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Abstract. The problem of privacy-preserving record linkage is to find
the intersection of records from two parties, while not revealing any pri-
vate records to each other. Recently, group linkage has been introduced
to measure the similarity of groups of records [19]. When we extend the
traditional privacy-preserving record linkage methods to group linkage
measurement, group membership privacy becomes vulnerable – record
identity could be discovered from unlinked groups. In this paper, we in-
troduce threshold privacy-preserving group linkage (TPPGL) schemes,
in which both parties only learn whether or not the groups are linked.
Therefore, our approach is secure under group membership inference at-
tacks. In experiments, we show that using the proposed TPPGL schemes,
group membership privacy is well protected against inference attacks
with a reasonable overhead.
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1 Introduction

Record linkage (RL), also known as the merge-purge [12] or object identity [24]
problem, is one of the key tasks in data cleaning [10] and integration [9]. Its
goal is to identify related records that are associated with the same entity from
multiple databases. When we extend the concept of “records” to “groups of
records”, it becomes the group linkage (GL) problem [19], which is to determine
if two or more groups of records are associated with the same entity.

RL and GL problems occur frequently in inter-database operations, in which
privacy is a major concern, especially in the presence of sensitive data. In both
record and group linkage, data owners need to reveal identifiable attributes to
others for record-level comparison. However, in many cases, data owners are not
willing to disclose any attributes unless the records are proven to be related.
Here we present two GL examples, in which private attributes should not be
revealed.
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Example 1: As an international coordination to combat against gang violence,
law enforcement units from different countries collaborate and share information.
Two countries will only share data when they confirm that they both possess
information about the same gang group, which is represented as a set of records
of gang members. Two gangs are regarded as the same when a large number of
their members’ records match. �

In this example, each party holds groups (i.e. gangs) of records (i.e. members)
that are identified by primary keys (i.e. names). Two records “match” only if
they have identical primary keys. This scenario represents privacy-preserving
group linkage with exact matching (PPGLE) problem, in which the similarity
between two inter-group members takes value from {0, 1}.

Example 2: Two intelligence agencies (e.g. FBI and CIA) each obtains several
pieces of intelligence documents. They would like to share the pieces if they are
about the same case. Hence, the agencies need to verify that the similarity of their
pieces are “very similar”, in a way that does not reveal the document content in
the verification process. �

In this case, each record (e.g. a document) is represented as a vector in a
term space shared by both participants. Record-level similarity is measured by
a similarity function sim(r, s), and takes value in [0, 1]. If the similarity between
two group members is smaller than a preset record-level cut-off, it is considered
as “noise” and set to 0. The group-level similarity is defined as a function of
record-level similarity (e.g. sum()). This scenario represents privacy-preserving
group linkage with approximate matching (PPGLA) problem.

Privacy-preserving group linkage (PPGL) extends privacy-preserving record
linkage (PPRL) such that participants hold groups instead of records. However,
directly applying PPRL solutions to group linkage problems will suffer from
group membership inference attacks. In such an attack, adversaries participate
in the protocol with forged groups so that they can learn the group formation
information of other parties, even though their groups are determined to be dif-
ferent in the end. To tackle this problem, we propose threshold privacy-preserving
group linkage (TPPGL) protocols for both exact matching (TPPGLE) and ap-
proximate matching (TPPGLA). The group similarity is no longer revealed to
participating parties. Instead, only the result that the similarity is above or be-
low a preset threshold is notified. In this way, private information about group
membership is protected against inference attacks.

2 Problem Statement

Group linkage considers the problem of matching groups of records from mul-
tiple parities. For ease of presentation, hereafter, we use “Alice” and “Bob” to
represent the two participants. In this scenario, Alice and Bob each holds a
set of groups, identified as R = {R1, ..., Ru} and S = {S1, ..., Sv}, respectively.
Two groups are considered similar (i.e. linked) if and only if SIM(Ri, Sj) ≥ θ,
where SIM() is an arbitrary group similarity function and θ is a pre-negotiated
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threshold. In this paper, we follow the original group linkage definition [19] to
use Jaccard similarity [15] as the group-level similarity measurement (see Sec-
tion 3.2 for details). In real-world applications, the number of elements in groups
is usually small (e.g. tens), while the number of groups tends to be large (e.g.
hundreds).

In the case of exact matching, a record (i.e., group member) is identified by
a primary key, e.g. R = {r1, ..., rm} and S = {s1, ..., sn}, where rp and sq are
primary keys. Two records are regarded similar if and only if their primary keys
are identical, i.e. sim(rp, sq) = 1, iff ri = sj . Note that, for ease of presentation,
we use R instead of Ri to denote a group.

In the case of approximate matching, each record is represented as a vector in
a shared vector space: R = {r1, ..., rm}, and S = {s1, ..., sn}, where rp and sq are
vectors. Two records are regarded similar if and only if their similarity is greater
than a pre-negotiated record-level cut-off ρ, i.e., sim(rp, sq) > ρ. Here, sim() is
an arbitrary vector-space similarity function (e.g. cosine similarity or Euclidean
distance). In this paper, we adopt the cosine similarity that is a popular similarity
measure for text documents: sim(rp, sq) = (rp · sq)/(|rp||sq|).

Privacy-preserving group linkage (PPGL): Both Alice and Bob follow a
protocol to match two groups R from Alice and S from Bob. In the end, they
learn |R|, |S|, and the group-level similarity SIM(R,S), based on which they
decide whether or not to share R and S. When exact matching or approximate
matching is employed at the record level, the problem is further denoted as
PPGLE or PPGLA, respectively.

