
The Pennsylvania State University

The Graduate School

MINING USER-GENERATED CONTENTS ON THE WEB AND

SOCIAL NETWORKS

A Dissertation in

Information Science and Technology

by

Shu Huang

c© 2013 Shu Huang

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2013



The thesis of Shu Huang was reviewed and approved∗ by the following:

Dongwon Lee

Associate Professor of Information Sciences and Technology

Thesis Advisor, Chair of Committee

Peng Liu

Professor of Information Sciences and Technology

Heng Xu

Associate Professor of Information Sciences and Technology

Jack Hayya

Professor Emeritus of Supply Chain and Information System

Mary Beth Rosson

Professor of Information Sciences and Technology

Director of Graduate Programs

∗Signatures are on file in the Graduate School.



Abstract

In solving diverse data management problems, underlying social network between

users and semantics hidden deep in User-generated Contents (UGC) can be useful

from many perspectives. Finding and applying such hidden semantics of UGC and

social correlations illustrates a new way in solving various problems. In this thesis,

we study several challenging data management problems to investigate how to

apply the framework of UGC mining and social network analysis to substantially

improve existing solutions. In particular, we focus on the following four problems:

First, we propose a novel query expansion technique in Information Retrieval

that exploits the “location-based” correlation between users and search engine user

logs. We explore the vocabulary of users from different geographic locations and

investigate the semantic relations among the documents they search for. Based on

that, a hierarchical location and topic based query expansion model is proposed

to improve the accuracy of web search. Our proposed model predicts the query

location sensitivity with more than 80% precision. Using the model, the final

search result is significantly better than several existing query expansion methods.

Second, we explore the aggregate social activity and evaluate the significance of
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various activity features in determining the social activity evolution. In particular,

we look in to various formats of social activities and measure how member activity

impacts the evolution of the active population. Several activity features are ex-

tracted and their impact on the community evolution is evaluated with a feature

selection model. Based on the model, the most significant features are identified.

Third, we study UGC on Twitter, a large online platform of social media, to

identify tweet topics and sentiments towards some preset brands/products. To

help understand brand perception and customer opinions, we utilize the correla-

tion of tweet sentiments and topics, and propose a multi-task multi-label (MTML)

classification model that performs classification of both sentiments and topics si-

multaneously. It incorporates results of each task from prior steps to promote

and reinforce the other iteratively. Meanwhile, by using multiple labels, the class

ambiguity can be addressed. Compared with baselines, MTML produces a much

higher accuracy of both sentiment and topic classification.

Furthermore, based on tweet sentiment analysis, social network among Twitter

users is also taken into consideration to investigate the impact of events on tweet

sentiment change. By mining tweets about 2012 USA presidential campaign, we

analyze the sentiments towards the presidential candidates. Meanwhile, we incor-

porate social correlation between Twitter users and present a method to predict

the impact of events based on social activities. Analysis on tweets collected over

8 months shows that our method can predict the sentiment change with high ac-

curacy. Mining UGC and social network is not only efficient but also effective in

predicting the impact of events.
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Chapter 1
Introduction

The studies on mining user generated contents(UGC) and interpretation have been

rapidly evolving in recent years. With the emergence of digital storage and a va-

riety of online services, sources arise to enable in-depth research in relevant appli-

cations in various data management problems. In this dissertation, the semantic

computing framework is adopted to learn from UGC and improve techniques in

information retrieval, social activity mining, and sentiment analysis as well as pre-

diction in social media.

UGC has a variety of formats, which are supported by different social media

websites, such as Facebook, Tumblr, Twitter, and Youtube. Figure 1.1 shows an

example of UGC from Twitter. On these websites, users can write and post UGC

about any subject. At the same time, a user can also follow other users, which forms

online social network. Therefore any update of the followed users will be delivered

to the follower. On one hand, social network determines the diffusion of UGC, thus

analyzing social network structure can help predict the generation of UGC. On the
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Figure 1.1. An example of user generated contents: twitter stream

other hand, UGC also have impacts on individuals, which furthermore promotes

the change of social network topology. Studying UGC and social connections can

provide insights to this interactive relationship. Mining and understanding the

correlations will help with solving a lot of problems.

As a study of interpretation analysis, UGC mining focuses on analyzing words,

signs and symbols, as well as understanding their meaning. Based on that, se-

mantic computing on UGC explores hidden semantics in UGC content, such as

topics and sentiments. Semantic relations embodied in UGC reveal deep patterns

and domain rules in a variety of fields. The objective of semantic computing on

UGC is to understand the meaning of various sorts of computational content and

furthermore find out mapping rules.
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Generally, the topics addressed in mining UGC and semantic computing can

be grouped into three categories: intention understanding, content interpretation,

and semantic mapping. The first category involves understanding the intentions

of human expression and convert them into a machine-processable language. In

the second category, the focus is on understanding and converting various sorts

of user generated content, including but not limited to text, video, audio, and

image. Semantic mapping is based on the results of the first two categories. By

understanding semantic objectives and extracting their relations, algorithms are

developed to create mapping between semantic content for different purposes.

As the relations generated with semantic mapping are integrated, the meaning

of semantic objectives can be understood within a common framework. Thus, rel-

evant patterns for different purposes can be summarized from the computational

content through the embedded semantic metadata. With the patterns extracted,

many methods are proposed to apply UGC mining to different applications, in-

cluding document parsing, semantic relation extraction, semantic interpretation,

and entity disambiguation.

Existing researches have developed many techniques of semantics analysis from

different perspectives. To study the semantic relations, Bollegala et al. proposed

a relational similarity measure to compute the similarity between semantic rela-

tions by using a web search engine [1]. Furthermore, they presented a clustering

algorithm to train the logistic regression model to identify the relation patterns

expressed by each cluster [2]. By using a wide-coverage parser and semantic an-

alyzer trained from newspaper text, a method is proposed to generate large scale

semantic knowledge networks efficiently [3]. Another technique is proposed for

scalable semantic retrieval by adopting summarization and refinement [4]. Based
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on visual and semantic consistency, a social image retagging scheme is developed

to assign images with better content description [5]. These studies analyze the

semantic metadata in text and summarize the mapping rules for further analysis.

In data management, several studies are conducted to explore applications of

semantic mining on the web and social networks. In [6], a technique is introduced

to perform large scale semantic integration and reduce the redundancy while index-

ing on semantic web. Also, a decentralized infrastructure is proposed to efficiently

tackle the graph-based entity disambiguation problem [7]. As an enhanced ap-

plication, a semantic web search engine Falconer is developed to support friends

auto-discovery, semantic annotation, as well as topic trend analysis [8]. Further-

more, by projecting each post into a topic space, a sparse coding-based model is

constructed in [9] to simultaneously model semantics and structure of threaded

discussions. In a variety of applications, relevant problems are addressed by mining

semantics from UGC and utilizing the patterns extracted.

In this dissertation, we make use of UGC mining to help solve data management

problems in a few domains, including query expansion in web search, social activity

analysis, multi-label sentiment and topic co-classification, and prediction on impact

of events. The UGC involved includes not only search engine user logs, but also

online posts and microblogs in social networks.



Chapter 2
Background and Problem Statement

2.1 Overview

Exploiting semantics in UGC, we study four problems in domains of information

retrieval, social activity analysis, topic and sentiment classification, and prediction

of impact of events. The UGC mining techniques are applied to propose new

methodologies or substantially improve existing solutions. In this chapter, we

introduce the background of each problem and present the problem statement.

Search engine user log is a type of adhoc user generated contents in web search.

By mining search engine user log, we can explore not only the geographic correla-

tion between users, but also semantics of searching objectives. In this dissertation,

we make use of user location and semantic topic of searching objective to develop

a new query expansion method to improve web search.

After that, we study how user interactions in a social network have influence on

growth or shrinkage of social activity. By applying lasso-based logistic regression,

we find out the most significant features that determine aggregate social activity

evolution on two different types of social networks.
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Since social activity and UGC are both dynamically evolving and highly corre-

lated, investigating the interactive relationship between them can provide insights

that will promote predictions on social networks. Among all aspects, understand-

ing sentiments and topics of UGC has a wide application in online marketing and

advertising. For instance, it helps business owners monitor the customer opinions

and attitude towards a brand/product. Therefore, we analyze Twitter stream and

propose a multi-task multi-label classification model that can classify tweet sen-

timents and topics simultaneously and efficiently . Furthermore, by integrating

social activity and UGC sentiment, we analyze the temporal change of sentiment

in Twitter stream. Based on aggregate social activity, we present a method that

can simulate and predict sentiment change of tweets over time.

2.2 Query Expansion in Information Retrieval

The objective of information retrieval is to provide relevant information to different

users out of the overwhelming amount of data according to their searching key-

words/queries. Based on the observation that users often issue very short queries,

query expansion techniques have been proposed to close the gap between brief

expressions and retrieval objectives.

Query expansion is the process that reformulate a seed query to improve re-

trieval performance in information retrieval [10]. Within short queries, the same

keywords may be interpreted into different topics for different users, which may

also be true for the same users. The basic idea behind query expansion is to add

extra keywords to the short queries so that the retrieval objective can be expressed

more specifically and accurately. In this way, more accurate retrieval results can
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be obtained [11].

Different query expansion techniques proposed in past years [12] [13] can be

generally grouped into three categories: document-based query expansion, term-

based query expansion, and concept-based query expansion. We observe that

the existing methods ignored two important issues. First, users from different

locations may have different vocabularies and hence they may refer to the same

objects with different query terms, which we identify as query location sensitivity.

For example, in British English, the term lorry represents what truck refers to in

American English. Also, the term paddock has different meanings in Australian

English and British English. As a result, documents on the same topic created by

users from different locations differ in their lists of keywords, while the same thing

also happens on the queries issued by users from different locations. Therefore,

the distribution of keywords in queries will reflect the term usage distribution.

Second, the same search keywords may refer to different topics by different users

under different context.

The search engine user log file records the semantic relation of searching key-

words and web documents. Therefore, we propose to investigate the user log and

combine the semantic topics with location information into an efficient methodol-

ogy for query expansion. First, we show by experiments that some of the queries

are location-sensitive and others not. Second, for location-sensitive queries, we

present two types of expansion strategies: same-location based query expansion

and different-location based query expansion. We also propose a hierarchical clas-

sification model to classify a new query into different types at two levels (location

sensitive versus location non-sensitive, then same location sensitive versus different

location sensitive).
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While analyzing the search engine log data, IP addresses are used to locate

users, and derived topics of each document are used to represent the query ob-

jectives. Rather than deterministic document classification, we utilize the Latent

Dirichlet Allocation (LDA) model [14] in which each document is represented as

a vector of semantic topics. The similarity of two documents is calculated by the

corresponding vectors. Furthermore, the similarity of two queries is determined

by comparing the two sets of clicked documents therein. Last, keywords in top

similar queries are added to the initial query as expansion.

2.3 Temporal Social Activity Analysis

Intensive communication between individuals leads to complex social network in-

frastructures and a huge amount of UGC. With the emergence of online commu-

nities, many sources arise to enable in-depth research in social network analysis.

Exploring the social network evolution helps people understand how the commu-

nity evolves over time [15]. Based on that, the evolution of UGC can be investigated

accordingly.

Within a social network, members interact and produce UGC frequently, such

as videos, pictures, blogs, and tags. Parsing and extracting semantic topics em-

bodied through UGC reveal the topic trend and patterns of the topic correlation.

At the same time, semantic relations of UGC also indicate the latent relation-

ship between the corresponding individuals, e.g. common interest in the same

objectives. With the interactive population forming dynamic communities, the

change of semantic topic distribution can be explored by studying the community

evolution.
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Among all factors, member interaction plays a most important role in deter-

mining the community evolution. New members are usually introduced into the

community by the existing active members, instead of the inactive ones. On the

other hand, the active population not only determines the social network evolu-

tion but also reveals the business value of the community. For instance, if the

members have frequent activities and the active population keeps increasing, then

it is worthwhile to invest in advertisements and promotions for this community

and vice versa. In businesses, such as advertising, ex-ante knowledge of the status

of the targeted community will assist the decision making of the advertisers and

therefore help improve the profit.

Different methodologies are proposed to analyze and predict the social network

evolution. Generally, they can be grouped into static network mining, microscopic

evolution prediction, and structure analysis [16, 17, 18]. Observing existing work,

we find that they overlook three important issues. First, cumulative social network

does not emphasize the current member interaction; thus, the inactive members

are also included in predicting the network evolution. Example 1 illustrates the

biased impact by including inactive members when measuring a social network.

Second, the members with the same count of existing connections may have dif-

ferent activities. Thus the inactive members may not have the same probability

as the active ones in attracting new attachment. Third, structural features not

only measure the network status but also provide a good summary of the member

interaction. Therefore, they can be adopted to help with the prediction of the

social network evolution.

Example 1 (Member Activity). As a motivating example, consider a social

network where members register first and then begin the involvement in diverse
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(a)Member activity at t1 (b)Member activity at t2 (c)Member activity at t3

Figure 2.1. Illustration of the impact of inactive members in a social network: (a)
original network with two groups bridged by the black node; (b) the black node becomes
inactive toward one group (represented as the dotted edge); and (c) the black node
becomes completely inactive, separating two once-connected groups.

activities at various groups. Figure 2.1(a) depicts the member activities in such

a social network with two groups (i.e. the set of grey and white nodes) at time

t1. The groups are connected via the black node vb. After some time, as shown in

Figure 2.1(b), vb becomes dormant toward the grey node group. Then, although

a cumulative network during interval [t1, t3] would still show that two groups are

connected via vb, truth is that the structure and characteristics of the network has

been altered due to the change of activity of vb. Finally, in Figure 2.1(c), vb is no

longer active and becomes completely isolated in the network. 2

In this dissertation, we focus on investigating the active community evolution.

