
In-broker Access Control: Towards Efficient End-to-End Performance of
Information Brokerage Systems

Fengjun Li Bo Luo Peng Liu Dongwon Lee Prasenjit Mitra Wang-Chien Lee Chao-Hsien Chu
The Pennsylvania State University, University Park, PA 16802, USA
{fengjun, bluo, pxl20, dongwon, pum10, wul2, chc4}@psu.edu

Abstract

An XML brokerage system is a distributed XML database
system that comprises data sources and brokers which, re-
spectively, hold XML documents and document distribution
information. However, all existing information brokerage
systems view or handle query brokering and access control
as two orthogonal issues: query brokering is a system issue
that concerns costs and performance, while access control
is a security issue that concerns information confidentiality.
As a result, access control deployment strategies (in terms
of where and when to do access control) and the impact of
such strategies on end-to-end system performance are ne-
glected by existing information brokerage systems. In addi-
tion, data source side access control deployment is taken-
for-granted as the “right” thing to do. In this paper, we
challenge this traditional, taken-for-granted access control
deployment methodology, and we show that query brokering
and access control are not two orthogonal issues because
access control deployment strategies can have significant
impact on the “whole” system’s end-to-end performance.
We propose the first in-broker access control deployment
strategy where access control is “pushed” from the bound-
ary into the “heart” of the information brokerage system.

1. Introduction

Information sharing is becoming increasingly important
in recent years, not only among organizations with common
or complementary interests, but also within large organiza-
tions and enterprise that are becoming ever more globalized
and distributed. Multiple divisions cooperate within large
multinational enterprise as well. For example, in GM, to
maintain a proper stock level of parts, people in supply man-
agement division need to check the sale information (of car
models) gathered and managed by sales people world-wide.
In such information sharing systems, the data gathered by
a specific division are typically stored and maintained in a
database local to the division, but the needs to access the
data may potentially come from any remote division.

Although the Internet and various virtual private networks

provide good data communication links, there are major
challenges in (a) achieving scalable, agile and secure re-
mote access of distributed data; (b) handling the heterogene-
ity among data management systems and data formats which
are not always structured and may be incompatible with each
other; (c) handling the dynamics of modern business appli-
cations (where new schema elements may emerge everyday);
and (d) location discovery. For example, classic distributed
database cannot meet the challenges, since they require a sta-
tic “global” database schema that is fully structured.

To tackle these challenges, mediation and federation
based information brokering technologies have been pro-
posed. In particular, recent eXtensible Markup Language
(XML) has become a promising solution [17] by integrating
incompatible data while preserving semantics. An XML-
based information brokerage system comprises data sources
and brokers which, respectively, hold XML documents and
document distribution information. In such systems, data-
bases can be queried through brokers with no schema-
relevant or geographical difference being noticed.

However, from the security, especially access control,
point of view, existing information brokerage systems have
a fundamental misconception. That is, they view or han-
dle query brokering and access control as two orthogonal
issues: query brokering is a system issue that concerns costs
and performance, while access control is a security issue that
concerns data confidentiality. As a result, access control de-
ployment strategies (in terms of where and when to do ac-
cess control) and the impact of such strategies on end-to-
end system performance are neglected by existing systems.
In addition, data source side access control deployment is
taken-for-granted as the “right” thing to do. In this paper,
we challenge this traditional, taken-for-granted access con-
trol deployment methodology, and show that query broker-
ing and access control are not two orthogonal issues because
access control deployment strategies can have significant im-
pact on the “whole” system’s end-to-end performance.

Our contributions are: (1) we propose the first in-broker
access control deployment strategy where access control is
“pushed” to the brokers; (2) we design three specific in-
broker approaches to implement the “pushing” idea; (3) ex-
periments are taken to show that in-broker access control



Brokerage System

AC

Broker

DBMS

Access
Control Broker

BrokerBroker

Brokerage System

Broker
AC

Brokerage System

Access
Control AC AC

AC

ACAC

AC

Broker
Broker

BrokerBroker

DBMS
DBMS

Broker

Access
Control

Broker
AC

Broker
AC

AC

ACAC

AC

AC

Brokerage System

AC

Broker

DBMS

Access
Control Broker

BrokerBroker

Brokerage System

Broker
AC

Brokerage System

Access
Control AC AC

AC

ACAC

AC

Broker
Broker

BrokerBroker

DBMS
DBMS

Broker

Access
Control

Broker
AC

Broker
AC

AC

ACAC

AC

AC

Brokerage System

AC

Broker

DBMS

Access
Control Broker

BrokerBroker

Brokerage System

Broker
AC

Brokerage System

Access
Control AC AC

AC

ACAC

AC

Broker
Broker

BrokerBroker

DBMS
DBMS

Broker

Access
Control

Broker
AC

Broker
AC

AC

ACAC

AC

AC

(a) Embedded Access Controls (EAC) (b) Source-side Access Controls (SAC) (c) In-broker Access Controls (IAC)

Figure 1. Three architectures of information brokerage systems.

can significantly improve the performance of memory con-
sumption, end-to-end query directing time and network oc-
cupancy without hurting the system-wide security.

2. Information Brokerage System Architecture

Consider an information brokerage system where sensi-
tive information is shared among geographically distributed
participants (e.g., users and data sources). To make the expo-
sition simple, we assume that each broker has a full knowl-
edge of whereabouts of stored data. Therefore, each broker
may direct an inquiry to relevant data sources without con-
sulting others (i.e., single-hop brokering). Since query bro-
kering is not the focus of this paper, we will limit our inves-
tigation to the case of single-hop brokering. Nevertheless,
supporting multi-hop brokering is part of our future work.

