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Abstract
As Artificial Intelligent (AI) technologies become ubiquitous, humans will have to
contend with many benefits and disadvantages of these advancements. Particularly, in
recent years, Natural Language Generation (NLG) methods have massively improved in
the generation of well-written human-quality texts, leading to sophisticated Large-scale
Language Models (LLMs) such as ChatGPT, GPT-4, and LLaMA. Naturally, these newer
LLMs can generate texts that can be easily misconstrued as human-written, thus causing
the problem of “deepfake texts” and exaggerating and exacerbating the potential for
misuse (e.g., the generation of misinformation at scale).

In this dissertation, thus, we strive to understand the phenomenon surrounding deep-
fake texts better and develop solutions to tackle the problem. We first frame the detection
of deepfake texts using the Reverse Turing Test (RTT) concept, which entails automat-
ically distinguishing AI-generated texts from human-written ones. Then, we address
3 Research Questions (RQs): (1) Can one detect subtle linguistic differences between
AI-generated texts and human-written ones? (2) Can one build an accurate deepfake text
detector to distinguish between human vs. deepfake text authorship? (3) How can one
improve human performance in detecting deepfake texts?

RQ1 is addressed by building an interpretable linguistic model to capture the subtle
linguistic patterns that distinguish human-written from deepfake texts. RQ2 is addressed
by several types of deepfake text detectors—e.g., stylometric, deep learning based, and
a hybrid model (i.e., an ensemble of a Transformer-based model and Topological Data
Analysis (TDA) techniques). RQ3 is addressed by studying how English experts vs.
English non-experts perform at detecting deepfake texts in an individual and collaborative
setting.
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Chapter 1 |
Introduction

1.1 Background

The recent increasing ubiquity of Artificial Intelligent technologies has many benefits
and drawbacks. One significant development in AI, specifically the Natural Language
Generation (NLG) field is the creation of Large Language Models (LLMs) which are able
to generate authentic-looking human-like texts. LLMs are probabilistic models trained
on massive amounts of data. These models can be used for downstream tasks such as text
classification, generation, summarization, etc. However, the LLMs, we discuss in this
dissertation are text-generative LLMs capable of generating long-coherent human-like
texts. We call these texts generated by text-generative LLMs, deepfake texts. Deepfakes
can be defined as content generated by an AI model or algorithm. This content can either
be images, videos, or texts and in our case, we refer deepfake texts are AI-generated texts.
Additionally, the word deepfake in this instance does not consider the factual grounding
of the AI-generated texts, so just because a piece of text is deepfake, does not mean it is
fake or real news in this Dissertation.

These LLMs (or deepfake text-generators) can be exploited malicious to generate
realistic misinformation at scale due to their impressive generative qualities. Some of
these sophisticated text generators include ChatGPT, GPT-4, LLaMA, Google’s Switch,
etc. Therefore, it is very imperative that we build solutions to distinguish deepfake texts
from human-written texts. Before we discuss these solutions, we must first describe
the Turing Test [4] principle, in which our task bears a strong similarity. Turing Test

is a test defined by Alan Turing in the 1950s, administered by a human to test the
intelligence of a machine. In this test, the human is in a double-blind scenario where
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they might be speaking to a human or a machine. Based on the response of the dialogue
participants, the human judge has to guess who they are speaking to. If a machine
shows intelligent behavior usually attributed to a human, and thus classified as human,
the machine has passed the Turing Test. For the purposes of this work, we aim to
build Machine learning and Deep learning models to automatically distinguish between
deepfake and human-written texts, to minimize the changes of the machine, in this case,
LLMs passing the Turing Test. Therefore, in our task, a computer algorithm administers
the Turing Test (TT). This automatic Turing Test is known as Reverse Turing Test (RTT).
We also study a variation of the Turing Test problem, called Authorship Attribution

(AA). First, Turing Test is a binary classification problem where we ask is the given text

T , authored by a human or deepfake text-generator? and Authorship Attribution is a
multinomial classification problem where we ask given a text T and k candidate deepfake

text-generators, can we single out the generator (among k choices) that generated T?

Given the obvious security risks posed by deepfake text-generators, nuanced solutions
must be proposed for this nuanced problem. Therefore, we propose novel solutions to
solve this problem, which address 3 Research Questions (RQs): (1) Can we detect subtle
linguistic differences of between deepfake texts and human-written ones? (2) Can we
build an accurate deepfake text detector to attribute human vs. deepfake text authorship?
(3) Can we improve human performance in detecting deepfake texts?

Figure 1.1: Flow chart of the 3 Research Questions (RQs) addressed in this Dissertation.

RQ1 is addressed by building an interpretable linguistic model to capture the subtle
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linguistic patterns that distinguish human-written from deepfake texts. RQ2 is addressed
by building several types of automatic deepfake text detectors, including an ensemble of
Transformer-based model - RoBERTa and Topological Data Analysis (TDA) techniques.
RQ3 is addressed by studying how English experts vs. English non-experts perform the
task of deepfake text detection in an individual and collaborative setting. See Figure 6.1
of the flow chart of 3 RQs addressed in this Dissertation.

Finally, in the future, we evaluate the performance of both humans and automatic
deepfake text detectors on Authorship Obfuscation techniques.

1.2 Linguistic Patterns of Human vs. Deepfake

Texts – RQ1

Linguistics is defined as the study of language and its structural patterns - morphological,
syntactical, semantic, etc. Since the capability to generate long-coherent deepfake texts,
researchers have attempted to understand the subtle linguistic patterns that distinguish
deepfake texts from humans. Thus, in Chapter 3, a Linguistic model is proposed that
combines psycholinguistics features (LIWC), Entropy (average number of unique char-
acters), and readability scores (grade level of the author). Using these features with
a classical machine-learning model - Random Forest, an interpretable deepfake text
detector is built. This model significantly outperforms other baseline models, achieving
a 90% F1 score. Some of the interesting findings are: (1) in terms of entropy there
is no significant difference between human-written and deepfake texts. (2) the more
sophisticated deepfake text-generators are harder to detect because just like humans they
use writing articles (a, an, the) well. (3) humans and other human-like deepfake text
generators are more evasive in writing.

1.3 Deepfake Text Detector – RQ2

In Chapter 2, we survey the Authorship Attribution models that researchers have pro-
posed for deepfake text detection. This discusses in detail the taxonomy for deepfake
text detection models. See Figure 2.5 for this taxonomy. Automatic deeepfake text
detectors fall into one of the 4 categories - Stylometric, Deep learning-based, Statistical-
based, and Hybrid attribution. Hybrid attribution is an ensemble of at least 2 of the
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other categories. Additionally, Deep learning-based attribution is further divided into 3
sub-categories - Glove-based, Energy-based, and Transformer-based. This dissertation
has contributed to 3 out of the 4 deepfake text detectors in categories. The first is a
Stylometric deepfake text detector in Chapter 3 which addressed RQ1 with its inter-
pretive qualities. Second, Transformer-based deepfake text detector in Chapter 4, and
third, Hybrid deepfake text detector in Chapter 5. The Hybrid deepfake text detector
is an ensemble of Transformer-based models and Topological Data Analysis (TDA)
techniques. To be specific a Topological layer is added to a RoBERTa-base model, such
that RoBERTa weights and topological features are concatenated and used as input for
classification.

1.4 Human Evaluation of Deepfake Texts – RQ3

Several researchers have found that humans perform at about random-guessing (i.e.,
coin toss) level when distinguishing human-written texts from deepfake texts. This is
alarming as we are currently in the age of deepfake texts due to the ubiquity of deepfake
text generators, such as ChatGPT. However, the capability of these generators, being able
to generate coherent documents increases their potential to be used maliciously. Such
malicious uses include misinformation generation, as well as toxic and harmful content
generation. Therefore, it is imperative that not only automatic deepfake text detectors
are accurate, but humans are also able to accurately distinguish human-written texts
from deepfake texts. Thus, in chapter 4, we evaluate humans’ performance on deepfake
text detection by recruiting participants from Amazon Mechanical Turk (AMT). We
run 2 exploratory studies - (1) given one article, vote if it is machine-generated or not;
(2) given two articles (human-written & machine-generated), vote which of the two is
machine-generated. The results suggest that there is a lot of room for improvement.

Therefore, we propose a more thorough study as well as a technique to improve
human performance on deepfake text detection in Chapter 6. For this comprehensive
study, we investigate the performance of the following groups on the task of deepfake text
detection: (1) English experts vs. English non-experts; (2) Individual vs. Collaboration;
(3) Asynchronous vs. Synchronous collaboration.
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Chapter 2 |
Related Work

2.1 Introduction

Natural Language Generation (NLG) is a broad term for AI techniques to produce high-
quality human-understandable texts in some human languages, and often encompasses
terms such as machine translation, dialogue generation, text summarization, data-to-text
generation, Question-Answer generation, and open-ended or story generation [5, 6].
Among these, in particular, this survey focuses on the open-ended text generation aspect
of NLG. Since the advent of the Transformers architecture in 2018, the field of NLG has
experienced exponential improvement. Before 2018, leading NLG models were only
able to generate a few sentences coherently. However, after adopting the Transformer
architecture into deep learning-based Language models (LMs), NLG models could
generate more than a few sentences (i.e., ≥ 200 words) coherently. GPT-1 [7] by
OpenAI is one of the first such NLG models. Since then, many other Transformer-
based LMs with the capacity to generate long coherent texts have been released (e.g.,
FAIR [8, 9], CTRL [10], PPLM [11], T5 [12], WuDao 1). In fact, as of February 2023,
huggingface’s [13] model repo houses about 8,300 variants of text-generative LMs2. In
this survey, we refer to these LMs as Deepfake Text Generator (DTG) since they are
neural network-based LMs with text-generative abilities. Further, we refer to the texts
generated by DTG as “deepfake” texts 3, as opposed to normal texts written by humans
as human texts.

1https://github.com/BAAI-WuDao
2https://huggingface.co/models?pipeline_tag=text-generation
3Other names for deepfake text include AI(-generated) text [14], Machine(-generated/written) text

[1, 2, 15–23], Artificial text [24], Computer-generated text [25], Neural text [1, 26, 27], Auto-generated
text [28], and Synthetic text [29–32].
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Figure 2.1: The figure illustrates the quadrant of research problems where (1) the GRAY
quadrants are the focus of this survey, and (2) The BLACK box indicates the specialized
binary AA problem to distinguish deepfake texts from human texts.

As the qualities of DTGs improve, deepfake texts become more easily misconstrued
as human-written [1, 2, 16, 33, 34], exacerbating the difficulty of distinguishing deepfake
texts from human texts. For instance, therefore, such a text generation capability can
be misused to generate misinformation [16, 31, 35], fake reviews [36] and political
propaganda [37] at scale with little cost. These problems lead to the need to effectively
distinguish deepfake texts from human texts, the so-called Deepfake Text Detection
(DTD) problem, which is a sub-problem of a widely studied problem in the privacy
community–i.e., authorship attribution. In fact, two interlocking research questions in
privacy research, heavily studied but of growing interest, are Authorship Attribution
(AA) and Authorship Obfuscation (AO). Given an artifact, especially a text t in question,
an AA solution aims to accurately attribute t to its true author out of k candidate authors
while an AO solution aims to modify t to hide its true authorship. Therefore, DTD is
a specialized case, a Turing Test, of AA with k = 2 authors (i.e., human vs. machine).
Figure 2.1 illustrates the quadrant of research problems, while Figure 2.2 illustrates how
both AA and AO problems work hand-in-hand.

Traditionally, the notion of authorship and its accompanying privacy concern in both
AA and AO problems are only toward human authors. However, with the arrival of
generative AI technologies and due to the potential threats of misused deepfake texts,
one now has to consider authorships by humans, machines, or their combination, and re-
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Figure 2.2: Illustration of both AA and AO problems on deepfake texts

thinks about effective solutions for both AA and AO problems for deepfake texts. Hence,
to guide these developments, in this survey, we provide a detailed analysis of both AA
and AO problems, their existing solutions, and our perspective on the open challenges.
As both AA and AO problems are essentially computational learning problems, we
discuss the landscape from A Data Mining Perspective and call attention to the security
challenges that need to be solved. We believe that the issues of these novel AA/AO
problems for deepfake texts are “nuanced” and therefore require nuanced solutions from
the Data Mining and Machine Learning community.

2.2 Deepfake Text Generation

We first select a handful of Deepfake Text Generator (DTG) that we focus on in this
survey, and introduce a list of popular datasets with deepfake texts.

2.2.1 Deepfake Text Generators (DTGs)

Those DTGs studied in this survey are large-scale probabilistic LMs that are capable of
generating long-coherent texts (e.g., ≥ 200 words). These LMs are trained on massive
amounts of unstructured texts. Based on its architecture structure (e.g., encoder-decoder
or decoder only), these LMs use a prompt, a snippet of human-written text, to guide the
generation of texts, emulating the most similar style from the training set and predicting
one token at a time. Recent works such as [5, 6] survey these DTGs in detail. The
progress of DTGs in recent years has been expeditious. As shown in Figure 2.3, for
instance, the sizes of DTGs with respect to their parameters are growing at an exponential
rate, yielding rapid improvement in the quality of deepfake texts, thus exacerbating the
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Figure 2.3: Evolution of Deepfake Text Generators (DTGs) from 2018 to 2023 (Y -axis
is a log plot of # of parameters).

AA/AO problems. Table 2.1 describes a summary of state-of-the-art DTGs, where many
entries are drawn from [1, 15].

Within LMs, in particular, hyperparameters matter a great deal when generating texts.
The choice of these hyperparameters, referred to as decoding strategies, greatly affects the
quality of generated deepfake texts. According to [52], there are 6 decoding strategies: (1)
Greedy sampling selects the best probable word, (2) Random sampling does a stochastic
search for a sufficient word, (3) Top-k sampling samples from top-k most probable
words, (4) Beam search searches for most probable candidate sequences, (5) Nucleus

(Top-p) sampling samples similar to top-k, but its focus is on the smallest possible set
of top words, such that the sum of their probabilities is ≥ p, and (6) Temperature scales
logits to either increase or decrease the entropy of sampling. DTG models often use
Top-k sampling, Beam search, Nucleus (Top-p) sampling, and Temperature decoding
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DTG Author Description
GPT-1 [7] OpenAI It used Transformers to model a simple concept - to predict the next token, given the previous token.