To study the active population, first, we present an approach to evaluate member

activities and measure their impact on community evolution. Also we introduce

a model that incorporates the structural features to predict the network evolution

quantitatively. At the same time, a shrinkage method is adopted to find the most

significant structural features in determining the evolution. At last, we show by

experiment that using the selected most valuable features can improve prediction

accuracy.
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2.4 Sentiment and Topic Classification in Social

Media

As online social network services become more popular in recent years, micro-

blogging such as Twitter, has been rapidly growing. Users post short texts, called

tweets, about any topic of interest, reply to others’ tweets, and disseminate infor-

mation to other users by re-tweeting. Although tweets are limited to no more than

140 characters, Twitter has become an extremely popular platform where people

freely express and exchange opinions.

Businesses in particular has noticed the potential of Twitter and used it in a va-

riety of applications, such as marketing promotion, brand campaign, and customer

care [19]. For instance, a lot of companies have started to poll relevant tweets to

help understand trending topics among their customers and the sentiments towards

their products.

Among all knowledge that can be extracted from tweets, in this dissertation,

we focus on two aspect: (1) sentiment of a tweet that captures the subjective mood

of a user, such as “positive” and “negative”; and (2) topic of a tweet that indicates

the scope of subject content from pre-determined aspects, such as “Compliment”,

“News”, and “Promotion”. In general, techniques known as sentiment analysis

and topic analysis respectively are used to infer latent sentiments and topics of

a given text corpus. Furthermore, in this dissertation, we employ the following

class schemes. The sentiment classes are “positive”, “negative”, and “neutral”.

The topic classes include “Care/Support”, “Lead/Referral”, “Mention”, “Promo-

tion”, “Review”, “Complaint”, “Inquiry/ Question”, “Compliment”, “News”, and

“Company/Brand”. We focus on the problem of classification, i.e., given a set of



12

Figure 2.2. Tweets related to “virgin mobile”, with topic and sentiment labels.

pre-determined classes, how to identify which classes an instance belongs to.

Given a collection of tweets regarding a certain common subject, a topic classi-

fication method can reveal the particular aspects that users are talking about and

which are dominant, while a sentiment classification method tells the proportion

of users who feel positive or negative toward the subject.

For instance, Figure 5.1 shows example tweets related to “virgin mobile”, with

their identified sentiment and topic labels. In this example, some users are talking

about promotions, and others are complaining about customer service and pay-

ment. Meanwhile, some tweets show positive sentiment about the brand, while

others are negative. As one can see, therefore, the analysis of tweet sentiments

and topics can help businesses to get a sense of user opinion towards their prod-
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ucts and services. Due to the practical implication, in recent years, a lot of studies

(e.g., [20, 21, 22, 19, 23]) have been conducted towards sentiment and topic clas-

sifications of tweets (see Section 2 for details).

However, by and large, existing solutions have the following issues. First, con-

ventional solutions usually treat sentiment and topic classification tasks separately,

though the two tasks are often closely related. For instance, tweets about some

topics usually tend to have certain sentiment. In Figure 5.1, a user who tweets

about “promotions” shows positive sentiment, while two other users who complain

about the “care/support” appears to be negative. It implies that often tweet top-

ics can help promote the sentiment classification, and vice versa. On the other

hand, the same words could present different sentiments in different topics. There-

fore, one can exploit such an inter-relationship between two classification tasks to

improve the overall classification accuracy. Second, compared to traditional doc-

ument corpus where sentiment or topic classification occurs, micro-blog data such

as tweets are very short, noisy, and ambiguous. For instance, a tweet mention-

ing a broken mobile device may be assigned to either the topic of “complaint”

or “care/support”. Therefore, instead of insisting on the assignment of a single

class label to a tweet, sometimes, one can flexibly assign multiple class labels to

an ambiguous tweet.

Based on the two limitations of existing methods, in this dissertation, we pro-

pose a novel model, termed as the Multi-Task Multi-Label(MTML), which performs

the classification of both sentiments and topics of tweets concurrently, and incorpo-

rates each other’s results from prior steps to promote and reinforce current results

iteratively. The learned class labels of one task are incorporated as part of pre-

dicting features of the other task. For each task, the model is trained with the
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maximum entropy by using multiple labels to learn more information and handle

class ambiguity. In addition, the MTML model produces probabilistic results, in-

stead of binary results, so that multi-label prediction is allowed and labels can be

ranked accordingly.

2.5 Predict Sentiment Change in Twitter Stream

As social media grows rapidly in recent years, a lot of studies have been conducted

to make prediction on various realms by mining social media. Two popular social

media websites, Facebook and Twitter, provide a wide platform where mining

UGC can reveal very valuable information, such as users’ opinions and sentiments,

towards many aspects. By investigating real life events and online social activities,

UGC has been used to predict marketing, movie box-office revenue, and political

elections [24].

However, most existing work analyzes sentiments from UGC, e.g. tweets, and

apply the results in prediction of other realms. Per our best knowledge, no work

has yet addressed the prediction of sentiment change in UGC. In this dissertation,

by exploring aggregate social activity in twitter social network and analyzing tweet

sentiments, we present a novel method that can predict the impact of events, in

particular, predict aggregate sentiment change expressed in tweets.

We collected tweets about 2012 USA presidential campaign. The proposed

method is applied on this dataset and focuses on the presidential candidates Barack

Obama and Mitt Romney. Shown by experiments, we validate our method and

predict the temporal sentiment change of twitter users towards the presidential

candidates upon their electoral activities.



Chapter 3
Mining Web Logs for Query

Expansion

In this chapter, we present a novel query expansion technique in information re-

trieval. Search engine user log, as a format of UGC that records search keywords

and click through actions, provides hidden semantic relations of searching ob-

jectives and location information of users. By investigating the semantic topics

in searching documents and extracting the mapping rule, a query classification

model is created and furthermore the location-based query expansion strategy is

developed.

3.1 Literature Survey

Query expansion techniques have shown significant improvements in the effective-

ness of information retrieval systems. Existing methods can be categorized into

document-based methods, term-based methods and concept-based methods.

Many earlier algorithms with conventional probabilistic retrieval approach are
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document-based [25]. With this approach, an initial query is executed and a set of

documents are returned. Then a set of terms are obtained from the top relevant

documents, which are combined with the initial query to generate and return a

more relevant set of documents. Cai, et. al. propose a method based on the

divergence of the query, which calculates the relevance of queries according to

their distribution in documents [12]. Also probabilistic models, such as Markov

Chains, are applied to improve performance by combining different methods at

successive stages [26].

In the category of term-based methods, term relationship has been widely used.

Synonyms, co-occurrence, and WordNet are integrated into one language model to

explore the relevance of terms [27]. Similarly, term relationship and information

flow are explored to supplement single terms with term sets [28]. Other methods

in [29, 30, 11], though, propose to obtain relevance of queries by mining click-

through data, fail to notice other features of the query.

The concept-based methods pay more attention to user interaction [31]. For

a short query, the algorithm returns a list of concepts to be selected by the user.

After that, the selected concepts are added back to the initial query as expansion.

Different from existing approaches, in this dissertation, we propose a two-level

location-based query expansion model. The location-based query expansion is su-

perior to other query expansion approaches on location-sensitive queries. We broke

through the document and the term levels, and explored the semantics embedded

in the queries at different granularities.
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Figure 3.1. Representation of search log data

3.2 Preliminaries

Search engine log data, also called click-through data, keeps the records of inter-

actions between web users and the searching engine. Merging these user sessions,

we can construct a triple graph as Figure 3.1 shows. By looking at the user ses-

sions in real click-through data from Citeseer and Excite, we have the following

observations:

• Users from different countries issue different queries to represent the same

documents.

• Users from different countries use the same queries but with different inter-

pretation.

The above two observations obtained from the log data motivate our research

on investigating the location factor in information retrieval and especially in query

expansion. Table 3.1 shows some examples from the log data.

Given a query q, the default search results returned by the search engine are

represented as Lf , which is a list of ranked documents. Suppose that each doc-

ument is represented as a vector of topics, in which each entry represents the
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Table 3.1. Different queries, different location, same DocID in Excite log data
Query Country Excite DocID
wintv DE 70007

hauppauge LU 70007
bruxelles airport US 84510

zaventem luchthaven BE 84510
searchitall CA 5856

search engine US 5856

weight of the corresponding topic. Based on the click-through data, the similarity

between any two queries can be calculated as the cosine similarity of the corre-

sponding summing vector for each query. For example, query q is connected to d1,

d2, and d3; query q′ is connected to d2, d4, and d5, then the similarity between q

and q′ is the cosine between V and V ′, where

~V = ~d1 + ~d2 + ~d3 and ~V = ~d2 + ~d4 + ~d5

Suppose q comes from location L1, q′ is from location L2, and we use q′ to

expand q. If L1 = L2, the expansion is called same location-based query expansion,

else it is called different location-based query expansion. The ground truth is the

list of ranked relevant document extracted from the search engine log data.

To formalize the observations, we define location sensitive query as follows:

Definition 1 (Location Sensitive Query) : Given a query q, suppose the de-

fault search result list is Lf , the result list after same location based query expan-

sion is Ls, the result list after different location based query expansion is Ld, and

the ground-truth of the results list is L. Query q is defined as a location sensitive

query if: Q(Ls, L) > Q(Lf, L) or Q(Ld, L) > Q(Lf, L), where Q(Ls, L) is the

quality of the returned results Ls compared against the ground-truth result L. 2
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Furthermore, if Q(Ls, L) > Q(Ld, L), then q is defined as a same location

sensitive query ; if Q(Ld, L) > Q(Ls, L) then q is defined as a different location

sensitive query.

The location difference in our experiments is identified at the country level.

The quality of the returned results can be measured by different metrics such as

Precision, MAP, NDCG, and Tau [32] [33].

To identify the location sensitive queries, we define another concept of location

sensitivity score:

Definition 2 (Location Sensitivity Score) : Given a query, q, and a list of

relevant documents {d1, d2, d3, ...dn} as the ground-truth of q. Suppose q is issued

from m countries and the set of documents clicked by users from country i is

represented as Di, then the location sensitivity score for query q is defined as:

LSS(q) =
m∑

i=1,i 6=j

Sim(
∑
ds∈Di

~ds,
∑
dt∈Dj

~dt)

where 0 < s, t ≤ n and 0 < i, j ≤ m. 2

The location sensitivity score describes the topic distribution of one query

across different countries. A query is not location-sensitive or the location sen-

sitivity score is 1, if users across different countries access the relevant documents

with the same pattern. Here access pattern refers to the number of times a docu-

ment was accessed in log data. The location sensitivity score is between 0 and 1.

The larger the location sensitivity score, the less location sensitive the correspond-

ing query.

Figure 3.2 shows the process of identifying the location-sensitive queries and

classifying them into different groups for different location-based query expansion



20

Figure 3.2. Identify location sensitive queries for different expansion strategies

strategies. From the search log, we first derive a list of queries to be expanded.

Then the query expansion strategies of same location-based and different location-

based are applied. The result quality of different types of query expansion is

evaluated and applied to train a two-level SVM classification model. Once the

model is constructed, when a new queries comes, we first extract its corresponding

features and then predict its location sensitivity using the two-level classification

model.

3.3 Two-level Query Classification Model

In this section, we explain how to create the two-level query classification model.

At the first level, the queries are classified as location-sensitive or non-location-

sensitive. At the second level, the location-sensitive queries are further grouped

into same-location-sensitive or different-location-sensitive. To construct the classi-

fication model, there are three subtasks: feature extraction, label generation, and

model training.
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3.3.1 Feature Extraction

By mining the log data and using LDA, we extract eight critical features for each

query: LSS, NO, NA, NA’, NDO, NDA, NDA’ and DLD. LSS is the location

sensitivity score defined above. NO is the number of terms in the original query.

NA is the number of terms added to the original query after different location-

based query expansion, while NA’ is the number of terms added to the original

query after same location-based query expansion. NDO is the number of retrieved

documents before query expansion. NDA is the number of retrieved documents

after different location-based query expansion, and NDA’ is the number of retrieved

documents after same location-based query expansion. DLD describes the location

diversity of documents related to a query. It is defined as the proportion of the

number of documents clicked by users issuing query q to the number of countries

where users issuing the query q:

DLD|q =
|clicked documents of q|
|countries where q is issued|

3.3.2 Label Generation

Two labels of queries are used in SVM modeling: sensitivity label SL and type

label TL. SL shows whether the query is location-sensitive, and TL shows whether

the query is different-location-sensitive or same-location-sensitive. To generate

the labels, we make three query expansion trials: same location-based approach,

different location-based approach, and ignoring location-based approach. In the

ignoring location-based approach, we only consider the query similarity from topic

distribution vectors but ignore the location information.
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The labels are decided by comparing the NDCG (defined in section 3.4.1) [33] of

the three query expansion approaches. Given a query q, SL is set “+1” if a higher

NDCG is obtained after different-location or same-location-based approach, and

“-1” if the ignoring-location-based strategy gets a higher NDCG. TL is set “+1”

if the NDCG of the different location-based approach is higher than the same

location-based approach, and “-1” otherwise.

3.3.3 Classification Model Training

In the location-based query classification, we employ Support Vector Machines

(SVM) [34] to generate a two-stage prediction model. After extracting the eight

query features and two labels from the log data, we apply them to SVM and a

two-stage model is generated to predict which type of query expansion should be

applied to a given query.