In the traditional brokerage systems, the job of secu-
rity enforcement is solely left upon the shoulder of DBMS.
For instance, administrators define access controls inside
DBMS; any query needs to pass access controls before it is
processed. In a sense, the enforcement of access controls is
“embedded” into DBMS. Figure 1 (a) illustrates this archi-
tecture, named as Embedded Access Controls (EAC).

On the contrary, some recent proposals attempt to pull ac-
cess controls out of DBMS. For instance, in [13], we show
that access controls can be supported via query rewriting out-
side of DBMS, thereby de-coupling the tie between access
controls and DBMS. One of the many benefits of this archi-
tecture is that access controls can be enforced without the
support from underlying DBMS. For instance, none of the
commercially available XML databases is capable of sup-
porting access controls. Figure 1(b) illustrates this architec-
ture, named as Source-side Access Controls (SAC).

Intrigued by the SAC scenario, we pull the access controls
further to the brokers: from the boundary into the “heart” of
information brokerage systems. In this way, security check
is enforced when users access the network. Figure 1(c) il-
lustrates this architecture, namely In-broker Access Controls
(IAC). We claim that query brokering and access controls
are not orthogonal issues. By integrating them properly, the
whole system benefits from this integrated design and end-
to-end performance improves without hurting system-wide
security. We will discuss this in more detail in Section 6.

3. Background

3.1. XML Access Control Model

In this paper, we adopt the fine-grained XML access con-
trol model similar to [8], and incorporate Role Based Access
Control [18]. In our model, administrators assign roles to
users. Each role is given a set of access rights to data (XML
nodes). The authorization is specified via 5-tuple access con-
trol rules (ACR): R = {subject, object, action, sign, type},
where (1) subject is to whom an authorization is granted
(i.e., role); (2) object is a set of XML nodes specified by
XPath; (3) action is one of “read,” “write,” and “update”;
(4) sign ∈ {+,−} refers to access “granted” or “denied,”
respectively; and (5) type ∈ {LC, RC} refers to either “Lo-
cal Check” (i.e., authorization is only applied to attributes
or textual data of context nodes), or “Recursive Check” (i.e.,
authorization is applied to context nodes and propagated to
all descendants). Nodes are inaccessible by default, and neg-
ative rules take precedence upon positive rules in conflicts.

3.2. Introduction to QFilter

One of the recent developments of XML access control
is to enforce access controls on input queries [16, 13]. In
this section, we introduce a state-of-the-art technique, called
QFilter [13], that we recently proposed. QFilter captures a
set of access control rules using a Non-deterministic Finite
Automata (NFA), and re-writes parts of incoming query Q
that violate the access rights, to yield a safe query Q′.
QFilter Construction. Four basic building blocks (/x, /*,
//x, //*) of XPath expression are used to construct NFA
states, as illustrated in Figure2 (a). The NFA for a complete
set of ACR (i.e., XPath expressions in ACR) is formed by
linking the states in sequence. QFilter construction process
is very similar to regular NFA construction. Let us use ACR
of Figure 2 (b) as an example (to simplify the presentation,
let us focus only the object part of ACR, ignoring the rest).
The QFilter construction starts from R1: for XPath step
/site, we create state 0 and a transition on token site
to state 1; then a transition on token categories is cre-
ated; and so on. Finally, the constructed QFilter is shown in
Figure 2 (c).

2



R1: /site/categories//*

R2: /site/regions/*/item/location

R3: /site/regions/*/item/quantity

R4: /site/regions/*/item/name

R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

location
quantity

name

description

8

9

10

11

ε

ε

ε

ε

8

9

10

11

“site”

0

“categories”

“regions”

1 ε

2

*

5

ε
3/4

“item”

6

7

“location”

“quantity”

“name”

“description”

   (a): QFilter building blocks           (b): Sample ACR (object only)        (c): QFilter state transition map                (d): QFilter for rules in (b)

Element State transition NFA contruct
/x

//x

/*

//*

1 2x x

1 2* *

1 2 3
*

x x

1 2 3
*

* *

1 2

1 2

Figure 2. An example of QFilter

R1: /site/categories//*

R2: /site/regions/*/item/location

R3: /site/regions/*/item/quantity

R4: /site/regions/*/item/name

R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

“site”
“categories”

“regions”

ε

*

ε

“item”

“location”

“quantity”

“name”

“description”

ε

ε

ε

ε

0
1

2 3/4

5 6

7
8

9

10

11

site people person name
0 1 2 3 4

site people person
0 1 2 3

site people person name
0 1 2 3 4

1
1

0
0

1
1

0
0

1
1

0
0

0
1

0
1

Access 
ListAccept ListRole 1:

Role 2:

Merged:

Rule 1: {role1, ``/site/people/person'', read, +, RC}

Rule 2: {role2, ``/site/people/person/name'', read, +, RC}

1
1

1
0

0

1 2
site

people

3
ε africa

* 4 5items

asia 6 7items

192.168.0.2

192.168.0.15

192.168.0.16

R1: {`/site/people', 192.168.0.2}

R2: {`//africa/items', 192.168.0.15}

R3: {`//asia/items', 192.168.0.16}

(a) Index rules            (b) NFA-based Indexer

(a)

(b)