GPT-2 [38] OpenAI
GPT-1 scaled up. There are 4 GPT-2 pre-trained models - small (124 million parameters),

medium (355 million parameters), large (774 million parameters), and x-large (1558 million parameters)
GPT-3 [31] OpenAI GPT-2, scaled up - increasing parameter and train data size.

GROVER [16] AllenAI
Similar to GPT-2 architecture and trained to generate political news. There are 3

pre-trained models: GROVER-base, GROVER-large, GROVER-mega
CTRL [10] Salesforce Conditional Transformer LM For controllable generation uses control codes to guide generation
XLM [39] Facebook A Cross-lingual Language Model trained on various languages. Only the English model is used for AA

XLNET [40] Google A generalized auto-regressive pre-training method that adopts the Transformer-XL framework

FAIR_wmt [8, 9] Facebook
FAIR_wmt has 3 language models - English, Russian, and German. Only the English

model4 is used, which has 2 models - WMT19 [8] and WMT20 [9].
TRANSFORMER_XL [41] Google Another Transformer model that learns long-term dependency to improve long coherent text generation

PPLM [11] Uber
The Plug and Play Language Models (PPLM) model upon GPT-2 by fusing the GPT-2 medium with a bag of

words (BoW) models. These BoW models are legal, military, monsters, politics, positive_words, religion,
science, space, technology. PPLM can plug in any GPT-2 pre-trained model to generate texts

Switch Transformer [42] Google Google uses a switch Transformer to build a sparse neural LM with 1.6T parameters are built
GPT-Neo [43] EleutherAI EleutherAI replicates GPT-3’s architecture. There a 2 model sizes - 1.3B and 2.7B parameters

GPT-NeoX [44] EleutherAI A 20 billion parameter autoregressive replication of GPT-3.

GPT-J [45] EleutherAI
A 6B parameter model similar to the GPT-Neo and GPT-NeoX that uses Mesh Transformer JAX [46]

framework to train the model with Pile5 dataset, a large curated dataset created by EleutherAI

T5 [12] Google
An encoder-decoder text-to-text Transformer-based model.

T5 has 5 pre-trained models - T5-small, T5-base, T5-large, T5-3b, and T5-11b
BART [47] Facebook This is another encoder-decoder Transformer-based LM, most effective when fine-tuned

PaLM [48] Google
PaLM stands for Pathways Language Model. It is a dense decoder-only Transformer-based

model trained with [49]’s pathways system framework

OPT-175B [50] Meta
Meta’s response to GPT-3. OPT-175B uses a similar framework to GPT-3

but the training costs 1/7th the carbon footprint of GPT-3.

GeDi [51] Salesforce
GeDi stands for Generative Discriminator Guided Sequence Generation. Similar to PPLM,

GeDi controls text generation using small LMs as generative discriminators

Table 2.1: Description of state-of-the-art Deepfake Text Generators (DTGs).

strategies as they produce higher quality texts than other decoding strategies. In fact, [52]
reports that deepfake texts generated with the Nucleus (Top-p) sampling strategy are more
challenging to attribute authorships.

2.2.2 Deepfake Text Datasets

To investigate both AA/AO problems for deepfake texts, one needs benchmark datasets
of deepfake texts. Table 2.2 describes a list of publicly available datasets that contain
deepfake texts. Labels of the texts in the datasets are either binary (neural vs. human
text) or multi-class (having multiple deepfake texts generated by different DTGs vs. 1
human label). The majority of recent studies have focused on the binary case of the
Turing Test to check if a given text is written by a human author or machine (i.e., one of
DTGs). Researchers utilized clever labeling and generation methods to build datasets: (1)
Binary dataset: Researchers first collect human-written texts (e.g., news, blogs, stories,
or recipes) and use snippets of these texts as prompts to the chosen DTG to generate a
machine-written (neural) text. (2) Multi-class dataset: Starting with human-written texts
as prompts, this generates multiple deepfake texts by using different DTG architectures
(i.e., human vs. GPT-1, GROVER, PPLM, etc.), different pre-trained sizes of the same
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Name Description Category Domain Labels
GPT-2 dataset

[7]
250K Webtext (Human dataset) vs. 250K GPT-2

(small, medium, large, & XL) Binary News GPT-2 & Human

GROVER
dataset [16]

Using April 2019 news articles as the prompt,
GROVER-Mega generated news articles Binary News GROVER & Human

TuringBench-
AA [1]

Used 10K human-written news articles (mostly
Politics) from CNN, etc. to generate 10K articles

each from 19 DTGs.
Multi-class News

Human & 19 Machine
labels (GPT-1, GPT-2

small, etc.)

TuringBench-
TT [1]

The same dataset as TuringBench-AA, except that
the datasets are 19 versions of human vs. each of

the 19 DTGs.
Binary News

19 Human vs. Machine
combinations (GPT-2, etc.)

Authorship
Attribution-

AA [15]

Used 1K human-written articles to generate 1K
articles each from 8 Artificial Text Generators Multi-class News

1 human vs 8 Machine
labels (GPT-1, GPT-2, etc.)

Authorship
Attribution-

TT [15]

The same dataset as Authorship Attribution-AA
except that the datasets are 8 versions of human vs.

each of the 8 DTGs
Binary News

8 humans vs Neural
combinations

Authorship
Attribution-
TT mix [15]

The same dataset as Authorship Attribution-AA
except that the dataset is human vs. Machine

(which is a mixture of all the 8 DTGs)
Binary News

1 human vs Machine
(8 different machines)

Academic
Papers

& Abstracts [60]

2 datasets - (1) FULL: using a short prompt for a
human-written paper generated an academic
paper using GPT-2; (2) PARTIAL: Replacing

sentences from an Abstract with Arxiv-NLP model
generations

Binary
Academic
Abstracts

Human & Machine

Hybrid Human-
Machine Text

[61]

Using human-written text in domains - News,
Reddit, and Recipes to generate continuations of

the text using GPT-2 XL
Binary

News,
Reddit,
Recipes

Human prompt &
Machine texts

Amazon
Reviews [36]

Fine-tuned GPT-2 on 3.6 M Amazon and 560K
Yelp reviews Binary Reviews Human & Machine

Human-Machine
Pairs [57]

Generated texts with GROVER mega and GPT-2
XL with top-p decoding strategy. Paired

human-written texts with a similar neurally
generated version

Binary
(Human-
Machine

pairs)

Online
forums
& News

Human & Machine

NeuralNews
dataset [23]

Using the GoodNews [62] dataset as the
human-written prompt to generate texts with

GROVER. Real images are included in each of the
articles.

Binary News Human & Machine

SynSciPass [63]

Built dataset using 3 potential sources of deepfake text:
(1) open-ended text generators like GPT-2 & BLOOM
(2) paraphrase models like SCIgen and PEGASUS and

(3) translation models like Spinbot, real,
Google translate, and Opus.

Multi-class
scientific
articles

generate, translate,
paraphrase, & human

TweepFake [64]
Collected tweets generated by Twitter bots
and grouped them into tweets generated by

GPT-2, RNN, and other bots
Binary Tweets Human & Machine

Table 2.2: Datasets with Deepfake Texts

DTG architecture (i.e., human vs. GPT-2 small vs. GPT-2 medium vs. GPT-2 large vs.
GPT-2 XL, etc.), different decoding strategies (i.e., human vs. GPT-2 top-k vs. GPT-2
top-p, etc.).
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Model Name Classifier Type Category Learning Type Interpretable Training dataset
GROVER detector [16] DL (Transformer-based) Binary Supervised GROVER

GLTR [2] Statistical Binary Unsupervised ✓ GPT-2
GPT-2 detector [65] DL (Transformer-based) Binary Supervised GPT-2

OpenAI detector [65] DL (Transformer-based) Multi-class Supervised GPT-2 & TuringBench-AA
RoBERTa-TT [1] DL (Transformer-based) Binary Supervised TuringBench-TT

BERT-TT [1] DL (Transformer-based) Binary Supervised TuringBench-TT
RoBERTa-Multi [1] DL (Transformer-based) Multi-class Supervised TuringBench-AA

BERT-Multi [1] DL (Transformer-based) Multi-class Supervised TuringBench-AA
TDA-based detector [24] Hybrid Binary Supervised ✓ GPT-2

FAST [27] Hybrid Binary Supervised GPT-2 & GROVER
Energy discriminator [17] DL (Energy-based) Binary Supervised GROVER

MAUVE [20] Statistical Binary Unsupervised ✓ GPT-2 & GROVER
Distribution detector [21] Statistical Binary Unsupervised ✓ GPT-2

Feature-based detector [19] Stylometric Binary Supervised ✓ GPT-2, GPT-3, & GROVER
Linguistic model [15] Stylometric Multi-class Supervised ✓ Authorship Attribution-AA

DIDAN [23] Hybrid Binary Supervised
Fake images w/ Human

vs. GROVER news

XLNet-FT [30] DL (Transformer-based) Multi-class Supervised
GPT-1, GPT-2, XLNet,
& BART Reddit posts

Constra-DeBERTa [58] DL (Transformer-based) Multi-class Supervised TuringBench
Fingerprint detector [29] Hybrid Multi-class Supervised GPT-2 bot subreddit posts

DistilBERT-Academia [60] DL (Transformer-based) Binary Supervised
GPT-2 Academia
abstract & paper

Sentiment modeling detector [36] DL (Glove-based) Binary Supervised GPT-2 Amazon Reviews
BERT-Defense [33] DL (Transformer-based) Binary Supervised GPT-2 Large WebText

RoBERTa-Defense [55] DL (Transformer-based) Binary Supervised GROVER
RoBERTa w/ GCN [66] DL (Transformer-based) Binary Supervised GPT-2

DeBERTa v3 [63] DL (Transformer-based) Multi-class Supervised
GPT-2, BLOOM, PEGASUS,

OPUS, SCIgen, Spinbot
Ensemble [67] DL (Transformer-based) Binary Supervised TweepFake

CoCo [68] Hybrid Binary Supervised ✓ GPT-2 & GROVER

DetectGPT [69] Statistical Binary Unsupervised ✓
GPT-2, OPT-2.7, GPT-Neo-2.7,

GPT-J, & GPT-NeoX

Table 2.3: Authorship Attribution models (Binary & Multi-class) for Deepfake Text
Detection

2.3 Authorship Attribution for Deepfake Texts

Traditional AA problem studies the attribution of an author to a piece of written text
out of a number of possible authors. However, in the literature, researchers have also
studied a few variations of the AA problem. For instance, the Author Verification (AV)

problem [70, 70–74] studies if the given two texts, t1 and t2, are written by the same
author? With the rise of deepfake texts, in addition, a specialized case of AA problem,
DTD [15–17, 23, 65, 75], studies: By and large, however, a good solution for the standard
AA problem can lead to a good solution for other variations of the AA problem. As such,
we focus on the survey of the standard AA problem for deepfake texts. Thus, our paper
formally defines the AA task as follows. See Table 2.3 for a detailed taxonomy of AA
solutions for deepfake text detection and Figure 2.4 for the count of AA solutions in each
category.
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Figure 2.4: Number of AA solutions for Deepfake Text Detection per category in the
Taxonomy. Y -axis is the number of detectors.

DEFINITION OF AA FOR DEEPFAKE TEXTS. Given a text t, the AA model

F (x) attributes the text t to its true author k–i.e., k=F (x), which can be either a

human or a DTG author.

In the following, we survey recent AA solutions that are capable of handling deep-
fake texts in different ways, as illustrated in Figure 2.5: Stylometric Attribution, Deep

Learning-based Attribution, Statistical Attribution, and Hybrid Attribution.

2.3.1 Stylometric Attribution

Stylometry is the statistical analysis of the style of written texts. In traditional AA,
stylometric classifiers are built using classical machine learning models trained on
ensembles of style-based features such as N -grams, Part-of-Speech (POS), WritePrints
[22], LIWC (Linguistic Inquiry & Word Count) [76], Readability score, and Empath [77].
This has been shown to be a successful approach for traditional AA tasks [78]. Due to
such success, these models have been adopted and customized to the task of DTD.

The first attempt at a stylometric classifier to solve the AA task for k > 2 authors
is the Linguistic model proposed by [15]. It trains a Random Forest classifier with the
Authorship Attribution-AA dataset in Table 2.2 and extracts an ensemble of stylometric
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Figure 2.5: Taxonomy of Authorship Attribution models for Deepfake Text Detection

features (e.g., entropy, readability score, & LIWC (Linguistic Inquiry & Word Count)
[76]). The entropy feature counts the number of unique characters in the text. Readability
scores represent the estimated educational level of the author of a piece of text based
on lexicon usage. LIWC is a psycho-linguistic dictionary that counts the frequency of
words that represents a psychological emotion or linguistic structure [76]. This Linguistic

model achieves a 90% F1 score and outperforms all the other deep learning-based models.
However, this superior performance is a result of the small size of the dataset (only about
1k per data label) [15]. Scaling up the data size in terms of labels and examples will make
the AA task harder, and therefore cause the Linguistic model to underperform. This claim
is confirmed in their second work using the TuringBench dataset [1]. They compared
SOTA deep-learning-based models (BERT and RoBERTa) with several stylometric
classifiers - SVM (3-grams), WriteprintsRFC, Random Forest (w/ TF-IDF), Syntax-CNN,
Ngram CNN, and N-gram LSTM-LSTM. RoBERTa outperforms all the stylometric
classifiers with about a 10-22% increase in F1 scores.
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To further explore the benefits of stylometric features leveraged in the traditional
AA community, [19] proposes a clever way to use them. This solution aims to solve
the special case of AA, Turing Test (TT). First, they identify different issues with DTGs
which can be captured by specific types of stylometric features. These issues in deepfake
texts are categorized into 4 types: (1) Lack of syntactic and lexical diversity which can
be captured with Named Entity-tags, POS-tags, and neuralcoref extension6 (a tool for
using a neural network to annotate and resolve coreference clusters) to detect coreference
clusters; (2) Repetitiveness of words which can be captured by collecting the number
of stop-words, unique words, and words from “top-lists” of total words in a text. Also,
a “conjunction overlap” measure is defined to calculate the overlap of the top-k words
(k = 100, 1K, 10K); (3) Lack of coherence which can be captured using entity-grid
representation to track the appearance of the grammatical role of entities. They also use
neuralcoref to detect coreference entity clusters; (4) Lack of purpose which is captured
using a lexicon-package, empath [77] containing 200 linguistic features [19]. To evaluate
the generalizability of these features, an ensemble of all the features is used to build
a classifier - Feature-based detector. This detector is trained and tested on different
sizes of the GPT-2 models. It is further evaluated on GPT-3 and GROVER texts. The
classifier performs consistently in detecting texts generated by GPT-3, GROVER, and
different model sizes of GPT-2, suggesting it is generalizable to different DTG model
sizes [19]. Further results suggest that some of the 4 categories of issues are prevalent in
the top-k decoding strategy. Also, more quality-focused features (especially ones focused
on Lexical diversity) perform better than statistical features such as the TF-IDF baseline.