This two-stage model can classify the queries at two levels. Given a query, if it

is predicted as non-location-sensitive in the first stage model, no query expansion

will be applied. But if it is predicted as location-sensitive, the second-stage stage

model will be used. According to the second prediction result, the different-location

or same-location-based expansion will be applied to the query.

3.4 Location-Based Query Expansion

In this part, we illustrate the topic-based document clustering and the application

of location sensitivity in location-based similarity measure.

In topic-based document clustering, Latent Dirichlet Allocation (LDA) [14] is

applied to generate the topic distribution. As the input of LDA, the document
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collection contains all the documents reviewed by users in the click-through data.

For each query, there is a list of reviewed documents related to it. By processing

all the documents with LDA, a topic distribution on all the documents is pro-

duced. Each document is associated with a topic vector which specifies the topic

distribution of the document.

Based on the topic vector representation, the location-based similarity measure

is presented as follow:

For a given query q, there is a list of relevant documents <d1, d2, d3, ...dn>

that have has clicked by end users, where each document di is represented as a

vector of topic distribution <t1, t2, t3, ...tm> generated by LDA. Here m is the

number of topics and i is between 1 and n. Then, the topic vectors of all di are

summed up to generate a representative vector of q. The similarity between any

two queries can be calculated as the cosine similarity between their representative

vectors.

By taking into account of the location, we can propose a location-based query

similarity measure as follows:

Sim(q1, q2|L1, L2) = Cos(
∑

~di,
∑

~dj)

(di is clicked in response to q1|L1,

dj is clicked in response to q2|L2).

This equation means that for query q1 from location L1 and q2 from L2, their

location-based similarity is calculated as the cosine similarity between their repre-

sentative topic vectors. The documents associated with each query must be clicked

by users from the same location, i.e., documents associated with q1 must be clicked
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in response to searching with keyword q1 issued from L1, and the same for q2 and

L2. Suppose the whole set of locations is C, if L1 = L2, then Sim(q1, q2|L1, L2) is

the same location-based query similarity, if L1 = C −L2, then Sim(q1, q2|L1, L2)

is the different location-based query similarity.

Initially, for each query q, its location-based similarity with all relevant queries

are calculated based on its location sensitivity determined by the classification

model. For example, if q is same-location sensitive, then the queries compared

with it should be all issued from the same location as q. After that, among all

relevant queries, the top K similar query terms are selected and added to the

original query as expansion. In our implementation, K takes the value 1.

3.5 Experimental Validation

3.5.1 Set-Up

In experiments, we use 2G raw search log data from CiteSeer1 (130,825 queries

from 55,947 unique IPs) and 129,830 queries in search log data from Excite2. In

experiments on Citeseer data, 281,379 documents clicked in the user log are used.

In experiments on Excite data, 180,150 webpages are used.

In evaluation, we test our method over short queries, which contain no more

than three terms. For Citeseer, we randomly select 30% from all the short queries,

which are 3,863 in all. For Excite, we randomly selecte 2,400 short queries as test

data.

The location of queries is identified at the level of country. Each IP address

1www.citeseer.ist.psu.edu
2www.excite.com
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in the user log is mapped to a country. For the documents relevant to queries,

we associate each query with the documents clicked by the same user in a time

period of a maximum of thirty minutes. The same user is identified by the same

IP address.

We use the clicked documents in the user logs as the baseline. When ranking

the clicked documents for a given query, we refer to the default documents rank-

ing by the search engine. This will lead to a positive enhancement to the default

Citeseer/Excite performance in the evaluation experiments, especially the metric

of NDCG and Kendall’s Tau.

Four widely accepted evaluation metrics are used to evaluate our query ex-

pansion methods. They are Normalized Discounted Cumulative Gain (NDCG),

Precision at K(P@K), Mean Average Precision (MAP), and Kendall’s Tau. They

evaluate the query expansion methods from different aspects:

NDCG: NDCG is good for evaluating ranked result where relevance is ranged

(e.g., 1 10) instead of binary. It is a metric focusing on both the ranking of

documents and the precision of the result list. For a query q, given the ground

truth R1 and the results R2 of any other approach, the NDCG of R2 is calculated

as

NDCGq = Mq

K∑
j=1

(2r(j) − 1)

log(1 + j)
.

Here, the results in R2 are examined with an order of top to down. For each

result document in R2, r(j) is the relevance label which shows the relevance of the

document at position j to R1, and Mq is the normalized constant which makes the

NDCG of the perfect R2 as 1. In our experiment, we make the relevance label set
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as follows: 4 means the document has the highest relevance to the ground truth

R1 and 0 means the document is not relevant at all. K represents the number of

documents examined in R2, which is set to 20 in our experiments.

Precision: Given two lists of rank results R1 and R2, where R1 is the ground

truth, R2 is the results of any other approach, and the P@K for that approach

is defined as the proportion of documents in both R1 and R2 to the documents

retrieved in R2. Here we make K = 20 and use R(20) to represent the top 20

documents in result set R; so P@K can be computed as

P@20 =
|R1(20) ∩R2(20)|
|R2(20)|

.

Mean Average Precision: MAP emphasizes the position of relevant documents

in a returned list. Given the ground truth R1 and results list R2 of any other

approach, average precision is the average of precision computed after each relevant

document in R2 is examined. MAP is the mean of average precision of all the

queries. The earlier the positions of returned relevant documents, the higher the

MAP. Assume N is the number of all queries, P (j) is the precision at position j,

then MAP can be computed as follows:

MAP =
1

N

N∑
i=1

∑K
j=1(P (j)× relevance(j))
|relevantdocuments|

Kendall’s Tau: It is used to measure the correspondence of the ranking in two

document lists. The value of Kendall’s Tau is 1, if the correspondence of two

rankings is perfect, and it is -1 if otherwise. For a query q, given the ground truth

list R1, assume that n is the number of items in R2, dj is the item at position j

in R2, and Pj is the number of documents appearing after dj in both R1 and R2,
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Percentage of Training Queries

Precision(%)

Figure 3.3. Precision of the two-level query classification model. The first level deter-
mines whether queries are location-sensitive. The second level determines the type of
location sensitivity.

then the Kendall’s Tau between R1 and R2 is calculated as follows:

τ =
2
∑n

j=1 Pj
1
2
n(n− 1)

− 1

3.5.2 Evaluation on Citeseer Search Engine Log

In the experiments with Citeseer, we compare our location and topic-based method

to the default Citeseer results, the corpus-based query expansion [35], and Wordnet

based query expansion approaches [26].

First, to test the precision of the two-level query classification model, we con-

duct cross-validation on the 3,863 queries. Part of queries is randomly selected as

training data, and the rest is used as test data. A group of experiments with an

increased number of training queries and decreased number of predicting queries
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Table 3.2. Comparison of four query expansion strategy on location sensitive queries
with CiteSeer

Citeseer Topic & Corpus- Wordnet-
Evaluation Default Location- based based
Strategy Strategy based Strategy Strategy

Strategy
Precision (%) 19.40 19.79 13.51 14.53
NDCG (%) 32.84 33.34 19.92 23.32
MAP(%) 85.60 92.24 54.72 62.36

Kendall’s Tau -0.923 0.001 -0.935 -0.930

are executed. Figure 3.3 shows the changes in predicting precision with an in-

crease of the number of training queries. As Figure 3.3 shows, our two-stage SVM

prediction model has good precision in predicting the query location sensitivity.

The average precision of the first level and second level predictions are 83.78%

and 95.76% respectively. In the first level, the maximal and minimal precision

are 88.86% and 80.93%; while for the second level prediction, the maximum and

minimum are 96.21% and 94.37%.

Second, with the ground truth and sensitivity labels, 702 location-sensitive

queries are picked out from all the 3,863 queries. We compare our method with the

default Citeseer result, the Wordnet-based query expansion result, and the Corpus-

based query expansion result. The strategy of Wordnet-based query expansion

method is to expand the initial query with synonyms picked out from the Wordnet.

And the Corpus-based strategy is to calculate the relevance of words based on their

context and then expand the initial query with the top relevant words.

Table 3.2 shows the Precision, NDCG, MAP, and Kendall’s Tau of the four

strategies on the 702 location sensitive queries. When comparing with default

method, the topic and location-based method is 7.7% and 0.923 better in terms

of MAP and Kendall’s Tau. The improvements show that, even the ground truth

has a positive effect on the default CiteSeer results, the document ranking of our
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Table 3.3. Comparison of sub-strategies of location based method on 118 location
sensitive queries with Excite

Excite Topic & Topic & Topic &
Evaluation Default Different- Same- Ignoring-
Strategy Strategy location location location

Strategy Strategy Strategy
Precision(%) 2.67 3.40 3.40 3.14
NDCG(%) 9.46 20.76 14.25 20.05
MAP(%) 1.13 22.88 12.15 19.49

Kendall’s Tau -0.99 -1.0 -0.973 -1.0

method is much better than the default CiteSeer results. Also because the queries

in Citeseer data all aim at academic documents, the effect of location on vocabulary

diversity is reduced in some degree.

3.5.3 Evaluation on Excite Search Engine Log

In experiments with the Excite search engine, we compare the default Excite search

result with three sub-strategies in our query expansion method. Among 2,400 short

queries, 218 are location- sensitive, in which 123 queries are different location

sensitive and 95 are same location-sensitive. In the results, the NDCG values of

1,563 queries with the four strategies are all 0. The probable reason is that the

index of webpages on the Excite search engine changes over time. But with other

queries, we can still see a significant improvement caused by our location and

topic-based method.

For evaluation, we randomly select a sample of 1,000 short queries from the

Excite log, in which 118 location-sensitive queries are detected. Table 3.3 shows

the comparison of the four strategies on the 118 location sensitive queries. Because

the precision is calculated at the base of 20(K = 20) and the number of clicked

webpage for a query is usually 1, the average precision values shown in Table 3.3

are close to 5%. On one hand, the boost of precision value shows that our method
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has more precision; on the other hand, the significant increase of both NDCG and

MAP values reflect the improvement of ranking caused by our method. Table 3.3

shows that our location and topic-based method produces significant improvement

in general search engine log. Comparing the improvements on Citeseer data and

Excite data, it is observed that the query location sensitivity is much more obvious

in general webpages than in academic documents.

In summary, the experiments show that our topic and location-based method

outperforms other query expansion approaches. On one hand, it can effectively se-

lect the location sensitive queries; on the other hand, for location sensitive queries,

our query expansion methods significantly improve the search results. What is

more, the experiments indicate that the location sensitivity of queries is not so

strong in academic area. With the general search log from Excite, we can see that

the location-based query expansion strategy performs much better.



Chapter 4
Mining Temporal Evolution of Social

Networks

In social networks, the semantic relations embodied in UGC reflect the correlation

between individuals. At the same time, the semantic topic distributions in UGC

are also affected by the evolution of relevant communities. Therefore, investigat-

ing the patten of social network evolution helps us understand how the semantics

in UGC change over time. In this chapter, we present an approach to study the

member interaction on the active community evolution. A statistical model is

adopted to measure the significance of different structural features on two types

of social networks. Furthermore, we show by experiment that using the most sig-

nificant structural features can improve the accuracy of predicting the community

evolution.
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4.1 Literature Survey

In recent years, the evolution of large scale social networks has been studied

and explored from different perspectives. These studies involve social networks

formed under different environments, such as world-wide web, blogger networks,

online friendship networks, email communities, phone call network, academic co-

authorship networks, etc. Typically, existing work can be categorized into three

groups: static network mining [16], microscopic evolution prediction [17], and time-

evolving structure analysis [36, 37].

Some structural properties are discovered by mining the snapshots of the static

network. The power-law distribution is discovered to be a common feature when

the scale-free network expands with cumulative new vertices [16]. Small-world is

another phenomenon observed in [38]. A study on the web shows that its average

diameter is small and the web forms a small-world network [39]. Furthermore,

social networks were found different from other networks in two ways: that their

network transitivity is nontrivial and that the degrees of adjacent vertices have

positive correlations [40]. These studies revealed important properties, but they

were performed only on the static graphs.

The prediction of social network evolution pays more attention to the attach-

ment of new edges and the arrival of new vertices. The classic E-R model sim-

ulates the network growth when the edges between vertices are added randomly

[41]. Different from that, preferential attachment of new vertices are proposed to

capture the power-law degree distribution [17]. Subsequently, a generative model

was proposed to accommodate both the scale-free distribution and patterns of the

features, such as average distance and clustering coefficient [42]. Another micro-
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scopic evolution model was developed with nodes arriving at a prespecified rate

and selecting their lifetimes [43]. These models address the network evolution with

a micro scope, but they did not consider the macroscopic structural predictors.

Time-evolving structure analysis focuses on the structural feature measures and

their evolution over time [44]. The forest fire model is presented to explain the

densification and shrinking diameters over time [45]. Furthermore, different behav-

ior scaling in degree distribution is analyzed on various online social networks [46].

However, these studies only focus on the structure change and ignore the overall

network evolution. Co-evolution of social and affiliation networks is addressed in

[47]. Derived from the traditional two-step approach, an algorithm FacetNet is

proposed for time-evolving community extraction and formation in [48]. By an-

alyzing the co-authorship network and phone-call network, Palla et al. revealed

some activity patterns of the members and the influence of their geographic loca-

tions [49]. Another analysis performed on the co-authorship network explored the

properties of community growth as well as the topic change [50]. In these works,

the influence of structural properties is considered at the individual level and their

measures of growth are based on the cumulative additions of new vertices.