Figure 3. An example of NFA-based Indexer

QFilter Execution. In the context of access controls, QFil-
ter captures ACR+ and ACR−. For an input query Q, QFil-
ter has three types of operations: (1) Accept: If answers of Q
are contained by ACR+ (i.e., Q asks for answers granted by
ACR+) and disjoint from ACR− (i.e., Q does not ask for
answers blocked by ACR−), then QFilter accepts the query
as is: Q′ = Q; (2) Deny: If answers of Q are disjoint from
ACR+ or contained by ACR−, QFilter rejects the query
outright: Q′ = ∅; (3) Rewrite: if only a partial answer is
granted by ACR+ or blocked by ACR−, QFilter rewrites
Q into the ACR-obeying output Q′. Finally, Q′ is guaran-
teed to be: (i) contained in Q, (ii) contained in ACR+ and
(iii) disjoint with ACR−. Note that, for rewritten queries,
the output could be “UNION” of several XPath queries 1.

For instance, if we only have ACR+: {user,
/site/regions/*/item/name, +, read, LC} and {user,
/site/regions/*/item/location, +, read, LC} (user can
only read name and location nodes under item). For
the input query “//item/∗”, the QFilter would yield the
following re-written query “/site/regions/∗/item/name
UNION /site/regions/ ∗ /item/location”.

4. Approaches for In-broker Access Control

4.1. Brokering Indexer

In XML brokerage systems, users send queries without
knowing the data location. Brokers have physical distribu-
tion information of XML documents. In our setting, a query
is routed using single-hop brokering, i.e., any broker is able
to determine the data location of any query. Note that multi-
hop routing might be used in lower layers, e.g., if the desti-
nation is identified by its IP, IP layer routing is multi-hop.

1To be more strict, “DEEP UNION” should be used [14]

An index rule is described as Rind={obj, des(s)} where
“des” is a network address, and “obj” is an XPath expres-
sion, as shown in Figure 3(a). The index table look-up is es-
sentially one-to-many XPath matching. We design a QFilter-
like NFA (Indexer) to handle it. As shown in Figure 3, the In-
dexer is constructed with XPath expressions from index rules
(Rind.obj). At each accept state, Rind.des is attached. Des-
tination lookup is like any NFA execution, which is to match
user queries with routing rules captured in the Indexer. Dur-
ing execution, Rind.des is attached to the query when appro-
priate. Finally, accepted queries are forwarded to the list of
destinations attached to it. When a query does not match any
index rule, it means no known data source has the requested
data, thus the query is dropped. A query could also match
several accept states, thus all the destinations are attached.
E.g. query “//items” sent to Indexer shown in Figure 3
matches accept states 5 and 7, thus will be forwarded to both
destinations. In our approach, users take the responsibility
of joining answers from different data sources.

4.2. The Multi-Role QFilter Approach

4.2.1 QFilter Array (QA)

The QFilter approach described earlier is designed for sin-
gle role. In a network setting, access control for multiple
roles with individual ACR is needed. To address this need,
a straightforward extension to QFilter is to use an array of
QFilters (called QFilter Array), where each QFilter is con-
structed, stored and executed independently. When a query
is submitted, the role of user is identified and the correspond-
ing QFilter is located from the array to process the query.

One serious drawback of QFilter Array approach is that
its memory usage grows linearly with the number of roles in
the system. When large number of roles exists, it soon grow
beyond size of main memory, therefore, the system perfor-
mance dramatically degrades . To tackle this problem, we
introduce Multi-Role QFilter.

4.2.2 Multi-Role QFilter (MRQ)

We observe that access control rule sets for different roles
are often similar, therefore their QFilters are also similar.
The idea of Multi-Role QFilter (MRQ) is to merge similar
QFilters into one uniform data structure instead of storing

3



0

1 2
site

people

3
ε africa

*
4 5items

asia
6 7items

192.168.0.2

192.168.0.15

192.168.0.16

R1: /site/categories//*
R2: /site/regions/*/item/location
R3: /site/regions/*/item/quantity
R4: /site/regions/*/item/name
R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

6

8

9

10

11

location
quantity
name

description

“site”
“categories”

“regions”

ε

*

ε

“item”

“location”

“quantity”

“name”

“description”

ε

ε

ε

ε

0
1

2 3/4

5 6

7 8

9

10

11

R1: {`/site/people', 192.168.0.2}

R2: {`//africa/items', 192.168.0.15}

R3: {`//asia/items', 192.168.0.16}

site people person name
0 1 2 3 4

site people person
0 1 2 3

site people person name
0 1 2 3 4

1
1

0
0

1
1

0
0

1
1

0
0

0
1

0
1

Access 
ListAccept ListRole 1:

Role 2:

Merged:

Rule 1: {role1, ``/site/people/person'', read, +, RC}

Rule 2: {role2, ``/site/people/person/name'', read, +, RC}

1
1

1
0

Figure 4. Merge QFilters to Multi-role QFilter.