Scaling up and creating a more realistic scenario, [29] collect 108 SubReddit blog
posts generated by GPT-2 fine-tuned on 500K subreddit posts and comments. Every
108 labels indicate the 108 users of SubReddit (r/SubSimulatorGPT2). These 108
authors are detected using a set of features called “writeprints” features for the AA
model [29]. Writeprints [22] is a stylometric feature that collects lexical, content-based,
and idiosyncratic features as the baseline. The writeprints classifier underperforms,
compared to the RoBERTa-based baseline models. Similarly, a stylometric classifier with
791 stylometric features based on [79] is used to detect deepfake texts. This classifier has
4 categories of features: Character, word, sentence, and Lexical Diversity features. The
classifier is an ensemble of classical ML models such as Random Forest and SVM and the
stylometric features. BERT, a non-stylometric classifier, outperforms these stylometric

6https://github.com/huggingface/neuralcoref
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classifiers significantly [80].
Finally, stylometric classifiers are best used when the dataset size is small. When

data size increases, these models underperform, allowing deep learning-based models
to outperform significantly. Thus, we conclude that stylometric classifiers can only be
considered good baselines since they underperform when the problem scales up. Another
limitation of stylometry is that it fails to detect neural misinformation due to DTG’s
capacity to generate consistent misinformation [18].

2.3.2 Deep Learning-based Attribution

Stylometric classifiers struggle to accurately assign the true authorship to human vs.
deepfake texts. In Section 2.3.1, we observe that some of the stylometric classifiers were
outperformed by deep learning-based models. Additionally, [18]’s findings of stylometry
failing to detect neural misinformation, further calls for a different technique to solve the
AA task for DTD. Therefore, researchers have adopted and advanced deep learning-based
techniques for the attributing of neural vs. human text. These models can be further
categorized into 3 types of deep learning-based classifiers - Glove-based, Energy-based,

and Transformer-based Attribution.

2.3.2.1 Glove-based Attribution

Glove is an unsupervised learning algorithm for extracting the representation of words. It
aggregates global word-word
co-occurrence statistics from a piece of text [81]. Using GloVe word embeddings
with RNN and LSTM-based neural networks was considered SOTA until, 2018 (birth
of BERT [82]). Thus Glove-based classifiers now provide a good baseline for text
classification tasks. Some of the best-performing AA classifiers in the traditional AA
communities are an ensemble of stylometric features + GloVe pre-trained models w/ a
neural network architecture. Several Glove-based classifiers have been used as baselines
for the DTD task. Syntax-CNN [83], N-gram CNN [84], and N-gram LSTM-LSTM [85]
are baselines for [1]. Embedding, RNN, Stacked-CNN, Parallel-CNN, and CNN-RNN,
are baselines for [15]. They demonstrated that Glove-based classifiers are unsuitable for
solving the AA problem when there are k > 2 authors. Furthermore, the Fingerprint

detector is compared with 4 baseline models - Gaussian Naive Bayes, Random Forest,
Multi-layer Perceptron, and CNN classifiers using the Glove word embeddings of the
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data. They underperform significantly [29].
Lastly, Sentiment modeling detector, a variation of sentiment neuron used to learn

a single-layer multiplicative LSTM (mLSTM) [86] is used to detect texts generated by
GPT-2 [36]. The goal is to force the model to focus on a specified sentiment [36]. This
model outperforms and sometimes performs comparably with the baseline - original
mLSTM model [87], achieving a 70% accuracy in detecting GPT-2 generated Amazon
and Yelp reviews [36].

2.3.2.2 Energy-based Attribution

Energy-based models (EBMs) are un-normalized generative models based on energy
functions [88]. Using the energy functions, EBMs model the probability distribution of
its training data and generates high quality data similar to the training set [88]. It is also
able to adapt to changes in the Language model. Due to this capability, Energy-based

classifier is proposed by [17] to detect deepfake texts. This classifier is trained on 3
datasets of different domains - Books, CCNews, and Wikitext. Three sizes of the GPT-2
model are used for the generator architectures and three architectures are used for the
energy function - Linear, BiLSTM, and Transformer. Their findings suggest that: (1)
as the DTG increases in size, the harder the AA task becomes; (2) the biggest energy
function (i.e.Transformer) performs the best in detecting texts generated from large
language models (e.g., GPT-2 Large & XL); (3) as the length of texts increases, the task
becomes even more non-trivial; and (4) the classifiers are able to generalize to data that it
is not trained on.

In addition, EBMs are very expensive to train and do not scale well [17]. While the
Energy-based classifier performs well in the AA problem, achieving over a 90% in all
experiments, applying the classifier to a much larger dataset is too expensive to justify.

2.3.2.3 Transformer-based Attribution

Since the advent of the Transformer architecture, the current SOTA text classification
models are Transformer-based models. Based on Section 2.3.2.2, we observe that
large models are better at detecting deepfake texts. However, since EBMs are too
expensive, several researchers have adopted Transformer-based models (i.e., BERT,
RoBERTa, etc.) for the AA tasks. In Section 2.3.1, most of the stylometric classifiers
were outperformed by Transformer-based classifiers. This further supports the application
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of this classification technique to the AA problem.
GROVER detector7 [16] is trained on texts generated by the GROVER DTG. It is built

with similar architecture as the GPT-2 classifier. GROVER detector has been evaluated on
deepfake texts generated by different DTGs (GPT-2, FAIR, PPLM, etc.) [1, 15, 27, 89]. It
performs well at detecting deepfake texts generated by older DTGs (2018-2019), however,
struggles at detecting more recent DTGs accurately. For instance, GROVER detector

achieved a 58% F1 score in detecting GPT-3 texts with the TuringBench dataset [1]. Next,
GPT-2 has a detector trained to detect texts generated by GPT-2 - GPT-2 detector8 [65].
Just like GROVER detector, GPT-2 detector has also been evaluated on deepfake texts
generated by different DTGs [1, 15, 53, 90] and more easily detects older DTGs than
newer DTGs. This is confirmed with GPT-2 detector’s performance in detecting GPT-3
texts, achieving a 53% F1 score [1]. The reason is that newer DTGs, such as GPT-3 tend
to generate more human-like texts which confuse SOTA older AA models, like GPT-2

detector.
There are two RoBERTa-based models (base & large) trained on GPT-2 dataset9 in

huggingface repo10,11. We call both the base and large models, OpenAI detector. This AA
model has been evaluated on deepfake texts generated by different DTGs [1,53]. OpenAI

detector is the same model as GPT-2 detector, except that OpenAI detector has been
re-purposed for the AA multi-class setting, while GPT-2 detector remains for the AA
binary setting. OpenAI detector performs comparably to the AA models - BERT-Multi

and RoBERTa-Multi when evaluated on the TuringBench-AA dataset [1]. BERT-Multi

and RoBERTa-Multi are BERT and RoBERTa base models, respectively trained on the
TuringBench-AA dataset. BERT-TT and RoBERTa-TT outperform GROVER detector

and GPT-2 detector when evaluated on the TuringBench-TT dataset [1]. BERT-TT

and RoBERTa-TT are BERT and RoBERTa base models, respectively trained on the
TuringBench-TT dataset. BERT-TT, outperforms all the models, including RoBERTa-TT

significantly. Furthermore, for all 19 pairs of human vs. DTG, no model consistently
outperforms all other models. In fact, GROVER detector and GPT-2 detector performs
poorly in detecting texts generated by GROVER and GPT-2, respectively [1].

XLNet-FT is a fine-tuned XLNet classification model trained to detect texts generated

7https://grover.allenai.org/detect
8https://huggingface.co/openai-detector/
9https://github.com/openai/gpt-2-output-dataset

10https://huggingface.co/roberta-base-openai-detector
11https://huggingface.co/roberta-large-openai-detector
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by GPT-2 [30]. The generalizability of the model is evaluated on different subreddit
post domains. XLNet-FT performs consistently, achieving over a 90% accuracy in all
experiments, suggesting that it is generalizable [30]. However, when XLNet-FT is further
evaluated on deepfake texts generated by top-p and top-k decoding strategy, there is a
significant drop in accuracy, suggesting that the AA model may not be generalizable.

Using an in-the-wild dataset concept, RoBERTa-Defense is evaluated on 4 types of
in-the-wild datasets [55]. In-the-wild datasets are test sets generated from an entirely
different DTG from the training set. RoBERTa-Defense is trained on human & GROVER
Real news in Table 2.2 and compared to other SOTA AA models - GLTR (with two
different LMs - BERT & GPT-2 which results in GLTR-BERT & GLTR-GPT2), GROVER

detector, BERT-Defense, and FAST. RoBERTa-Defense outperforms all other models
significantly. BERT-Defense, a BERT model fine-tuned on GPT-2 Large Webtext dataset
in Table 2.2 from which RoBERTa-Defense is inspired is evaluated with different decoding
strategies [33]. BERT-Defense is trained and tested on deepfake texts generated by
different decoding strategies - top-k, top-p, untruncated random, and mixed (i.e., dataset
containing equal amounts of each strategy) [33]. The classifier trained on the mixed
dataset is the most generalizable classifier. Similarly, RoBERTa, BERT, ELECTRA [91],
and ALBERT [92] are evaluated on in-the-wild dataset [93]. These models are evaluated,
specifically on out-of-domain COVID-19 human-written vs. neural news. The neural
news is generated with GPT-2 small, medium, large, XL, and GPT-Neo using top-p
and top-k decoding strategies [93]. ELECTRA performs better at generalizing to out-
of-domain deepfake texts, achieving an average accuracy of 86% on all out-of-domain
datasets.

Due to the nuances of deepfake texts, [58] proposes to combine the advantages
of contrastive learning [94] with a Transformer-based classifier. Thus, they propose
Constra-DeBERTa which is a DeBERTa model [95] trained with a contrastive learning
approach. Contrastive learning is a technique that clusters similar examples together
and separates dissimilar examples in a representation space [58, 94]. However, while
Constra-DeBERTa outperforms other SOTA traditional AA models, it only performs
comparably to RoBERTa-Multi on detecting the TuringBench dataset. Similarly, [63]
trains DeBERTa v3 [96] on the SynSciPass dataset to answer the question, if a piece
of text is neurally generated, how was it generated? The answer choices are generated,

paraphrased, or translated vs. human-written. Using this dataset, DeBERTa v3 achieves
a 99.6% F1 score (i.e., F1 score is the harmonic mean of precision and recall which are
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Figure 2.6: [1] used GLTR [2] on GPT-3 texts. Green represents the most probable
words (top-10); yellow the 2nd most probable (next top-100 probable words); Red the
least probable (next top-1000 probable words); and purple the highest improbable words.
The hypothesis is that deepfake texts are often populated with mostly Green and yellow
words. However, we see that texts generated by GPT-3 are very human-like according to
the hypothesis.

popular machine learning evaluation metrics). Next, DistilBERT-Academia is trained on
human vs. GPT-2 academic abstracts and papers [60] and achieves a 62.5% and 70.2%
accuracy on the FULL and PARTIAL Academic datasets, respectively. Furthermore,
RoBERTa w/ GCN (Graph Convolutional Networks) is used to detect human-written
news with entities manipulated and replaced by GPT-2 [66]. The GCN [97] model is used
to capture factual knowledge of neural vs. human news articles. RoBERTa outperformed
the proposed model - RoBERTa w/ GCN on most of the GPT-2 detection tasks [66].

Lastly, ruBERT, a Russian BERT model is used to distinguish Russian neural texts
from Russian human-written texts as a shared task [98]. This fine-tuned ruBERT (Russian
BERT) achieves 82.6% accuracy for k = 2 authors and 64.5% accuracy for k > 2 authors
[28]. Finally, using an Ensemble classifier (BART, BERTweet, and TwitterRoberta), [67]
achieves an 84% accuracy in distinguishing between GPT-2 and human tweets. However,
using the same model for GPT-3 generated tweets achieves a 54% accuracy [67]. This
suggests that GPT-3 generates more human-like tweets than GPT-2.

2.3.3 Statistical Attribution

We observe that while there are some well-performing stylometric and deep learning-
based models, there is still a lot of room for improvement, especially in building gen-
eralizable models. The biggest feat is in building classifiers that perform consistently
well in detecting deepfake texts generated by top-p and top-k decoding strategies. Thus,
statistical models are proposed to combat these limitations. To assess the validity of statis-
tical techniques, a hypothesis using k-order Markov approximations are formulated [99].
This statistical formulation proves the hypothesis that human language is stationary and
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ergodic as opposed to neural language. The formal hypothesis testing framework is
used to establish limits in error exponents between human and deepfake text [99]. This
suggests that statistical AA models for deepfake texts could be successful. There are
currently only four statistical classifiers that capture the writing style of deepfake texts
by modeling their statistical distribution.

The first statistical AA classifier proposed for DTD is GLTR [2]. GLTR performs 3
tests - (1) probability of the word; (2) the absolute rank of the word; (3) the entropy of the
predicted distribution to detect deepfake texts. GLTR has a demo12 that highlights words
by distribution and is used to assist humans in detecting deepfake texts. See Figure 2.6 [1]
to see how GLTR detects texts generated by GPT-3. This classifier improved human
performance in detecting deepfake texts from 54% to 72%. However, since 2019 when
it was built, more sophisticated DTGs have been built. These newer DTGs have more
human-like statistical distribution, making it harder for GLTR to distinguish deepfake
texts from human texts. GLTR, especially underperforms in detecting GPT-3 texts,
achieving a 35% F1 score, which is significantly less than a random guess (50%) [1].

