 2 15.1 2 32 16 15.1 16
fTime 391 1030.9 890 421.9 842.9 1467.9 655.9 1328.9 2266

7 bTime 2 16 15.9 16 16 15.8 32 2 16
fTime 264.9 1046.9 875 437 828 1421 657 1327.9 2266

8 bTime 2 16 30.9 2 16 16 30 2 2
fTime 266 1046.9 875 421 844 1469 671 1327.9 2264.9

9 bTime 2 2 16 2 16 2 16 16 2
fTime 250 1030.9 875 421.9 844 1546.9 671.9 1328.9 2265.6

10 bTime 2 15.1 30.9 2 14.9 2 2 2 15.3
fTime 94 296.9 406 108.9 250 453 125 266 468.9

11 bTime 2 15.1 2 2 16 2 2 2 2

ation and “partial-matching” operation. Interestingly, the EEE05 and ICEBE05

can be solved by using “full-matching” operation alone. That is, all requests can be

satisfied by chaining web services in such a way that a predecessor web service can

fully match the successor web service. Formally, suppose that Sol denotes the an-

swer to a request r provided. Then, Sol is constructed such that wi
1 ⊆ ri and either

wi
k ⊆ wo

k−1 or (wi
k \ ri) ⊆ wo

k−1 for k = 2, . . . , |Sol|. For example, the 2nd request

of EEE05 can be solved by a chain of web services : findMostRelevantStock ⇒
getStockPriceMany⇒ performStockResearch⇒ purchaseOptimalStock, such

that

• findMostRelevantStocki ⊆ ri,

• getStockPriceManyi ⊆ findMostRelevantStocko,

• performStockResearchi ⊆ getStockPriceManyo,

167

(a) Comparison of Time in Composition-1 (b) Comparison of Time in Composition-1

(c) Comparison of Time in Composition-1 (d) Comparison of Time in Composition-2

(e) Comparison of Time in Composition-2 (f) Comparison of Time in Composition-2

Figure B.1: Comparison of test sets in ICEBE in terms of Time

• purchaseOptimalStocki ⊆ performStockResearcho, and

• ro ⊆ purchaseOptimalStocko

Likewise, the 4th request in Composition2-100-32 of ICEBE05 can be solved by

a chain of web services3 : s34a1827462 ⇒ s30a2162659 ⇒ s92a3046444 ⇒
3In the original data set, s34a1827462 is called servicep34a1827462 (and others as well).

We shortened them here for a simpler presentation.

168

s60a4328073 ⇒ s19a0320284 ⇒ s09a7063054 ⇒ s58a4762157, such that

• s34a182746i ⊆ ri,

• (s30a2162659i \ ri) = {p76a0550626} ⊆ s34a1827462o,

• (s92a3046444i \ ri) = {p15a6821354} ⊆ s30a2162659o,

• (s60a4328073i \ ri) = {p54a2653485} ⊆ s92a3046444o,

• (s19a0320284i \ ri) = {p30a6922384} ⊆ s60a4328073o,

• (s09a7063054i \ ri) = {p53a0652249} ⊆ s19a0320284o,

• (s58a4762157i \ ri) = {p67a9261643} ⊆ s09a7063054o, and

• ro ⊆ s58a4762157o

Note that other queries in the EEE05 and ICEBE05 also take the same solution

scheme (i.e., linear and sequential full-matching), as the examples described above.

When an information gathering problem takes this special scheme, the problem

can be solved quickly. In particular, if every step of a composition process requires

only one parameter, it can be seen as a simple single source shortest-path problem.

For example, in the 4th request in Composition2-100-32 of ICEBE05, the prob-

lem can be solved by finding a shortest-path conversely from the goal parameter,

ro = p94a3566970 to ri by gathering p67a9261643, p53a0652249, p30a6922384,

p54a2653485, p15a6821354 and p76a0550626, subsequently.

Appendix C
MISQ: A Framework for Automatic

Implementation of Web-services

Composition

In this Appendix, we present our previously proposed system, entitled MISQ [82],

that aims at allowing users to analyze initial business processes and to obtain opti-

mized parameters for implementing and monitoring their web-service composition.

C.1 Motivation

In Business Service Networks (BSN), by combining multiple, heterogeneous “ser-

vices”, one can establish new value-added business processes for further applica-

tions. In particular, web services have emerged as a popular means to describe the

“services” that each vendor provides. Web services [114] are a piece of XML-based

software interface that can be invoked over the Internet, and can be roughly viewed

as a next-generation successor of CORBA or RPC technique. In such a setting,

one of the key issues is how to generate, discover, compose, and optimize web ser-

vices that are of interest. In this research, we especially focus on the problem of

optimizing web-service composition and propose a novel methodology, MISQ, as

a solution. Specially, we use UML to design agent based business processes, and

two formal modeling schemes, Stochastic Process Algebra (SPA) and Generalized

170

Figure C.1: Use case of FirstBroker example

Stochastic Petri Nets (GSPN) [93], to analyze initial business processes design and

to obtain optimized parameters. Finally, we propose to use the Business Process

Execution Language for Web Service (BPEL4WS) [7] as implementation artifacts

for expressing the optimized business processes.

C.1.1 Motivating Example

Consider a scenario in a BSN’s where the optimization of composed web services is

a crucial issue. Suppose Bill opens an Internet-based auto loan brokerage company,

FirstBroker, where he locates a loan with a low interest rate for customers who

pay a nominal fee as a return. FirstBroker uses web services from three loan

companies, StarLoan, UnitedLoan, and BestLoan. Once FirstBroker gets the

customer’s inquiry, it sends bid requests to the three loan companies using their web

services, and forwards the lowest interest rate found to the customer. Whenever

FirstBroker sends loan rate requests to the loan companies, it has to pay a fee

to each, as FirstBroker is a business adapter and three loan web services are

software vendors in the BSN. Furthermore, a customer pays a fee to FirstBroker

only if she is satisfied with the proposed rate and decides to make a contract with

FirstBroker. In summary, Bill’s profit model is the following:

171

• Profit model = (# of accepted proposals by customers × charge per cus-

tomer) - (# of loan rate requests × # of loan companies × charge per loan

rate request)

Suppose Bill agrees to pay $1 for each loan rate request to loan companies,

while charging $10 to customers who eventually accept the proposed rate. The

business is initially booming, attracting a large number of customers due to the

fact that customers do not have to pay for initial inquiries, and pay $10 only

after accepting. However, FirstBroker eventually files a bankruptcy despite many

customers submitting inquiries.

The scenario presented often occurs in combining and composing new services

in BSN where a decision for parameters must be made to maximize profits. If Bill

had chosen the correct number of web services (i.e., loan companies) and the proper

service charge to customers, he would possibly remained in business. Like the case

of FirstBroker, early identification of optimal values through formal analyses is

particularly desirable, since the costs of changing the design at a later stage are

much higher [68]. However, identifying optimal values when multiple web services

are complicatedly inter-related is a challenging task, since in real applications,

such parameters to consider can be many and non-trivial. Therefore, there is an

imminent need for the methodology that systematically and mechanically helps

to model, analyze, and optimize web-service compositions. For this solution, we

propose MISQ in this research.

C.2 Overview of MISQ

As illustrated in Figure C.2, MISQ consists of analysis and implementation stages.

Informally, the analysis stage runs as follows:

1. Design high-level UML diagrams such as state and sequence diagrams.

2. Transform high-level UML designs into a formal model in Stochastic Process

Algebra (SPA) model.

3. Transform SPA into Generalized Stochastic Petri-Net (GSPN) model using

steps suggested in the previous research [93].

172

Figure C.2: Overview of MISQ

4. Perform analysis via simulation.

5. Based on simulation results, identify optimal parameters and design. If

needed, steps 2-4 may be repeated.

The implementation stage is adopted from the waterfall model [6] of software

development. It runs as follows:

6. Based on the optimized high-level design, produce a high-fidelity model con-

sisting of class and activity diagrams.

7. From the high-fidelity model, generate implementation artifacts.

MISQ contributes to the following:

• A Petri-Net model for analyzing initial high level UML based designs, and the

temporal and functional analysis for optimization can increase productivity

and reliability of web service-based software systems in BSN’s.