them in an array. Since each QFilter is constructed for one
particular role, this merging method should identify access
control rules to the roles. In our design, we use an Boolean
array (bitmap) for its constant lookup cost.
MRQ Construction. We construct MRQ by annotating
each QFilter state with two bitmaps: access list and ac-
cept list, where each bit represents a Boolean value for a
role. Thus a corresponding pair (access value, accept value)
is assigned to each role. The access value indicates whether
the role has access right to this state and the accept value in-
dicates whether the state is an accept state for this role. Fig-
ure 4 shows an example: there are two roles with individual
ACR; a QFilter Array consisting of two individual QFilters
is shown first, and the MRQ that serves both roles is shown
underneath. The MRQ (labeled “Merged” in Figure 4) con-
tains two bitmaps at each state to indicate the accessibility
of each role, e.g. the first three states are accessible by both
roles (the access values are 1) but no one is an accept state
(the accept values are 0). State 3 is the accept state for role
1 only, while 4 is accessible and accept state for role 2 only.
MRQ Execution. Similar to a single QFilter, for an input
query {Q, role id}, MRQ has three types of outputs: Ac-
cept, Deny, or Rewrite. During the execution, at each MRQ
state, the access right of the role is first checked with ac-
cess list based on the role id. Only when the access value is
1, the execution proceeds to subsequent states. In this man-
ner, the access value restricts the region, in which a query
may traverse in a MRQ.

4.3. Indexed Multi-Role QFilter Approach

4.3.1 Implementation

In above approaches, access control enforcement is moved
from data sources to the center of the network – the bro-
kers. Therefore, brokers hold both indexing and access con-
trol mechanisms. When user query Q is submitted, MRQ
processes it to safe query Q′, then Indexer locates the data
source. Since two mechanisms with similar structure reside
at the same place, it is natural to merge them to improve ef-
ficiency. Therefore, we propose “Indexed Multi-Role QFil-
ter” (IMQ), which captures both indexing and access control
rules in one NFA structure. A query Q sent to IMQ yields
the output of {Q′, {des(s)}}, where Q′ is the safe query.

192.168.0.10
2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

192.168.0.10
2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

X

192.168.0.10
2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

192.168.0.11

192.168.0.12

192.168.0.13

192.168.0.14

192.168.0.10
2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

192.168.0.11

192.168.0.12

192.168.0.13

192.168.0.14

(a) The accept case.

(b) The reject case.

(c) Filtering process.

(d) Traversing process.

Figure 5. IMQ Construction.

IMQ Construction. As described in Section 4.1, an in-
dex rule (IR) is: Rindex={obj, des}. The IMQ construction
consists of three steps: (1) MRQ Construct: construct a
MRQ using ACR; (2) IR Filtering: executing the XPath of
Rindex.obj in MRQ; and (3) Attaching: attach Rindex.des
to the current and descendent accept states.

Instead of giving the exhausted algorithm, we use an
example to show IMQ construction. As shown in Fig-
ure 5 (we assume that MRQ is already constructed): (a)
IR {/site/categories//*, 192.168.0.10} reaches state 4, in-
dicating “categories” nodes are accessible and are lo-
cated at 192.168.0.10; (b) IR {/site/regions/item/payment,
192.168.0.5} does not reach any accept state, indicating no
user is allowed to access the nodes although they are lo-
cated at 192.168.0.5; (c) and (d): XPath of IR {/site/regions,
192.169.0.13} stops at state 5, then we attach its destination
to all the descendant accept states, i.e., 8, 9, 10 and 11. This
means, 192.169.0.13 holds “regions” nodes, but only some
descendants are accessible according to ACR.
IMQ Execution. For a user query (Q, role id), IMQ exe-
cution is almost identical to MRQ execution, except that the
appropriate des addresses are attached to accept and rewrit-
ten queries. Finally those queries are forwarded to all the
attached destinations.

5. Experimental Validation

We have implemented the three brokering approaches
(shown in Figure 6) proposed in Section 4. In this section,
we present experiments based on this implementation. In the
first experiment, we investigate how memory and query fil-
tering time change with parameters (the number of roles and
the number of rules per role) in QA and MRQ approaches. A
reasonable setting is then chosen for the second experiment,
where we measure the memory consumption and the end-to-
end query brokering time for MRQ and IMQ approaches and
show the IMQ approach performs best.

5.1. Query filtering

Settings. We use the well-known XML benchmark
XMark [19] DTD. It defines 77 elements and 16 attributes
for an on-line auction scenario. In rule XPath generation,

4



tn3
Broker

Broker

Indexer

tn1

Q ti tf

tn3
DBMS

Access
Control

tn2

(Q, Addr) (Q’, Addr)
Indexer

tn1 tn2

Q ti

DBMS

Access
Control(Q, Addr) tf Broker

Indexer

tn1 tn2

Q (Q, Addr)ti tf

tn3

DBMS

Access
Control Q’

tp
tp tp

(a) (b) (c)

   (a) QFilter Array + Indexer       (b) Multi-Role QFilter + Indexer  (c) Indexed Multi-Role QFilter

Broker

Indexer
Q

DBMS
(Q’, )

QFilter

QFilter

…...
Q’

tn1 tf ti tn2 tp

tn3

tn1 tf ti tn2 tp

Broker

Indexer
Q

DBMS
(Q’, )Q’

tn3

MultiRole
QFilter

Broker

Indexed 
MultiRole 

QFilterQ
DBMS

(Q’, )

tn3

tn1 tfi tn2 tp

tn1,n2,n3: network latency;  ti: query indexing;  tf: query filtering;  tp: query evaluation.

Figure 6. Three brokering approaches.