MAUVE is another statistical classifier [20]. This AA classifier measures the gap
between the distribution of human and deepfake texts. Using KL-divergence, MAUVE

models two types of errors that highlight the unique distributions in human vs. deepfake
texts [20]. Human detection of texts generated by GROVER and GPT-2 correlated
strongly with MAUVE’s highlight of differences between human and deepfake texts.
Distribution detector, an unsupervised AA model for calculating the distribution of
repeated n-grams in deepfake texts is used to detect deepfake texts [21]. The hypothesis
is that DTGs are more repetitive than humans which is also one of the hypotheses of [19].
Distribution detector achieves over 90% and 80% accuracy in detecting texts generated
by GPT-2 using top-k and top-p decoding strategies, respectively.

Most recently, a zero-shot unsupervised deepfake text detector, DetectGPT [69], is
proposed. The hypothesis of this statistics-based detector is that deepfake texts tend to lie
in areas of negative curvature of the log probability function [69]. Therefore, if a piece
of deepfake text is perturbed, the curvature of the log probability will still bear a strong
similarity to the unperturbed deepfake texts. Hence, [69] considers an AO technique that
slightly modifies the original deepfake text, while preserving semantics. After running
several perturbation experiments, a threshold for perturbation discrepancy is defined and
used to detect deepfake text. Thus, by measuring the curvature of log probability with

12http://gltr.io/dist/index.html
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the strict constraint of perturbation discrepancy threshold, DetectGPT can detect texts
generated by a neural method. Finally, DetectGPT detects GPT-3 generated texts with an
average of 85% AU-ROC, performing comparably to RoBERTa [68]. Lastly, DetectGPT

has an online demo13.

2.3.4 Hybrid Attribution

There are advantages in each of the AA model categories, however, each of them is
still unable to accurately attribute neural vs. human texts to their authors consistently.
Furthermore, the issue of different decoding strategies, also, make the AA models unable
to generalize well [19, 33, 52, 55]. Therefore, a few researchers have proposed hybrid
classifiers, which are ensembles of two or more of the AA categories.

TDA-based detector, an ensemble of the Transformer-based and statistical AA tech-
niques is used to solve the DTD task. This classifier involves obtaining the attention
matrices of BERT’s word representations of texts generated by GPT-2 and GROVER.
Next, using these BERT word representations, 3 interpretable TDA-based features are
extracted: (1) Topological Features: Calculating the first 2 betti numbers (i.e., topolog-
ical features based on the connectivity of n-dimensional simplicial complexes) of the
attention matrices; (2) Features derived from barcodes: Calculating characteristics of the
barcode plots of the persistent homology of the attention matrix; (3) Features based on

the distance to patterns: Calculating the distance in features in the attention graph. This
feature is used to capture linguistic patterns. Finally, TDA-based detector is a logistic
regression model, trained on an ensemble of the three TDA features [24]. Comparing
this model to pre-trained and fine-tuned BERT models, it performs comparably to BERT
models fine-tuned on GPT-2 small Webtext, GPT-2 XL Amazon Reviews, and GROVER
News [24]. While more analysis is required to understand why the TDA-based detector

performs well, this approach has interpretable qualities that should be explored in future
work.

Fingerprint detector is another hybrid classifier for DTD. It is an ensemble of fine-
tuned RoBERTa embeddings and CNN classifier [29]. Fingerprint detector solves the AA
task by detecting 108 neural authors. The Fingerprint detector achieves a 70% accuracy
(top-10). This shows promise in the area of detection of deepfake texts in-the-wild, where
there are k > 100 authors. To continue the quest for generalizable classifiers, FAST uses a

13https://detectgpt.ericmitchell.ai/
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Graph Neural Network (GNN) architecture with RoBERTa to capture the factual structure
of neural and human texts [27]. It detects deepfake texts by calculating the RoBERTa
word embeddings of the texts and then extracting the graphical representation [27].
Next, it uses a GNN to capture sentence representations that consider coherence [27].
The experiments included detecting texts generated by GROVER and GPT-2. FAST

outperforms GROVER detector and other baselines significantly. Surprisingly, it performs
the best at detecting human-deepfake text pairs, achieving over 93% accuracy while
unpaired texts achieve over 84% accuracy.

CoCo is a coherence-based contrastive learning model [68]. It is architecturally
similar to FAST in that it uses a graphical neural network to represent the sentences of
human-written vs. deepfake texts. Since human-written texts are more coherent than
deepfake texts, they sentences share more entities [68]. The texts are represented as
RoBERTa embedding weights which are concatenated with the sentence-level graphical
representations of the texts. These concatenated features are input for an LSTM with
attention. Lastly, CoCo is trained using the sum of the coss-entropy loss and contrastive
loss [68] to improve model performance. Thus, it achieves an F1 score of 83% and
94% using the full dataset for GROVER, and GPT-2, respectively [68]. Furthermore,
calculating the graphical metrics showed that in terms of the number of vertex and edges,
human-written texts have significantly more graphical features than deepfake texts.

Lastly, [23] explore the most realistic scenario of misinformation where malicious
users of DTGs, pair neurally generated misinformation with fake/real images to increase
the authenticity of the news article. DIDAN is a multi-modal DTD evaluated on a multi-
modal dataset containing both texts and images [23]. This DTD encodes the texts with
BERT encoder and investigates Visual-Semantic representations from images and texts.
These features are used to evaluate the semantic consistency between linguistic and
visual components in a news article [23]. An authenticity score is defined to represent
the probability of an article being human-written. It is calculated by extracting the co-
occurrences of named entities in the news articles and captions [23]. They build different
variations of dataset, some only containing text. Using only the text dataset, DIDAN is
compared to GROVER detector as well as other baseline models, and outperforms all of
them [23].
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Authorship Obfuscation Adversarial Attack
Has a strict definition of writing style Has a loose definition of writing style

Requires consistent/uniform change in writing style Does not require consistent/uniform change in writing style
Requires semantics to be preserved Does not always require semantics to be preserved

Table 2.4: Differences between Authorship Obfuscation and Adversarial Attack

Stylometric
Obfuscation

Lexical
Obfuscation

Syntactic
Obfuscation

Morphological
Obfuscation

Orthographic
Obfuscation

Authorship
Obfuscation

for Deepfake Texts

Statistical
Obfuscation

Figure 2.7: Taxonomy of Authorship Obfuscation algorithms/techniques for Deepfake
Text Detection

Figure 2.8: Number of AO techniques for Deepfake Text Detection per category in the
Taxonomy. Y -axis is the number of detectors.
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AO technique Scenario Category Interpretable Preserves
semantics Obfuscated dataset

Homoglyph [53, 89] Black-box Stylometric (Orthographic) ✓ ✓ GROVER & GPT-2
Upper/Lower Flip [89] Black-box Stylometric (Morphological) ✓ ✓ GROVER & GPT-2
DeepWordBug [25, 54] Black-box Stylometric (Lexical) GPT-2 & GPT-3

Misspellings attack [53, 89] Black-box Stylometric (Lexical) ✓ GROVER & GPT-2
Whitespace attack [89] Black-box Stylometric (Lexical) ✓ GROVER & GPT-2
Deduplicate tokens [57] Black-box Stylometric (Lexical) ✓ Human-Machine Pairs

Shuffle tokens [57] Black-box Stylometric (Syntactic) ✓ Human-Machine Pairs
Retain only (non)-stopwords [57] Black-box Stylometric (Syntactic) ✓ Human-Machine Pairs

Retain tokens in
high/low frequency [57] White-box Statistical ✓ Human-Machine Pairs

Replace text with
likelihood ranks [57] White-box Statistical ✓ Human-Machine Pairs

Replace text with specific
linguistic features [57] White-box Statistical ✓ Human-Machine Pairs

TextFooler [54, 55] Black-box Stylometric (Lexical) ✓
GPT-2 medium, GPT-2
XL, GPT-3, GROVER

Varying sentiment [56] Black-box Stylometric (Lexical) ✓ GROVER
Source-target exchange [56] Black-box Stylometric (Syntactic) ✓ GROVER

Entity replacement [56] Black-box Stylometric (Lexical) ✓ GROVER
Alter numerical facts [56] Black-box Stylometric (Syntactic) ✓ GROVER

Syntactic perturbations [56] Black-box Stylometric (Syntactic) ✓ GROVER
Article shuffling [56] Black-box Stylometric (Syntactic) ✓ GROVER

Selecting highest human
-class probability [28] Black-box Statistical

Russian neural &
human-written texts

Adding detector’s log-probability
to sampling technique [28] White-box Statistical

Russian neural &
human-written texts

Varying the text decoding
strategy (and its parameters) [55] White-box Statistical ✓

GPT-2 Large, GPT-2 XL,
GPT-3, GROVER

Varying the number of
priming tokens [55] White-box Statistical

GPT-2 Large, GPT-2 XL,
GPT-3, GROVER

DFTFooler [55] Black-box Stylometric (Lexical) ✓
GPT-2 Large, GPT-2 XL,

GPT-3, GROVER

Random Perturbations [55] Black-box Stylometric (Lexical)
GPT-2 Large, GPT-2 XL,

GPT-3, GROVER
ALISON [59] Black-box Stylometric (Syntactic) ✓ ✓ TuringBench
Mutant-X [59] Black-box Stylometric (lexical) ✓ TuringBench
Avengers [59] Black-box Stylometric (lexical) ✓ TuringBench

Table 2.5: Authorship Obfuscation Techniques for Deepfake Texts. With cited papers
that implemented them.

2.4 Authorship Obfuscation for Deepfake Texts

In the task of DTD, AA models are evaluated under adversarial settings to assess their
robustness. Due to the security risk, DTGs pose, it is important that AA models are robust
to adversarial perturbations. The problem of administering adversarial perturbations to
texts to cause an accurate AA model to assign inaccurate authorship is called Authorship
Obfuscation (AO). This is because AO is the process of masking an author’s writing
style/signature to conceal the identity, usually for privacy reasons [100]. It is a strict
case of Adversarial attacks [101], as the goal is to obfuscate writing style and preserve

24



semantics, such that both human and automatic detection is evaded. See the differences
between the two in Table 2.4. AO is a well-studied problem in the traditional AA
community [100, 102–105], and has been extended to the niche AA community for DTD.
See Table 2.5 for a detailed taxonomy of AA solutions for deepfake text detection and
Figure 2.8 for the count of AO techniques, researchers have used to evaluate these AA
models. This AO for deepfake texts problem is formulated as:

DEFINITION OF AO FOR DEEPFAKE TEXTS. Given an AA model F (x) that

accurately assigns authorship of text t to k which can be either a human or a

DTG author, the AO model O(x) slightly modifies t to t∗ (i.e., t∗←O(t)) such that

the authorship is disguised (i.e., F (t∗) ̸=k) and the difference between t∗ and t is

negligible.

Thus, we survey all AO techniques employed to obfuscate deepfake texts in dif-
ferent categories, as illustrated in Figure 2.7: Stylometric Obfuscation, and Statistical

Obfuscation.

2.4.1 Stylometric Obfuscation

In order to build a robust stylometric classifier, as is observed in Section 2.3.1, an
ensemble of features that capture several linguistic structures such as - Lexical, Syntax,
etc. are required. However, to obfuscate an author’s writing style, only one of the
linguistic structures may be perturbed. Therefore, all the stylometric AO techniques
only target a specific linguistic structure, unlike AA classifiers. Based on the stylometric
obfuscation techniques used to obfuscate deepfake texts, we further divide this category
into 4 categories - Lexical, Syntactic, Morphological, and Orthographic Obfuscation.

2.4.1.1 Lexical Obfuscation

Lexical relates to the word choice of a piece of text. Thus lexical obfuscation algorithms
aim to mask authors’ writing styles by replacing certain keywords with their synonyms
while preserving semantics. Below, we discuss different techniques used to achieve
lexical obfuscation for deepfake texts. Misspellings attacks may be considered a trivial
AO technique, however, it is effective in obfuscation. The misspellings attack uses a list of
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commonly misspelled words14 to determine which words to replace with their misspelled
version. This AO technique is successful in obfuscating texts generated by GPT-2 and
GROVER, and thus, evades detection of the following AA models - GLTR, GROVER, and
GPT-2 detector [53]. GROVER detector is further evaluated with this AO technique by
obfuscating texts generated by GROVER. With only less than 10% of the texts perturbed,
this attack is 94% successful [89]. However, this attack can be maneuvered by spell
check algorithms, making the obfuscation technique, not robust [53]. In addition to
misspellings, a whitespace attack (“will face” → “willface”) is used to evaluate the
robustness of GROVER detector. With only less than 4% of the texts perturbed, the attack
is 85% successful [89].

Interesting artifacts/characteristics of deepfake texts still remain somewhat elusive.
Therefore, perturbing these deepfake texts could reveal characteristics that have evaded
the AA & AO community. Hence, using linguistic and statistical perturbations of words
in the text, [57] extract important characteristics of deepfake text. For the linguistic-
based perturbations, a lexical obfuscation technique is implemented - Deduplicate tokens

which keeps the first occurrence of a token/word as is and replaces other occurrences
with [MASK] token. This AO technique surprisingly improves the AA performance,
suggesting that reducing the number of token occurrences may remove trivial features,
causing the AA classifiers to focus on the more important features [57]

Next, texts generated by GROVER are obfuscated with the following techniques: (1)
varying sentiment: changing the sentiment of words by replacing the word with another
word of a different sentiment (positive→ negative); and (2) entity replacement: replace
entity with a useless entity [56]. Results suggest that both GROVER and GPT-2 detectors

are vulnerable to these lexical-based perturbations.
Mutant-X [100] and Avengers [106] are used as baseline AO techniques to obfuscate

the TuringBench dataset [59]. Mutant-X uses a genetic algorithm to search for suitable
word replacement such that the semantics are preserved and the internal/substitute AA
model misclassifies [100]. This process is notorious for its expensive computational
complexity [107]. An internal model is used because, in the real world, the original
AA model may not be known. Moreover, Mutant-X generates the obfuscated text and
tests if it has evaded the AA model. If evasion is not successful, the process is repeated
and tested for the defined max number of iterations [100]. These factors significantly

14https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_
misspellings/For_machines
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increase the runtime of Mutant-X. Furthermore, the success of Mutant-X is dependent on
how strong the internal AA model, which undermines the generalizability of Mutant-X.
Hence, Avengers [106], an improved version of Mutant-X is proposed. Avengers is an
ensemble version of Mutant-X. Unlike, Mutant-X, the internal AA model is an ensemble
AA model, such that each classifier out of N classifiers focuses on different linguistic
structures - syntax, semantics, etc.