The PPGL problem could be solved by existing privacy-preserving set inter-
section protocols [1, 4, 11]. However, in the case where Bob holds a large number
of groups with overlapping records, and Alice needs to check each of her groups
against all Bob’s groups, the existing solutions suffer from group membership
inference problem, as shown in the following example.

(a) (b)

Fig. 1. (a) Privacy-preserving group similarity with inference problem; (b) privacy-
preserving group linkage without inference problem.

Example 3. As shown in Figure 1 (a), Alice has a group of four records, where
each record is identified by a primary key of last names. Bob has a set of three
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groups. Alice checks her group against Bob’s three groups (using primary keys for
exact matching), but fails to find a similar group (assume Jaccard similarity [15]
is used at group-level and θ is set to 0.5). In the three comparisons, both Alice and
Bob learn the other’s group sizes and the three similarities. Bob could easily infer
the records in Alice’s group via a simple derivation: (1) Alice’s group should not
have “Dow”, “Du”, “Luo”, or “Doe” since its similarity with B2 is 0; (2) Alice’s
group should have “Li” and “Lee” since its similarity with B1 is 0.33 (which
means the intersection size is 2); and (3) Alice’s group should have “Chen” and
“Liu” since its similarity with B3 is also 0.33. Therefore, Alice’s group is {Li,
Lee, Chen, Liu} since the group size is known as 4. �

In this example, Bob does not learn the content of Alice’s records (i.e.
attributes other than the primary keys), since the comparisons are assumed
privacy-preserving. However, the group membership privacy, i.e. the identities
of group members, is disclosed. In the example, Bob infers Alice’s group mem-
bers by providing partially overlapped groups. An adversary may intensionally
manipulate his groups in a way that group-wise similarity is always below the
threshold so that he does not need to share his groups, but he is able to infer the
other party’s group membership privacy. To tackle such a problem, we need to
develop a secure protocol that only provides a verdict of “yes” or “no” for each
group-wise comparison. Hence, Bob only learns three “no”s in the above example
(as shown in Figure 2 (b)), and the inference attack becomes impossible.

Threshold privacy-preserving group linkage (TPPGL): Alice and Bob
negotiate a threshold θ, and then follow a protocol to match two groups R
and S. In the end, they only learn |R|, |S|, and a boolean result B, where
B=true when SIM(R,S) ≥ θ, and B=false otherwise. When exact matching
or approximate matching is employed at the record level, the problem is further
denoted as TPPGLE or TPPGLA, respectively.

3 Preliminaries

3.1 Cryptographic primitives

The protocols proposed in the paper adopt two special classes of cryptography
algorithms for secure computation: commutative and homomorphic encryption.

Commutative Encryption. An encryption algorithm has the commutative
property when we encrypt a message twice (with two different keys) and the
resulting ciphertext is independent of the order of encryptions. Mathematically,
an encryption scheme E() is commutative if and only if, for any two keys e1 and
e2 and any message m: (1) Ee1(Ee2(m)) = Ee2(Ee1(m)); (2) Encryption key ei
and its corresponding decryption key di are computable in polynomial time; and
(3) Eei() has the same value range.

The commutative property applies to the decryption phase too. If a message
is encrypted with keys e1 and e2, then it can be recovered by either decrypting
the cipher using d1, followed by decryption using d2; or decrypting using d2,
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followed by d1. Here, di is the corresponding secret key of ei. Several encryp-
tion algorithms are commutative, e.g. Pohlig-Hellman, ECC, etc. In this work,
we adopt SRA encryption scheme, which is essentially RSA, except that the
encryption exponent e is kept private.

Homomorphic Encryption. Homomorphic encryption represents a group of
semantically-secure public/private key encryption methods, in which certain al-
gebraic operations on plaintexts can be performed with cipher. Mathematically,
given a homomorphic encryption scheme E(), ciphertexts E(x) and E(y), we are
able to compute E(x ? y) without decryption, i.e. without knowing the plain-
text or private keys. ? represents an arithmetic operation such as addition or
multiplication.

Well-known homomorphic encryption schemes include: RSA, El Gamal [5],
Paillier [20], Naccache-Stern [18], Boneh-Goh-Nissim [2], and etc. The Paillier
cryptosystem [20, 21] is additively homomorphic; the El Gamal [5] cryptosystem
is multiplicatively homomorphic; and the Boneh-Goh-Nissim cryptosystem ap-
proach [2] supports one multiplication between unlimited number of additions. A
more recent approach provides full support of both addition and multiplication
at higher computation costs [6, 25]. We omit further mathematical details in this
paper, since they are out of our scope.

3.2 Related Work

The problem of privacy-preserving group linkage originates from secure two-
party computation and group linkage (which succeeds record linkage). We briefly
summarize the literature in these areas.