• A methodology for seamless integration of several languages or modeling tools

(e.g., UML, SPA, GSPN, WSDL and BPEL), and a detailed example with a

simulation result to illustrate the effectiveness of the proposed methodology.

173

C.3 Related Work

Our research integrates three different streams of work: (1) Deriving analysis model

from UML; (2) Deriving implementation artifacts from UML; and (3) Transform-

ing models from SPA to GSPN. To remedy the lack of verification and validation

inherent in UML, some researchers have tried to translate UML into the process

algebra [58]. The focus is on a sequence diagram where the objects are considered

as π-calculus processes and messages are represented as actions among these pro-

cesses. Despite the inherent semi-formality, UML has a strong descriptive power

for high-level, as well as high-fidelity modeling [6]. Among UML diagrams, state di-

agrams and sequence diagrams are sufficient to represent the high-level model. On

the other hand, a high-fidelity model is capable of representing the details of imple-

mentation artifacts. Usually, a high-fidelity model can be expressed with class and

activity diagrams of UML. The mapping from high-fidelity model to corresponding

implementation artifacts is provided using UML 1.4 profile and BPEL4WS [7] as

implementation artifacts [6]. Comparisons between GSPN and SPA with different

perspectives are given [34]. In our proposal, we use both GSPN and SPA as an

analysis model to optimize web service composition. As dynamic discovery of web

services and composition problems, run-time adaptability of a composed process

is another research issue in this area. METEOR-S [27] project has addressed this

issue for workflows. This allows the process designers to bind web services to an

abstract process, based on business and process constraints, and generate an exe-

cutable process. Proteus [45] was suggested as a framework that consumes a user

request to compose a plan that incorporates available web services, and execute

the plan seamlessly. Finally, in both METEOR-S and Proteus, the user defines a

composition at design-time in the former, and in the latter service adopting is pro-

cessed at execution time by assembling available web services. These compositions

are pattern based and other researches have also addressed this approach [13]. Be-

sides the dynamic composition approach, automatic composition of web services

is a challenging research problem. This is due to difficulty of mapping user needs

to a collection of correlated services, where their interim outputs can satisfy each

other’s input requirements and the final delivery meets the user demands. Finally,

matching interfaces between each web service in the collection is a problem. If only

174

syntactic matching is permitted, the problem can be formulated into a special di-

rected graph shortest path problem [84]. On the other hand, semantic interface

matching is expected to be crucial to automatically compose new services due to the

increasing number and heterogeneity of available web services. Interface-Matching

Automatic Composition technique [131] incorporates the use of the web-service

ontology to find matching web services. There is the emerging consensus that the

ultimate challenge is to make web services automatically tradable and usable by

artificial agents in their rational, pro-active interoperation on the next generation

of the web [40]. It may be solved by creating effective frameworks, standards and

software for automatic web-service discovery, execution, composition, interopera-

tion and monitoring [71]. In the industries, only initial and partial solutions of

the ultimate problem are provided. Existing de-facto standards for web service

description (WSDL) [115], publication, registration and discovery (UDDI) [113],

binding, invocation, and communication (SOAP) [112] provide merely syntacti-

cal capabilities and do not completely solve the ultimate challenge. More recent

research and standardization activities of DARPA DAML community resulted in

offering semantic service markup language DAML-S [8] based on RDF platform.

C.4 MISQ Methodology

MISQ is based on various models (UML, SPA, GSPN, BPEL, and WSDL) as well

as the transformation procedures between models. In the interest of space, here

we present a brief overview of SPA and GSPN.

Definition C.4.1 (SPA). Stochastic Process Algebra (SPA) is described by the

following grammar, [34].

P := Stop | (a, λ).P | a.P | P + P | P‖sP | P\S | Q (C.1)

where a variable P , Q,. . . denotes the process variables, while S is a set of

synchronization actions. The intuitive meaning of these elements is:

• Stop denotes the halting process.

• The process (a, λ).P models a delayed process that performs the action a

175

with delayed rate λ and then behaves as process P .

• The process a.P models an immediate process that performs the action a

without any delay and then behaves as process P .

• The choice operator ‘+’ is used to model alternative behavior.

• The parallel operator ‘‖s’ models the parallel execution of two processes

which have to synchronize in actions within the set of synchronizing actions

S.

• The hiding operator ‘\’ is used for declaring actions as internal, and is often

used to abstract away from internal events.

Definition C.4.2 (GSPN). Generalized Stochastic Petri-Net (GSPN) [34] is de-

fined as a 5-tuple (PL, T,W,M0, L), where:

• PL is a finite set of places.

• T is a finite set of transitions partitioned into two sub-sets TI (immediate)

and TD (delayed) transitions, where, transitions t ∈ TD are associated with

delayed rate λ.

• W ∈ (PL× T) ∪ (T × PL) is a set of directed arcs (i.e., flow relation).

• M0 : PL → {0, 1, 2, . . . } is the initial marking.

• L : T → Λ is a labeling function where Λ is a set of operation names.

C.4.1 SPN and GSPN Example

Consider the motivating example again. A customer checks the proposal of FirstBroker

and either accepts or reject the proposal. Since the customer chooses one behavior

between two choices, we represent this process with choice operator of SPA, ‘+’,

as follows:

choice decision := (accept + reject). (C.2)

176

Figure C.3: The process of the choice decision

Similarly, we can map choice decision into GSPN model as shown in Figure

C.3. Here, the place, choice start marked with a token enables both accept and

reject transition. If the accept transition is fired, the token switches places from

choice start to accept decision. On the contrary, if the reject transition is fired,

the token switches places from choice start to reject decision.

Definition C.4.3 (MISQ Model). A MISQ Model is an 8-tuple

(DSequence, Agent, Protocol, DState, DClass, DActivity, SPA, GSPN) where:

• DSequence is a sequence diagram with objects, behaviors, and messages be-

tween objects.

• Agent is a set of objects in DSequence. We denote each element of Agent

as a(i) with i being the position of the element (i.e., if |Agent| = n, a(1) and

a(n) are the leftmost and rightmost objects in DSequence).

• Protocol is a set of protocols. Individual protocols are sets of messages be-

tween a(i) and a(j), where i < j and denoted as prot(i, j).

• DState is a set of state diagrams. We denote each element of DState as

ds(i) which is the state diagram of a(i) ∈ Agent.

• DClass is a set of stereo-typed class diagrams such as DClass−dependency,

DClass−datatype, DClass− interface, DClass−protocol, and DClass−
process. DClass− dependency defines the dependency relationship between

each element in Agent. DC − datatype defines message contents and data

classes as well as the relationship between message contents and data classes.

177

DC − interface defines operations. DC − protocol defines the roles of the

corresponding port type. DC − process defines internal variables and its

ports, which are connected to each element in Agent.

• DActivity defines activity diagrams for an element in Agent.

Next, we present several transformation procedures from one model to another

in MISQ.

1. a(i) ∈ Agent(i > 1) has communication with the left and right objects,

that is, prot(i − 1, i) 6= ∅ and prot(i, i + 1) 6= ∅ . For example, a(1) has

prot(1, 2) 6= ∅ , and a(n) has prot(n− 1, n) 6= ∅ .

2. For prot(i, j), |i − j| ≤ 1. That is, each object communicates only with its

immediate neighbors.

3. |Agent| ≥ 2. That is, there are at least two objects.

Now, we present three transformation procedures: (1) UML to SPA, (2) SPA

to GSPN, and (3) UML to Implementation.

C.4.1.1 Procedure 1

In this procedure, the given UML is re-captured into SPA model. It has two steps.

1. Building Atomic processes

(a) Prepare DSequence, Agent, Protocol, DState.

(b) Create APset = {x|x ∈ SPA} = ∅.
(c) Set i = 1 and choose an a(i) ∈ Agent.

(d) Create an atomic process, p(i) ∈ SPA.

(e) Start transforming ds(i) into p(i). Transitions of ds(i) are transformed

to either delayed or immediate actions. If a transition does not have

any temporal information, it becomes immediate action ‘a’. Otherwise,

λ is added and becomes the delayed action (a, λ).