DeepWordBug [108], a realistic character-level black-box attack is used to evaluate
the robustness of 3 types of model - Statistical classification model [109], RoBERTa [110],
and an Ensemble model (Statistical model + RoBERTa) [54]. It perturbs characters such
that misclassification is maximized, while the Levenshtein edit distance is minimized
[54, 108]. These models were trained with GPT-2 medium webtext and tested 3 separate
test datasets - human vs. neural webtext from GPT-2 medium, GPT2 XL, and GPT-3 [54].
While deep learning-based classifiers achieve a higher performance in unperturbed/clean
texts, statistical classifiers were found to be more robust to obfuscation [54]. Thus, the
Ensemble model merges the advantages of high performance and adversarial robustness
of the 2 models. DeepWordBug did not reasonably degrade the Ensemble model’s
performance, suggesting that DeepWordBug is not robust for this task. However, when
DeepWordBug is used to evaluate the robustness of GROVER detector (Mega model)
and OpenAI detector (base and large models) by perturbing the GPT-2 generated Yahoo
answers & Yelp Polarity vs. Human datasets, it is successful [25]. In fact, DeepWordBug
is found to be a very successful AO technique, reducing the accuracy of the Yahoo and
Yelp datasets from 67.9% to 0.4% and 87.4% to 6.9%, respectively [25]. This suggests
that the OpenAI and GROVER detectors are not robust to this kind of AO technique when
evaluated on GPT-2 generated Yahoo answers & Yelp Polarity.

In addition, TextFooler [111], a realistic word-level black-box attack is used to evalu-
ate the robustness of the Statistical model, RoBERTa, and Ensemble model (Statistical
model + RoBERTa) [54]. TextFooler replaces words with synonyms based on cosine
similarity within the embedding space [54, 111]. Based on the results, TextFooler is
a robust AO technique, especially for Transformer-based models. Furthermore, as a
substitute for human judgment, MAUVE is used to measure the human judgment of
obfuscated texts. [54] finds that adversarial perturbation reduces MAUVE score which
means that text quality is degraded and therefore deepfake texts are likely to be detected
accurately by humans.

To further evaluate the robustness of the AA models - GLTR (GLTR-BERT & GLTR-
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GPT2), GROVER detector, BERT-Defense, FAST, and RoBERTa-Defense, texts generated
by GPT-2 and GROVER are obfuscated with TextFooler, Random Perturbations [55], and
DFTFooler [55] AO techniques. Random Perturbations is an attack method that replaces
random words with synonyms while preserving the semantics. DFTFooler is similar to
TextFooler but only needs a publicly available pre-trained LM to generate obfuscated
texts. This makes DFTFooler not as computationally costly as TextFooler [55]. Also,
DFTFooler perturbations are transferable [55]. To find a valid word substitution using
DFTFooler, there are 4 steps: (1) synonym extraction; (2) POS checking; (3) Semantic
Similarity checking; and (4) Choose a synonym with low confidence as measured by a LM.
BERT and GPT-2 XL are used as the LM for DFTFooler. Results suggest that TextFooler
is a stronger AO technique than DFTFooler, but performs comparably, achieving 23-91%
Evasion Rate [55]. Evasion rate is defined as the fraction of perturbed deepfake text
that evades detection by an AA model. A high evasion rate indicates a high attack
success. Furthermore, using a bi-directional LM (BERT) as the backend for DFTFooler,
and increasing the number of words perturbed, increases the evasion rate of DFTFooler.
Based on the results, FAST is the most adversarially robust AA model. This may be due
to the hybrid nature of the model as it combines the benefits of stylometric, statistical, and
deep learning-based techniques as discussed in section 2.3. Another reason for FAST’s
superior performance is its use of semantic features based on entities [55].

2.4.1.2 Syntactic Obfuscation

Syntax relates to the order of words in a piece of text. Thus, syntactic obfuscation
techniques change the original arrangement of words in a document, in order to obfuscate
the author’s writing style. Below, we discuss such techniques used on deepfake texts.
Characteristics of deepfake texts are extracted by perturbing the syntactic structure of
the texts with the following syntactic perturbation techniques: (1) Shuffle tokens which
randomly shuffles the word order of the texts; (2) Retain only (non)-stopwords which
removes all words, except for stopwords [57]. The accuracy of the AA model only
dropped marginally. This suggests that these AO techniques are not robust. It also implies
that these syntactic features are not important for DTD.

The robustness of GROVER detector is further evaluated by syntactic obfuscation
techniques on texts generated by GROVER. These techniques are: (1) source-target

exchange: interchanging the source and target; (2) alter numerical facts: distort nu-
merical facts; (3) syntactic perturbations: changing the word form by adding/removing
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punctuation (“There is”→ “There’s”); and (4) article shuffling: replacing N% of a real
(human-written) article’s sentences with N sentences of a fake (neural) article [56]. All
AO techniques were successful, except article shuffling. Also, stylometric classifiers
were found to be more robust, except when perturbed under stricter constraints, such as
perturbing a large percentage of texts [56].

ALISON [59] is another syntactic AO technique. It reduces inference time by 100-
200x when compared to SOTA AO techniques such as Mutant-X [100], and Avengers
[106]. It has an internal classifier trained on a set of linguistic AA features, which allow
ALISON to generate suitable phrase replacements that preserve semantics. ALISON is
used to evaluate the robustness of 3 Transformer-based models - BERT, DistilBERT, and
RoBERTa by obfuscating 2 datasets - TuringBench and Blog Authorship Corpus [59].
It is able to obfuscate the datasets well, causing the AA models to underperform on
obfuscated texts. Furthermore, ALISON is able to preserve the semantics of the original
text much better than their baseline AO techniques (i.e., Mutant-X and Avengers).

2.4.1.3 Morphological Obfuscation

Morphology is the study of word forms. Thus, morphological obfuscation techniques
change the configuration of a word (e.g. “won’t” → “will not”). Upper/Lower Flip
(“Leaving” → “LeavIng”) is a morphological AO technique that may be considered
trivial. However, it is successful in obfuscating texts generated by GROVER which
significantly reduces the performance of GROVER detector [89]. With only about 2%
of the texts perturbed, it achieved a 96% success rate in evading GROVER detector’s
detection [89].

2.4.1.4 Orthographic Obfuscation

Orthography is the spelling convention of a language. Thus, orthographic obfuscation
techniques aim to change the original spelling convention used in a piece of text to mask
an author’s writing style. Below, we discuss such techniques. Homoglyph attack is an
orthographic perturbation technique that changes the unicode of texts. It changes English
characters to cyrillic characters. This attack is almost imperceptible to the human eye and
therefore, preserves semantics. The robustness of GPT-2 detector, GROVER detector, and
GLTR is evaluated by obfuscating texts generated by GPT-2 with the homoglyph attack.
GPT-2 detector’s performance dropped from 97.44% to 0.26% Recall. The perturbed
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texts caused GROVER detector to grossly misclassify deepfake texts as human-written
texts and GLTR to shift the distribution (i.e., color scheme) of the perturbed texts [53].
GROVER detector is further evaluated on obfuscated texts generated by GROVER [89].
Homoglyph attack achieves a 97% success rate in perturbing GROVER detector [89].
However, this AO technique can easily be rendered ineffective by using spell check
algorithms [53].

2.4.2 Statistical Obfuscation

In order to extract statistical characteristics from deepfake texts, the following statistical
AO techniques are implemented: (1) Replace text with likelihood ranks; (2) Replace text

with specific linguistic features, such as Part of Speech, Dependency Trees, Constituent

Trees and Named Entities; and (3) Retain tokens in high/low frequency regions which
defines a frequency gap score to calculate and extract the high and low-frequency words
in the text [57]. The following 3 datasets are perturbed - human-machine pairs, Writing
Prompt dataset [112], and CnDARIO (Chinese Novel Dataset crAwled fRom mIxed
online sOurces) generated with GPT-2 fine-tuned with Chinese Literature. These datasets
are in 3 different domains, respectively - Online Forum, News, and Literature. Results
suggest that the high/low frequency region perturbations is the most effective obfuscation
technique [57]. This further suggests that the high/low-frequency region feature could be
an effective feature for distinguishing deepfake texts from human texts.

ruBERT for DTD is evaluated on 2 AO techniques - (1) calculating the class proba-

bilities of each label and only selecting the texts with the highest human class probability;
(2) adds the detector’s log-probability to the beam search decoding strategy during

generation so that only more human-like texts are generated [28]. These attacks achieve
46% and 56% success rates, respectively. RoBERTa-Defense is evaluated by changing
the sampling distribution of the deepfake texts in the test set. This obfuscation technique
involves: (1) varying the text decoding strategy (and its parameters); and (2) varying the

number of priming tokens [55]. The quality of the obfuscated deepfake texts is measured
by GRUEN [113], a metric used to measure the linguistic quality of AI-generated texts
(deepfake texts). GRUEN has a high correlation with human judgments. The score ranges
from 0 − 1, and a higher value indicates high linguistic quality. Linguistic quality is
based on grammaticality, non-redundancy, discourse focus, structure, and coherence [55].
Using GRUEN, a successful attack is defined as an attack that degrades the performance
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of the AA models, with little to no linguistic quality (GRUEN score) degradation [55].
The results suggest that changing the decoding strategy is an effective AO technique.
Even GLTR, a statistical AA model is fooled by this AO technique [55].

2.5 Evaluation of AA/AO Methods

2.5.1 Machine-based Evaluation

2.5.1.1 Authorship Attribution

To evaluate AA models, literature often used popular classification metrics such as
Precision, Recall, Accuracy, and F1 score. For instance, [53] used the recall metric to
evaluate the robustness of AA models toward AO techniques. Previous works evaluate
the generalizability of AA models, not only on a standard single test set [19,30,33,52,55]
but also on several out-of-sample distributions [25]. For example, [25] evaluate GROVER

detector (Mega model) and OpenAI detector (base and large models) on three variants
of test sets, namely in-distribution, out-of-distribution and in-the-wild datasets. In-

distribution datasets are test sets sampled from the same distribution of the training set,
while Out-of-distribution datasets are those sampled from a different distribution from
the training set. This test dataset is created using PPLM [11] and GeDi [51] to control the
GROVER and GPT-2 generations [25]. The in-the-wild datasets are test sets generated
from a DTG, different from the DTG used to generate a training set [25]. To build
this in-the-wild dataset, training sets contain texts generated from GPT-2 and GROVER
pre-trained models, while test sets contain texts generated from GPT-3 and a fine-tuned
GPT-2 model [25]. In general, AA models perform well on in-distribution datasets, but
suffer on out-of-distribution datasets, and even more on in-the-wild datasets.

2.5.1.2 Authorship Obfuscation

To evaluate AO models, literature often uses the success rate [28, 89], a fraction of
successfully obfuscated (i.e., misclassified) texts which were accurately attributed prior
to obfuscation. Another measure for AO models is evasion rate [55] which is the fraction
of perturbed deepfake texts that evade the detection by an AA model. Next, due to
the time and financial cost required to carry out a human-based evaluation, MAUVE,
a metric that statistically emulates human judgments in terms of the linguistic quality
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(i.e., coherency) of neural texts vs. human-written texts, has been used on the AO
problem [54]. That is, MAUVE is used as a substitute for human evaluation of obfuscated
text vs. non-obfuscated text [54]. Furthermore, based on the strict definition of AO, it
is sometimes important that the obfuscated text preserves the semantics of the original
text. Hence, literature has measured the degradation of semantics between original and
obfuscated texts, namely METEOR [114], Universal Sentence Encoder (USE) [115]
Cosine similarity, and GRUEN [113]. These metrics all correlate with human judgments
and a high score indicates an obfuscated text with well-preserved semantics.

2.5.2 Human-based Evaluation

There is currently no known human-based evaluation of AO models. The closest one is
the machine-based simulation by MAUVE [54]. As such, in this section, we focus our
review on the human-based evaluation of AA models, especially in the context of DTD.

2.5.2.1 Human Evaluation without Training

A set of research works recruited human participants (often from crowdsourcing platforms
such as Amazon Mechanical Turk (AMT)) and tested whether they can distinguish
deepfake texts from human-written texts. A simple introduction to the tasks is given,
but no special training is done for human participants in this line of research. For
instance, [16] examined the quality of texts generated by GROVER vs. human-written
texts by humans and found that humans find GROVER-written news more believable
than human-written news. [116] asked human participants to detect infilled texts filled by
deepfake texts (e.g., she drank [blank] for [blank]) and found that humans had difficulty
in detecting the infilled texts filled by deepfake texts. [1] introduced a benchmark for
AA research, TuringBench, evaluated the performance of humans in distinguishing 19
pairs of human vs DTG (e.g., human vs. GPT-1 or human vs. FAIR) using TuringBench,
and found that humans on average scored 51-54% of accuracies, only slightly better than
random guessing. Unsurprisingly, [31] also found that humans were unable to accurately
detect GPT-3 texts from human-written texts. [33] evaluated the quality of top-p and
top-k decoding strategies, and found that (1) AA models detect deepfake texts generated
by top-k decoding better than humans, but (2) humans detect deepfake texts generated
by top-p decoding better than AA models. Lastly, [36] found that both humans and AA
models struggled to detect neural fake reviews.
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2.5.2.2 Human Evaluation with Training

Another line of research attempted to first train human participants about DTD tasks
and measure the performance improvements afterward. For instance, when human
participants were trained to use GLTR [2] in detecting deepfake texts, thanks to the
color scheme of GLTR (see Figure 2.6), human performance increased from 54% to
72% in accuracy. To further evaluate deepfake texts, [117] proposed a framework
to collect a large number of human annotations via a game, Roft15, on the quality
of neural vs. human texts. Human participants were told to detect the boundary at
which an article transitions from human-written to AI-generated. Only 16% of human
participants were able to correctly identify the accurate boundaries [117]. [34] studied
three training strategies–instruction-based, example-based, and comparison-based, and
found that example-based training is the most effective to improve human performance
for solving DTD tasks (achieving the average accuracy of 55%) across the domains of
story, recipe, and news. Next, [23] investigated how accurately humans can classify real
vs. generated articles with and without images, using different types of news datasets:
real captions and articles, real captions, and generated articles, generated captions and
real articles and generated captions and articles. By conducting an AMT-based study,
untrained and trained human participants were able to achieve an average of 46% and
68%, respectively. Further investigation on the trustworthiness of the different article
types based on style, content, consistency, and overall trustworthiness reveals that humans
were skeptical about the overall trustworthiness of news articles across all four types [23].
Finally, recently, [118] proposed a framework for scrutinizing deepfake texts through
crowdsourced data annotation in a scalable fashion, where deepfake texts were shown to
have various error types: language-errors (i.e., lack of coherency and consistency in text),
factual-errors, and reader-issues (i.e., text is too obscure or filled with too much jargon so
that understanding is negatively impacted).