Previous studies either consider membership as permanent after the individual

joins the network, or ignores the influence of structural properties when simulating

the network evolution. Different from them, we focus on the active population

within a social network and measure the impact of member interaction on the

active community. At last, the results are used to improve the prediction accuracy

of the community evolution.
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Figure 4.1. An example of Facebook social network evolution

4.2 Preliminaries

In social network analysis, existing models explore the social network evolution

based on the cumulative membership. Once an individual joins a community,

his/her membership is usually considered dormant no matter whether he/she has

activity or not in the future. Based on this assumption and preferential attachment,

the scale-free social network is observed to follow the power-law degree distribution.

However, this assumption is not always consistent with the facts. An underlying

intuition in evolution studies is that member interactions have effects on social

network evolution and would determine its future status. If an individual does

not have any activity during a time period, he/she may not contribute to the

community evolution and thus should not be considered in the evolution study

over that period.

Figure 4.1 shows an example of a community evolution in the Facebook wall-

posting network over a period of four time steps. At time t1, four nodes represent

four members and they have totally four posts on the walls of each other. At time

t2, member a does not have any activity, but others keep active and a new member
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joins in. At time t3, more posts appear between other members and a second new

member is attracted, while a is still inactive. At time t4, the members are more

active and the community keeps expanding, but a does not contribute into the

activity nor the community growth.

From Figure 4.1, we can see that not all the members are consistently active

after joining a community. The evolution of a social network tends to be affected

by the activity between members. The more active the participants are, the more

members the community is likely to attract. Additionally, not all members in

a social network contribute to the growth of the community. New members are

usually introduced into the community by the existing active members, instead of

the inactive ones. Therefore the inactive members should not be included when

evaluating the effects of member interaction on the community evolution. Based

on these observations, we formalize the concept of active social network as follows:

Definition 3 (Active Social Network) : Given a group of individuals M with

interactive activities during a time interval (t0, tn), the active social network of M

at time t ∈ (t0, tn) is represented by G(t) = (Vt, Et), where Vt is the vertex set of the

network and Et is the edge set. Every vertex v ∈ Vt corresponds to an individual

who is involved in at least one activity at time t. An edge e =< u, v >, e ∈ Et

exists between a pair of vertex u and v if and only if individual u and individual

v have at least one interactive activity at time t. The vertex and edge sets, in the

sense of their components, both vary according to time, i.e. Vt = V (t), Et = E(t).2

Within an active social network, the membership is no longer static or sim-

ply cumulative. Only those who have activities at time t are included in G(t).

Therefore, the membership and status of G(t) evolves with time t. Since both

the community topology and the membership are involved in the social network
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evolution, it is hard to describe them at the same time. Focusing on the overall de-

scription of the social network, we propose to use the community size N(t) = |V (t)|

as the measure of network status. However, this measure could be flexible and is

not restricted to |V (t)|. It may vary according to different applications. Based on

the community measure, we define a new concept of evolving pattern to describe

the evolution of active communities:

Definition 4 (Evolving Pattern) : Using y(t) = N(t) to scale the change of

the community measure, the evolving pattern is D = dy/dt. In a discrete format,

D = ∆y/∆t, or D(t) = (y(t+1)−y(t))/∆t, where ∆t is a fixed time interval. Based

on different values of D, evolving pattern has two labels: growing and shrinking.

Growing is when D >= 0, and shrinking is when D < 0 2

The evolving pattern describes the evolving status of an active community in

successive time steps. In this study, we only focus on the labels of the evolving

pattern, i.e., growing and shrinking, and use binary marks L to represent the two

labels. The evolving pattern is marked as 1, if the social network is growing in the

next time step, and 0 if shrinking.

The evolving pattern measures the evolution of a social network from the macro

scope, instead of the micro scope. Taking no account of the random factors and

the environment variables, it is the member interaction in G(t) that is most likely

to attract new members and determine the future community status. To study

the influence of the member activities on the evolving pattern, it is necessary

to understand the relationship between them. Although it is hard to describe

the member activities directly, they could be summarized by various structural

features of G(t). In this way, the member activities can be described alternatively.
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Figure 4.2. The relationship of the member activities and social network evolution

Figure 4.2 illustrates the interactive relationship between the social network

evolution and the member activities as well as their alternative representation.

The description of member activities are quantified by extracting and integrating

different structural features. At the same time, the active social network evolution

is measured by the temporal evolving patterns.

By using structural features, the problem of exploring the impact of the member

interaction on the evolution can be transformed to finding the influence of struc-

tural features on the evolving pattern. Based on this, a quantitative model can be

employed to measure their relationship, where the structure features are consid-

ered as the multi-dimensional predictor and the evolving pattern is the response.

The model is expressed generally in the following format:

D ∼ f({sfi, i = 1, 2, ...k}),

where D represents the evolving pattern, f represents the relation function, and

sfi represents the i-th of the total k structural features.
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Once the function f is fitted, it can serve to explain the evolving pattern with

the structural features. In this way, the influence of structural features is measured

quantitatively and the evolving pattern can be predicted once the relation function

is given.

In a social network, there are many structural features that have influence on

the evolution. However, given the full feature set, not all of them have the same

impact on the evolving pattern. Finding out those significant structural features

is important to understand how the community evolution is determined by the

member interaction. Additionally, it will also help reduce the complexity of the

fitting model.

What is more, the full feature set may not produce the highest predicting ac-

curacy. Better accuracies might be obtained with fewer features. One explanation

could be that though more variables can reduce the prediction variance, the corre-

lation between these variables may introduce much more bias into the result. This

leads to the overall decrease of the predicting accuracy, called the “overfitting”

problem. Therefore, it is necessary to select the most efficient set of structure

features to predict the evolving pattern.

Based on the observations above, we have the following conclusions:

• Not all structural features are of the same significance in determining the

evolving pattern.

• When measuring the impact on the evolving pattern, too many structural

features may lead to the problem of overfitting.

Given the overall analysis, the principle of our research is to find out how

the community evolution is affected by the member interactions and select as
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Table 4.1. Structural features of CiteSeer Co-authorship Network
Notation Structural Feature Description

Nt The number of active members in social network G(t)
CNt The cumulative number of distinct members from G(0) to G(t)
∆Nt The difference between Nt and Nt−1

Pt The number of all publications at time t
CPt The cumulative number of all publication from time 0 to time t
∆P The difference between Pt and Pt−1

Et The number of edges in G(t)
CEt The cumulative number of edges from G(0) to G(t)
∆Et The difference between Et and Et−1

Ct The number of all collaboration in G(t)
∆Ct The difference between Ct and Ct−1

CMCt The cumulative number of collaboration from G(0) to G(t)
ARt The average number of collaborators of each person in G(t)

∆ARt The difference between ARt and ARt−1

CCt Average clustering coefficient in G(t)
∆CCt The difference between CCt and CCt−1

ALt Average length of the shortest pathes in G(t)
Dt The diameter across all vertices of G(t)

few structural features as possible that produce the best predicting accuracy. In

the next section, we introduce the structure features extracted from active social

networks and apply a method to predict the evolving pattern. At the same time,

another approach is adopted to select the most significant features in explaining

and predicting the evolving pattern.

4.3 Structural Feature Extraction

Although many structural features are available to represent the member activities,

it is necessary to include the most relevant ones into our pool. Let st denotes the

status of a social network G at time t, then P (st) is the probability of G(t) to

be in the status st. Considering that the member interaction at time t plays an
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Table 4.2. Structural features of Facebook Online Wall-posting Social Network
Notation Structural Feature Description

Nt The number of active members in social network G(t)
CNt The cumulative number of distinct members from G(0) to G(t)
∆Nt The difference between Nt and Nt−1

Pt The number of all posts in G(t)
CPt The cumulative number of all posts from time 0 to time t
∆P The difference between Pt and Pt−1

Et The number of edges in G(t)
∆Et The difference between Et and Et−1

CEt The cumulative number of edges from G(0) to G(t)
AIt The average number of interaction per person in G(t)

∆AIt The difference between AIt and AIt−1

APt The average number of post for each person in G(t)
∆APt The difference between APt and APt−1

CCt Average clustering coefficient in G(t)
∆CCt The difference between CCt and CCt−1

ALt Average length of the shortest pathes in G(t)
Dt The diameter across all vertices of G(t)

important role in determining st+1, we assume that st+1 is dependent on st and

independent of all other previous status; then the probability of G(t+ 1) to be in

status st+1 is as follows:

P (st+1|st, st−1, ...s0) = P (st+1|st).

Given the assumption above, the evolving pattern marks L at time t + 1 can

be determined with the structural features of G(t) and G(t + 1). At the same

time, the structural features at time t depend only on st. Based on this inference,

we extract the most frequently used structural features on each time step from

both the CiteSeer and Facebook dataset. The feature sets include not only the

characteristics related exclusively to the social network structure, but also those

indicating the activity level of the members. Additionally, the features that serve
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to explain the topology change of the social network are also generated, e.g. the

average shortest path length. The radius and the diameter are computed based

on the results from all the connected components. To measure the effects of the

previous status, we also include some features that describe the community status

change on two successive time steps.

Table 4.1 and table 4.2 summarize all the structural features generated from

the CiteSeer and Facebook dataset. There are totally 18 structural features ob-

tained from CiteSeer data and 17 from Facebook data. The structural features

extracted for the two datasets are not exactly the same because of their different

infrastructure. To handle the very large values of some features, they are rescaled

by logarithms. These structural features are explored with a variable selecting

procedure and the most significant ones are picked out. Furthermore, those se-

lected features are applied to a fitting model and the evolving pattern prediction

is performed.

4.4 Evolving Pattern Prediction

With all the structural features extracted, we adopt a shrinkage method to study

the impact of member activities on community evolution. After that, we apply the

shrinkage method with a statistical model to predict the evolving pattern with the

most significant features.

4.4.1 The Shrinkage Method

Denoting the candidate structural features with variables, the problem of feature

selection can be approached by shrinkage methods. When selecting variables, using
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shrinkage methods allows a variable to be partly included in the fitting model. That

is, the shrunken coefficient indicates how much information the variable contributes

as a factor in the model. The Lasso is a widely accepted method and stands for

“Least Absolute Shrinkage and Selection Operator” [51]. Utilizing the Lasso, we

apply it with our fitting model and find out the most significant structural features.

Take Lasso with a linear fitting model as an illustration. Given a set of in-

put variables x1, x2, ...xp and a response Y , the linear regression fitting model is

expressed as:

Ŷ = β0 +

p∑
i=1

βixi.

The Lasso fits the model and estimates the coefficients β = (β0, β1, ....βp) by

the criterion

β̂ = argmin(
∑

(Y − Ŷ )2), (4.1)

subject to

∑
|βi| ≤ s, (4.2)

where s > 0 is a user-specified parameter.

The criterion of the Lasso is to minimize the residual sum of squares subject to

the constraint (4.2), where the parameter s is often set moderately small. With the

constraint (4.2), some of the solution coefficients can be shrunken to exactly zero.

This makes the final model more interpretable. In application, the fitting model

is not restricted to be linear regression. By using the Lasso, the coefficients β are

estimated with (4.1) as well as (4.2), and the contribution of predictor variables is
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reflected by them.

4.4.2 Prediction Model

As a shrinkage method, Lasso needs to be applied with an appropriate fitting model

to measure the significance of the variables. Since the evolving pattern is labeled

with binary marks, the response of the model is categorical, instead of numerical.

Thus we adopt logistic regression as the fitting model, which has less assumptions

on the decision boundaries and is more robust than the linear model. The results

of logistic regression are probabilistic, instead of binary. They enable a flexible

optimal boundary to assign the evolving pattern marks.

Suppose Y1, Y2, ..., Yn are independent binary response variables, which denote

the evolving pattern marks and take the value of 1 or 0. The structural features

are predictor variables represented by x1, x2, ..., xn, with xi = (1, xi1, xi2, ..., xip)
′,

1 ≤ i ≤ n. p and n specify the number of variables and the size of the dataset

respectively. Defining π(t) = et

1+et
, according to the logistic regression, we have:

P (Yi = 1|xi) = π(xi
′β) =

exp(xi
′β)

1 + exp(xi′β)
, (4.3)

where 1 ≤ i ≤ n, β = (β0, β1, ....βp) is a (p+1) dimensional vector of coefficients

including the intercept.

According to (4.3), given an xi, the logistic regression generates the probability

of xi taking the mark Yi = 1. The optimal decision boundary of P (Yi|xi) could

be determined by achieving the best prediction accuracy on the training set. For

simplicity, we take 0.5 as the decision boundary in this study. If P (Yi = 1|xi) > 0.5,

then the response Yi is 1 and the evolving pattern is labeled growing; else the value
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of Yi would be 0 with the label as shrinking.

4.5 Member Interaction Analysis

Accepting the logistic regression as our fitting model, we apply Lasso to measure

the impact of different structural features on the community evolution

Based on equation (4.3) , the log-likelihood function of logistic regression is:

l̃(β) =
n∑
i=1

{Yilogπ(xi
′β) + (1− Yi)log[1− π(xi

′β)]}.

Then the negative log-likelihood function can be expressed as

l(β) = −
n∑
i=1

{Yilogπ(xi
′β) + (1− Yi)log[1− π(xi

′β)]}. (4.4)

Using Lasso, we estimate β with the criterion

β̂ = arg min
β
l(β), subject to

p∑
j=0

|βj| ≤ s. (4.5)

With the function

L(β, λ) = l(β) + λ

p∑
j=0

|βj|,

the criterion (4.5) becomes equivalent to

β̂ = arg min
β
L(β, λ), (4.6)

where λ is a penalty parameter.