(f) If any action branch exists, it is expressed by a non-deterministic choice,

‘+’.

178

(g) A sequence of transitions in ds(i) corresponds to the sequence of actions

in p(i).

(h) APset = {p(i)} ∪ APset.

(i) If |APset| = |Agent| and all ds(i) ∈ DState is transformed, the proce-

dure stops. Otherwise, increase i by one and go to Step 1.3.

2. Building a Composite process

(a) Create a process, System ∈ SPA and System := p(1). Increase i to

two.

(b) Choose p(i) ∈ APset.

(c) System = System‖SP (i)\S, where S ≡ prot(i− 1, i).

(d) If i = |APset| and all the p(i) get combined into System, the procedure

stops. Otherwise, increase i by one and go to Step 2.2.

C.4.1.2 Procedure 2

In this procedure, the SPA model is transformed into Petri-Net based GSPN graph-

ical model for easier manipulation. As shown in Figure C.4, It is generally known

that any SPA model can be represented as a GSPN model, and details of such

translations can be found [58] [34]. In our proposal, the approach introduced in

the previous research [93] is used. We do not describe the entire procedure.

C.4.1.3 Procedure 3

Once the high-level UML design has been optimized in the GSPN model, web-

service implementation can finally be generated in this procedure. We use the

methods described in [6], but we can use another implementation-specific method

for this procedure (e.g., from UML to CORBA).

1. Based on the optimized system specification obtained in Procedure 2, DClass−
dependency, DClass−datatype,DClass−interface,DClass−protocol, DClass−
process, andDActivity are drawn.

179

Figure C.4: Mapping SPA operations into GSPN processes

2. DClass−dependency maps to an XML namespace import in WSDL. DClass−
datatype maps to message types and data types in WSDL. DClass−interface

maps to operations types in WSDL. DClass − protocol maps to port and

service link types in WSDL. DClass−process and DActivity map to process

definitions in BPEL.

C.5 Illustrative Example

In this section, we demonstrate how to optimize web-service composition using the

MISQ methodology. The following list summarizes notations used in this example.

• C: Customer, C’s inter-arrival time follows exp(λ).

• B: Brokerage web service.

• WS: A set of auto loan web services, wsj ∈ WS where 1 ≤ j ≤ n. We

assume that 1 ≤ n ≤ 4.

• Rate(ws): A loan rate returned from ws ∈ WS, uniform(5, 6) is followed.

• to: Time-out until which B waits for Rate(ws).

180

• WS(S): A set of web services, WS(S) ⊂ WS, that successfully send a loan

rate before to.

• WS(F): A set of web services, WS(F) ⊂ WS, that fail to send a loan rate

before to.

• Min(Rate): Smallest Rate(wsj), ∀wsj ∈ WS(S).

• Fee(wsj): Service fee that B pays to wsj ∈ WS(S).

• Fee(B): Service fee that C pays to B.

• AR: Accept rate, AR = exp−δ(Min(Rate)−5) - 2(Fee(B)−10)/210, where δ is a

preference parameter.

• PT : Profitable throughput PT = |C| × AR.

PT exponentially decrease as Min(Rate) increases, meaning that customers

will not accept the offer if the rate is high. PT also decrease in proportion of

2(Fee(B)−10)/210 as Fee(B) increases, suggesting that customers will not accept the

offer if the service charge to B is high. AR expresses C’s purchasing intention,

whose parameters could be selected based on real market surveys. Here, however,

we simply use parameters, exp and 2, in the interest of time.

C.5.1 Scenario

Consider the following scenario:

1. C seeks for an auto loan with a minimum interest rate, and sends an inquiry

to B (C has no direct access to WS).

2. B relays C’s request to each wsj ∈ WS.

3. wsj calculates and returns its Rate(wsj) to B.

4. The communication between B and wsj is asynchronous with the time-out,

to. After to, B does not wait for Rate(wsj) anymore. B must pay Fee(wsj)

to successful wsj, who returns Rate(wsj) within to.

181

Figure C.5: Sequence diagram of the example

5. B sends Min(Rate) to C.

6. If C accepts Min(Rate), C pays Fee(B) to B. Otherwise B cannot charge

Fee(B) on C.

Figure C.5 illustrates the sequence diagram of the scenario.

C.5.2 Applying MISQ to the example

We want to “maximize” the expected profit of B, who is a business adopter in

the context of BSN’s. Thus, the objective function, Z, representing the expected

profit of B can be:

• Z = Fee(B)× (PT)− Fee(ws)× |WS(S)| × T .

If Z ≥ 0, B makes a profit. Z is directly proportional to PT . If |WS| increases,

PT is likely to increase because C has a better chance to obtain lower Min(Rate),

while B has to pay more fees for an increased |WS(S)|. Meanwhile, if Fee(B)

decreases, PT may increase since a low service charge can attract more C to

accept the offer, making B’s profit decrease. Note that there are two trade-off

relations necessary to find the optimal values as follows:

182

Figure C.6: Sequence diagram of the example

• |WS| = n: How many web services of loan companies are economical for B

to use?

• Fee(B): How much service charge for customers is appropriate?

Since we assumed 1 ≤ n ≤ 4, we apply MISQ analysis starting with n = 1 and

can repeat the analyses by increasing n by 1. If n = 1, Agent = {a(1), a(2), a(3)},
where a(1) is C, a(2) is B and a(3) is each wsj ∈ WS. Similarly, DSequence =

{ds(1), ds(2), ds(3)} where ds(1), ds(2) and ds(3), and is shown in Figure C.6.

Protocol = {prot(1, 2), prot(2, 3)} where prot(1, 2) = {callforproposal, propose−
interest, send−decision, inform−accept} and prot(2, 3) = {request−interest, not−
understand, inform− interest}.

C.5.3 Building atomic and composition processes.

We can first build the following atomic processes:

• customer:= call-for-proposal; propose-interest; (accept + reject); send-decision;

inform-accept; throughput.

183

Figure C.7: Sequence diagram of the example

• broker:= call-for-proposal; request-interest; (not-understand + inform-interest);

propose-interest; send-decision; inform-accept; broker.

• loan:= request-interest; ((timeout, to);not-understood + (service-done, µ);inform-

interest); loan.

In addition to the original atomic processes, we can add two more processes, arrival

and buffer, for collecting analysis data as follows:

• arrival := (gen, λ); call-for-proposal; arrival.

• buffer(i):= (gen, λ); buffer(i+1) + inform-accept; buffer(i-1), where i ≥ 1

Next, based on the aforementioned atomic processes, we build the composite

process of System as follows:

• System′ := customer‖prot(1,2)broker‖prot(2,3)loan\(prot(1, 2) ∪ prot(2, 3)).

• System := (System′‖S1arrival)‖S2buffer\(S1 ∪ S2), where S1 = call-for-

proposal, S2 = gen , propose-interest.

184

Figure C.8: Profit change according to |WS| and Fee(B)

C.5.4 Transforming SPA into GSPN

Through the SPA to GSPN procedure, the composite process System in SPA is

transformed into GSPN, as shown in Figure C.7.

C.5.5 Simulation of GSPN

We conducted simulations for four experimental cases: |WS| = 1, 2, 3, and 4. We

assumed that (1/λ) = (1/µ) = (to) = 4 hours, δ = 5, and Fee(wsj) = $1. GSPN

model simulation was done using HPSim [9] and the result analysis was conducted

with MS Visual Basic and Excel. Simulation time was set to the same as B’s life

cycle, 10,000 hours. As shown in Figure C.8, the optimal setting for the scenario

occurs when |WS| = 4, Fee(B) = $16 with the expected profit of B being $3,373.

C.5.6 High fidelity UML and Implementation

Once we acquire optimal parameters for the auto-loan example, we can build

DClass-dependency as in Figure C.9. Similarly, we also can generate DClass −
datatype, DClass − interface, and DClass − protocol as in Figure C.10. Those

models map into a WSDL file. Furthermore, we can also build DClass− process

185

Figure C.9: Dependency Diagram of the example

in Figure C.11, and DActvity in Figures C.12, C.13, and C.14. These models map

into a BPEL file. Some parts of implementation codes of WSDL and BPEL are

illustrated in Figures C.15 and C.16, respectively.