In conclusion, literature has found that humans alone cannot detect deepfake texts
accurately, achieving detection accuracies only slightly better than random guessing.
When humans are properly trained about the characteristics of deepfake texts, further,
this detection accuracy tends to increase but only by small margins.

15http://roft.io/
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2.6 Applications

Deepfake Detection: Successful solutions for AA/AO tasks can be useful in many
applications. For instance, recently, the generation of realistic AI-made images16 and
videos, so-called “deepfakes”, have flooded the Web. While most of these deepfakes
images/videos are made for humor, some are malicious in generating misinformation,
spreading political propaganda, or attacking individuals [119]. In literature, in particu-
lar, [23] studies the realistic scenario where real images would be paired with deepfake
texts to increase the authenticity of a news article as well as evade detection. In such a
setting, successful AA solutions can point out the non-human nature of deepfake texts
to users or can be used to extract features of deepfake texts for downstream deepfake
detection models.

Chatbot Detection: Another application is for AA solutions to detect suspicious mes-
sages (e.g., phishing or chatbot messages) that may have been (partially) generated by
DTG. Similar to deepfake texts of news format, shorter or informal chatbot messages
are also hard to discriminate when generated by machines [120, 121]. An example of
a state-of-the-art chatbot is ChatGPT [122] which has been used to generate medical
writings [90, 123], finance writings [124], etc. These applications of ChatGPT have also
increased the likelihood of cheating in academic writing [125]. Thus, AA models for
deepfake text detection will be beneficial in distinguishing chatGPT-generated texts from
human-written texts.

Anonymity Preservation: On the other hand, successful AO solutions can be used to
help individuals who have needs to share their writings without jeopardizing their secret
identity. For instance, an NGO activist or whistleblower may submit her op-ed to news
media after making sure that no popular AA solutions can attribute the writing to her.

2.7 Summary

With the rise of deepfake texts that were generated by large-scale language models, we
are currently in an arms race between generation and detection of deepfake texts. In this
work, we comprehensively survey two important problems of deepfake texts: Authorship
Attribution (AA) and Authorship Obfuscation (AO). We first categorize existing AA

16https://thispersondoesnotexist.com/
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solutions into four types of stylometric, deep learning-based, statistical, and hybrid
attribution. Similarly, we categorize existing AO solutions into two types of stylometric
and statistical obfuscation, and elaborate pros and cons of representative methods therein.
In addition, we discuss different evaluation methods for AA and AO problems in the
context of deepfake texts, and finally, share a few important challenges that we feel
lacking currently. By and large, we believe that the data mining community is well-
positioned to be able to contribute to significant improvement in both AA and AO research.
Despite their close implications in security and privacy, with respect to the underlying
methods used, their problem formulation as supervised or unsupervised learning, and
their focus on the accuracy and running time as major metrics. Lastly, to mitigate
the challenges of accurate detection of deepfake text, [126] proposes watermarking
these text-generative language models. This entails embedding humanly imperceptible
signals into the language models such that they generate semantically relevant texts,
unnoticeable to humans but noticeable to detectors. These watermarking [126, 127]
techniques attempt to solve the security risks that these language models pose. However,
as these watermarking techniques have not yet been widely adopted, we still have to
rely on AA and AO solutions for deepfake text detection. Also, as such watermarking
techniques are a recent/new development, their robustness to strong AO techniques has
not yet been evaluated.
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Chapter 3 |
Authorship Attribution for Deep-
fake Text Generation

3.1 Introduction

As novel NLG techniques become more sophisticated and prevalent, corresponding pit-
falls and risks of such technologies also increase. Adversaries may use such technologies
to generate realistic artifacts to trick naive users into fraudulent activities (e.g., chatbot
conversation in a phishing scam or deepfake-based disinformation campaign). Therefore,
the need to distinguish deepfake-generated texts from human-written ones, so-called the
Turing Test, naturally arises. Furthermore, in some security applications, merely being
able to identify deepfake-generated text may not be sufficient. Instead, a more critical
solution would be to tell which NLG method among many candidates has generated a
given text in question–so-called the Authorship Attribution (AA) problem. To improve
our understanding of this newly-emerging problem, we empirically investigate three
versions of the AA problem in this paper. For all three versions, we assume that there are
k different NLG methods1.

Problem 1 (Same Method or Not). Given two texts T1 and T2, determine if both T1 and

T2 are generated by the same NLG method (or human) or not.

Problem 2 (Human vs. Deepfake). Given a text T1, determine if T1 is written by a

human or generated by any k NLG methods.

Problem 3 (Authorship Attribution). Given a text T1, single out one NLG method

(among k alternatives) that generated T1.
1In the future, we envision that k can be huge, say 1000, but for this experiment, we set k=8.
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We model P1 (Problem 1) and P2 (Problem 2) as the binary classification problem,
while P3 (Problem 3) as the multi-class classification problem. All three problems are
related, with several motivations as follows.

First, solutions to P1 may be useful when one needs to determine the plagiarism
or identity theft issue of an NLG method. For instance, suppose GPT-2 becomes very
powerful in the near future so that other NLG methods may even try to mimic the
characteristic features in the GPT-2-generated texts. Then, a solution to P1 can determine
if two texts in question are both generated by GPT-2 or not. Second, as NLG methods
become ubiquitous, the threat of generating misinformation at scale increases naturally.
Thus, using solutions to P2, accurately distinguishing between deepfake- and human-
generated texts is required to mitigate the security risks that NLG methods could pose.
Finally, as to P3, as the number of state-of-the-art NLG methods increases, it will be
beneficial not only just to separate them into two camps but also find out which generators
are used. Furthermore, knowing each generator’s writing signature or style moves us
closer to quenching the security threats that they may introduce.

3.2 Related Work

3.2.1 Features for Authorship Attribution

Predicting an author based on their writing signature is called Authorship Attribution
(AA). This AA problem has been previously and even recently solved with n-grams
[84, 128–133]. Next, as complex datasets emerge, other techniques such as POS-tags
[134–136], topic modeling (i.e. LDA, AT and DADT) [137–139], POSNoise [140] and
LIWC [133, 141] are explored and used to solve the AA problem. However, [134] claim
that n-grams and POS-tags are not sufficient for solving the AA problem, and sometimes
negatively impact classifiers’ performance. Therefore, they recommend using discourse
embedding features.

Furthermore, [142] attempts to solve the AA problem with online messages by
investigating four types of writing-style features (i.e., lexical, syntactic, structural, and
content-specific features). Structural and content-specific features were the best to assign
authorship [142].

Next, [131] examines the use of content and function words as relevant features for
AA. [143] focuses on content words and so parse phrase-structures. Consequently, [144]
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claim that word pairs could make strong features and extract function words, content
words, similarity and relatedness. They find function words to be the most robust
feature [144]. To establish distinct writing styles further, [145] extract lexical, syntactic,
and stylistic features using bag-of-words (freq. of unigrams), POS-tags, Dependency
relations, and Chunks (unigram freq.), respectively for the AA problem. With the new
wave of nuanced techniques to solve the AA problem, [146] use syntax tree for each
sentence to analyze grammar. Finally, [121] use readability scores to distinguish human-
written texts from deepfake texts, another form of AA. The results suggest that readability
is a vital feature for distinguishing authors.

3.2.2 Classifiers for Authorship Attribution

Several well-established classical machine learning classifiers have been applied to the
AA problem, including Naive Bayes [147, 148], SVM [121, 145, 149], Conditional Tree
[128], Random Forest [128, 149, 150], and KNN [150]. However, due to improvements
in neural networks, recently, CNN (Convolution Neural Network) is said to be even more
suited for the AA problem [134, 136, 151]. CNN architecture is better suited to represent
the characteristics of each author. Consequently, [134] improve the CNN’s use with
discourse features (i.e., n-grams and POS-tags). [152] further improve upon CNNs with
the use of word embeddings to represent texts. Lastly, RNNs have also been shown to be
well-suited for representing the authors’ distinct writing styles [153].

3.2.3 Applications of Authorship Attribution

The applications of AA are vast and include: assigning authorship to literature/text, and
ascertaining the demography of an author (e.g., age, gender, native language) [154]. AA
can also be applied to predicting author(s) of source code [155], chatbot detection [141],
and even detecting authors intentionally trying to mask their writing style [156, 157].
Finally, our work bears similarity to [158], which investigates the stylistic properties of
different neural text generation techniques (i.e., Ngram-based and RNN-based).

3.3 Generation of Texts

We have nine text generators–i.e., one human writer and eight neural deepfake generators.
All eight neural generators require a short prompt to begin their generation and the
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PROMPT
Putin and Xi are using the coronavirus crisis to extend their
control. Across the world, Trump is struggling to keep up

Human
. . . Donald Trump’s shock announcement shutting down travel from much of Europe came
with the customary back-pedaling common to many of his hastily announced initiatives.
At first, Trump said trade and travel would be targeted, in his latest attempt to stem the spread . . .

CTRL
. . . . President Vladimir Putin, meanwhile, says there was no reason why Moscow would
spread such diseases. But both leaders have been unable so far to . . . [read more]
what do you think about this story? do we need another Ebola scare or two? . . .

GPT-1
. . . with them in a war that has been going on for decades now - but he’s still not strong
enough. " " i’m sorry about your family. it must be hard being so far away from home. "
she said softly. " yes, we’re all very lonely here. there wasn’t much time before . . .

GPT-2
. . . Putin’s paranoia over the contagion of Ebola is a common theme. As his recent visit
to Washington shows, he’s playing a dangerous game. And here’s what Putin wants Putin
wants to use Ebola as a pretext for imposing further Russian sanctions on the West. . . .

GROVER
. . . hours after world cup workers hand-picked by Putin to fix problems faced by workers
in turkey and Venezuela, a new threat to trump is receding.According to Wikileaks,
the Coronavirus outbreak is receding and the Russian leader, Putin,. . .

XLM
. . . with Russia alone ruling over Europe while china under Mao Zedong rules
Asia in turn which makes it difficult for him politically but financially as well being
president / CEO of America first bank & chairman’s nominee at CIA . . .

XLNET
. . . with china or Russia in his efforts at de-destructuring America from the
financial crisis that has taken place over the past two years of this century as well
a global economic downturn that will continue for many more months into next year . . .

PPLM
. . . the latest developments in Syria, Ukraine, Russia’s intervention in the
middle east and china’s rise to global power. In Moscow, a group of Russian
diplomats, who did not want their real names to be reported on the record. . .

FAIR
.. He has ordered his federal agencies to step up efforts to combat it and to warn of new threats.
in Washington, Trump’s national security adviser, h.r. mcmaster, said on Monday the U.S.
government had seen signs of the bug and that countries in the Middle East were on high alert. . . .

Table 3.1: Snippets of nine texts using the titles of human-written articles as the prompt
to neural methods.

number of words to generate. These eight generators were chosen because we found
that they had the best pre-trained models for our task. We used the titles of news articles
(written by human journalists) as the prompt and set 500 as the number of words.

1. Human. We collected recently-published news titles and contents in mostly
Politics–819 from CNN, 132 from Washington Post, and 113 from the New York
Times. As professional reporters write these news articles, they represent human-
written texts. Then, we used the news titles as the prompts for other neural methods.

2. CTRL. Also known as “Conditional Transformer Language Model For Control-
lable Generation,” CTRL2 is a huge language model with 1.63 billion parame-
ters [10]. The model was trained on control codes to guide the styles and contents

2https://github.com/salesforce/ctrl
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Human
Deepfake

Measure CTRL GPT-1 GPT-2 GROVER XLM XLNET PPLM FAIR
# of samples 1,066 1,066 1,066 1,066 1,066 1,066 1,066 1,066 1,066

AVG word count 432.31 530.03 345.03 199 356.76 441.32 452.58 228.89 250.42
SD word count 270.82 73.51 10.79 74.15 114.96 34.67 32.59 64.13 39.94

AVG sentence count 26.87 33.02 32.64 15.68 21.64 3.97 5.02 13.53 17.53
SD sentence count 19.49 21.18 5.55 6.99 9.65 1.71 1.97 4.61 4.88

Table 3.2: Summary statistics of nine generated texts (one by human and eight by neural
methods).

of generated texts. Among the 50 control codes available, we used the News control
code to generate long articles.

3. GPT. The OpenAI GPT-1 is built with Transformers. It was trained and modeled
after a simple concept - to predict the next token, given the previous token [7].
We used the medium GPT-1 model with 345 million parameters since it was
computationally less expensive while still being able to generate comparable
results. We used the Transformer text generation setup by huggingface3.

4. GPT-2. We also used the GPT-2 model with 774 million parameters. We used the
GPT-2 wrapper4 to generate texts.

5. GROVER. Grover is another large language model, explicitly trained to generate
political news [16]. It uses the same template as news outlets such as CNN and
the New York Times. Grover uses the same architecture as GPT-2 and the same
concept of predicting the next token, given previous tokens. We used code from
repo5 to generate texts.