Using optimization techniques, the parameter β can be estimated with the
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criterion (4.6). The value of β is dependent on λ. Once β is generated, the accuracy

of the model can be obtained according to (4.3). In our computation, β is initialized

to 0. By applying the maximum likelihood estimation with (4.6), β is updated and

the prediction accuracy is calculated. Having the coefficient β, then among all the

predictor variables, those having coefficients close to zero or significantly smaller

than others will be removed. After that, a new β is calculated again with the

maximum likelihood estimation, and then more variables are removed based on

the new value of β. These steps are executed iteratively until no more predictor

variable can be removed.

The procedure of the iterative algorithm for the significant feature selection is

summarized as follow:

1. Fix λ and initialize the predictor variable set.

2. With the current variables, compute β that minimizes (4.6), i.e., the con-

strained maximum likelihood estimator.

3. Compute the accuracy based on β and current predictor variables.

4. According to β, remove variables with coefficients close to 0 or significantly

smaller than the others.

5. Repeat steps 2, 3, and 4 until no more predictor variable can be removed.

Applying this algorithm, the significance of different structural features can

be measured. The most significant feature set will be selected based on the best

accuracy and the least predictor variables. Even with the same prediction accuracy,

by choosing the more condensed variable set, the overfitting effect could be reduced

more.
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Based on the algorithm above, the impact of member interaction on community

evolution can be determined. Once the most significant structural features are

found out, they will be applied to predict the future evolving pattern. Therefore,

active community evolution can be forecast given the current status. Furthermore,

the semantic topic change in UGC can be explored together with the relevant

community evolution.

4.6 Experimental Validation

In the experiment, we analyze the active community evolution on two types of

social networks. Meanwhile, we evaluate the impact of member interaction on the

evolving pattern and find out the most significant structural features. Finally, the

experimental results show that certain structural features have significant impact

on community evolution, and the accuracy of evolving pattern prediction can be

improved with the selected features.

4.6.1 Set-Up

We measure the evolving pattern and evaluate the Lasso on both Facebook [52]

friendship network and the CiteSeer [53] co-authorship network. In the experiment,

to handle the very large values of some features, the first 12 features in CiteSeer

data and first 9 features in Facebook data are rescaled by logarithm. The Facebook

social network includes a total of 876,993 post records between 46,952 people over

1,596 days. Each record includes two anonymous user IDs and a time stamp,

indicating that the second person post on the wall of the first person at the specified

time. By setting the time step as one week and removing the records without any
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collaboration, we generate the statistics of Facebook over 219 successive weeks.

The structural features and the evolving pattern are extracted over each week.

The maximum number of posts is 18,408 among 11,245 people in the 222ed week.

Among all the evolving pattern labels in the dataset, there are 141 growing and

78 shrinking, which are marked as 1 and 0, respectively.

The CiteSeer co-authorship network is collected from 1980 to 2006, which in-

clude 486,324 collaboration records and 283,155 authors. Different from the Face-

book dataset, the structural features and evolving patterns of CiteSeer are mea-

sured annually. The maximum number of publications is 120,361 among 91,722

authors in year 2000. Also, the records with growing pattern are marked 1 and

those with shrinking pattern are 0.

We use accuracy as the evaluation metrics. Let P denote the set of records

with real growing pattern and Q denote that with real shrinking pattern. Assume

that M is the set of records predicted to be growing and N are those predicted to

be shrinking, then accuracy is measured as

Accuracy =
|M ∩ P |+ |N ∩Q|

|P ∪Q|
.

In computation of the feature selection, only one parameter λ is involved. To

find an appropriate setting value, we calculate the coefficients of the model with

different λ values. When λ is changed from 0.1 to 5, the fitted coefficients are the

same. Based on that, we set λ as 1 in the computation.

For comparison, we use the decision tree as the baseline approach. The Gini

index [54] is used as the impurity function when creating splits in the tree con-

struction. For both the Facebook and the CiteSeer datasets, the structural features
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are applied to the decision tree, and the most informative ones are selected as the

attribute of splits at each level. The best pruned tree is determined according

to the predicting accuracy with 5-fold cross-validation. After that, the attributes

at splits in the best pruned tree are selected as the most important structural

features.

The performances of the Lasso and the decision tree are compared based on

the structural features selected by them. Additionally, the predicting accuracy of

the logistic regression is compared against the best pruned decision tree.

4.6.2 Evaluation on Facebook Social Network

Among all data points of the Facebook dataset, we randomly select 25% data

points for testing data and use the remaining 75% for training. We follow the iter-

ative algorithm until it converges or no more structural features can be removed.

In each iteration, the Lasso method is applied with the logistic regression to gen-

erate a predicting model on the training data, and then the predicting accuracy is

calculated over the testing data.

Figure 4.3 shows the accuracy change on different numbers of structural features

selected by the Lasso in each iteration. Error bars represent 5% errors. The

method produces the best accuracy of 79.3% when only 2 features are included as

the predictor. It is 5.7% higher than the accuracy obtained with a full feature set.

Other feature sets are not considered as good choices, because they produce lower

accuracy with higher complexity. Therefore, the set of 2 features is selected as the

final result.

Although the full structural feature set includes 19 features, it does not produce

high accuracy. One explanation could be that the correlation between structural
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Figure 4.3. The accuracy over number of features on Facebook data by Lasso

Table 4.3. The comparison of structural features selected and accuracy between the
Lasso and decision tree on Facebook data

Method Lasso Decision Tree
Structural Dt, Pt, ∆Pt
Features Nt ∆Nt,Nt

Selected CEt AIt,∆AIt, CCt, ∆CCt
APt, ∆APt, ∆Et

Accuracy 79.3% 69.7%

features introduces bias in the predictor. The more correlated features incorpo-

rated, the larger bias the predictor may have.

As the baseline, the decision tree is applied to the same training and testing

data. Table 4.3 illustrates the comparison of our method and the decision tree in

terms of predicting accuracy and the structural features selected by them. The

predicting accuracy of our model is 9.6% higher than that of the decision tree.

We can see that our method is effective in finding the most informative structural

features. On the other hand, we observe that the selected features of both methods

have Nt in common, and both results include a feature derived from the number

of edges. It indicates that the number of current active members and features

relevant to the number of edges could be important factors to explain the evolving
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Figure 4.4. The accuracy over number of features on CiteSeer data by Lasso

Table 4.4. The comparison of structural features selected and accuracy between the
Lasso and decision tree on CiteSeer data

Method Lasso Decision Tree
Structural Features ARt ∆CCt

Selected Ct CNt

Accuracy 88% 76%

pattern of online social networks.

4.6.3 Evaluation On Citation Social Network

In the second part of the experiment, our method is compared with the decision

tree on the CiteSeer co-authorship network. The Lasso-based algorithm is applied

to the CiteSeer data with the same iterative procedure. The predicting accuracy

on different structural feature sets in each iteration is shown in Figure 4.4. Error

bars represent 5% errors. The best accuracy 88% is obtained when the number

of features used is 2, 3, or 4. According to our variable selection strategy, among

them, the set of 2 features requires the least predictor variables when producing the

best accuracy. Therefore it is selected as the final result. The 2 features selected
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as the final result are shown in table 4.4.

For comparison, the decision tree method is also applied to the CiteSeer data.

As a result, 2 structural features are selected as the split nodes of the best pruned

tree, which is displayed in figure 4.5. The triangles represent the split nodes

and the circles indicate the leaf nodes with evolving pattern marks. Table 4.4

shows the comparison of the structural features selected by the two methods and

their corresponding predicting accuracy. Compared with decision tree, the features

selected by the Lasso produce much better accuracy.

The structural features selected by the Lasso represent the total number of

collaborations and average number of collaborators for each person, which are

very close. This result reveals that the collaboration between coauthors could be

the most significant characteristic to determine the evolving pattern of the co-

authorship network.

In summary, the experimental results show that the member interaction have

significant influence on active community growth and shrinkage. Applying Lasso

and logistic regression, we find the most important structural features that can ef-

fectively determine community evolution. On different types of social networks, the
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significant structural features found out are different. The evolution of friendship

networks tends to be determined by the current active member and the cumulative

correlations between individuals. In the co-authorship network, the number of col-

laborations between authors is the most significant feature to predict community

evolution.



Chapter 5
Mining Sentiments and Topics from

Social Media

In this chapter, we study sentiments and topics of UGC from social media fur-

thermore. By observing topics and sentiments of online posts, we find that topics

and sentiments are not completely independent. To investigate the correlation

between, we propose a multi-task multi-label classification model that can clas-

sify sentiments and topics of tweets simultaneously. Experiments show that the

proposed model has a higher classification accuracy than state-of-art methods.

5.1 Literature Survey

5.1.1 Multi-Label Classification

Multi-label classification is concerned with categorizing instances into multiple

classes, while the associated classes are not exclusive. Each associated class of an

instance is called a “label”. Existing multi-label classification methods can be gen-
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erally grouped into two categories: class reorganization and algorithm innovation.

Class reorganization methods reorganize classes to transform the multi-label

classification into single-label classification. Three approaches are proposed for this

purpose in [55]. They include: randomly selecting one from the multiple labels,

ignoring all multi-label instances, and constructing multiple single-label classifiers.

Another approach extends classes by constructing a label power set (LP) and

considering each different label combination as a new class [56]. The disadvantages

of this approach are that it may lead to a large number of reorganized classes and

each class has too few instances. Another widely used reorganizing method is to

construct a binary classifier for each class, and then the classification results on all

classes are combined into a multi-label result [57]. In a methodology overview [58],

an undocumented method is introduced, which decomposes instances by using only

single labels and then merges the single-label classification results.

Algorithm innovation methods focus on modifying single-label classification

models to adapt to multi-label classification. In [59], a mixture model is used to

represent the multiple classes with training documents labeled by EM. An algo-

rithm innovation with decision tree algorithm C4.5 adopts a new entropy measure

that allows multiple labels in leaves [60]. After that, an algorithm MMAC is pro-

posed, which learns a set of association rules first and then combine these rules into

a multi-label classification model [61]. Jin et al. study a special kind of classifica-

tion in which each instance is given a set of candidate labels and only one of them

is correct [62]. In this work, a log-likelihood based approach is used together with

EM to handle the multiple-label. Most existing multi-label classification methods

cannot be directly applied to address multi-task classification. At the same time,

the association between different tasks are not explored either.
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5.1.2 Multi-Task Classification

Multi-task classification utilizes the correlation between related tasks to improve

classification by learning tasks in parallel. Existing work mostly falls into two

groups. The first group uses kernels and regularizers, while the second group

investigates common features and task similarity measures.

Many algorithms are proposed to solve multi-task learning with various ker-

nels and regularizer. In [63], k-nearest neighbor and kernel regression are intro-

duced to learn tasks in parallel. Evgeniou et al. present a multi-task learning

approach based on the minimization of a regularization function similar to the

one of SVM [64]. Later, a multi-task kernel function is derived to help estimate

multiple task functions at one time [65]. In [66], a multi-task learning algorithm

based on gradient boosted decision tree is proposed for web-search ranking over

multiple datasets.

Exploring common features and task similarity also helps with multi-task learn-

ing. Ben-David et al. define and exploit task relatedness by the similarity between

distributions generated by examples of tasks [67]. Later, a common feature selec-

tion method is derived for SVM when multiple tasks exist over a common input

space [68]. To learn some common features across multiple related tasks, a 1-

norm regularization method with a new regularizer is introduced in [69]. In [70], a

dirichlet process based model is proposed to identify similar tasks and solve both

symmetric and asymmetric multi-task learning. Another study of features uses

hashing to reduce feature dimension and apply it on very large scale multi-task

learning.

These methods focus on multi-task classification but do not consider multiple

labels in each task. The study of multi-label multi-task learning still remains open.
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5.1.3 Tweet Sentiment and Topic Analysis

Tweet sentiment and topic analysis becomes very popular recently. However most

state-of-the-art studies address only sentiment classification or topic classification.

To determines tweet sentiment, query-based dependent features and related tweets

are explored and incorporated in [20]. In [22], POS-specific prior polarity features

are introduced and applied with a tree kernel for sentiment analysis. Tan et al.

find that including the influence of social connections can improve accuracy of

sentiment classification [21]. In addition, a graph model is introduced to classify

sentiment of hashtags in a time period [19].

To classify topics of noun phrases in tweets, a community-based method is

presented to identify their boundaries within the context and classify them to a

specific category [71]. After that, a model that switches between two probability

estimates of words is proposed, which can learn from stationary words and also

respond to bursty words [23]. In [72], another method is introduced to determine

whether a tweet is related to a topic or not by using data compression. Further-

more, a Bag-of-Words approach and a network-based approach are evaluated in

classifying twitter trending topics into 18 general categories [73].

These approaches focus on single-label classification on either sentiment or topic

classes. Among the state-of-the-art work, none of them studies multi-label classifi-

cation that analyzes both sentiments and topics at the same time. To address the

problem of multi-label multi-task classification, we propose an algorithm based on

multi-label learning and utilize association between tasks to promote classification

accuracy.



57

5.2 Preliminaries

Sentiment and topic analysis of social media have a wide application in business

marketing and customer care. For instance, when promoting a new policy or a

product, the company wants to know how customers comment about it so that

they can respond properly and timely to address criticisms and issues. For this

purpose, monitoring the current sentiment trend and topics towards a certain

product or brand name is both necessary and important. However, as a lot of

posts may be generated in a short time, hiring human experts to work on them

is too expensive. To address this problem, it requires some techniques that can

classify tweet topics and sentiments automatically and quickly.

However, sentiment and topic analysis of social media involves a lot of chal-

lenges. As tweets are very short and may contain incomplete sentences, their

meaning could be ambiguous and interpretations highly rely on the context. At

the same time, people tend to use informal language or even bad syntax in tweets.