Figure C.16 illustrates the BPEL of the example which imports the WSDL

and orchestrates web services, including customer and four loan web services. The

main body of the BPEL is <process> which can be divided into two parts, such

as the process type definition and the process activity definition. As shown in

Figures C.15 and C.16, WSDL has the important role concerning BPEL, in which

the process is established based on the service model defined by WSDL. In WSDL,

the two key concepts, process and partner, are modeled as WSDL services. A

BPEL process reuses the definition of WSDL and can be deployed in different ways

and in different scenarios. For instance, as shown in Figure C.16, the loan broker

as well as four loan companies can reuse the same WSDL file, but they use it in

different scenarios. The BPEL process model has a limitation in that it can conduct

peer-to-peer interaction between services described in WSDL. For this peer-to-

peer interaction, as shown in Figure C.15, WSDL model defines messages and

portTypes. Within its portTypes, the interactions among web services are defined

as operations where the corresponding messages are used as arguments [100]. Like a

flow chart, BPEL provides two types of primitives: unit and control primitives. For

186

Figure C.10: Definition package of the example

the unit primitives, as shown in C.16, BPEL uses <invoke>, <receive>, <reply>,

<wait> and combines them to make more complex process units. For the control

primitives, it uses structural activities such as <flow>, <sequence>, <switch>,

<pick> and so on. In BPEL, there is partnerLinkType which characterizes the

services, which the corresponding business process communicates with. BPEL

allows for maintaining data for later use during the interaction phase in the business

process. A process definition is made of an activity, a series of partners and

containers with specific correlation sets, and the definition of fault handlers and

compensation handlers [27]. Interaction implemented in BPEL is specified based

on the message exchange between web services. It is necessary that these messages

are predefined in WSDL, where operations also must be defined if they will use

those messages [100].

187

Figure C.11: Broker package of the example

C.6 Conclusion

The MISQ systematically optimizes web-service composition to identify the opti-

mal values such as the number of ideal web services, maximum throughput, etc.

There are several future research directions. In addition to simple value optimiza-

tion, more functional analyses (e.g., deadlock detection or security flaw detection)

can be greatly benefited from MISQ. Also, considering real-time IT provisioning

and adoption enabled by BSN’s, more “dynamic” optimization is a challenging

goal. For instance, optimizing the dynamic workflow [57] of web-service compo-

nents can greatly benefit both software vendors and business adopters. Toward this

scenario, discovering, dynamically composing, and optimizing large-scale (e.g., in

the range of 1,000 - 10,000) web services is a challenging problem. We approached

the problem by viewing web-service composition as an AI planning problem in the

main text. What has been presented in this research is thus complementary to

the graph search based web-service composition research. In the near future, we

plan to combine the ideas of the main text and that of MISQ to accomplish truly

dynamic web-service composition methodology.

188

Figure C.12: Activity diagrams of the example (1)

Figure C.13: Activity diagrams of the example (2)

189

Figure C.14: Activity diagrams of the example (3)

190

<?xml version=‘‘1.0’’?> <definitions name=‘‘Broker’’ ... > <types>
<element name = ‘‘CFP’’>

<seqeunce>
<element name=‘‘Name’’ type=‘‘string’’>
<element name=‘‘Car_Model’’ type=‘‘string’’>
<element name=‘‘Loan’’ type=‘‘int’’>

</sequence>
<element>

... </types> <message name=‘‘Message1’’>
<part name=‘‘parameters’’ element=‘‘CFP’’/>

</message> ... <portType name=‘‘Interface CB’’>
<operation name=‘‘CFP’’>

<input message=‘‘Message1’’/>
</operation>
<operation name=‘‘Confirm_Proposal’’>

<input message=‘‘Message7’’/>
</operation>

</portType> ... <serviceLinkType name=‘‘Protocol_CB’’>
<role name=‘‘Customer’’>

<portType name=‘‘Interface CB_Callback’’/>
</role>
<role name=‘‘Loan’’>

<portType name=‘‘Interface CB’’/>
</role>

</serviceLinkType> ... </definitions>

Figure C.15: WSDL of the example

191

<process name =‘‘Broker’’ ...>
<partners name=‘‘Customer’’ serviceLinkType=‘‘Protocol_CB’’

partnerRole=‘‘Protocol_CB:Customer’’
myRole=‘‘Protocoal_CB:Broker’’/>

</partners>
...
<receive name=‘‘customerInput’’ partnerLink=‘‘Customer’’
portType=‘‘Interface CB’’ operation=‘‘CFP’’ variable=‘‘Message1’’ ... />
<flow>
<sequence>

<invoke name=‘‘Loan1Invoke’’
partnerLink=‘‘Loan1’’portType=‘‘Interface BL1’’
operation=‘‘CFP’’ variable=‘‘Message1’’ ... />
<recevie name=‘‘Loan1Invoke’’ partnerLink=‘‘Loan1’’
portType=‘‘InterfaceBL1 Callback’’ operation=‘‘Propose’’
variable=‘‘Message3’’ ... />

</sequence>
...
</flow>
<assign name=‘‘InterestAssign’’ >

<copy>
<from variable=‘‘message2’’ portion=‘‘LoanInterest’’ />
<to variable=‘‘message6’’ portion=‘‘LoanInterest’’ >
<copy/>

</assign>
<switch>

<case condition=‘‘message6/LoanInterest >
message3/LoanInterest’’>

<assign name=‘‘Loan2Assign’’ >
<copy>
<from variable=‘‘message6’’
portion=‘‘LoanInterest’’ />
<to variable=‘‘message3’’
portion=‘‘LoanInterest’’ >
<copy/>

</assign>
<otherwise>

<empty />
</switch>
...
<invoke name=‘‘Propose’’ partnerLink=‘‘Customer’’
portType=‘‘Interface CB callback ’’ operation=‘‘Propose ’’
variable=‘‘Message6’’ ... />
<receive name=‘‘ConfirmProposal’’ partnerLink=‘‘Customer’’
portType=‘‘Interface CB’’ operation=‘‘ConfirmProposal ’’
variable=‘‘Message7’’ ... />
<invoke name=‘‘Inform’’ partnerLink=‘‘Customer’’ portType=‘‘Interface CB
callback’’ operation=‘‘Inform ’’ variable=‘‘Message8’’ ... />

</process>

Figure C.16: BPEL of the Broker

Appendix D
WSPR Manual

D.1 Motivation

As the emergence of service-oriented architecture provides a major boost for e-

commerce agility, the number of available web services is rapidly increasing. How-

ever, when there are a large number of web services available and no single web

service satisfies the given request, one has to “compose” multiple web services to

fulfill the goal. Concerning this problem, we have developed and implemented an

AI planning-based web-service composition algorithm titled WSPR. The WSPR

outperforms state-of-the-art AI planners, such as GraphPlan and Blackbox, in com-

posing large-scale web services (in the range of 1,000 to 50,000) based on different

network topologies, and won the first runner-up award in ICEBE05 web-service

contest.

D.2 How to use WSPR

D.2.1 Installation

We encourage possible users to contact us through the WSPR official homepage

[126] if they want to obtain WSPR package. In addition, the full version of the

technical report is downloadable from the WSPR official homepage. WSPR pack-

age is written in Python (>= Version 2.3). This package consists of three python

files (“WSHSP.py,” “Path.py,” and “WebServicePath.py”) and they must reside

193

in same directory.

To see the available options, simply enter:

>python WSHSP.py -h

or

>python WSHSP.py –help

D.2.2 Sample Test Set

In this manual, we assume that users can locate and download sample test sets and

request sets from the ICEBE05 official homepage [54]. For detailed information

about the ICEBE05 sets, please read the instructions available at the homepage.

D.2.3 Basic Usage

We will assume that Python is located in the users path, and that the user is

running our application in the same directory as “WSHSP.py” is installed. The

ICEBE05 challenge offers two routines, “CompositionRoutine” or “DiscoveryRou-

tine”. Our application can distinguish the challenge routines automatically by

checking the different initiation XML tag in the test request files (i.e., either “Com-

positionRoutine” or “DiscoveryRoutine”).