6. XLM. The Cross-lingual Language Model (XLM) is another generative language
model [39]. Unlike other language models, XLM is trained for the task of cross-
lingual classification. We generated texts from the English language model, using
the same setup in huggingface as GPT.

7. XLNET. XLNET [40] improves language modeling by introducing bidirectional
contexts. This technique involves a generalized auto-regressive pre-training method

3https://github.com/huggingface/transformers
4https://github.com/minimaxir/gpt-2-simple
5https://github.com/rowanz/grover
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Measure Human
Deepfake

AVG
CTRL GPT-1 GPT-2 GROVER XLM XLNET PPLM FAIR

Flesch Reading Ease 37.97 60.97 68.68 54.49 46.63 46.40 48.94 44.97 51.85 51.21
Flesch-Kincaid Grade 12.79 9.58 8.48 10.27 11.53 11.64 11.28 11.66 10.76 10.89

LIWC-Authentic 25.3 54.28 61.66 15.1 23.76 48.06 80.69 34.27 18.77 40.21
LIWC-Analytic 89.81 51.99 40.93 92.59 89.98 78.61 50.46 73.18 92.89 73.38
LIWC-Article 7.98 1.47 3.18 11.87 8.69 0.59 2.03 2.6 10.05 5.38

Entropy 7.81 8.98 8.01 6.52 7.79 8.99 8.91 7.77 7.41 8.02

Table 3.3: Linguistic features of nine generated texts. The AVG column is the average of
each row.

and adopts the Transformer-XL framework into pre-training. XLNET achieved
state-of-the-art results, outperforming BERT on 20 tasks. We also used the hug-
gingface Github repo to generate texts.

8. PPLM. The “Plug and Play Language Models (PPLM)” is another language
model that improves upon GPT-2 by fusing the medium model with bag of words
models [11]. We used the Politics bag of words model to generate texts’, using the
code6, and used the perturbed version.

9. FAIR. Facebook’s FAIR has three language models of English, Russian, and
German [8]. For our task, we used the English language model built with FAIRSEQ
sequence modeling toolkit7.

Table 3.1 shows the snippets of nine texts for the identical prompt message–i.e.,
one written by news reporters and eight by different neural language models. Table 3.2
shows the summary statistics of nine generated texts. Note that CTRL tends to generate
the longest texts (in terms of the number of words), while GPT-2 tends to generate the
shortest texts. Both XML and XLNET generated the texts with very long sentences.

3.4 Linguistic Analysis

We first conduct a psycholinguistics study to analyze different linguistic features of
generated texts. The result is summarized in Table 3.3.

6https://github.com/uber-research/PPLM
7http://shorturl.at/swDHJ
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First, we use Flesch Reading Ease and Flesh-Kincaid Grade to gauge generated texts’
readability. Flesch Reading Ease generates a score between 0 and 100, such that post-
college level yields a score between 0-30, college-level yields 31-50, high-school level
yields 51-70, middle school yields 71-90, and 5-th grade level of reading and below yields
91-100. These seven reading levels also go from a scale of very-difficult-to-understand
due to the level of sophistication to very-easy because it is the grade level of readability.
Therefore, obtaining a post-college level (i.e., low score) is uncommon and impressive
if a deepfake text-generator generates such texts. On the other hand, the Flesh-Kincaid

Grade generates a score representing the U.S. grade level of education (the higher, the
more sophisticating). For instance, text given a 10.8 score suggests that its author can be
in the 11-th grade and about 16-17 years old.

Next, we use Linguistic Inquiry and Word Count (LIWC) [76] to capture the psy-
cholinguistics features. LIWC has 93 features, of which 69 are categorized into: Standard
Linguistic Dimensions (e.g., pronouns, past tense), Psychological Processes (e.g., social
processes), Personal concerns (e.g., money, achievement), and Spoken Categories (e.g.,
assent, nonfluencies) [141]. Table 3.3 includes top-3 distinguished LIWC features among
all generation methods. A high LIWC-Authentic score means that the author of the text is
honest or less evasive. We can observe that GPT-1 and XLNET generates more personal
content than GPT-2 and FAIR. LIWC-Analytic reflects the formality, and logical nature
of the text. GPT-2, GROVER, and FAIR scores are as high Human, suggesting that they
all generate sophisticated texts. LIWC-Article shows the usage of a, an, the, which are
crucial in any formal writing. Similar to LIWC-Analytic, GPT-2, GROVER, and FAIR
scores are similar to Human. Overall, the patterns among these LIWC features follow our
observations that GPT-2, GROVER, and FAIR generally have higher news generation
quality than other deepfake algorithms. Finally, we also measure the entropy scores
of generated texts [159]. Figure 3.1 shows the 2-dimensional distribution of generated
texts using Principal Component Analysis (PCA) on all psycholinguistic features, with
about 70% explained variation. As we can observe a large overlapped portion among
generated texts. We expect a non-linear machine learning model (e.g., Random Forest)
would perform better than a linear method such as Naïve Bayes in classifying the texts
according to their generators using these features.
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Figure 3.1: Distribution of generated texts on 2-dimensions using PCA of Linguistic
features - LIWC, Readability, & Entropy.

3.5 Model Architecture

In solving three problems, we compare various relatively-simple neural models’ perfor-
mances, employing different architectures to encode generated texts into representation
vectors, which then feed into a fully connected network followed by a softmax layer for
prediction. Note that our goal is not to develop sophisticated neural models to solve three
problems. Rather, we want to empirically evaluate how these simple neural models (as
baselines) perform in solving three problems.

1. Embedding: This model maps each word in the generated texts to a vector of 300
dimensions, then sums up all resulting vectors as the final representation.

2. RNN: This model uses a variant of recurrent neural network (RNN) with a GRU
[160] layer to model the sequential dependency among words within each of the
generated texts.

3. Stacked_CNN: This model is inspired by [161], where each of generated texts is
encoded by a sequence of six 1D convolutional layers of different kernel sizes. We
reduced learning rates from 0.001 to 0.01/0.1.

4. Parallel_CNN: Similar to Stacked_CNN, but instead of using a stack of convo-
lutional layers, we adopt [162] and use four parallel 1D convolutional layers of
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Model Balanced (1:1) Imbalanced (1:8)
P R F1 P R F1

Embedding 0.9006 0.8683 0.8841 0.5148 0.7531 0.6116
RNN 0.9748 0.9879 0.9813 0.5439 0.8695 0.6692

Stacked_CNN 0.9509 0.9747 0.9626 0.6269 0.9269 0.7479
Parallel_CNN 0.9545 0.9852 0.9696 0.6004 0.8319 0.6974

CNN-RNN 0.9572 0.9750 0.9660 0.6847 0.9248 0.7869

Table 3.4: P1: Binary classification performance of “Same Method or Not” on two
collective test sets. P is Precision, R is Recall, and F1 is the Macro F1 score.

different kernel sizes, followed by a max pooling and concatenation operation.

5. CNN-RNN: This is a combination of Stacked_CNN and RNN where each word of
a text is first encoded by a stack of two 1D convolutional layers before being input
into each step of a GRU layer to model the sequential dependency of the whole
text.

Experimenting with these neural models, we split the dataset into the training, valida-
tion, and testing parts in 7:1:2 ratio.

3.6 P1: Same Method or Not

The first version of the problem is to determine whether two given texts are generated by
the same method (including human writers) or not. Even if one cannot pinpoint whom
the author is for a given text, one may still notice similarities between texts. Therefore,
P1 tests the varying capabilities of models to detect such similarities between the two
texts.

We prepare two datasets of a similar size. In the balanced set, half of text pairs are
generated by the same method (e.g., Human-Human or CTRL-CTRL), and the other
half are random pairs of the two different methods (e.g., Human-CTRL or GROVER-
FAIR). In the imbalanced set, 11% of text pairs are generated by the same method, while
the remaining 89% are by different methods (1:8 ratio). Model-wise, we utilize the
Siamese neural network [163] with one of the text encoders in Section 3.5 to predict
whether the two input texts are generated by the same method. Table 3.4 summarizes the
performances. Both RNN and CNN-RNN methods perform the best in the balanced and
imbalanced settings, respectively. Recall that the imbalanced setting is more challenging
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Model CTRL GPT GPT2 GROVER XLM XLNET PPLM FAIR AVG
Embedding 0.9768 0.9838 0.4044 0.6628 0.6535 0.6551 0.8449 0.5178 0.7124

RNN 1.0 0.9930 0.6329 0.9977 0.9977 1.0 0.9466 0.8812 0.9311
Stacked_CNN 0.9792 0.9815 0.6347 0.9977 0.9907 0.9186 0.6457 0.6316 0.8475
Parallel_CNN 1.0 0.9977 0.6075 0.9536 1.0 1.0 0.9513 0.9282 0.9298

CNN-RNN 1.0 0.9861 0.6626 0.9977 0.9699 0.9907 0.7949 0.7018 0.8880
RoBERTa 0.6448 0.6404 0.6407 0.6448 0.6490 0.7185 0.6404 0.6404 0.6524

RoBERTa-tuned 0.9730 0.9881 0.9792 0.8894 0.9921 0.9850 0.9796 0.9753 0.9702
GROVER-DETECT 0.7753 0.7319 0.6976 0.8135 0.6929 0.7536 0.7761 0.7616 0.7503

AVG 0.9186 0.9128 0.6574 0.8696 0.8682 0.8777 0.8236 0.7547

Table 3.5: P2: Binary classification performance in F1 score of “Human vs. Deepfake”
on eight individual test sets. Each column name X indicates an individual balanced test
set of HUMAN (50%) and X (50%).

Model
Balanced (1:1) Imbalanced (1:8)

P R F1 P R F1
Embedding 0.4922 0.4877 0.4899 0.4555 0.5274 0.4770

RNN 0.7625 0.7611 0.7611 0.8242 0.6956 0.7390
Stacked_CNN 0.7592 0.7592 0.7592 0.6585 0.7252 0.6816
Parallel_CNN 0.9125 0.9118 0.9120 0.8370 0.8458 0.8413

CNN-RNN 0.7314 0.7315 0.7314 0.8198 0.7162 0.7546
RoBERTa 0.4949 0.9540 0.6517 0.1090 0.9540 0.1957

RoBERTa-tuned 0.9196 0.9109 0.9152 0.9229 0.7859 0.8489
GROVER-DETECT 0.8100 0.5590 0.6610 0.3337 0.5591 0.4180

Table 3.6: P2: Binary classification performance of “Human vs. Deepfake” on two
collective test sets. P is Precision, R is Recall, and F1 is the Macro F1 score.

than the balanced as # of positive samples is much smaller. Overall, neural models
can identify two texts generated by the same method very well for the balanced setting
(F1=0.9813) and reasonably well for the imbalanced setting (F1=0.7869).

3.7 P2: Human vs. Deepfake

The second version of the problem determines whether a given text is generated by human
or deepfake (i.e., one of the neural methods). P2 is a type of the Turing Test. Despite
the recent advancements in neural NLG methods, we hypothesize that there may still be
latent differentiating characteristics between human-written and deepfake-generated texts.
Therefore, P2 tests the varying capabilities of different models to detect such differences

between human and deepfake writings.
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Human
Deepfake

AVG
Model CTRL GPT-1 GPT-2 GROVER XLM XLNET PPLM FAIR

Naïve Bayes 0.4668 0.9812 0.9835 0.4830 0.1901 0.9858 0.9810 0.9448 0.1812 0.6886
Decision Tree 0.7376 0.9835 0.9696 0.7239 0.6682 0.9837 0.9858 0.9626 0.5770 0.8435

SVM 0.8038 0.9953 0.9953 0.8048 0.7426 0.9953 0.9976 0.9742 0.6792 0.8876
Random Forest 0.8122 1.0 0.9953 0.7850 0.8169 1.0 0.9906 0.9860 0.7465 0.9042

Embedding 0.5727 0.9581 0.9688 0.7785 0.1080 0.9589 0.9026 0.7424 0.9900 0.7756
RNN 0.4190 0.9932 0.9906 0.7659 0.6295 0.9953 0.9929 0.8238 1.0 0.8456

Stacked_CNN 0.3415 0.9518 0.9638 0.7511 0.6603 0.9662 0.9104 0.8009 0.9950 0.8157
Parallel_CNN 0.5020 0.9790 0.9638 0.7579 0.6499 0.9976 0.9953 0.7582 1.0 0.8448

CNN-RNN 0.6366 0.9730 1.0 0.8038 0.5664 0.9813 0.9739 0.7942 1.0 0.8589
POS+CNN-LSTM 0.5868 0.6777 0.9109 0.7132 0.4798 0.8910 0.6845 0.8467 0.5689 0.7066

POS+LSTM-LSTM 0.2378 0.6746 0.8654 0.6512 0.4628 0.7572 0.6505 0.7520 0.5876 0.6266
3-grams + SVM 0.6992 1.0 1.0 0.6821 0.6579 1.0 0.9929 0.8165 0.6483 0.8330

Character n-gram + SVM 0.7008 1.0 1.0 0.6835 0.6534 1.0 0.9929 0.8114 0.6410 0.8314
AVG 0.5423 0.9360 0.9698 0.7218 0.5542 0.9633 0.9270 0.8366 0.7396

Table 3.7: P3: multi-class classification performance with per-class macro F1 (for each
column) and overall average F1 scores of models (for each row).

For P2, in addition to five neural models introduced in Section 3.5, we also tested three
known Turing Test models including RoBERTa [110] using a similar implementation of
GPT-2 Output Detector8, GROVER-DETECT [16]9, and RoBERTa-tuned, which is the
RoBERTa that we fine-tuned using 20% of our data. RoBERTa is fine-tuned by adding a
classification layer on top of it. Next, the weight of the classification layer is randomly
initialized and then trained on the GPT-2 output and human written text 10. Further, we
utilize the 20% of the target data we collected to fine-tune the RoBERTa classification
model. Note that GROVER-DETECT used in our experiment was trained using only 5K
training samples, while its improved version trained with 100K samples is not publicly
available. Additionally, GLTR is another state-of-the-art Turing tester used to distinguish
deepfake-generated texts from human-generated texts [2], although not used in these
experiments.