# of rules 
per role

# of rules 
per role# of roles # of roles 

M
em

or
y 

co
ns

um
pt

io
n 

(M
 B

yt
es

)

×10

# of rules 
per role

# of rules 
per role# of roles # of roles 

(a) QA in 10% wildcard ratio setting

×10 ×10

×10

M
em

or
y 

co
ns

um
pt

io
n 

(M
 B

yt
es

)

M
em

or
y 

co
ns

um
pt

io
n 

(M
 B

yt
es

)

M
em

or
y 

co
ns

um
pt

io
n 

(M
 B

yt
es

)

(b) MQ in 10% wildcard ratio setting

(c) QA in no wildcard ratio setting (d) MQ in no wildcard ratio setting

Figure 7. Memory usage of QA and MRQ.

maximal depth of the XPath expressions is set to 6 [6]. Syn-
thetic rules are randomly generated: (1) with 10% wildcard
(* or //) probability at each step, and (2) without wildcard.
Then we vary number of roles from 10 to 500, and number
of rules per role from 5 to 300. To evaluate the query filter-
ing time, we generate 500 synthetic queries, each with one
predicate, and 10% wildcard probability at each step.

Memory Cost. Memory consumption of QA approach
and MRQ approach is shown in Figure 7: rules in Figure 7(a)
and (b) has wildcards, while rules in (c) and (d) has no wild-
card. As expected, memory consumption in QA approach
is proportion to the number of roles, which is same as num-
ber of QFilters in the Array. But memory usage increases
below-linear with the number of rules per role, since rules in
the same QFilter shares NFA states. Especially, when there
are more rules for each role, there is higher possibility for
states sharing. In Figure 7(b), we can see a significant sav-
ing in memory comparing with (a). Because, in MRQ, all
rules are contained in a big QFilter-structure, rules from dif-
ferent roles are able to share NFA states. Next, rules with no
wildcard is used, with experiment results shown in Figure 7
(c) and (d). Under this setting, only 105 distinct XPath ex-
pression are generated for ACRs, and the percentage of state
sharing is extremely high. In both settings, the memory us-
age for MRQ is one order of magnitude smaller than that of
QA. Similar result is obtained for the ACR set with predi-
cates. We do not list the result here due to space constrains.

Query Filtering Time There are three possible results
when queries are processed, in QA or MRQ: denied, ac-
cepted, or rewritten. Accepted queries take more time to

(d) For all three types Queries

# of rules 
per role# of roles # of rules 

per role# of roles 

t f 
in

 M
ul

ti-
ro

le
 Q

fil
te

r 
ov

er
 t f

 in
 Q

fil
te

r A
rr

ay

(c) For Rewritten Queries

1

# of rules 
per role

# of rules 
per role# of roles # of roles 

t f 
in

 M
ul

ti-
ro

le
 Q

fil
te

r 
ov

er
 t f

 in
 Q

fil
te

r A
rr

ay

# of rules 
per role# of roles 

(a) For Accepted Queries (b) For Denied Queries

t f 
in

 M
ul

ti-
ro

le
 Q

fil
te

r 
ov

er
 t f

 in
 Q

fil
te

r A
rr

ay

# of rules 
per role

# of roles 

O
ve

ra
ll 

A
ve

ra
ge

 
Fi

lte
rin

g 
Ti

m
e 

(m
s)

(f) tf of Multi-role QFilter approach

O
ve

ra
ll 

A
ve

ra
ge

 
Fi

lte
rin

g 
Ti

m
e 

(m
s)

(e) tf of QFilter Array approach

t f 
in

 M
ul

ti-
ro

le
 Q

fil
te

r 
ov

er
 t f

 in
 Q

fil
te

r A
rr

ay

Figure 8. Query filtering time of QA and MRQ.

be processed, while rewritten queries take the longest. In
our experiments, 198 queries are rejected and 302 queries
are accepted/rewritten. In Figure 8 (a) to (c), we show the
ratio of query processing time in MRQ approach over query
processing time in QA, for accepted, denied and rewritten
queries, respectively. Figure 8 (d) shows this ratio of the av-
erage of all queries. Figure 8(e) and (f) show the average
query processing (filtering) time for all queries. It is clear
that MRQ approach is about four times slower than the QA
approach for all queries.

Analysis. There is a tradeoff between memory consump-
tion and query filtering time. The query filtering time is in
the scale of milliseconds, much smaller than the network la-
tency (in the scale of hundreds of milliseconds). Thus, its
impact is not as significant as memory consumption, which
is a major concern for brokers. We conclude that Multi-Role
QFilter is a better solution than QFilter Array.

5.2. Query filtering and indexing

In this experiment, we compare the three in-broker ac-
cess control approaches, as shown in Figure 6: QA+Indexer,
MRQ+Indexer, and IMQ (Indexed MRQ).

Settings. We fix the number of roles to 80 and the num-
ber of rules per role to 50, and randomly generate synthetic
access control rules, with 10% wildcard probability at each
XPath step and one predicate for each rule. We also gen-
erate synthetic XPath expressions for indexing rules at 10%
wildcard probability at each step. Since predicate parsing
in indexing is not supported in our index scheme, the index
paths are generated without predicate. Two sets of indexing
rules are built: (1) with 1000 indexing rules (SP1), and (2)

5



Table 1. Compare the memory and query bro-
kering time of three in-broker approaches.