Group linkage. The record linkage or merge-purge problem has been inten-
sively studied in database, data mining, and statistics communities [27, 3]. Group
linkage [19] extends the scenario to take groups of records into consideration.
Group-wise similarity [19] is calculated based on record-level similarity. When
exact matching is enforced at the record level, Jaccard similarity[15] is em-
ployed at the group level: similarity of two groups (R and S) is defined as:
SIM(R,S) = |R ∩ S|/|R ∪ S|. When approximate matching is applied at the
record level, bipartite matching similarity is employed at the group level [19].
For two groups of records R = {r1, ..., rm} and S = {s1, ..., sn}, BMsim,ρ is the
normalized weight of M :

BMsim,ρ(S,R) = (
∑

(ri,sj)∈M

sim(ri, sj)) / (|R|+ |S| − |M |)

where M indicates the maximum weight matching in the bipartite graph (N =
R ∪ S, E = R × S). It contains all the edges whose weight is greater than ρ, i.e.
(ri, sj) ∈M iff. sim(ri, sj) ≥ ρ.

Privacy-preserving record linkage. The original problem of secure two/multi-
party computation was introduced in [28]. In this problem, multiple parties com-
pute the value of a public function on private variables, without revealing the
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Protocol 1 : AES approach for set intersection [1]

Data: Alice has a group R = {r1, ..., rm}; and Bob has a group S = {s1, ..., sn}.
Result: They both learn the size of intersection: |R ∩ S|, and nothing else.
1: Both Alice and Bob apply hash function to their group elements to obtain: h(R) =
{h(r1), ..., h(rm)} and h(S) = {h(s1), ..., h(sn)}.

2: Both Alice and Bob encrypt their hashed group elements to obtain: Er(h(R)) =
{Er(h(r1)), ...,Er(h(rm))} and Es(h(S)) = {Es(h(s1)), ...,Es(h(sn))}.

3: Alice and Bob exchange their group, with group elements reordered.
4: Bob encrypts what he got from Alice to obtain: Es(Er(h(R))) =
{Es(Er(h(r1))), ...,Es(Er(h(rn)))}, and return to Alice.

5: Alice encrypts what she got from Bob in Step 3, to obtain: Er(Es(h(S))).
6: Alice finds out the size of intersection of the encrypted groups, Es(Er(h(S))) (step

4) and Er(Es(h(R))) (step 5), and shares with Bob.

values of the variables to each other. Zero-knowledge proof [8] addresses the
problem of proving the veracity of a statement to other parties without revealing
anything else. They are the earliest ancestors of privacy-preserving multi-party
computing. Privacy-preserving record linkage with exact matching is very simi-
lar to privacy-preserving set intersection: to identify the intersection of two sets
of records without revealing private records. Surveys could be found at [26, 11].
Among the more popular approaches, solutions based on homomorphic encryp-
tion (e.g. [4, 16]) or commutative encryption (e.g. [1]) require higher computa-
tional overhead. Sanitization-based approaches (e.g. [14]) modify sensitive data
so that they are not identifiable among others, but they are not suitable when
there are a small number of records or the participants require perfect privacy
protection. A hybrid approach [13] combines sanitization and crypto-based tech-
niques to provide a balance among privacy, accuracy and computation (cost).
In the context of approximate matching, there have been proposals on privacy-
preserving similar document detection (e.g. [22, 17]).

3.3 Privacy-preserving group linkage: baseline solutions

Privacy-preserving record linkage protocols match related records shared by two
parties, without revealing any private records. This requires encrypting records
so that computations (or comparisons) can be conducted on the ciphertexts.
Agrawal et al. proposed a commutative encryption based solution in [1], which
we refer as the AES protocol, and Freedman et al. presented a homomorphic
encryption based scheme in [4], which we refer as the FNP protocol. We briefly
introduce the protocols in Protocol 1 and 2. For more details, please refer to
their papers [4, 1].

These protocols serve as the baseline approaches for PPGLE, in which group-
wise similarities are revealed to participants, but record information (for both
shared and private records) is kept private. However, as we have described in
Section 2, such solutions suffer from group membership inference attacks.
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Protocol 2 : FNP approach for set intersection size [4]

Data: Alice has a group R = {r1, ..., rm}; and Bob has a group S = {s1, ..., sn}.
Result: They both learn the size of intersection: |R ∩ S|, and nothing else.
1: Alice creates keys for homomorphic encryption and publishes her public key.
2: Alice constructs R(x) =

∏
(x−ri), and computes all the coefficients αu that R(x) =∑u=m

u=0 αux
u. Therefore, the m degree polynomial R(x) has roots {r1, ..., rm}.

3: Alice encrypts the coefficients and sends them ({E(α0),E(α1), ...,E(αm)) to Bob.
4: For each sj , Bob evaluates the polynomial (without decryption) to get E(R(sj)).
5: Bob chooses a random value γ, and a pre-negotiated spacial value ν. For each

E(R(sj)), he further computes E(γ ∗R(sj) + ν).
6: Bob permutes his set of E(γ ∗R(sj) + ν), and return them to Alice.
7: Alice decrypts all E(γ ∗R(sj) + ν). For each sj ∈ S ∩R, she gets ν; otherwise, she

gets a random value. Alice counts the number of ν values, and output.

4 TPPGL with Exact Matching

4.1 TPPGLE using commutative encryption

In threshold privacy-preserving group linkage, Alice and Bob first negotiate a
group-level threshold θ: two groups are regarded similar if and only if SIM(R,S) ≥
θ. With exact matching at record-level, sim(ri, sj) ∈ {0, 1}. Let k be the min-
imum number of identical records from two groups for them to be linked, we

have: SIM(R,S) =
k

|R|+ |S| − k
≥ θ. Note that we employ Jaccard similarity

at group level.
If |R| = m, |S| = n, we have k = d(m + n)θ/(1 + θ)e; i.e. k is the smallest

integer that is greater than or equal to (m+n)θ/(1+θ). Therefore, the TPPGLE
problem is to securely compare the actual intersection size (|R∩ S|) with k in a
way that |R ∩ S| should not be revealed to either Alice or Bob3. Please
note that although group sizes are revealed, it is acceptable since they could
not be used to infer record identity. Similarly, privacy preserving record linkage
solutions also share the number of records among participants.