• A basic example of running WSHSP.py is:

>python WSHSP.py [options]

• A more typical example of running WSHSP.py is:

>python WSHSP.py -i ICEBE sample data/out discovery

-g ICEBE sample data/discovery config.xml.out.xml -a wsp -o result.xml

where

1. “python WSHSP.py” runs our application.

2. The “ -i ICEBE sample data/out discovery” says that

“ICEBE sample data/out discovery” is the directory to find WSDL files to

use for the discovery or composition.

194

3. The “ -g ICEBE sample data/discovery config.xml.out.xml ” says what file

WSPR reads to define the request including initial parameters and output

parameters.

4. The “ -o result.xml” says that the results of WSPR will be written in “re-

sult.xml” conforming to the ICEBE05 challenge’s out format.

D.3 Available Options

1. Input (-i or –input): This specifies the directory that contains WSDL files

for testing.

2. Goal (-g or –goal): This specifies the “goal.xml” conforming to the ICEBE05

challenge’s format that contains input and output parameters.

3. Algorithm (-a or –algo): Currently we have only “one” algorithm imple-

mented, but plan to implement different algorithms depending on the appli-

cations. Thus, users must type “wsp” option to use WSPR algorithm. For

instance,

>python WSHSP.py -a wsp

4. Output (-o or –output): This outputs the discovery or composition results in

a xml file conforimg to the ICEBE05 challenge’s solution xml format. Note

that the users need to specify the output file name.

5. All together: For instance, when users want to: (1) use WSDL files in “test”

directory; (2) define their request in the “goal.xml” file; (3) find the compo-

sition (or discovery) using wsp algorithm; and (4) generate “result.xml” that

reports the results, the following will carry out these tasks:

>python WSHSP.py -i test -g goal.xml -a wsp -o result.xml

D.3.1 GUI version

Along with the console version above, WSPR is also provided in a GUI-version,

as shown in Figure D.1. The widgets in the GUI, such as buttons and check

buttons play the same roles as the command options in the previous console version.

195

Figure D.1: GUI version of WSPR

The sample composed services are shown in the right side of Figure E.1. In the

graph, each composed solution has nodes such as “ri” and ”ro”, which represent

the initial condition and goal state, respectively. The directed arcs indicate the

invocation flow, where a solid edge means full-matching invocation and a dotted

edge represents partial-matching invocation.

D.4 Trouble Shooting

If WSPR does not show any message or if it returns errors, make sure Python was

installed correctly and the executable was added to your Path system environment

variable. If everything looks alright with your Path, make sure you are in the

directory of the WSHSP.py file. If it is any other problem please contact us through

the WSPR official homepage

Appendix E
WSBen Manual

E.1 Motivation

The database and AI community increasingly devotes attention to discovery and

composition problem of large volumes of web services. As many prototypes of

dedicated web-service discovery and composition tools are available, there is a

strong need for a framework to analyze the capabilities and performance of such

tools as early as possible. Thus, WSBen is designed and developed with an aim

at providing flexible benchmarks that helps users and developers to gain insights

into the characteristics of their algorithms and products.

E.2 Purpose of WSBen

WSBen is a web-service benchmark tool which produces scaled WSDL documents

with user-defined characteristics and sample queries to run a user’s proposal. Both

documents of WSDL and sample queries are according to the DTD specified in the

web-service challenges (EEE05 and ICEBE05). In addition, WSBen allows users

to translate WSDL documents into a PDDL or Strips file so that they can compare

their tools with existing AI planners concurrently.

197

E.3 How to use WSBen

E.3.1 Installation

• WSBen requires that Python version 2.3 or greater be installed.

• WSBen requires NetworkX1 that is a Python package for the creation, ma-

nipulation, as well as the study of the structure, dynamics, and functions of

complex networks.

• WSBen is downloadable from the official WSBen homepage [125].

E.3.2 Options

WSBen provides two input parameter frameworks: xTS and yTS. They are differ-

ent from each other in terms of their approaches to specify the parameter cluster

network. In this manual, we assume that users choose to use xTS because of its

easiness to use. WSBen comes with a number of options to influence the output

behavior. Users are first recommended to understand our framework to generate

web services described in the full version of technical reports which are available

in our official WSBen homepage.

• -j 〈factor〉: The number of clusters (jars).

• -t 〈factor〉: The (total) number of web services to produce.

• -r 〈factor〉: The parameter condense rate. This value is used to specify the

size of cluster.

• -m 〈factor1, factor2, factor3, factor4〉: The graph model of the parameter

cluster network. factor1 must be one among “ba”, “nws”, and “er”. If

Factor1 is set to “ba”, then Factor2 and Factor3 are assigned for N and m0

of the Barabasi-Albert scale-free network model, respectively; Factor4 is not

required. If Factor1 is set to “nws”, then Factor2, Factor3, and Factor4 are

assigned for N , k, and p of the Newman-Watts-Strogatz small-world network

1https://networkx.lanl.gov/

198

model, respectively. If Factor1=“er”, then Factor2 and Factor 3 are assigned

for N and p of the Erdos-Renyi random graph model, respectively.

• -o 〈out name〉: It is used to specify the name of the output directory in which

the generated WSDL files are located.

• -q: It generates a query file. Default name is “〈out name〉.query”.

• -a: It translates WSDL files into a PDDL and a Strips file. Default names

are “〈out name〉.pddl” and “〈out name〉.strips”.

• -p: It generates a report where a parameter and its usage frequency are

described comma-separately. Default name is “〈out name〉 parDegree.txt”.

This file can be read by MS-Excel as an cvs file format.

E.3.3 Basic usage (examples)

In the following examples, WSBen will generate three test sets based on different

parameter cluster networks as follows:

• Scale-free network:

>python WSBen.py -j 100 -t 1000 -r 1 -m ba,100,6 -o ./ba/− q − a− p

• Small-world network:

>python WSBen.py -j 100 -t 1000 -r 1 -m nws,100,6,0.1 -o ./nws/−q−a−p

• Random graph:

>python WSBen.py -j 100 -t 1000 -r 1 -m er,100,0.06 -o ./er/ -q -a -p

Each test set illustrated above can be downloaded from the WSBen official

homepage. Further documentations, such as the full version of technical reports

and the presentation file of WSBen system, are downloadable from the WSben

official homepage too.

E.3.4 GUI version

WSBen is also provided in a GUI-version, as shown in Figure E.1. The widgets in

the GUI, such as buttons and check buttons play the same roles as the command

199

Figure E.1: GUI version of WSBen

options in the console version above. One added function in the GUI version is

to visualize the parameter cluster network formed by setting xTS by values. In

Figure E.1, the three networks below the GUI are such sample parameter cluster

networks, where each circular node represents a cluster and edges with heads denote

the web service template, from which web services are instanced. The size of node

is proportional to the number of parameters in the node, while the transparency

level of a node’s color is inversely proportional to the degree of the node. For

example, the hub cluster in a parameter cluster network that is characterized by

the high degree and small number of parameters is presented by a small circle with

less transparent color in the graph.

E.4 Trouble Shooting

If WSBen does not show any message or if it returns errors, make sure Python was

installed correctly and the executable was added to your Path system environment

variable. If everything looks alright with your Path, make sure you are in the

200

directory of the WSBen.py file. Any other problem please contact us through the

WSBen official homepage.

Bibliography

[1] T.B. Achacoso and W.S. Yamamoto. “AYs neuroanatomy of C. elegans for
computation”. “CRC Press, Boca Raton, FL, USA”, 1992.

[2] R. Albert and A. Barabasi. “Statistical mechanics of complex networks”.
Reviews of Modern Physics, 74(1):47–95, 2002.

[3] R. Albert and A.-L. Barabasi. “Topology of evolving networks”. Phys. Rev.
Lett., 85:5234–5237, 2000.

[4] R. Albert, H. Jeong, and A.-L. Barabasi. “The diameter of the world wide
web”. Nature, 401:130–131, 1999.