Approaches (with 1000 indexes) QA+I MRQ+I IMQ
Memory for Index (KB) 418 418 -
Memory for access control (KB) 2934 969 -
Memory for in-broker total (KB) 3352 1387 1094
Time for Index (ms) 402 1131 -
Time for access control (ms) 105 482 -
Time for in-broker total (ms) 507 884 447
Time for in-broker average (ms) 1.014 1.768 0.895
Approaches (with 4000 indexes) QA+I MRQ+I IMQ
Memory for Index (KB) 1027 1027 -
Memory for access control (KB) 2934 969 -
Memory for in-broker total (KB) 3961 1996 1119
Time for Index (ms) 1131 1131 -
Time for access control (ms) 105 482 -
Time for in-broker total (ms) 1638 2015 459.3
Time for in-broker average (ms) 3.276 4.030 0.919

with 4000 indexing rules (SP2). The same synthetic query
set as in the first experiment is used. Since access control
rules, index paths and the queries are all randomly generated
synthetic rules, which offset the impact of rule pattern, there
is no need to repeat the experiments at the same setting. We
do take a set of experiments which result in similar outputs.
In the following discussion, we only list the result of one
experiment.

Memory Cost. Memory cost for brokering includes the
consumption for both access control and indexing. The
indexer with 1000 and 4000 index paths consumes about
418KB and 1027KB memory respectively. Overall mem-
ory consumption of three mechanisms is summarized in Ta-
ble 1. It is clear that IMQ requires the least amount of mem-
ory, while MRQ+Indexer consumes much less than the naive
QA+Indexer approach. By merging the index with the exist-
ing MRQ, IMQ (with 1000 index rules) only requires an ad-
ditional memory (compare with MRQ) of 125KB instead of
the original 418KB used by the Indexer. When the amount of
index paths increase to 4000, the saving is more significant.

Query Brokering Time. The brokering time includes
query filtering time (tf ) and query index time (ti). The time
for directing all 500 queries though SP1 and SP2 is 402ms
and 1131ms respectively, and the average is 0.804ms and
2.262ms respectively. The overall brokering time in three
mechanisms are listed in Table 1. Since the Indexer is not
as efficient as the security check process, it dominates the
overall performance especially when the amount of index
paths goes large. The QFilter Array approach is tailed by
the Indexer even though it performs fifth times better than
the Multi-Role QFilter approach. The Indexed Multi-Role
QFilter approach performs best because the index process is
embedded into its security check.

tn3
Broker

Broker

Indexer

tn1

Q ti tf

tn3
DBMS

Access
Control

tn2

(Q, Addr) (Q’, Addr)
Indexer

tn1 tn2

Q ti

DBMS

Access
Control(Q, Addr) tf Broker

Indexer

tn1 tn2

Q (Q, Addr)ti tf

tn3

DBMS

Access
Control Q’

tp
tp tp

(a) (b) (c)

   (a) QFilter Array + Indexer       (b) Multi-Role QFilter + Indexer  (c) Indexed Multi-Role QFilter

Broker

Indexer
Q

DBMS
(Q’, )

QFilter

QFilter

…...
Q’

tn1 tf ti tn2 tp

tn3

tn1 tf ti tn2 tp

Broker

Indexer
Q

DBMS
(Q’, )Q’

tn3

MultiRole
QFilter

Broker

Indexed 
MultiRole 

QFilterQ
DBMS

(Q’, )

tn3

tn1 tfi tn2 tp

tn1,n2,n3: network latency;  ti: query indexing;  tf: query filtering;  tp: query evaluation.

 (a) Embedded Access Control (b) Source-side Access Control  (c) In-broker Access Control

tn1 tfti tn2 tp

Q
DBMS

tn3

tn1,n2,n3: network latency;  ti: query indexing;  tf: query filtering;  tp: query evaluation.

Broker

Indexed 
MultiRole 

QFilterQ
DBMS

(Q’, )

tn3

tn1 tfi tn2 tp

Broker

Indexer
Q

DBMS
(Q, )

tn3

tn1 ti tn2 tfp

Access
Control

Broker

Indexer
(Q, )

Access
Control Q’

Figure 9. End-to-end query answering time

6. Architecture Level Analysis

In IAC architecture, if access control rules allow a query
to access all/partial of the requested XML content (ac-
cepted/rewritten query), the original or rewritten query will
be forwarded to the query indexer. Otherwise (rejected
query), it will be dropped at the broker and/or a error mes-
sage is returned to the user. In this way, users get denial
response faster for rejected queries as well as a deduction in
overall response time. At the same time, less network re-
sources is consumed by only directing accepted and rewrit-
ten queries to the data sources.

6.1. End-to-End Performance Improvement

Murata et al have conducted experiments to investigate
the accepted and denied queries [16]. They show that 40% of
the queries are type ‘G’, where all XPath expressions in the
query are always granted; 25% queries are type ‘D’, where
at least one of the XPath expressions is always denied; and
35% of the queries are type ‘-’, where at least one XPath
expression in the query should be rewritten. We assume a
similar distribution in our experiment accordingly.

End-to-End Query Directing Time.We define the end-
to-end query directing time as the summation of query filter-
ing time (tf ), indexing time (ti), and network latency (tn),
as shown in Figure 9. Since same user queries, access con-
trol rules and DBMS are used across all architectures, the
processing time tp and backward network latency tn3 should
the same. General network latency is 200ms 2, thus we as-
sume tn1 and tn2 for a single query are both 100ms. Since
25% of the queries fail the security check and get rejected
at the brokers in IAC architecture, the average time of tn2

is reduced to 75ms for IAC. Compared with the results in
experiment 2 (Table 2), it is clear that the network latency
dominants, and thus the performance under IAC architecture
is much better than the one using SAC architecture.