To extend the AES scheme to tackle the TPPGLE problem, we enumerate all
k-combinations of Alice’s and Bob’s elements and compare the k-combinations
in privacy-preserving manner. If at least one of the pairwise comparisons of k-
combinations yields a positive result, we conclude that k or more elements from
two groups match, so that the Jaccard similarity of the two groups has reached
the threshold, and Alice and Bob should share the groups. The detailed process
is shown in Protocol 3.

Figure 2 gives an example of Protocol 3. In this example, Alice and Bob each
hold groups of records identified by names. Figure 2 (a) shows Alice’s group
of four records and Bob’s group of three records. A threshold θ = 0.7 is pre-
negotiated. In step 1, both Alice and Bob get k = d0.7(7)/(1 + 0.7)e = 3. In step

3 This requirement makes the problem different from the well-know Yao’s millionaire
problem [28].
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Protocol 3 : K-combination approach for TPPGLE

Data: Alice has a group R = {r1, ..., rm}; and Bob has a group S = {s1, ..., sn}. They
negotiate a similarity threshold θ.

Result: Both Alice and Bob learn whether or not the similarity between R and S is
greater than θ, i.e. if SIM(R,S) > θ, and nothing else; especially, not SIM(R,S).

1: Alice and Bob both compute k = d(m+ n)θ/(1 + θ)e, i.e. the smallest integer that
is not less than (m+ n)θ/(1 + θ).

2: Alice and Bob each gets all the k-combinations of her/his own elements. There are
Cmk k-combinations from Alice and Cnk k-combinations from Bob.

3: For each k-combination, sort the elements using a pre-negotiated order, and seri-
alize them into a string, with a special separator between elements.

4: Both Alice and Bob follow the AES approach (Protocol 1) to find the intersection
of the k-combinations. If at least one k-combination is found in the intersection,
the two groups are matched, i.e. SIM(R,S) is guaranteed to be greater than θ.

(a) (b)

Fig. 2. (a) Alice and Bob’s groups; (b) privacy-preserving set intersection of k-
combinations extracted from groups.

2, Alice gets C4
3 3-combinations from her records and Bob gets C3

3 3-combinations
from his records. In step 3, Alice sorts the elements in each 3-combination in
ascending order, serializes the primary keys into a string, with “&” as the sep-
arator. As shown in Figure 2 (b), Alice and Bob continue to use AES approach
to find the intersections of the strings, in a privacy-preserving manner. In this
example, one intersection is found, which means the two groups are considered
to be matched at the threshold of 0.7. On the other hand, if we replace Alice’s
record “J.Doe” with another record “Z.Doe”, follow the above procedures, then,
none of the strings serialized from 3-combinations would match. In this case,
two groups are not linked, and both Alice and Bob learn nothing about other’s
group.

In this approach, we avoid homomorphic encryption, which requires heavy
computation. However, when Alice generates Cmk k-combinations and Bob gen-
erates Cnk k-combinations, the value of Cmk and Cnk could be too large to manip-
ulate. Therefore, this approach is preferable when k = d(m+ n)θ/(1 + θ)e is (1)
very small, or (2) very close to m and n. In real-world applications, k is usually
close to m and n.
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4.2 TPPGLE using homomorphic encryption

In FNP approach, Alice and Bob pre-negotiate a special value ν, which represents
a matching record. After decryption, Alice counts the number of ν values, which
represents the number of records in R ∩ S. In TPPGLE, this number should
not be revealed to either party. Instead, they should only learn a Boolean value:
|R ∩ S| > k. To tackle this problem, we modify FNP approach starting from
step 6. Before permuting Enc(γ ∗R(sj) + ν), Bob injects a random number (kb)
of Enc(ν) elements into the result set. We assume there is k′ = |R ∩ S|, which
generates k′ number of Enc(ν) elements in the original Enc(γ ∗ R(sj) + ν) set.
After the random injection, Alice decrypts the polluted set to obtain (kb + k′)
ν values. She has no knowledge about either kb or k′, as long as kb is selected
from a good range.

Now the problem is converted to Yao’s Millionaire Problem: Alice knows
kb + k′ while Bob knows kb + k (the new threshold), and they want to compare
two values without leaking them to each other. In our settings, kb+k′ � N, kb+
k � N 4. We may assume that the product of (k′ − k) and a random number
r′ is much less than N . In our solition, Bob first generates Enc(k′ − k) from
Enc(kb + k′) (obtained from Alice) and Enc(kb + k). Hence, we are to find out
whether k′ − k > 0 or not, without revealing the actual value. Bob further
randomizes the result with two positive random numbers γ′ � N and ν′ < γ′,
obtaining Enc(γ′×(k′−k)+ν′). Then Alice gets the cipher from Bob and decrypts
it. Based on previous assumption, we may infer that (γ′ × (k′ − k) + ν′) > 0 iff.
(k′ − k) > 0, and vice versa. Meanwhile, due to the cryptographic properties of
Paillier cryptosystem, the decryption result should be the least positive residues
of plain text modulus N . Hereby, if γ′× (k′− k) + ν′ < N/2, we have k′− k > 0
and thus the two groups are linked. Otherwise, if N/2 < γ′ × (k′ − k) + ν′ < N ,
the two groups are not linked.