This makes classic methods of natural language processing not well applicable in

many situations. What is more, topic classification is hard even if done by hu-

man experts. On one hand, topics of tweets may not be perfectly exclusive. On

the other hand, the content of a tweet may cover multiple topics. Therefore, bi-

nary classification may not produce satisfactory results. To solve this problem,

multi-label classification is required.

As we have introduced, tweet topics and sentiments are not completely inde-

pendent. By observing a collection of tweets, we find that certain association exists

between tweet topics and sentiments. In addition, the appearance of some terms

may also serve as strong indicators of certain classes. As an example, Table 5.1
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Table 5.1. Example Tweets of “Virgin Mobile” with Sentiments and Topics
ID Content Sentiments Topics

1 Virgin Mobile’s #Sparah campaign is genius! Love the episodes! Positive Compliment

2
I love the new phone u came out with for virgin mobile. i love the

samsung restore.
Positive Compliment

3 @virginmobileus Care to answer??? Negative
Complaint,

Care/Support

4
is seriously annoyed with Virgin Mobile. Get your crap together and

fix my account!!!!!
Negative

Complaint,
Care/Support

5 @anonymizedName get the hell out of here with virgin mobile crap! Negative Complaint

shows some real tweets regarding “Virgin Mobile”, with user names anonymized.

Tweet sentiments are positive, negative, and neutral. Tweet topics are 10 pre-

defined classes. As shown in the table, tweets 1 and 2 indicate an association

between Positive sentiment and topic Compliment. These tweets both contain the

term “love”, which gives a strong indication for both Positive sentiment and topic

Compliment. Tweets 3-5 are negative, while their topics include Complaint and

Care/Support. They imply that these two topics are likely to appear together with

Negative sentiment. Meanwhile, the term “crap” appears in both tweets 4 and 5,

implying an association with Negative sentiment and those two topics.

As observed above, sentiment classification and topic classification are associ-

ated. What is more, these two tasks are also connected with certain indicating

terms. Considering the association between tasks, co-classification of multiple

tasks can help reinforce each other and produce better results than doing them in-

dependently. Meanwhile, each task may involve multiple labels, i.e. a tweet refers

to more than one topic. Classifying with multi-label can help handle the class am-

biguity and improve classification accuracy. Therefore, we propose to incorporate

multiple labels into multi-task classification. In this way, we can make good use

of the latent information in predicting features, and at the same time, employ the

results of multiple tasks to promote each other.

To incorporate both multi-task and multi-label classification, we investigate the
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following questions: how to make use of multi-task classification to promote each

task? How to incorporate and process multiple labels in multi-task classification?

In particular, how to apply the method on sentiment and topic classifications?

Formally, the multi-task multi-label (MTML) classification is defined as follows:

Problem 1 (MTML Classification). Given an instance x and classification tasks

T = {Tj : j = 1, ...M}, where the j-th classification task Tj has a finite set of classes

Lj = {ljk : k = 1, ...Kj}, the goal of MTML classification is to find a collection of

class label sets Y = {Y1, ..Yj..} that x belongs to, Yj = {lj1, ..ljq} ⊆ Lj is the set

of class labels of x for the j-th classification task.

5.3 Overview

By classifying both sentiments and topics at the same time, in the MTML model,

we incorporate the results into predicting features, so that labels of the two tasks

can promote and reinforce each other. For each task, the model is trained with

maximum entropy on different predicting feature spaces. To learn with multiple la-

bels, model coefficients are estimated with an optimization of multi-task likelihood

and the prior label distributions.

Figure 5.1 illustrates an overview of the classification using the MTML model

for classifying sentiment and topic of tweets. With a tweet collection, first, we

extract sentiment and topic predicting features. Meanwhile, by using an exist-

ing classification method or Amazon Mechanical Turk based crowdsourcing, initial

class labels can be obtained. Then, incorporating initial labels with predicting fea-

tures, we get compound sentiment and topic features. The model can be trained by

estimating coefficients with the training dataset. Once the model is trained, given
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Figure 5.1. Multi-task multi-label classification model for both sentiment and topic
classifications

compound features, it can generate new sentiment and topic labels. Repeating the

two classifications iteratively can keep the class labels updated until it converges.

5.4 Multi-task Multi-label Classification Model

5.4.1 Feature Extraction and Selection

To train the MTML classification model, we first extract predicting features from

tweets. Given a collection of tweets, we remove stopping words and select all key-

words and bi-grams. For each tweet, its predicting feature vector Xi = [a1, a2, ...am]

consists of keywords and bi-grams in it. Since there are a tremendous amount of

predicting features, feature selection is necessary to obtain the optimal predict-

ing accuracy. For this purpose, using the Mallet [74], we measure the predicting

accuracy of Support Vector Machine, Naive Bayes, and Maximum Entropy with

different numbers of predicting features. Then we compare the results and deter-

mine the optimal number of predicting features accordingly. Feature extraction
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and selection are conducted on both sentiment and topic classifications. The opti-

mal predicting feature sets are selected separately on the two tasks. On different

tasks, the number of optimal predicting features may vary.

5.4.2 The MTML Model

Within the predicting feature space, each tweet can be mapped to a feature vector.

As we have introduced, each tweet instance is associated with a set of class labels.

Assume that there are a total of K classes and N training instances. Let Xi de-

note the feature vector of the i-th instance xi, where i = 1, 2, ..., N , and Li denotes

its label set. We apply Maximum Entropy (ME) to estimate the class distribu-

tion, which allows flexibility in model construction and also produces probabilistic

classification result.

Let θk represent the coefficient vector of the k-th class, k = 1, 2, ..., K and Yi

represent the class that instance xi is assigned. Then, the probability of xi to be

classified into the k-th class becomes:

P (Yi = k|Xi, θ) =
eθk·Xi

1 +
∑K

j=1 e
θj ·Xi

(5.1)

When solving the multi-task classification, we do not assume the independence

of each task any more. By extending equation (5.1), we propose to incorporate

classification labels of another task to make use of the latent task associations.

Given an instance xi, assume LSi is its sentiment labels, and LTi is its topic

labels. Then, the feature vectors can be extended by including labels of another

task. For the multi-task classification, let xsi represent the sentiment feature

vector and XSi be the extended sentiment feature vector. Then, XSi = [xsi, LTi].
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Similarly, use xti and XTi to denote the initial and extended topic feature vector,

XTi = [xti, LSi]. Based on them, let Ps and Pt denote the sentiment and topic

distribution of an instance. Then, for the sentiment classification, we get:

Ps(Yi = k|xsi, LTi, θs) =
eθsk·XSi

1 +
∑K

j=1 e
θsj ·XSi

(5.2)

For the topic classification, next, we get:

Pt(Yi = k|xti, LSi, θt) =
eθtk·XTi

1 +
∑K

j=1 e
θtj ·XTi

(5.3)

Now, we incorporate multi-labels into the classification. While learning with

multi-label, our goal is to find the parameters θs and θt that maximize the prob-

ability of instance xi to be labeled with LSi and LTi. Formally, let Θ denote the

optimal values of (θs, θt). Then, the objective function to estimate parameters can

be written as:

Θ = arg max
θs,θt

ΠiPs(Yi ∈ LSi|xsi, LTi, θs)

·Pt(Yi ∈ LTi|xti, LSi, θt) (5.4)

Let P̂s and P̂t be the prior probability generated from the labels. Then, Ps and

Pt are the posterior probability produced by the classification model. To estimate

parameters, one approach is to make the model based classification match the

distribution from prior labels, i.e., minimize the difference between them. For each

instance xi, P̂si can be calculated by the proportion of each label in LSi out of all

labels in LSi; and similarly for P̂ti . Both P̂si and P̂ti are calculated with constraints

of probabilities,
∑

k∈LSi
P̂si(Y = k|xi) = 1, and

∑
k∈LTi P̂ti(Y = k|xi) = 1.
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Based on equation (5.4), a widely accepted method of parameter estimation

is to minimize the KL-divergence between the prior and posterior probabilities

of each instance. Denote S as all of the sentiment classes and T as all of the

topic classes. Then, following the KL-divergence, the objective function can be

furthermore written as:

Θ = arg min
θs,θt


∑

i

∑
k∈S P̂si(Y = k|xi)log

P̂si (Y=k|xi)
Psi (Y=k|xsi,LTi,θs)

∑
i

∑
k∈T P̂ti(Y = k|xi)log

P̂ti (Y=k|xi)
Pti (Y=k|xti,LSi,θt)

(5.5)

Since for any class k that is not in LS or LT , the prior probability P̂si(Y =

k|xi) = P̂ti(Y = k|xi) = 0, having no influence on the parameter estimation.

Therefore, equation (5.5) can be simplified to the following:

Θ = arg max
θs,θt



∑
i

∑
k∈LSi

P̂si(Y = k|xi)

·logPsi(Y = k|xsi, LTi, θs)∑
i

∑
k∈LTi P̂ti(Y = k|xi)

·logPti(Y = k|xti, LSi, θt)

(5.6)

with constraints
∑

k∈LSi
P̂si(Y = k|xi) = 1, and∑

k∈LTi P̂ti(Y = k|xi) = 1.

In equation (5.6), P̂si and P̂ti are calculated from the labels. Psi and Pti are

model-based probabilities, which vary with θs and θt. By solving equation (5.6),

θs and θt can be determined. When the data is sparse, ME may have the problem

of “overfitting.” To reduce such an overfitting, we integrate the Gaussian prior into
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ME for parameter estimation, with mean at 0 and variance of 1.

After the model is trained, given a tweet and the feature vector, its sentiment

and topic classes can be determined by equation (5.2) and (5.3). Since extended

feature vectors of the two tasks make use of labels from each other, it is necessary

to obtain the initial labels. They can be generated from the classic ME model

or any other classification approach. After that, during the process of multi-task

classification, the sentiment labels obtained from equation (5.2) can be applied

in equation (5.3) for topic classification, and vice versa. Repeating the two tasks

iteratively will keep updating the classification results until it converges.

As a summary, the MTML classification proceeds as follows:

1. Given an instance xi, extract its topic feature vector xt and sentiment feature

vector xs.

2. Generate initial topic labels LT and sentiment labels LS of xi by using a

simple classification method or crowdsourcing.

3. Integrate LT with xs to obtain the compound sentiment feature vector XS,

and obtain the compound topic feature vector XT similarly out of LS and

xt.

4. Apply XS to the MTML sentiment classification model and generate senti-

ment labels LS ′ of xi.

5. Apply XT to the MTML topic classification model to generate topic labels

LT ′.

6. Plug in LT ′ to update XS, and also use LS ′ to update XT .

7. Repeat steps 4-6 until the classification result converges.
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5.5 Experimental Validation

5.5.1 Set-Up

Dataset. The proposed MTML model is evaluated using real tweets crawled

from 8/31/2010 to 4/26/2011. They contain at least one of the keywords “virgin-

mobile”, “VMUcare”, “boostmobile”, and “boostcare.” Our target is to classify
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sentiments and topics of these tweets towards “boost mobile” and “virgin mo-

bile”. After removing tweets that are posted by company customer services, we

get a total of 6,496 user-generated tweets for the experiment. For classification,

we take 3 sentiment classes and 10 topic classes, which are preset by professionals

from the agent of the company “Virgin Mobile.” The sentiment classes are “Posi-

tive”, “Negative”, and “Neutral”. Figure 5.2 shows the number of tweets in each

sentiment class and their percentage in the distribution. Topic classes include

“Care/Support”, “Lead/Referral”, “Mention”, “Promotion”, “Review”, “Com-

plaint”, “Inquiry/ Question”, “Compliment”, “News”, and “Company/Brand”.

The number of tweets in each class and their percentages in the distribution are

shown in Figure 5.3.

Ground-Truth. Initial sentiment labels and topic labels of tweets are assigned

by crowdsourcing via Amazon Mechanical Turk (AMT). AMT is a crowdsourcing

marketplace which allows collaboration of people to complete tasks that are hard

for computers to do but easy for human workers to do. AMT has two types of

users: requesters and workers. Requesters post Human Intelligence Tasks (HITs)

with monetary incentives, while workers can browse HITs and complete them

for monetary incentives. Requesters may accept or reject the result submitted

by workers. With certain quality control mechanisms (e.g., majority voting or

controlled HIT) requesters can obtain high-quality results for the submitted HITs

through AMT.

Using the AMT, we collect 3 sentiment labels and 3 topic labels for each tweet.

Labels may be identical or different. For each tweet, if at least two labels agree

with each other, then this label is selected as the majority-voted label. Out of

all 6,496 tweets, 6,143 of them have majority-voted sentiment labels, and 4,466
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of them have majority-voted topic labels. Among 4,257 tweets that have both

sentiment and topic majority-voted labels, we randomly select 500 for testing.

The remaining ones and all other tweets that have 3 different labels are used

as training instances, which contain 5,996 tweets. Since our MTML model can

train with multiple labels, we make use of all labels in training. For testing, the

majority-voted label is employed as the ground truth.

Baseline. To validate our model, we use 2 class reorganization methods: Label

Power set (LP) [56] and Decompose-Merge Instance (DMI) [58], as well as 4 existing

classification models as baselines. They include Naive Bayes (NB), Maximum

Entropy (ME), Support Vector Machine (SVM), EM with Prior on Maximum

Entropy (EPME) [62]. First, the MTML model is compared against the baseline

models on both tasks. After that, we apply LP with DMI to convert the multi-task

multi-label classification into single-task single-label classification first, and then

measure the performance of baselines accordingly.