Network Occupancy. Defined as total traffic demand
over total link capacity, we calculate the network occupancy
of a link l as latencyl × total traffic(inByte). We mea-
sure the size of 500 queries in SQ and take the average 30
Bytes as the value for one query. Further assume all queries
are enclosed in TCP packets, which brings an additional
header of 40 Bytes. Then, we calculate the network oc-
cupancy as latency(100ms) × traffic(30 + 40Bytes) ×

2http://www.internettrafficreport.com/samerica.htm#graphs.

6



Table 2. End-to-end query answering time.
Approach/Time(ms) tn1 tf +ti tn2 overall

SAC with QA 100 1.014 100 201.014
SAC with MRQ 100 1.768 100 201.768

IAC with QA 100 1.014 75 176.014
IAC with MRQ 100 1.768 75 176.768
IAC with IMQ 100 1.004 75 176.004

No. of queries. Since 25% queries are denied, the sav-
ing of IAC over SAC and EAC in network occupancy is:
(100 × 70 × 500 + 100 × 70 × 500 × 75%)/(100 × 70 ×
500× 2) = 87.5%.

6.2. System-wide Security

In information brokerage systems, security is not only a
database concern as in the traditional DBMS system but also
a system concern. The overall security of information bro-
kerage systems is not limited to prohibiting users from ac-
cessing unauthorized data, rather, it provides a broader con-
cept as the security of the whole system, where DBMS lies
at the boundary. The system-wide security benefits from the
early denial of suspicious actions and intrinsic replication
among brokers.

As whole system, suspicious actions should be detected
and denied at the entrance of the system, instead of let-
ting it walk around the core system (brokerage network) and
reach the far boundary (designated data server) to be rejected
there. However, in traditional information brokerage net-
works, brokers do not carry any access control function. By
sending fake queries to the system, any user (unauthorized
or even unregistered user) could bring risk. For instance,
let us assume data source DSA holds sensitive information
(e.g., //creditcard nodes) and data source DSB holds public
data (e.g., //person nodes, but not //creditcard). In a tradi-
tional brokerage system, a low-level user (e.g. the attacker)
could send a “snooping query” (say //creditcard) to trace and
locate DSA, where the query reaches and gets rejected. In
this way, one can get a whole picture of the system such as
where the servers are and what data they have by keep send-
ing these snooping queries, and do further after successfully
finding out the locations of sensitive information. In the
contrary, our in-network access control approach conceals
servers with sensitive data (such as DSA) and blocks poten-
tial misfeasance at the brokers. Thus, it brings more overall
system security.

Moreover, our in-broker brokerage system provides a full
replication of access control and location information among
all the brokers, which brings higher robustness to the whole
system. In traditional information brokerage systems, at-
tackers could block a portion of data sources by DoS attacks.
Since the security check is at the DBMS end, the attackers
could exhaust the network access and the system resource of
the target data server by sending a huge number of identi-
cal (or similar) queries which have no access right to the re-

quested data. In our in-broker access control approach, not
only the DoS attacking data cannot reach the data server but
also the broker can easily recovery with the help of other bro-
kers. However, compared with databases (relational tables or
XML trees), the size of access control rules is minimum. In
our in-network access control system, it is practically ap-
plicable to maintain a full version of access control rules
at each broker, i.e. access control function components are
fully replicated at each broker. In this way, attackers are not
able to block-out a portion of data, since their fake queries
are mostly closed-out at the brokers. The brokers endure
the incoming attacks, while the brokerage network and data
sources are successfully protected. To turn down the sys-
tem, attackers need to successfully DoS all the brokers. This
is practically impossible considering the number of brokers
in the system. Since the broker only holds the access con-
trol and location information, replication at the broker level
is not as expensive as the data level replication in other two
architectures. However, the concern of the replication cost
is one reason of the multi-hop brokering exploration in our
future work.

Another concern of pushing access control to the brokers
is the trust level of the brokers. It is reasonable to assume
the brokers have a certain level of trust in intra-organizations
brokerage systems, and are only partially trusted in inter-
organizations brokerage systems. For the latter circum-
stance, we should notice that the brokers could be hacked
(by outsiders) or abused (by insiders) even without access
control enforcement mechanism. In respond to this, we
can use dual access control (i.e., double-check or validate
if an access control policy is correctly enforced at the data
source side) and ene-to-end auditing systems to help mon-
itoring brokers’ behavior. Since the in-broker access con-
trol is a bonus of the query forwarding process considering
the performance which we will discuss later and only the
passed queries experience the second security check at the
data source side, the dual access control does not greatly hurt
the overall query response performance and is an acceptable
solution.

7. Related Work

Publish/Subscribe systems (e.g., [22, 9]) are based on
events and provide many-to-many communication between
event publishers and subscribers. What we have proposed in
not a publish/subscribe system for its spontaneous query an-
swering capability. As an XML-based overlay network, [20]
proposed a mesh-based overlay network that supports XML
queries. In [4] XML content-based routing is addressed us-
ing the query aggregation scheme given in [3]. In [11],
content-based routing of XPath queries in P2P systems is
studied. However, none of these work addresses the integra-
tion of information brokerage and access control, which is
one of our main emphases. The Content Distribution Net-
works (CDN) provide an infrastructure that delivers static
or dynamic Web objects to clients from cache or replicas

7



to off-load the main site [4, 1]. This differs from our ap-
proach in that it does not give users a powerful query lan-
guage. Also, our focus is how to distributes access controls,
not data, among brokers. [21] gives a good overview on ac-
cess control in collaborative systems. Although many, ex-
isting “distributed” access control theories and techniques
focus on the policy, modeling, and flexibility aspects. How-
ever, our work focuses on performance-optimizing enforce-
ment strategies using in-broker access controls.