5 TPPGL with Approximate Matching

In previous section, group members (records) are identified by primary keys.
Therefore, two records are either “identical” or “different”. In this section, we
consider the problem with approximate matching. In this scenario, Alice and
Bob pre-negotiate a vector space, and represent their records as vectors in this
space. Since our research is more focused on group-level linkage, we adopt a
simple cosine similarity function, which employs private scalar product [7], for
document-level vector-space similarity.

First, in Protocol 5, we revisit the privacy-preserving inner-product (scalar
product) approach presented in [7]. In the protocol, z represents the dimen-
sionality of the vector space, while µ denotes the normalized modulus of space
vectors.

4 k is no larger than the group size. In our assumptions, typical group size is small
(e.g. tens). On the other hand, in our experiments, N is the product of two 256-bit
prime numbers.
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Protocol 4 : Homomorphic encryption approach for TPPGLE

Data: Alice has a group R = {r1, ..., rm}; and Bob has a group S = {s1, ..., sn}. They
negotiate a similarity threshold θ.

Result: Both Alice and Bob learn whether or not the similarity between R and S is
greater than θ, i.e. if SIM(R,S) > θ, and nothing else; especially, not SIM(R,S).

1: Alice creates keys for homomorphic encryption and publishes her public key.
2: Alice constructs R(x) =

∏
(x−ri), and computes all the coefficients αu that R(x) =∑u=m

u=0 αux
u. Therefore, the m degree polynomial R(x) has roots {r1, ..., rm}.

3: Alice encrypts the coefficients and sends them ({E(α0),E(α1), ...,E(αm)) to Bob.
4: For each sj , Bob evaluates the polynomial (without decryption) to get E(R(sj)).
5: Bob chooses a random value γ, and a pre-negotiated spacial value ν. For each

E(R(sj)), he further computes E(γ ∗R(sj) + ν).
6: Bob gets a random number kb. He injects kb number of E(ν) values into the set

he obtained from the previous step. Meanwhile, he also injects random number of
random values into this set.

7: Bob permutes his polluted set of Enc(γ ∗R(sj) + ν), and returns them to Alice.
8: Alice decrypts all items in the polluted set. She then count number of ν values.
9: Assume k′ = |R∩S|, Alice now knows kb + k′, but not kb; Bob knows kb, and thus
kb + k. Neither of them knows k′.

10: Alice encrypts kb + k′, and sends it to Bob.
11: Bob gets E(kb+k′). With the homomorphic properties of E(), he calculates E((kb+

k′)− (kb + k)) = E(k′ − k).
12: Bob creates two random numbers γ′ � N and ν′ < γ′ . Bob randomizes E(k′ − k)

to E(γ′ × (k′ − k) + ν′).
13: Bob return Enc(γ′ × (k′ − k) + ν′) to Alice. Alice decrypts it to m, output “Yes”

if m < N/2, or “No” if m > N/2.

We assume Alice has a group: R = {r1, r2, ..., rm}, and Bob has a group
S = {s1, s2, ...sn}. In simple PPGLA, we conduct pairwise comparison between
Alice’s and Bob’s vectors, and all sim(ri, sj) are counted towards group simi-
larity. Being simple in calculation, however, this approach does not provide best
result, since many sim(ri, sj) values are very small that they should be consid-
ered as “noise”. Therefore, a better solution is to have a record-level “cut-off” ρ
such that: edge is created in the bipartite graph iff. the similarity between two
vertexes is larger than ρ (i.e. sim(ri, sj) > ρ). On the other hand, also to elimi-
nate noises, we only consider an unlabeled bipartite graph – when two records are
linked, we use “1”, instead of sim(ri, sj) in group-level similarities. With a binary

bipartite graph, group-wise similarity becomes: BMsim,ρ(R,S) =
k

|R|+ |S| − k
,

where k = |M |. To get BMsim,ρ(R,S) > θ, we need to have: k > (m+n)θ/(1+θ).

Therefore, Alice and Bob need to pre-compute kmin based on θ, then securely
compute k, and compare k with kmin. However, this approach is again flawed –
an advisory could break the protocol by faking his groups. Let us assume that
Alice and Bob each has a group of three members, while only r1 and s1 match
(sim(r1, s1) > ρ). Bob could fake a group with (repeated) members: {s1, s′1, s′′1},
in which s′i is a slightly modified version of si. In this way, the manufactured
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Protocol 5 : Privacy-preserving inner-product [7].

Data: In a shared vector space Zzµ, µ <
√
N/2z, Alice has her vector r; and Bob has

his vector s.
Result: Alice and Bob both learn the inner-product r · s.
1: Alice creates keys for homomorphic encryption and publishes her public key.
2: Alice encrypts each ri in r = [r1, ..., rz] to obtain Enc(r) = [E(r1),E(r2), ...,E(rz)].
3: Alice sends E(r) to Bob.
4: With the homomorphic properties of E(), Bob computes the inner-product (without

decryption): E(r · s) = E(r1s1 + r2s2 + ...+ rzsz).
5: Bob sends E(r · s) back to Alice, Alice decrypts and publishes the result.

group is highly likely to be linked with R. To tackle this problem, we measure
the “degree of participation” from Alice and Bob, instead of using the total
number of linked records. In other words, we count the number of elements from
Alice that are linked to at least one element from Bob (m′), and vice versa. If
we obtain m′ and n′ from the count, we then compare min(m′, n′) with kmin to
make the decision.