[5] I. Altintas, E. Jaeger, K. Lin, B. Ludaescher, and A. Menon. “A web service
composition and deployment framework for scientific workflows”. In Proc. of
the second IEEE International Conference on Web Services (ICWS), pages
814–815, San Diego, CA, USA, 2004.

[6] J. Amsden, T. Gardner, C. Griffin, and S. Iyengar. “UML
1.4 profile for automated business processes with a mapping
to BPEL 1.0”. Technical report, IBM, 2004. http://www-
128.ibm.com/developerworks/rational/library/4593.html (Last accessed
October 5, 2006).

[7] T. Andrews. “Business process execution language for web ser-
vices, version 1.1”. Technical report, OASIS, 2003. http://www106.
ibm.com/developerworks/library/ws-bpel/ (Last accessed October 5, 2006).

[8] A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D. Martin, D. McDer-
mott, S.A. McIlaraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
“DAML-S: web service description for the semantic web”. In Proc. Interna-
tional Semantic Web Conference, pages 348–363, Sardinia, Italy, 2002.

202

[9] H. Anschuetz. “HPSim Copyright c© 1999-2001”, 1999.
http://www.winpesim.de/petrinet/e/hpsim e.htm (Last accessed May 1,
2006).

[10] S. Arai, Y. Murakami, Y. Sugimoto, and T. Ishida. “Semantic web ser-
vice architecture using multi-agent scenario description”. Lecture Notes in
Artificial Intelligence, 2891:98–109, 2003.

[11] A.-L. Barabasi and R. Albert. “Emergence of scaling in random networks”.
Science, 286(15):509–512, 1999.

[12] A. Barrett, K. Golden, and S.D. Weld. “UCPOP User’s Manual”. Technical
Report TR 93-09-06, Dept. of Computer Science and Engineering, University
of Washington, Seattle, WA, USA, 1993.

[13] B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H. Ngu. “Declarative composi-
tion and peer-to-peer provisioning of dynamic web services”. pages 297–308,
San Jose, CA, USA, 2002.

[14] T. Berners-Lee. “Services and semantics: web architecture”.
http://www.w3.org/2001/04/30-tbl (Last accessed May 1, 2006).

[15] T. Berners-Lee, J. Hendler, and O. Lassila. “The semantic web”. Scientific
American, 284(5):34–43, 2001.

[16] M. Bilenko, W.W. Cohen, S. Fienberg, J.R. Mooney, and R. Ravikumar.
“Adaptive name matching in information integration”. IEEE Intelligent Sys-
tems, 18(5):16–23, 2003.

[17] Bindingpoint. http://www.bindingpoint.com (Last accessed May 1, 2006).

[18] Y. Bishr. “Semantic aspects of interoperable GIS”. PhD thesis, Wageningen
Agricultural University and ITC, the Netherlands, 1997.

[19] A. Blum and M. Furst. “Fast planning through planning graph analysis”.
Artificial Intelligence, 90:281–300, 1997.

[20] B. Bollabas. “Random graphs”. Academic, London, UK, 1985.

[21] B. Bonet and H. Geffner. “Planning as heuristic search”. Artificial Intelli-
gence, 129(1-2):5–33, 2001.

[22] A. Bouguettaya, B. Benatallah, and A. Elmagarmid. “Interconnecting het-
erogeneous information systems”, In: A. Elmagarmid (Editor), Advances in
Database Systems. Kluwer:Norwell, MA, USA, 1998.

203

[23] P.A. Buhler and J.M. Vidal. “Adaptive workflow = web services + agents”.
In Proc. of the first IEEE International Conference on Web Services (ICWS),
pages 131–137, Las Vegas, NV, USA, 2003.

[24] T. Bylander. “The computational complexity of propositional STRIPS plan-
ning”. Artificial Intelligence, 69(1-2):165–204, 1994.

[25] M. Cantera. “IT professional services forecast and trends for web services”.
Technical Report ITES-WW-MT-0116, Gartner Inc., 2004.

[26] J. Cardoso and A. Sheth. “Semantic e-workflow composition”. Journal of
Intelligent Information Systems, 21(3):191–225, 2003.

[27] J. Cardoso and A. Sheth. “Semantic e-workflow composition”. Journal of
Intelligent Information Systems (JIIS), 21(3):191–225, 2004.

[28] W. W. Cohen, P. Ravikumar, and S. Fienberg. “A comparison of string
distance metrics for naming-matching tasks”. In Proc. of Workshop on In-
formation Integration on the Web (IIWEB), pages 73–78, Acapulco, Mexico,
2003.

[29] Corba. http://www.corba.org/ (Last accessed May 1, 2006).

[30] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. “Introduction to algorithms”.
MIT Press and McGraw-Hill, MA, USA, 2001.

[31] J. Delgado. “Emergence of social conventions in complex networks”. Artifi-
cial Intelligence, 141:171–185, 2002.

[32] P.J. Denning. “Network Laws”. Communications of the ACM, 47(11):15–20,
2004.

[33] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. “Ontology matching: a
machine learning approach” In: S. Staab and R. Studer (Editors), Handbook
on Ontologies in Information Systems. Springer-Velag, Berlin, Germany,
2003.

[34] S. Donatelli, H. Hermanns, J. Hillston, and M. Ribaudo. “GSPN and SPA
compared in practice: quantitative modelling in paralle systems”. Springer,
Berlin, Germany, 1995.

[35] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. “Similarity
search for web services”. In Proc. of the 30th Very Large Data Bases (VLDB),
pages 372–383, Toronto, Ontario, Canada, 2004.

204

[36] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma. “Dynamic workflow com-
position: using markov decision processes”. Int’l Journal. of Web Services
Research, 2(2):1–17, 2005.

[37] EEE05. http://www.comp.hkbu.edu.hk/ eee05/contest/ (Last accessed March
1, 2005).

[38] P. Erdos, R. Graham, and J. Nesetril. “The mathematics of Paul Erdos”.
Springer-Verlag, Berlin, Germany, 1996.

[39] P. Erdos and A. Renyi. “On random graphs”. Publicationes Mathematicae,
6:290–297, 1959.

[40] V. Ermolayev, N. Keberle, S. Plaksin, O. Konoenko, and V. Terziyan. “To-
wards a framework for agent-enabled semantic web service composition”.
Int’l Journal. of Web Services Research, 1(3):63–87, 2004.

[41] J. Fan and S. Kambhampati. “A snapshot of public web services”. SIGMOD
Record, 34(1):24–32, 2005.

[42] Ernest Friedman-Hill. “Java based expert system (JESS)”.
http://www.jessrules.com/jess/index.shtml (Last accessed May 1, 2006).

[43] K. Furst and T. Schmidt. “Turbulent markets need flexible supply chain
communication”. Production Planning and Control, 12(5):525–533, 2001.

[44] M. Ghallab, D. Nau, and P. Traverso. “Automated planning: theory and
practice”. Morgan Kaufmann, San Mateo, CA, USA, 2004.

[45] S. Ghandeharizadeh, C.A. Knoblock, C. Papadopoulos, C. Shahabi, E. Al-
wagait, J.L. Ambite, M. Cai, C.-C. Chen, P. Pol, R. Schmidt, and Saihong.
“Proteus: a system for dynamically composing and intelligently executing
web services”. In Proc. of the first IEEE International Conference on Web
Services (ICWS), pages 17–21, Las Vegas, NV, USA, 2003.

[46] B. Gilles. “Learning in FOL with similarity measure”. In Proc. of the
tenth American Association for Artificial Intelligence conference, pages 82–
87, San-Jose, CA, USA, 1992.

[47] A. Ginsberg. “An unified approach to Automatic Indexing and Information
Retrieval”. IEEE Expert, 8(5):46–56, 1993.

[48] G.V. Glass and K.T. Hopkins. “Statistical method in education and psychol-
ogy, 3/E”. Allyn and Bacon, London, UK, 1996.

205

[49] V. Haarslev and R. Moller. “Description of the RACER system and its
applications”. In Proc. of International Workshop on Description Logics
(DL-2001), pages 131–141, Standford, USA, 2001.