Feature Selection. Predicting features are first generated by extracting key-

words from tweet contents. Hashtags are treated the same as other keywords,

without any special weighting or discrimination. Initially, 50,553 keywords (thus

feature dimensions) are extracted. Instead of doing dynamic feature reduction

using conventional methods such as PCA, we used a simple empirical approach.

We first measured the accuracy while varying the number of features from 400

to 5,000. For the sentiment classification task, the highest accuracy was obtained

with 3,400 features, while for the topic classification task, 2800 features produce

the best result. As a result, in the experiment, we simply adopted the 3,400 and

2,800 features for both sentiment and topic classification tasks, respectively. Note
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that these two sets of features are independent. They are not combined together

in the evaluations of our model and baselines.

Evaluation Metrics. We use classification accuracy to measure the performance

of model. It is defined as follows:

Accuracyclassification =
1

N

N∑
i=1

I(Zi = Yi)

where I(true) = 1 and I(false) = 0.

5.5.2 Evaluation on Twitter Steam Dataset

In the experiment, we evaluate MTML on both sentiment and topic classification

tasks. The results of MTML are compared against baselines respectively. After

that, we measure the average accuracy of MTML on multi-task and compare it

against baseline results on the LP-converted dataset. In particular, we look into

the classification accuracy on each class. By associating the class distribution

with the accuracy improvement, we analyze their correlation and how the class

properties affect accuracy.

First, we measure the MTML model on sentiment classification. The train-

ing dataset contains 5,996 tweets and the testing data contains 500 tweets. Each

training tweet is associated with 3 training labels. Meanwhile, MTML is evalu-

ated against NB, ME, SVM, and EPME. Figure 5.4 shows the accuracy of MTML

and baselines on sentiment classification. As shown in the figure, MTML out-

performs all baselines, achieving the accuracy of 0.744. Compared to ME and

EPME, MTML makes an improvement of 5%. Although sentiment classification
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Figure 5.5. The accuracy of topic classification of five methods

achieves a fairly good accuracy with baselines already, therefore, using multi-task

and multi-label enables a reasonable improvement.

Second, our MTML model is validated with topic classification on the same

dataset. Classification accuracies of our model and baselines are shown in Fig-
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Figure 5.6. The accuracy of multi-task classification of five methods after class reorga-
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ure 5.5. Since there are a total of 10 topic classes and their distribution is not

even, the accuracies of both MTML and baselines are not very high. However,

MTML still outperforms the baselines and achieves an accuracy of 0.558.

Next, we use LP to transform the dataset into single-task classification with

30 classes (i.e., 3 sentiments × 10 topics). Furthermore, for each instance with

multi-label, we apply DMI to convert it into multiple instances with single labels.

Then, the accuracies of NB, ME, SVM, and EPME are measured on this converted

dataset. Figure 5.6 shows the performance of MTML on multi-task classification

against baselines after this class reorganization. Among all the methods performed,

NB has the lowest accuracy while our proposed MTML still outperforms all base-

lines.

Since different classes take different proportions out of the whole dataset, next,

we look into sentiment and topic classes and measure accuracy per each class. Fig-

ure 5.7 shows accuracies of all methods on each sentiment class. Overall, MTML
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Figure 5.8. The accuracy of topic classification of the MTML model per four topic
classes

performs well on all sentiment classes, especially the class of ”Neutral“. For topic

classes, we show the comparison of all methods on 4 most interesting topics in

Figure 5.8. Among all 10 topic classes, MTML tends to classify better on those

relatively large-sized and explicit ones, such as ”Complaint“ and ”Promotion.“ Fig-

ure 5.8(a) and (b) shows that MTML has an accuracy of 0.869 and 0.853 on these

two classes, respectively. Another interesting observation is that NB outperforms

the MTML model on small-sized classes, such as ”Compliment“ and ”Review.“ As
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Table 5.2. Sample tweets and topic classification results of NB, SVM, ME and MTML
ID Tweet Content Truth NB SVM ME MTML

1
Brought to you by boost mobile unlimited

plan........now with shrinkage????
Com-
plaint

Compli-
ment

Mention Mention
Com-
plaint

2
I am loving #Sparah and my @virginmobileus LG
Optimus!!! @anonymized is so beautiful and ready

for the spotlight.

Compli-
ment

Compli-
ment

Mention
Inquiry/

Ques-
tions

Compli-
ment

3
New Boost Mobile Android phone for sale! The New
Galaxy Prevail Touch Screen! If u want it get @me!

Promo-
tion

Lead/
Referral

Mention Mention
Promo-

tion

4
That’s top-up card It’s a phrase which I believe was
coined by virgin mobile for its prepaid phone service.

Mention
Compli-

ment
Mention

Com-
plaint

Mention

Table 5.3. Sample tweets and sentiment classification results of NB, SVM, ME and
MTML

ID Tweet Content Truth NB SVM ME MTML

1
Brought to you by boost mobile unlimited

plan........now with shrinkage????
Negative Positive Neutral Neutral Negative

2
I am loving #Sparah and my @virginmobileus LG
Optimus!!! @anonymized is so beautiful and ready

for the spotlight.
Positive Positive Negative Neutral Positive

3
New Boost Mobile Android phone for sale! The New
Galaxy Prevail Touch Screen! If u want it get @me!

Positive Positive Neutral Neutral Positive

4
That’s top-up card It’s a phrase which I believe was
coined by virgin mobile for its prepaid phone service.

Neutral Negative Negative Negative Neutral

shown in Figure 5.8(c), NB is 13% better than MTML on ”Compliment“ class. Fi-

nally, Figure 5.8(d) illustrates that SVM performs the best on the class ”Mention.“

However, it performs poorly on all other classes, because it classifies a majority of

instances into “Mention” class.

5.5.3 Case Study

To investigate the advantages of multi-task classification in details, we look at a few

sample tweets and their classification results with different methods. Tables 5.2

and 5.3 show 4 sample tweets with their sentiment and topic classification labels.

Besides the ground truth label in the Truth column, we list classification results

by NB, SVM, ME and our MTML model.

Case 1. Tweet #1 has topic Complaint and sentiment Negative. NB, SVM and

ME all classify it to the wrong topic and wrong sentiment classes. However, by us-
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ing the multi-task approach and incorporating the association between Complaint

and Negative, our MTML model successfully classifies it to the right topic and

sentiment.

Case 2. Tweet #2 has topic Compliment and sentiment Positive. Keyword “love”

is a strong indicating feature, but neither SVM nor ME classifies it right. MTML

introduces multi-task and multi-label based on ME, therefore, MTML generates

the correct classification results.

Case 3. Tweet #3 has topic Promotion and sentiment Positive. Both ME and

SVM fail to classify on topic or sentiment. NB classifies with only right sentiment.

As a comparison, MTML benefits from multi-task and makes right classifications

on both tasks.

Case 4. Tweet #4 has topic Mention and sentiment Neutral. Among baselines,

only SVM classifies its topic correctly. NB classifies with an incorrect association

between topic and sentiment. ME does not classify correctly on either task. Only

MTML utilizes multi-task labels to promote each other, and successfully classifies

both topic and sentiment accurately.

The above experiment shows that the MTML model performs better than base-

line methods on both sentiment and topic classification. It produces classification

accuracies of 0.744 on sentiment and 0.558 on topic. Compared with ME, MTML

improves the accuracy by 5% on sentiment and 12% on topic classification, which

indicates that using multi-label and multi-task is effective to improve both classifi-

cations. In particular, topic classification obtains a higher accuracy increase than

sentiment classifications. It appears that incorporating sentiment labels seems to
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be of more help to distinguish topics. Looking into accuracies per each class also

reveals some insights. Among all classes, for instance, MTML has a higher ac-

curacy on large-sized ones, such as “Complaint”, “Mention”, and “Promotion.”

Since topic classes have unbalanced distributions and some of them have very few

instances, increasing the dataset size may help increase the classification accuracy.



Chapter 6
Mining Impact of Events from

Twitter Stream

Based on social activity temporal prediction and social media sentiment analysis,

we furthermore explore how the evolution of social activity can help with predicting

the sentiment change of Twitter stream. In this chapter, based on aggregate social

activity, we utilize a continuous-time stochastic model to simulate and predict the

sentiment change of Twitter stream. Therefore, analysis of tweet sentiment change

can provide insights to the impact of events.

6.1 Literature Survey

6.1.1 Sentiment Analysis of Tweets

Tweet sentiment analysis focuses on identifying tweet sentiments from tweet con-

tents, hashtags and emoticons [75]. Beside the ones mentioned in the previous

section, there are more related work on tweet sentiment analysis. In [76], tf-idf
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measure is used to detect the change of term frequency and emoticons are used

to determine tweet sentiment. Another study proposed an algorithm by using re-

cursive autoencoder to analyze sentiments of tweets [77]. To explore the tweet

sentiment change on time-series, SVM was used to classify whether the collective

tweet sentiment would increase or decrease [78]. After that, a study on sentiment

of tweets by popular users found that these tweets had influence on the sentiment

of their audience [79]. In [80], a method is proposed to train a sentiment analysis

model with manually labeled data and emoticon labels are used to enhance the

accuracy of classification.

Although these works conduct various analysis of tweet sentiment, none of them

makes prediction of tweet sentiment change.

6.1.2 Electoral Prediction with Twitter

In the realm of electoral prediction, a lot of studies analyze tweet sentiment and

seek to reveal hidden information from the results [81, 82]. In [83], positive and

negative scores are integrated to compute sentiment scores of tweets, which are

found to be relevant to the presidential approval polls. After that, researchers

found that mere count of tweets mentioning a party or candidate can reflect the

election results [84]. In another study, demographic information of twitter users

are analyzed and some conclusions are drawn, such as users are predominantly

male [85]. Besides that, the influence of vocal minority is also examined. Com-

pared to silent majority, vocal minority is found to play a major role in spreading

information aligned with their own opinions [86]. By analyzing online popular-

ity of Italian political leaders in 2011 and online voting intension of French 2012

election, researchers confirmed a remarkable ability for social media to forecast
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electoral results [87].

On the other hand, some studies raised doubts and pointed out insufficiency of

predicting elections with twitter [88]. In [89], 2011 Singapore General Election is

analyzed, but results show that the correlation between Twitter chatter and votes

is not strong enough to make accurate predictions. By examining tweets about

US republican politicians in 2011 US presidential nomination, another study also

shows that twitter political chatter is not indicative of national political polls [90].

Upon the above conclusions of electoral prediction with twitter, most of them

are not replicable. The prediction is mostly based on qualitative analysis or count-

ing the number of tweets, instead of quantification of impact of events. Therefore,

in this thesis, we present a new method that measures the impact of events, which

furthermore can predict the change of tweet sentiments.

6.2 Dataset

By using Twitter Search API, we collected tweets mentioning presidential candi-

dates of 2012 US presidential campaign. Each tweet contains either “obama” or

“romney”. The main Twitter stream is called Firehose and one subsample of this

stream is named Gardenhose. With Gardenhose access, the program is allowed to

access at most 10% of the main Twitter stream. Filtering the stream with special

keywords will furthermore reduce the percentage of tweets that we can collect.

The collection of tweets spans from March 23, 2012 to November 10, 2012, with

a few gaps of uncollected time intervals. As the stream connection dropped from

time to time, this dataset is lack of some days in the period. The tweets are saved

in JSON format. The total size of the dataset is around 140GB.
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6.2.1 Tweet Sentiment Analysis

The classification scheme of tweet sentiment are: positive, negative and neutral. To

identify tweet sentiment in the huge dataset collection, we use Maximum Entropy

as a supervised classification model. A subset of 10,000 tweets are used as train-

ing instances. Then we make use of Amazon Mechanical Turk(AMT) to obtain

sentiment labels. As introduced in the previous chapter, AMT is a crowdsourcing

marketplace which allows collaboration of people to complete intelligent tasks. By

using AMT we collect sentiment label for every training tweet.

After that, a sentiment classification model is trained with Maximum Entropy.

Considering that sentiment analysis is very subjective, the short length of a tweet

may make it even harder to correctly identify tweet sentiment. Shown by experi-

ment, the model produces 77% classification accuracy when 200 instances are used

for testing and the rest used for training. We consider it a reasonable classification

accuracy, therefore we apply this model to identify the sentiment of all other tweets

in the collection.

6.2.2 Social Activity Feature Extraction

With tweet sentiment labels obtained, we can make use of them and extract social

activity features for prediction. To measure user activity and their interactions,

we set the time interval to be 12 hours and partition the dataset accordingly. On

every 12-hour interval, tweets about each politician are separated. Given tweet

sentiment labels, 30 activity features are generate for each politician on every

interval. Table 6.1 shows the feature sources and their explanations.

Since the value of most features evolve significantly over time, all features except
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Table 6.1. Social Activity Features from Twitter User Network
Sources Example Feature and Explanation

Number of followers
Users Number of friends

Number of posted tweets
Number of lists the user is in

Number of positive tweets
Sentiment Number of negative tweets

Number of neutral tweets
Number of retweets

Tweets Number of users who have positive tweets
Number of users who have negative tweets
Number of users who have neutral tweets

First order derivative of
Historical change sentiment features and tweet features

for the first order derivative are rescaled as follows to handle the very large values:

f ∗ = log(f + 1) (6.1)

where f is the original value of the feature and f ∗ is the new value after the

rescaling.

These features together will be used as model input to predict the impact of

events on the change of tweet sentiments towards each politician.

6.3 Temporal Sentiment Analysis

To analyze the temporal pattern of the tweets, we sort the collection with tem-

poral order, and then separate them according to the political leader mentioned.