To implement such operations in a privacy-preserving manner, we present
TPPGLA in Protocol 6 (on the last page). In the protocol, Alice and Bob will
use an encrypted similarity matrix M to store the intermediate results. The
content of M should be private throughout the group linkage procedure. Bob
first generates E(ri · sj) with the private-preserving scalar product protocol, and
subtract them by the record-level cut-off ρ. In the matrix M , each positive value
(in plaintext) indicate a link at the record level (or an edge in the bipartite
marching graph). If a row i has at least one positive value, it indicates that
Alice’s record si has participated in the linkage (i.e. linked with at least one
record from Bob). To measure m′ is to count number of rows that have at least
one positive value, and to measure n′ is to count number of columns that has at
least one positive element.

To conduct such operations securely, Bob randomizes each pairwise record
similarity into a encrypted “Boolean” value, with meaningful information only
in the sign digit of the plain text. Before sending the cipher back to Alice, Bob
injects two groups of positive and negative values with random sizes into each
row and column, expanding the size of M into a larger range. If Alice counts all
the positive values in row i, of M , she cannot infer whether ri shares any similar
records in Bob’s set (i.e. the number of links between ri and Bob’s items, cri),
if she doesn’t how many positive values Bob has injected.

Further more, to protect m′ and n′ from been learned by either party,
Bob performs another injection-permutation operation after Alice returns (en-
crypted) sum of each row. He injects cbr non-zero values into the set of cri, and
make sure that Alice can only learn m′ + cbr instead of m′. Similarly, Alice can
obtain n′ + cbr, where n′ denotes the number of shared items from Bob.

In approximate matching, if Alice shares m′ records with Bob, and Bob
shares n′ records with Alice, the maximum bipartite matching cardinality is
min(m′, n′). Alice and Bob both compute the group intersection threshold k;
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Protocol 6 : TPPGLA with record-level cut-off
Data: Alice has a group R = {r1, ..., rm}; Bob has a group S = {s1, ..., sn}. They

negotiate a record-level cut-off threshold ρ and a similarity threshold θ.
Result: Alice and Bob both learn if similarity between R and S is greater than θ, i.e.

if BMsim(R,S) > θ, and nothing else; especially, not BMsim,ρ(R,S).
1: Alice creates keys for homomorphic encryption and publishes her public key.
2: Alice and Bob negotiate a shared space Zzµ. They represent their vectors ri and sj

in the space. All vectors are normalized to µ <
√
N/2z.

3: Alice and Bob both compute k = d(m+ n)θ/(ρ+ θ)e.
4: For each pair ri, sj , they follow protocol 5 to compute E(ri · sj). Instead of sending

E(ri ·sj) to Alice, Bob chooses a random value γ > 0 to compute E(γ ∗ (ri ·sj−ρ)).
The result set forms a m× n matrix M = (E(γ ∗ (ri · sj − ρ))m×n.

5: Bob creates two random vectors cb+ and cb−, where cb+ = (cb1+, cb2+, ..., cbm+)
and cb− = (cb− cb1+, cb− cb2+, ..., cb− cbm+). For each row of M , Bob injected cbi+
encrypted random positive values and cbi− encrypted random negative values and
gets Mr = [M ]m×(n+cb). He then permutes each row of Mr and sends it to Alice.

6: Alice decrypts Mr into Vr. She counts the number of ν < N/2 for each row, and
obtains cri + cbi+, where cri denotes the number of records in S that are supposed
to be similar with ri. Alice now knows cri + cbi+ and Bob knows cbi+. Neither of
them knows whether ri is similar with any record in S.

7: Alice encrypts [cr1 + cb1+, cr2 + cb2+, ..., crm + cbm+] to [E(cr1 + cb1+),E(cr2 +
cb2+), ...,E(crm + cbm+)] and sends them to Bob.

8: Bob creates two positive random numbers γ and υ. He randomizes E(cri + cbi+ −
cbi+) and gets [Enc(γ ∗ cr1 + ν),E(γ ∗ cr2 + ν), ...Enc(γ ∗ crm + ν)].

9: Bob creates a random number cbr of different random integers 0 < dinject < m. He
injects cbr number of Enc(dinject) values into [E(γ ∗cr1 +υ),E(γ ∗cr2 +ν), ...Enc(γ ∗
crm + ν)], permutes the set and sends the result to Alice.

10: Alice decrypts all items in the polluted set. Assume Rm′ is the largest subset of
Rm, ∀ri ∈ Rm′ , ∃sj ∈ S, s.t. sim(ri, sj) > ρ. She then count number of non-zero
values and gets m′ + cbr.

11: Similarly, Alice learns n′ + cbr if we conduct the above operations in columns.
12: Now Alice knows m′ + cbr and n′ + cbr, and Bob knows k+ cbr. They can proceed

with protocol 4 from step 9 to compare min(m′, n′) with k. If intersection threshold
k is smaller than min(m′, n′), the SIM(R,S) is guaranteed to be greater than θ.

now Alice knows {m′ + cbr, n
′ + cbr} and Bob knows k′ + cbr, and they want to

learn if k′ < min(m′, n′). They can follow Protocol 4 from step 9 to get the final
decision.