[50] P. Haslum and H. Geffner. “Admissible heuristics for optimal planning”. In
Proc. of the fifth International Conference on Artificial Intelligence Planning
and Scheduling Systems (AIPS), pages 140–149, Breckenridge, CO, USA,
2000.

[51] J. Hoffmann and J. Koehler. “A new method to query and index
sets”. In Proc. of the sixth International Joint Conference on Aritificial
Intelligence(IJCAI-99), pages 462–467, Stockholm, Sweden, 1999.

[52] XML-RPC Homepage. http://www.xmlrpc.com/ (Last accessed May 1, 2006).

[53] E. Hovy. “Combining and standardizing large-scale practical ontologies for
machine translation and other uses”. In Proc. of the First Int. Conf. on
Language Resources and Evaluation(LREC), pages 535–542, Granada, Spain,
1998.

[54] ICEBE05. http://www.comp.hkbu.edu.hk/ ctr/wschallenge/ (Last accessed
May 1, 2006).

[55] H. Kautz and B. Selman. “Unifying SAT-based and graph-based planning”.
In Proc. of the 16th International Joint Conference on Artificial Intelligence
(IJCAI), pages 318–325, Stockholm, Sweden, 1999.

[56] T. Kidd. “Agile manufacturing: forging new frontiers”. Addison-Wesley,
Reading, Massachusetts, USA, 1994.

[57] J. Kim, A. Segev, A. Patankar, and M.G. Cho. “Web services and BPEL4WS
for dynamic e-business negotiation processes”. pages 111–117, Las Vegas,
NV, USA, 2003.

[58] K. Korenblat and C. Priami. “Extraction of π-calculus specifications from
UML sequence and state diagrams”. Technical Report DIT-03-007, Infor-
matica e Telecomunicazioni, University of Trento, Italy, 2003.

[59] R. Korf. “Depth-first iterative-deeping: an optimal admissible tree search”.
Artificial Intelligence, 27(1):97–109, 1985.

[60] P. Kotinurmi. “Towards more intelligent business-to-business integration
with semantic web service technologies”. In Proc. of the CIMRU-DERI-HP,
pages 33–35, 2005.

206

[61] B.S. Kulvatunyou, H. Cho, and Y.J. Son. “A semantic web service frame-
work to support intelligent distributed manufacturing”. Int’l Journal of
Knowledge-based and Intelligent Engineering Systems, 9:107–127, 2005.

[62] C.T. Kwok and D.S. Weld. “Planning to gather information”. In Proc. of
the 13th National Conference on Artificial Intelligence (AAAI), pages 32–39,
Portland, OR, USA, 1996.

[63] J. Lee, M. Kim, and Y. Lee. “Information retrieval based on conceptual
distance in IS-A hierarchies”. Journal of Documentation, 49(2):188–207,
1993.

[64] M. Levit, E. Nth, and A. Gorin. “Using EM-trained stringedit distances for
approximate matching of acoustic morphemes”. In Proc. of International
Conference on Spoken Language Processing (ICSLP2002), pages 1157–1160,
Siguenza, Spain, 2002.

[65] L. Li and I. Horrocks. “A software framework for matchmaking based on
Semantic Web technology”. In Proc. of the WWW 2003 conference, pages
331–339, 2003.

[66] D. Liu, J. Peng, K.H. Law, G Wiederhold, and R.D. Sriram. “Composition
of engineering web services with distributed data-flows and computations”.
Advanced Engineering Informatics, 19:25–42, 2005.

[67] A. Maedche and S. Staab. “Measuring similarity between ontologies”. In
Proc. of the European Conference on Knowledge Acquisition and Manage-
ment (EKAW), pages 251–263, Siguenza, Spain, 2002.

[68] M. Marzolla. “Simulation-based performance modeling of UML software ar-
chitectures”. PhD thesis, Dottorato di Ricerca in Informatica, II Ciclo Nuova
Serie, Dipartimento di Informatica, Universita Ca’ Foscari di Venezia, Italy,
2003.

[69] D. McDermott. “A heuristic estimator for means-ends analysis in planning”.
In Proc. of the third International Conference on Artificial Intelligence Plan-
ning Systems (AIPS), pages 142–149, Edinburgh, Scotland, 1996.

[70] D. McDermott. “The 1998 AI planning systems competition”. AI Magazine,
21(2):35–55, 2000.

[71] S.A. McIlraith, T.C. Son, and H. Zeng. “Semantic web services”. IEEE
Intelligent Systems Magazine, 16(2):46–53, 2001.

[72] B. Medjahed, A. Bouguettaya, and A.D. Elmagarmid. “Composing web
services on the semantic web”. The VLDB Journal, 12:333–351, 2003.

207

[73] N. Milanovic and M. Malek. “Current solutions for web service composition”.
IEEE Internet Computing, 8(6):51–59, 2004.

[74] M. Molloy and B. Reed. “A critical point for random graphs with a given
degree sequence”. Random Struct. and Algorithms, 6:161–180, 1995.

[75] M. Molloy and B. Reed. “The size of the largest component of a random
graph on a fixed degree sequence”. Combinatorics, Probability and Comput-
ing, 7:295–306, 1998.

[76] S. Narayanan and S.A. Mcllraith. “Simulation, verification and automation
composition of web services”. In Proc. of the 11th Int’l World Wide Web
Conference (WWW2002), pages 77–88, Honolulu, USA, 2002.

[77] M. Newman, S. Strogatz, and D. Watts. “Random graph models of social
networks”. In Proc. of the National Academy of Science, pages 2566–2572,
2002.

[78] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. “Random graphs
with arbitrary degree distributions and their applications”. Phys. Rev. E,
64(026118), 2001.

[79] Nils J. Nilsson. “Artificial Intelligence: a new synthesis”. Morgan Kaufmann,
San Francisco, CA, USA, 2001.

[80] S.-C. Oh, H. Kil, D. Lee, and S. Kumara. “WSBen: a web services discov-
ery and composition benchmark”. In Proc. of the forth International IEEE
Conference on Web Service (ICWS), pages 239–246, Chicago, USA, 2006.

[81] S.-C. Oh, D. Lee, and S. Kumara. “A comparative illustration of AI planning-
based web services composition”. ACM SIGecom Exchanges, 5(5):1–10, 2005.

[82] S.-C. Oh, D. Lee, and S. Kumara. “MISQ: a framework to analyze and pp-
timize web service composition in business service networks”. Int’l Journal.
of Cases on Electronic Commerce (IJCEC), 1(4):35–55, 2005.

[83] S.-C. Oh, D. Lee, and S. Kumara. “WSPR: a heuristic algorithm for web
service composition”. Int’l J. of Web Services Research (IJWSR), 4(1), 2007.

[84] S.-C. Oh, B. On, E.J. Larson, and D. Lee. “BF*: Web services discovery and
composition as graph search problem”. In Proc. of the seventh International
IEEE Conference on e-Technology, e-Commerce and e-Service (EEE), pages
784–786, Hong Kong, China, 2005.

[85] Pellet. “Pell-OWL DL Reasoner”. http://www.mindswap.org/2003/pellet
(Last accessed May 1, 2006).

208

[86] A.G. Phadke and J.S. Thorp. “Computer relaying for power systems”. Wiley,
New York, USA, 1988.

[87] D. Pierce and B. Kuipers. “Map learning with uninterpreted sensors and
effectors”. Artificial Intelligence, 92:169–229, 1997.

[88] S.R. Ponnekanti and A. Fox. “SWORD: a developer toolkit for web service
composition”. In Proc. of the 11th World Wide Web (WWW), pages 128–
137, Honolulu, HI, USA, 2002.

[89] C. Preist, J.E. Cuadrado, S. Battle, S. Williams, and S. Grimm. “Automated
business-to-business integration of a logistircs supply chain using semantic
web services technology”. In Proc. of the forth International Semantic Web
Conference (ISWC05), pages 987–1001, Galway, Ireland, 2005.

[90] PRODIGY project homepage. http://www.cs.cmu.edu//prodigy/ (Last ac-
cessed May 1, 2006).

[91] E. Rahm and P. Bernstein. “A survey of approaches to automatic schema
matching”. The VLDB Journal, 10(4):334–350, 2001.