In the proposed XML brokerage system, we used the ac-
cess control model proposed by [8, 18]. However, since
ours is not tightly coupled with one specific model, our
proposed techniques can be applied to other access control
models (e.g., [7, 2, 10, 12]). As to enforcing XML ac-
cess controls, by and large, existing approaches either use
“views” (e.g., compressed accessibility map of [23]) or rely
on the underlying XML engine (e.g., [5]). Our proposal
is based on the QFilter – query re-writing access controls
– that does not use views nor require any support from
XML databases. Finally, compared with various researches
on the equivalence/containment/re-writing of XML queries
[15], our approach is NFA-based and security-driven. In this
paper, we extend the idea of QFilter further to the context of
in-broker access controls. Therefore, our access controls can
occur anywhere in the network freely – at client, server, and
in-between.

8. Conclusion

In this paper, we focus on access control issues in XML
information brokerage systems, where end-users send in
queries without knowing where data is actually stored, and
brokers take the responsibility to locate the data sources and
forward the queries. We propose a general framework that
categories access control approaches into three architectures,
namely SAC, EAC and IAC. We show that IAC architec-
ture is desired in terms of network efficiency and robustness.
However, due to limitations of access control enforcement
mechanisms, none of existing takes IAC architecture. In this
paper, we adopt an access control mechanism named QFil-
ter, which was previously proposed by us. By constructing
a QFilter for each role and sit it in the brokers, we devel-
oped the first In-Network Access Control approach, which
pulls access control out of data sources towards the users
to enjoy all the benefits of IAC architecture. Observing
the great extent of similarities existing between access con-
trol policies of different roles, we further optimize the first
approach by merging QFilters of different roles into one.
Moreover, we propose and NFA based Indexer for brokers
to efficiently locate data sources for user queries. We finally
merge NFA based Indexer into Multi-Role QFilter to obtain
Indexed Multi-Role QFilter. Through detailed experiments,
we demonstrate and compare the performance of all struc-
tures and approaches.

References

[1] Websphere application server network deployment.
http://www-306.ibm.com/software/webservers/appserv/was/
network/edge.html.

[2] E. Bertino and E. Ferrari. Secure and selective dissemination
of XML documents. ACM TISSC, 5(3):290–331, 2002.

[3] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and R. Ras-
togi. Tree pattern aggregation for scalable xml data dissemi-
nation. In VLDB, pages 826–837, 2002.

[4] R. Chand and P. A. Felber. A scalable protocol for content-
based routing in overlay networks. In IEEE International
Symposium on Network Computing and Applications, page
123, Washington D.C., 2003.

[5] S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and D. Srivas-
tava. Optimizing the secure evaluation of twig queries. In
VLDB, pages 490–501, China, 2002.

[6] B. Choi. What are real dtds like? In WebDB, 2002.
[7] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati. De-

sign and implementation of an access control processor for
XML documents. Computer Networks, 33(1-6):59–75, 2000.

[8] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati.
A fine-grained access control system for XML documents.
ACM Trans. Inf. Syst. Secur., 5(2):169–202, 2002.

[9] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-
scale XML issemination service. In VLDB, Toronto, 2004.

[10] S. Godik and T. Moses. eXtensible Access Control Markup
Language 1.0. OASIS Specification Set, Feb 2003.

[11] G. Koloniari and E. Pitoura. Content-based routing of path
queries in peer-to-peer systems. In EDBT, 2004.

[12] M. Kudo and S. Hada. XML document security based on
provisional authorization. In CCS, pages 87–96, New York,
NY, USA, 2000. ACM Press.

[13] B. Luo, D. Lee, W.-C. Lee, and P. Liu. QFilter: Fine-grained
run-time XML access control via NFA-based query rewrit-
ing. In ACM CIKM, Washington D.C., USA, nov 2004.

[14] B. Luo, D. Lee, W.-C. Lee, and P. Liu. Deep set operators for
XQuery. In SIGMOD Workshop on XQuery Implementation,
Experience and Perspectives, Baltimore, USA., 2005.

[15] G. Miklau and D. Suciu. Containment and equivalence for an
XPath fragment. In PODS, pages 65–76, Wisconsin, 2002.

[16] M. Murata, A. Tozawa, and M. Kudo. XML access control
using static analysis. In ACM CCS, Washington D.C., 2003.

[17] Y. Papakonstantinou and V. Vassalos. Architecture and im-
plementation of an XQuery-based information integration
platform. In IEEE Data Eng. Bull., volume 25, 2002.

[18] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

[19] A. Schmidt, F. Waas, S. Manegold, and M. Kersten. “The
XML Benchmark Project”. Technical report, INS-R0103,
CWI, April 2001.

[20] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-based
content routing using XML. In Symposium on Operating Sys-
tems Principles, pages 160–173, 2001.

[21] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control
in collaborative systems. ACM Comput. Surv., 37(1), 2005.

[22] T. W. Yan and H. Garcia-Molina. The SIFT information dis-
semination system. ACM TODS, 24(4):529–565, 1999.

[23] T. Yu, D. Srivastava, L. V. S. Lakshmanan, and H. V. Ja-
gadish. Compressed accessibility map: Efficient access con-
trol for XML. In VLDB, pages 478–489, China, 2002.

8