6 Security Analysis

6.1 Attacker Models

The goal of the proposed TPPGL protocols is to guarantee that (1) in the
protocol, each party learns only the fact whether the groups are similar or not;
and (2) no content or similarity measurement at the record level is disclosed
to any party; no similarity measurement at the group-level (other than (1)) is
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disclosed to any party. Please note that in privacy-preserving record linkage, it
is convention that numbers of records from all participants are revealed. In our
scenario, it is also acceptable that both parties disclose the sizes of their groups.
Unlike group similarity information, group size information cannot be used to
infer record identities.

In secure two-party computation problems, communication between the par-
ties is usually assumed to be authenticated and encrypted. Therefore, our pro-
tocol is secure against outsider adversaries that passively monitor the network
traffic but have no access to the inputs or the outputs. Hence, we further con-
sider two types of insider adversaries, semi-honest (a.k.a. honest-but-curious)
and augmented semi-honest adversaries, in our attacker model: (1). Semi-honest
model describes a passive insider attack: both parties are assumed to properly
follow protocol (so that they are “honest”); meanwhile, each party keeps all the
accessible intermediate results and outputs, and tries to infer private data (so
that they are “curious”). (2). In augmented semi-honest attacker model, the ad-
versary can further change the input and output of one party, without tampering
the protocol, to affect the views of the others’.

Due to space limitations, we only evaluate the correctness and security of
Protocol 3, i.e. TPPGL with commutative encryption. With the same method-
ology, we can extend our proofs to all other protocols presented in the paper.

6.2 TPPGLE using commutative encryption

First, we classify the two parties as client and server based on their roles in the
protocol. The client (e.g. Alice) initiates the secure computation and gets the
output, and the server (e.g. Bob) responds to the inputs from the client. The
protocol is correct if it evaluates the similarity function with high probability.

Statement 1. In Protocol 3, assuming there are no hash collisions, the client
learns a Boolean output, where 1 for SIM(R,S) > θ, and 0 otherwise.
Proof. For any k ≤ min(|R|, |S|), assume the hash function h has no collisions
on Rk ∪ Sk. Since Es and Er are bijective and commutative, we have

υ ∈ Rk ∩ Sk iff υ ∈ Rk and Er(Es(h(υ))) = Es(Er(h(υ))),
which means the same concatenated set of elements is constructed by both the
client and the server. Since k is calculated from θ, we have SIM(R,S) > θ iff
∃υ ∈ Rk ∩ Sk. �

The security of the protocol is to preserve the privacy of the data of both
client and server. Then, we have

Statement 2. TPPGLE-Commutative is secure if both parties are semi-honest
or augmented semi-honest. From the protocol, the client learns the Boolean out-
put and the size |S|, and the server only learns the size |R|.
Proof. We use the similar proof methodology as in [1]: it assumes a simulation
using the knowledge that the client (and the server) is supposed to have according
to the protocol, and the client (and the server) should not be able to distinguish
the simulated view and the real view.
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First, let us construct the simulator for the server. The server receives no

output from the protocol, but C
|R|
k encrypted messages from the client at step

4. Each message is the hash of the concatenation of k elements from set R,
encrypted by commutative key Er. The simulator generates k random values
zi ∈ z, where z is the message space, and then concatenates them in a ran-
dom sequence. Assume the hash h(||z1||...||zk||) is uniformly distributed (“||”
denotes concatenation), the real view and the simulated view for the server are
indistinguishable.

Then, let us construct the simulator for the client. The simulator will use
R, |S|, and Rk ∩ Sk. To simulate the view for the client, the simulator selects
a commutative key Eh to encrypt ||z1||...||zk|| for zi ∈ R ∩ S, 1 ≤ i ≤ k. Then
the simulator generates |S| − |S ∩ R| random k-concatenations, and encrypts
them with Eh. In real view, the |S| concatenations are all encrypted by Es.
Since Eh and Es are randomly chosen from the same key space, their distri-
butions are identical. For the client, the real view and the simulated view are
indistinguishable. �

7 Experiments

We perform our experiments on three data sets, which were adopted in [23].
As summarized in Table 1, two data sets, co-author network (shortly AN) and
paper citation network (shortly CN), are extracted from academia search system
Arnetminer, and the last one, movie network (shortly MN), is crawled from
Wikipedia category “English-language films”. AN represents author names as
vertices and the coauthor relationships as edges, while in CN, the vertices are a
set of 2,329,760 papers and the edges denote the citation relationships between
the papers. Since both AN and CN are homogeneous networks, we treat each
1-neighborhood subgraph (e.g. an author and all the co-authors) as a group, and
use author name and citation name as key attributes for exact matching. MN is
a heterogeneous network with 142,426 relationships between the heterogeneous
nodes of films, director, actors, and writers. In our experiments, we treat a
heterogeneous subnet (of a selected number of nodes) as a “group”, and extract
the label from each node to form the content of “records”. Textual similarity
(e.g. cosine similarity with TF/IDF weighting) between two labels is calculated
as pairwise record-level similarity.

Then, we quantitatively evaluate the performance of the proposed TPPGL
protocols (Protocol 3, 4 and 6) on the three data sets. Since our focus is on
the viability and performance of these approaches in privacy-preserving group
linkage, we measure the end-to-end execution time under different group sizes and
thresholds θ to assess the efficiency of each protocol. To meet the computational
requirements of the cryptographic operations, we implement our own Big Integer
class in C# under .NET framework 3.5.