[92] J. Rao and X. Su. “A survey of automated web service composition meth-
ods”. In Proc. of the first International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC), pages 43–54, San Diego, CA,
USA, 2004.

[93] M. Ribaudo. “Tackling the challenges of service composition in e-
marketplaces”. In Proc. of the sixth International Workshop on Petri Nets
and Performance Models, pages 125–133, Durham, NC, USA, 1995.

[94] S.J. Russell and P. Norvig. “Artificial Intelligence: a modern approach”.
Prentice-Hall, Englewood Cliffs, NJ, USA, 2002.

[95] S. Saadati and G. Denker. “An OWL-S editor tutorial, Version
1.1”. Technical report, SRI International, Menlo Park, CA, USA, 2006.
http://owlseditor.semwebcentral.org/documents/tutorial.pdf (Last accessed Oc-
tober 5, 2006).

[96] Salcentral. http://www.salcentral.com (Last accessed May 1, 2006).

[97] B. Selman and H.A. Kautz. “Domain-independent extension to GSAT: solv-
ing large structured satisfiability problems”. In Proc. of 13th International
Joint Conference on Artificial Intelligence (IJCAI’93), pages 290–295, 1993.

[98] Web service list. http://www.webservicelist.com (Last accessed May 1, 2006).

209

[99] G. Shegalov, M. Gillmann M, and G. Weikum. “XML-enabled workflow man-
agement for e-services across heterogeneous platforms”. The VLDB Journal,
10(1):91–101, 2002.

[100] J. Shen, Y. Yang, and B. Lalwani. “Mapping web services specifications
to process ontology: ppportunities and limitations”. In Proc. of the tenth
IEEE International Workshop on Future Trends in Distribution Computing
Systems (FTDCS04), pages 261–267, Suzhou, China, 2004.

[101] P. Shvaiko and J. Euzenat. “A survey of schema-based matching ap-
proaches”. Journal on Data Semantics, pages 146–171, 2005.

[102] S.S. Sidiroglou, M.E. Locasto, and A.D. Keromytis. “Harware support
for self-healing software services”. ACM SIGARCH Computer Architecture
News, 33(1):42–47, 2005.

[103] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. “HTN planning for web
service composition using SHOP2”. Journal of Web Semantics, 1(4):377–396,
2004.

[104] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. “Adding semantics to
web services standards”. In Proc. of the first IEEE International Conference
on Web Services (ICWS), pages 395–401, Las Vegas, NV, USA, 2003.

[105] I.J. Timm and P.-O. Woelk. “Ontology-based capability management for
distributed problem solving in the manufacturing domain”. Lecture Notes in
Artificial Intelligence, 2831:168–179, 2003.

[106] E. Voorhees. “Using WordNet for text retrieval”, In: C. Fellbaum (Editor),
WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA,
USA, 1998.

[107] T. Vossen, M. Ball, A. Lotem, and D. Nau. “On the use of integer pro-
gramming models in AI planning”. In Proc. the 16th National Conference
on Artificial Intelligence (AAAI), pages 304–309, Orlando, FL, USA, 1999.

[108] W3C. “Annotated DAML+OIL ontology markup”.
http://www.w3.org/TR/daml+oil-walkthru/ (Last accessed May 1, 2006).

[109] W3C. “OWL web ontology language”. http://www.w3.org/TR/owl-features/
(Last accessed May 1, 2006).

[110] W3C. “OWL web ontology language for services (OWL-S)”.
http://www.w3.org/Submission/2004/07/ (Last accessed May 1, 2006).

[111] W3C. “Semantic web”. http://www.w3.org/2001/sw (Last accessed May 1,
2006).

210

[112] W3C. “Simple Object Access Protocol (SOAP) 1.2”.
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/ (Last accessed
March 10, 2005).

[113] W3C. “UDDI 3.0 technical white paper”. http://uddi.org/ (Last accessed
March 10, 2005.

[114] W3C. “Web services activity (web site)”. http://www.w3c.org/2002/ws/
(Last accessed March 10, 2005).

[115] W3C. “Web Services Description Language (WSDL) 2.0”.
http://www.w3.org/TR/2004/WD-wsdl20-20040803/ (Last accessed March
10, 2005).

[116] Y. Wang and E. Stroulia. “Semantic structure matching for assessing web
service similarity”. In Proc. of the First International Conference on Service
Oriented Computing, pages 194–207, Trento, Italy, 2003.

[117] S. Wasserman and K. Faust. “Social network analysis”. “Cambridge Uni-
versity Press, Cambridge, UK”, 1994.

[118] D.J. Watts. “The dynamics of networks between order and radnomness”.
Princeton Univ. Press, Princeton, NJ, USA, 1999.

[119] D.J. Watts and S.H. Strogatz. “Collective dynamics of ‘small-world’ net-
works”. Nature, 393(4):440–442, 1998.

[120] WebserviceX.NET. http://www.webservicex.com (Last accessed May 1, 2006).

[121] D.S. Weld. “Recent advances in AI planning”. AI Magazine, 20(2):93–123,
1999.

[122] H. S. Wilf. “Generatingfunctionology”. Academic Press, London, UK, 1994.

[123] A.T. Winfree. “The geometry of biological time”. “Springer, New York,
USA”, 1980.

[124] WS-Diamond. “Web services - diagnosability, monitoring and diagnosis”.
http://wsdiamond.di.unito.it/ (Last accessed May 1, 2005).

[125] WSBen. http://www2.ie.psu.edu/Kumara/Research/lisq/index files/wsben/WSBen.htm
(Last accessed August 1, 2006).

[126] WSPR. http://www2.ie.psu.edu/Kumara/Research/lisq/index files/wspr/WSPR.htm
(Last accessed August 1, 2006).

211

[127] J. Wu and Z. Wu. “Similarity-based web service matchmaking”. In Proc. of
the 2005 IEEE International Conference on Service Computing (SCC’05),
pages 287–294, Orlando, FL, USA, 2005.

[128] xMethod. http://www.xmethod.com (Last accessed May 1, 2005).

[129] J. Yang, W. Heuvel, and M.P. Papazoglou. “Tackling the challenges of ser-
vice composition in e-marketplaces”. In Proc. of IEEE Int’l Workshop on
Research Issues in Data Engineering (RIDE02), pages 125–133, San Jose,
CA, USA, 2002.

[130] J. Zhang and L.-J. Zhang. “Web services quality testing”. Int’l Journal. of
Web Services Research, 2(2):1–4, 2005.

[131] R. Zhang, B. Arpinar, and B. AlemanMeza. “Automatic composition of
semantic web service”. In Proc. of the first IEEE International Conference
on Web Services (ICWS), pages 38–41, Las Vegas, NV, USA, 2003.

Vita

Seog-Chan Oh

Seog-Chan Oh was born in Seoul, Korea on July 27, 1971. He recived his B.S.
and M.S. degrees in Industrial Engineering from the Dongguk University in 1993
and 1996 respectively. During his M.S. study his major research interest was in
the area of Machine Learning. After he finished his M.S. study he joined Daewoo
Information Systems Co., Seoul, Korea. For seven years, he had mostly worked as
a IT consultant in manufacturing simulation, supply chain management and prod-
uct life-cycle management areas. In 2002 fall, he enrolled in the Ph.D. program
in Industrial Engineering at the Pennsylvania State University. During his Ph.D.
study he was employed as a research assistant in the Department of Industrial
Engineering, participating in several rewarding research projects sponsored by the
United State Marine Corps and the General Motor Research and Development
Center, under the supervision of Dr. Soundar Kumara. His research interests in-
clude web-service based service-oriented architecture (SOA) and its applications
to semantic web, supply chain, business workflow, and product life cycle. In this
context, he is interested in composing distributed services in an effective and effi-
cient way under a wide range of conditions including deterministic and stochastic
environments, large-scale service networks, and complex underlying network topol-
ogy. In general, his research uses methods and techniques drawn from AI planning,
multi-agents, OR, graph theory, ontology, and data mining.

He has a certification of Professional Engineer at Information Management
issued by the Korean government.