Figure 6.1 shows the weekly sum of tweet numbers about Obama and Romney,

respectively. Overall, the tweet number has a tendency of increasing over time,
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Figure 6.1. Nationwide weekly tweet numbers of Obama and Romney
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Figure 6.2. Ratio of nationwide weekly tweet numbers of Obama and Romney

from July 2012 to October 2012. There are more tweets talking about Obama

than Romney all the time. Figure 6.2 shows the ratio of weekly tweet numbers

of Obama and Romney. From March 2012 to November 2012, the ratio keeps

decreasing over time generally.

An interesting observation is that during the two weeks starting with August

27th, the number of tweet about Romney has a big increase, followed by another

big increase of tweets about Obama in the next week. The happening at these two

weeks are the Republican national convention from August 27th to August 30th,

and Democratic national convention from September 3rd to September 6th. After
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Figure 6.3. Weekly tweet numbers of Obama and Romney in CA
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Figure 6.4. Ratio of weekly tweet numbers of Obama and Romney in CA

that, tweets of both politicians start to increase dramatically. It implies a strong

correlation between the political event and the increasing tweets of the politicians.

After the final election on November 6th and the win of Obama, the tweet number

of two politicians both decrease, but the ratio shows a big increase. It can be

explained as that the winner of election draws much more attention again.

Figure 6.3 shows the weekly sum of tweets in California about the two politi-

cians, while figure 6.4 illustrates the ratio between them. The plots depict a simi-

lar temporal pattern as that of nationwide. However, the number of tweets about

Romney is closer to that of Obama than national data since July. It indicates that
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Figure 6.5. Weekly tweet numbers of Obama and Romney in TX
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Figure 6.6. Ratio of weekly tweet numbers of Obama and Romney in TX

Romney is mentioned more frequently by California Twitter users than national

average.

Figure 6.5 and figure 6.6 show the weekly sum of tweets and the ratio of Obama

and Romney in Texas. Comparing figure 6.4 and figure 6.6, we observe that

the ratio of tweets about Obama and Romney in Texas is higher than that in

California. It indicates that Twitter users from a strong republican state, such as

Texas, comment more about Obama than users from California and nationwide.

Given this observation, we are curious what these Twitter users are talking about

Obama and how their sentiment is. In the following analysis, we will look into the
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Figure 6.7. Distribution of tweets with different sentiments towards Obama in CA
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Figure 6.8. Distribution of tweets with different sentiments towards Romney in CA

tweet sentiment distribution and find out answer to this question.

By using the sentiment classification model, we classify sentiments of all tweets

in the collection. Then we calculate the number of positive, negative, and neutral

tweets about Obama and Romney in both California and Texas.

Figure 6.7 shows the distribution of tweets with different sentiments about

Obama in California. Negative tweets take a proportion of more than half, and

the proportion stays mostly at the same time from March to November. Positive

tweets has a proportion of around 10%, but the proportion shows a increasing

trend all over the time. It indicates that there are more positive tweets about
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Figure 6.9. Distribution of tweets with different sentiments towards Obama in TX
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Figure 6.10. Distribution of tweets with different sentiments towards Romney in TX

Obama in California as the election is approaching.

Figure 6.8 shows the distribution about tweets toward Romney in California.

In the figure, the percentage of positive and negative tweets are mostly stable, with

a slightly increase of positive tweets after September. Comparing figure 6.7 and

figure 6.8, we can observe that the sentiment distributions of the two politicians

in California are almost even.

Figure 6.9and figure 6.10 shows the distribution about tweets of Obama and

Romney in Texas. Comparing the two figures, on one hand, we find that the

percentage of negative tweets about Obama is obviously higher than that of Rom-
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Figure 6.11. Nationwide ratio of negative and positive tweets for Obama and Romney

ney. On the other, the percentages of positive tweets about them are similar. It

is an interesting observation that although Texas Twitter users twit more about

Obama, he actually receives a higher percentage of negative comments than Rom-

ney in Texas. On the contrary, California Twitter users show a more even attitude

towards both politicians.

Furthermore, we measure the ratio of negative and positive tweets about politi-

cians. Figure 6.11 shows the nationwide ratios of Obama and Romney. From

March to June, Obama has a higher ratio of negative tweets than Romney. Since

July, ratios of the two become similar and the average sentiment towards Obama

is improved.

Figure 6.12 and figure 6.13 show the ratio of negative and positive tweets in

California and Texas, respectively. Since July, the plot of Romney starts to show

a higher negative ratio than Obama in CA, and a slightly lower negative ratio in

TX, especially after September. The final election result is that Obama wins in

CA and Romney wins in TX, which agrees with our observations.

From all above observations and analysis, we consider that tweet sentiment

classification can reflect the political preference of both national average and states.
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Figure 6.12. Ratio of negative and positive tweets for Obama and Romney in CA
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Figure 6.13. Ratio of negative and positive tweets for Obama and Romney in TX

Comparing the tweet statistics and the facts, we find that they mostly agree with

each other. Therefore, we can conclude that tweet sentiment analysis is a credible

approach to reveal some hints of the facts.

6.4 Sentiment Change Prediction

6.4.1 Methodology

Sentiment change of tweet can be measured by the number of tweets that express

positive or negative sentiment. Therefore, the question of predicting such sentiment
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change can be converted to predicting the future number of positive or negative

tweets. Due the randomness in social dynamics, the temporal change of number of

tweets is essentially a continuous-time random variable. Thus it can be properly

simulated by a continuous-time stochastic process. In fact, the number of tweet is

a reflect of social activity in Twitter user network.

Based on this observation, we adopt a Parameterized Social Activity Model

(PSAM) [91] which can simulate the social activity evolution over continuous-time.

As a simulation model, PSAM has two components: a drift term and a diffusion

term. The drift term indicates the growth or shrinkage of the social activity. The

diffusion term describes the uncertainty, e.g. the impact from the environment.

Having these two components integrated into it, PSAM can simulate and predict

the evolution of social activity accurately. Therefore, we utilize it to predict the

change of number of tweets.

6.4.2 Experiments and Discussion

The dataset is partitioned to two parts for experimental validation. Tweets from

March 23, 2012 to September 4, 2012 are used for training, and the part from

September 5, 2012 to November 10, 2012 is used for testing. We measure the

change of both positive and negative tweets.

First, by using PSAM, we predict the number of positive/negative tweets to-

wards each politician. Then we measure the accuracy of 90% prediction inter-

val(PI) and correlation coefficient between the predicted value and the ground

truth.

Ground truth: With every tweet labeled as positive, negative, or neutral, the

change rate of positive tweets is calculated with number of positive tweets on
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Table 6.2. Accuracy of 90% PI of prediction on positive and negative tweets
90% PI Positive Negative
Obama 0.63 0.57
Romney 0.88 0.87

Table 6.3. Correlation Coefficient of predictions and ground truth on positive and
negative tweets

Correlation Positive Negative
Obama 0.522 0.609
Romney 0.7 0.7

every pairs of two successive 12-hour intervals. The change rate of negative tweets

is calculated in the same way.

Confidence interval: We calculate the prediction interval (PI) from the predicted

distribution and compare the ground truth with it. To ensure a tight interval and

enough confidence, we adopt the 90% PI. Suppose < represents the set of testing

data and T is the subset that falls within 90% PI, then the 90% PI accuracy is:

Accuracy90%PI =
|T|
|<|

Correlation coefficient: Correlation coefficient is a widely accepted approach to

measure the relevance between estimated values and ground truth. In particular,

assume that the ground truth dataset is X and corresponding predicted dataset is

Y , x̄ and ȳ denotes the mean values of X and Y respectively, then the correlation

between X and Y is calculated as follows:

Corr(X, Y ) =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2

Table 6.2 shows accuracy of 90% PI of predictions for Obama and Romney.

For each politician, the prediction accuracies of positive tweets and negative tweets
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Figure 6.14. Daily positive tweet numbers of Romney, prediction VS ground truth
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Figure 6.15. Daily negative tweet numbers of Romney, prediction VS ground truth

are close. However, prediction accuracies of Romney is much higher than those of

Obama. Table 6.3 illustrates correlation coefficients of predictions and the ground

truth. Predictions about both candidates all have a high correlation, which implies

that sentiment change is predicted accurately. Meanwhile, we also notice that pre-

dictions about Romney have higher correlations than those about Obama, which

is according with the results in Table 6.2.

One possible reason of the less accurate predictions about Obama could be that

some tweets contains keyword “Obama” may actually talk about Michelle Obama,

which lead to more noise in the dataset. Meanwhile, since Obama is the current

president, his name could be mentioned upon many issues. Tweets containing

“Obama” may not be relevant the presidential campaign.
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During the presidential campaign, each candidate has a lot of public activities

to call for more votes. Presidential debate is one of them. As presidential debates

are broadcasted on TV channels, they make wide national influence. Therefore,

to validate our methodology, we look into the daily tweet sentiment change about

Romney in California, especially after the presidential debate on October 16th.

Figure 6.14 shows the real and predicted number of positive tweets about Rom-

ney in CA. Overall, the prediction catches the up and down oscillation of ground

truth, with a slight delay on a few days. On days after October 16th, the model

successfully predicts the increase of positive tweet number, though the peak is

predicted with one day shift. Also the prediction is not far from the ground truth.

Figure 6.15 shows the real and predicted number of negative tweets of Romney

on the same days. The prediction has a good match to the ground truth. Focusing

on days after October 16th, PSAM makes an accurate prediction of negative tweet

increase. In fact, in the debate of October 16th, Romney received a very negative

feedback. Considering figure 6.14 and figure 6.15 together, according to the model

predictions, negative tweet number has a much more increase than positive tweet.

This result accurately reflects the fact and properly predicts the impact of the

presidential debate.

Overall, we can conclude that predicting the impact of events on social media

with PSAM is accurate and efficient. Analyzing UGC provides some insights into

the current status of social communities. By looking into the temporal social

interactions, our method is able to catch the influence of events on social activities

and therefore reveal the future impact in the community, in particular, fluctuation

of sentiments.



Chapter 7
Conclusion and Future Work

7.1 Conclusion

In this dissertation, we study UGC on the web and social networks and utilize

the results to improve the solutions to several challenging data management prob-

lems. First, a statistic model incorporating document topics and user locations is

proposed to improve query expansion. Second, we explore various social activity

features and evaluate which structural features are important in determining com-

munity evolution. Third, we analyze sentiments and topics of UGC in social media

and propose a multi-task multi-label classification model. Furthermore, based on

UGC sentiment analysis, we present a method that can predict sentiment change

on social media and forecast impact of events.

In the problem of query expansion, search engine user log is utilized to help

explore the semantic correlation of searching documents. By clustering documents

into different topics, we scale down the document relevance to the topic relevance

with LDA, and then use the topic relevance to identify the similarity between

queries. In addition we make use of the location information to determine whether
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the query is location-sensitive and which type of query expansion should be applied.

Our experiments on the CiteSeer and Excite datasets show that on one hand, our

model can effectively select the location-sensitive queries; on the other hand, for

location-sensitive queries, our query expansion methods significantly improve the

search results.

To address the second problem, we focus on investigating the impact of member

interaction over the active community evolution from a macro scope. Observing

the temporal network infrastructure, we find that network growth and shrinkage

tend to be consistent with the number of active members and the interaction

between them. Therefore, we formalize the concept of active social network and

make use of evolving patterns to measure community evolution. Several structural

features are incorporated to represent member activities, and then they are applied

with the logistic regression to predict the evolving pattern. At the same time, the

Lasso method is adopted to select the most significant structural features. The

experiment on both CiteSeer co-authorship network and Facebook online network

shows that our methods are effective in predicting the evolving pattern accurately

and that the feature selection is valid. The most significant structural features

selected are different on the two datasets. On the Facebook online social network,

the numbers of current members and cumulative edges are more important than

other factors. On the CiteSeer co-authorship network, the collaboration between

members plays the most important role.

In the third application, we study the sentiment and topic classification of

online posts. By exploring the latent association between tweet sentiments and

topics, we propose a multi-task multi-label (MTML) classification model. The

model utilizes the correlation between related classes across two tasks, and incor-
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porates the result of each classification task to promote the other. In addition, the

MTML model integrates multi-label in training to learn from ambiguous expres-

sions and to classify such accordingly. Experiments on a collection of real tweets

using crowdsourced ground truth reveal that our proposed model can classify both

sentiments and topics of tweets accurately and outperforms other four competing

methods.

Furthermore, based on sentiment analysis of online posts, the dynamic corre-

lation between social activity and UGC is investigated. By using a parameterized

social activity model, we explore the change of sentiment expressed in online posts

and utilize it to predict the impact of events. Experiments show that our method

can predict the sentiment change accurately. From analysis and case study, we

find that mining temporal social interaction can reveal the change of sentiment in

UGC, and therefore, help with predicting the influence of events.

7.2 Future Research

Many research questions remain open for future work. Social activity and UGC are

dynamically involving and have influence on each other. Social interactions pro-

mote the generation of UGC. Therefore, social activity can help predict UGC, while

UGC can be used to understand the social community status. This interactive re-

lationship can be investigated and studied furthermore in multiple perspectives.

As we have been studying social activity at the macro level, the individual

level analysis would be another direction of extension. Connections and influen-

tial individuals play an important role in determining activity of the entire social

network. Therefore, mining these features may provide different quantification of
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social network evolution.

Different formats of UGC can be explored and exploited. In this thesis, we

only look into text and document. The scope of our study may extend to other

formats, including image, audio, and video. By analyzing new formats of UGC

and integrating the techniques of text mining, we can address many other data

management problems and improve solutions.
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