7.1 TPPGLE

To evaluate the performance of TPPGLE, we first generate synthetic groups
from AN and CN data sets. To form a group, we randomly pick a seed node,
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Table 1. A summary of three data sets.

Data Set Key Record

AN Author name Authors and coauthors.

CN Paper name Paper and citations.

MN - Attributes (labels) of actors, writers, singers, etc.
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(a) Group size = 5. (b) Group size = 10. (c) Group size = 15.
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(d) Group size = 5. (e) Group size = 10. (f) Group size = 15.

Fig. 3. Experimental results of TPPGLE.

and follow its edges to add more members to the group. For instance, when a
seed (3, J. Doe(15), 203) is selected, the next node 203 should be added to the
group. We evaluate the protocol under different group sizes (e.g. each group has
5, 10, and 15 records) and different thresholds (e.g. θ ∈ {0.3, 0.5, 0.7, 0.9}). For
each θ, we generate 50 pairs of linked groups, and 50 pairs of unrelated groups.

Following the TPPGLE protocol using commutative encryption, we first hash
each record (of Alice and Bob) into a 160-bit value, and then encrypt it with
a commutative encryption function. Here, we adopt the famous SRA scheme.
The average end-to-end execution time for Protocol 3 under different group
sizes are shown in Figures 3(a)-(c). In each figure, the lower portion (denoted
as TPPGLE-C) of the tacked bars represents the average execution time under
different thresholds, and the upper portion represents network latency delay,
which is estimated as the average one-hop network latency (i.e. 100ms) times the
rounds for data exchange between Alice and Bob. From the results, we see that
the performance of Protocol 3 highly depends on the preset similarity threshold,
especially when group size becomes large. It is easy to understand: a larger
similarity threshold θ, which means k is closer to the group size, introduces less
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Fig. 4. Computation cost of TPPGL protocols.

computation overhead due to the combination calculations. In real group linkage
cases, it is also reasonable to select a large similarity threshold since there is no
need to link two groups that are not similar.

Then, we use the same group settings to evaluate the performance of the
TPPGLE protocol using homomorphic encryption (TPPGLE-H). We adopt the
Paillier encryption scheme to encrypt the coefficients used in Protocol 4. The
average end-to-end execution time under different group sizes are shown in Fig-
ures 3(e)-(g). The results show that the performance does not change much under
different thresholds, but is greatly affected by different group sizes.

Therefore, we run another experiment to evaluate the efficiency of two TPP-
GLE protocols over larger groups. We set the threshold to θ = 0.7, and generate
100 pairs of groups with different sizes (5, 10, 15, 20, and 25). Figure 4(a) shows
the average end-to-end execution time for both commutative encryption based
approach and homomorphic encryption based approach. Apparently, when the
group size increases, computation cost of the TPPGLE-H protocol shows a linear
increasing trend, while in the TPPGLE-C protocol it grows almost exponentially.
This is because in TPPGLE-H protocol, the computational complexity increases
along with the degree of the group’s polynomial representation, and thus in-
creases linearly with the group size. In TPPGLE-C protocol, its computational
complexity depends on the k-combination function: Cost(n) = Cnk × E(∗). For
a given k, the computation cost increases with n in a manner slower than expo-
nential but faster than polynomial.

7.2 TPPGLA

We evaluate the validity and efficiency of TPPGLA protocol (Protocol 6) on the
movie network data set. To form the group, we randomly extract a subset of
1000 records from MN, and calculate pairwise record-level similarities between
the records. For a given record-level cut-off ρ (a preset value negotiated between
Alice and Bob), we divide the records into two parts, according to whether record
pairs are similar or not.
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We first select k pairs of different records from the similar set as input,
where k is the set-intersection threshold, and apply Protocol 6 on the k pairs.
The output is “Yes”, which verify the validity of the protocol. Then, we select
random group pairs from MN to evaluate the efficiency of the protocol, and show
the computation cost of TPPGLA under different group sizes (from 3 to 11) in
Figure 4(b). From the results, we see that the computation cost increases greatly
with the group size. This is because the computation cost is proportionate to
group size m × n and the dimensionality of vector space, while the latter also
increases with the group size. Overall, TPPGLA introduces a comparably large
overhead in end-to-end execution time , however, it is the price we pay for
extreme cases with strong needs for privacy protection.

8 Conclusion and future works

In this paper, we have presented privacy-preserving group linkage, in which
groups of records from two parties are compared in a way that no record content
is revealed. Simple PPGL (in which both parties learn the group similarity) suf-
fers from the group membership inference problem, which could be employed to
learn the member records of the other party’s groups, even though the groups
are not linked. To tackle the problem, we propose threshold privacy-preserving
group linkage, in which both parties only learn the verdict on whether the two
groups are matched or not, instead of the value of group similarity. We imple-
mented and tested TPPGL protocols for both exact matching and approximate
matching scenarios. From the experiments, we can see that TPPGL pays a price
in computation in order to protect the participants’ privacy.

Although our approach demonstrates strong privacy-protection, the compu-
tation overhead is relatively high. In its current form, the approaches are suitable
for exchanging highly sensitive information. Our future work is to further explore
cryptographic methods to reduce the overall computation of our approaches.
Meanwhile, we are also optimizing our existing implementations, and planning
to test it over large datasets.
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