Furthermore, in this setting, we tested both individual case (i.e., one neural method at
a time) and collective case (i.e., eight neural methods combined). First, we prepare eight
test sets for the individual case, each of which is the balanced test set between human
(50%) vs. one neural generator (50%). Table 3.5 summarizes the performances in those
eight individual test sets. For the collective case, on the other hand, we prepare two test
sets. In the balanced set, the half of tests are written by human and the other eight neural

8https://github.com/openai/gpt-2-output-dataset/tree/master/detector
9https://github.com/rowanz/grover/tree/master/discrimination

10https://github.com/openai/gpt-2-output-dataset/
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methods generates the other half. In the imbalanced set, 11% of test texts are written by
human, while the remaining 89% are generated by any of the eight neural methods (1:8
ratio). Table 3.6 summarizes the performances in both balanced and imbalanced settings.

In Table 3.5, we find that GPT-2 generates texts that are almost indistinguishable from
human-written texts (having the lowest average F1=0.6574 across eight models). FAIR is
the second (F1=0.7547). Interestingly, we find that RoBERTa-tuned can still differentiate
human-written texts from GPT-2-generated ones with a high F1 score (0.9792) and
has the highest average F1 (0.9702) across all eight datasets. This is likely so because
RoBERTa-tuned is fine-tuned on two doses of GPT-2 texts (i.e., RoBERTa was already
fine-tuned on GPT-2 dataset to begin with).

For the performance of collective cases shown in Table 3.6, RoBERTa-tuned is
again the overall winner. It can differentiate human-written vs. deepfake-generated
texts with F1=0.9152 for the balanced setting and F1=0.8489 for the imbalanced setting.
Two existing Turing Test models (i.e. GROVER-DETECT and RoBERTa) significantly
underperform, although RoBERTa aces in Recall.

3.8 P3: Authorship Attribution

The third version of the problem is to single out the real author of a given text, among
many alternatives (e.g., one human and k neural methods). Therefore, P3 tests different
models’ varying capabilities to exploit both similarities within and differences across
human and deepfake writings.

For P3, in addition to five neural models introduced in Section 3.5, we also tested
four classical machine learning models (i.e., Naïve Bayes, Decision Tree, SVM, and
Random Forest) using psycholinguistic features discussed in Section 3.4 and four state-
of-the-art AA solutions, including POS+CNN-LSTM and POS+LSTM-LSTM [85],
3-grams + SVM [164] and Character n-gram + SVM [165]. Neural methods such as
Embedding, RNN, and CNN-RNN used GloVe word embedding [166], but Stacked_CNN
and Parallel_CNN did not use GloVe due to its negative impact on performance.

Table 3.7 summarizes the performance results. Surprisingly, the overall winner is
Random Forest, outperforming all five neural models and four existing AA methods.
As to per-class F1 scores, Random Forest, a robust non-linear model, accurately solved
the AA problem across all nine test sets (one human and eight neural generators). Most
generated texts were relatively easy to identify their authorship, giving up high F1 scores
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(especially the generators such as CTRL, GPT, XLM, XLNET, and PPLM).
The most challenging test set turns out to be both Human and GROVER that yields

relatively low average F1 scores across all of classical, neural, and existing AA models
(0.5423 and 0.5542, respectively). Also, interestingly, neural classifiers are able to
classify FAIR very accurately unlike classical or existing AA models, while classical
models, especially Random Forest and SVM, perform better for tough test sets such as
GROVER and Human.

3.9 Discussion

3.9.1 P1: Same Method or Not

As expected, we find that the balanced setting yields significantly higher F1 scores across
five neural models than the imbalanced setting. However, P1 is still nontrivial to solve,
especially in the imbalanced setting, as can be seen in Figure 3.1, where many deepfake-
generated texts are shown to be linearly inseparable. Furthermore, from Table 3.3 and
Section 3.4, we can see that while some generators generate similar texts, all generated
texts still possess distinct qualities that are leveraged in P1, achieving F1=0.9813 in the
imbalanced setting. It is harder to grasp these distinct characteristics when looking at a
single piece of text. As such, the comparison of two texts in the setting of P1 offers an
advantage to the task.

3.9.2 P2: Human vs. Deepfake

We find that RoBERTa-tuned often outperforms neural classifiers in the individual human
vs. deepfake setting, except for the case of GROVER (Table 3.5). RoBERTa-tuned
outperforms all competing models in distinguishing deepfake texts from human texts,
incredibly well on GPT-2 texts (achieving F1=0.9792), probably due to sufficient training
on GPT-2 data. Next, we find that GROVER-DETECT underperforms in classifying the
other deepfake-generated texts in Table 3.5, but performs well on Human vs. GROVER
achieving the F1 score of 0.8135. This is because it was trained to detect GROVER-
generated texts. For the collective settings, however, both RoBERTa and Parallel_CNN
have similar F1 scores, while outperforming the rest by significant margins.
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3.9.3 P3: Authorship Attribution

For this setting, in Table 3.7, we compare different settings, including (1) the use of
GloVe word embedding with Embedding, RNN, and CNN-RNN; (2) no word embedding
with Parallel_CNN and Stacked_CNN; (3) the use of linguistic features with classical
learning algorithms; and (4) n-grams and POS-tags with state-of-the-art AA methods.
In this task, we learn that the more accessible generators to classify are CTRL, XLM,
and XLNET, while the harder ones are Human, GROVER, FAIR, and GPT-2. This can
be seen in Tables 3.5 and 3.3, where the more demanding generators underperform, and
score highly in LIWC-Analytic and LIWC-Article, respectively. This is vice versa for the
more accessible generator. We also find that the linguistic features effectively solve P3,
slightly better than state-of-the-art AA solutions, and (simple) neural classifiers. The
top stylistic features are word count, article, period, word-per-sentence count, auxiliary

verb, preposition, comma. We expect this result will change in the future when: (1) the
quality of deepfake-generated texts improve, losing revealing linguistic cues, and (2)
neural models are trained better with an enormous amount of data and more powerful
architectures.

One may wonder if some results with high F1 scores to solve P3 in Table 3.7 are
simply due to the fact that different generators tend to generate texts on different topics
(with non-overlapping word usage, thereby affecting embedding to neural models). In
addition, while we only attempt to collect our articles from the domain of “politics,”
some other domains may have been added unintentionally. However, when we solve P3
using the combination of bigram and trigram models with top-20 LDA-extracted topics,
we achieve only 0.38 as the overall average F1 score. Therefore, we believe that simple
topical analysis of generated texts cannot solve P3 well.

3.10 Summary

We have conducted comprehensive experiments on three versions of the Authorship
Attribution (AA) problem: (1) the same method or not, (2) human vs. deepfake (Turing
Test), and (3) who is the author. Notable findings from our empirical evaluation include:
(1) not all deepfake text generation methods generate high-quality human-mimicking
texts–in particular, GPT-2, GROVER, and FAIR generated better-quality texts and (2)
using specific linguistic features and simple neural architectures, we can solve three
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problems reasonably well, except GPT-2 and FAIR in P2 and GROVER in P3.

Balanced #train #valid #test
P1 68,896 7,656 19,139
P2 2,985 426 853
P3 6,825 881 1,888

Imbalanced #train #valid #test
P1 62,157 6,907 17,266
P2 6,825 881 1,888

Table 3.8: Details on Train, Validation, and Test Set Splits

3.11 Reproducibility

3.11.1 Implementation, Infrastructure, Software, and Data

We run all experiments using either P100 or Titan Xp GPU card on a standard server
machine with 16GB of RAM. We utilize deep learning platform Ludwig (v.0.2.1) with
Tensorflow (v.1.15.0) backend to develop and evaluate all text classification models in the
paper. For classical ML, we utilize scikit-learn (v.0.22.1) library. All implementations
are done using python language (v.3.0). For generating text, we adopt various models
implementation provided by huggingface11, PPLM12, grover13, and Fairseq14 Github
repo. To extract LIWC features, we utilize the LIWC2015 software (v.1.6.0)15.

3.11.2 Data and Preprocessing

We generate all the text following the description in Section 3.3. Since the generated
text of some deepfake algorithms includes artificial tokens such as <eos> and <sos>,
we remove these tokens from the results. We also ensure that the prompts (i.e., article
titles) are appended to every generated article. For P3, we use all the generated text by
9 methods (human and eight deepfake algorithms), resulting in a dataset with balanced
label distribution. For P1, creating datasets generators’ pairs is a combinatorial problem,

11https://github.com/huggingface
12https://github.com/uber-research/PPLM
13https://github.com/rowanz/grover
14https://github.com/pytorch/fairseq
15https://liwc.wpengine.com

50

https://github.com/huggingface
https://github.com/uber-research/PPLM
https://github.com/rowanz/grover
https://github.com/pytorch/fairseq
https://liwc.wpengine.com


which will create a very large dataset. Instead, we sample from each possible pairs of
generators K samples while maintaining the relative distribution among them, resulting
in the imbalanced dataset. Then, we adjust K and under-sample negative samples with
1:8 ratio to create the balanced dataset for P1. For P2, we curated the imbalanced dataset
from P3, with 1 human and 8 deepfake generators. Then, we under-sample negative
sample with 1:8 ratio to create a balanced dataset for P2. For each task P1, P2, and P3,
we then split to train, validation, and test set with 7:1:2 ratio. Table 3.8 summarizes
statistics of datasets used for each task in balanced and imbalanced scenario, respectively.
Also, using language_check, a python package for detecting and correcting grammatical
errors, we found that most generators had less than a 3% grammatical error rate, except
for XLM which had a 14% error rate.

3.11.3 Running Time

All experiments take an average running time of around 2 minutes for each training epoch.
Depending on the text encoders being utilized, and one training epoch can take as low as
10 seconds (Embedding model) to as long as 8 minutes (CNN-RNN model).

3.11.4 Training and Model’s Parameters

See Table 3.9 for both the parameters and hyper-parameters used in training our deep
learning models.

3.11.5 Evaluation Metrics

We use standard Precision (P), Recall (R), and F1 scores as the main evaluation metrics
throughout the paper. We first construct a confusion matrix and calculate those scores as
follows.

P = TP

TP + FP
, R = TP

TP + FN
, F1 = 2 P ·R

P + R
(3.1)

where TP is True Positive, FP is False Positive, FP is False Positive and FN is False
Negative predictions.
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Parameter Value
Max Words 500

Vocabulary Size 20,000
Early Stop 2
Batch Size 256

Learning Rate 0.01
Adam Optimizer β1: 0.9, β2: 0.999, ϵ: 1e-08
Embedding Size 300

Stacked CNN Kernel Sizes 7, 7, 3, 3, 3 and 3
Stacked CNN Pool Sizes 3, 3, 3, 3, 3, and 3

Parallel CNN Kernel Sizes 2, 3, 4, and 5
RNN Hidden Size 256

FCN Layers (before Softmax) 256 - 256
Dropout 0.5

Table 3.9: Model’s Parameters and Training’s Hyper-Parameters
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Chapter 4 |
TuringBench: A Benchmark
Environment for Turing Test
in the Age of Deepfake Text
Generation

4.1 Introduction

To build accurate detectors of deepfake texts, sufficient data is required but lacking.
Therefore, we create a benchmark environment, TuringBench, to combat the obvious
security issue language models could pose. Just in line with benchmark environments
such as SQuAD [167] and GLUE [168] that tremendously facilitate the progress of
Natural Language Understanding, we build the first benchmark for Authorship Attribution
in the form of the Turing Test by including humans and neural language models.

The TuringBench Environment comprises benchmark datasets, benchmark tasks,
and a website to host leaderboards. This benchmark dataset is created by collecting 10K
news articles (mostly in politics) written by journalists in media outlets such as CNN,
Washington Post, etc. Using the Title of each article, we Prompt 19 selected deepfake
text-generators to generate an article similar to the human-written one. This creates
200K articles with 20 labels (or authors). Next, we have two benchmark tasks - Turing

Test and Authorship Attribution. The Turing Test task is modeled after the Turing Test

concept [4], where if a machine shows intelligent behavior or characteristics usually
attributed to a human, then the machine has passed the test. In this scenario, the goal
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PROMPT: Some investigators struggle to reach Comey
HUMAN: Some congressional investigators want to bring former
FBI Director James Comey to the Hill to tell them about his meetings
with President Donald Trump but they can’t find him.
GPT-2: Some investigators struggle to reach Comey and his team
because the FBI’s headquarters is in Northern Virginia. But the FBI
has a lot of other people who can help.
FAIR: We have a duty to be vigilant. James Comey’s testimony
today should make him think twice about it. The White House said
Trump had spoken with Comey during the hour-long meeting and
that all the senior U.S. officials were given a "heads up" on the
situation.
GPT-3: “Like Louis XVI, he doesn’t see the storm growing in the
distance,” says the Democratic operative. The lack of specifics, even
from surrogates on Trump’s behalf, forces well-known Democrats
to point out the obvious.

Figure 4.1: Snippets of PROMPT (a news article title), HUMAN vs. three examples of
deepfake-generated texts (GPT-2, FAIR and GPT-3).

is to cause the machine to fail the Turing Test. Thus, we define this benchmark task
as a binary classification problem with human and deepfake labels. Given 19 deepfake
text-generators, there are 19 Turing Test subtasks with 19 human-deepfake pairs. See
Figure 4.1 for snippets of this dataset.

Furthermore, we understand that due to the ubiquitous nature of these neural language
models, distinguishing deepfake-generated texts from human-written ones is no longer
sufficient. It is now also important we inquire as to which particular deepfake text-
generator authored a piece of text. To this end, the Authorship Attribution task aims to
assign authorship to one of the many text-generators. We study 20 authors for this task,
however, as we have observed, this can easily become 2K authors very soon which will
grossly exacerbate the difficulty of this task. Finally, to host all these tasks and datasets,
we build a TuringBench website with leaderboards for each benchmark task and call for
participation in tackling this very relevant and non-trivial problem.

Lastly, we compare State-of-the-art (SOTA) and baseline Turing Test and Authorship

Attribution models. From the experimental results, we observe that we need more
complex models to accurately distinguish deepfake-generated texts from human-written
ones, including text-generators that are yet to be created.
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Text Generator Description

Human We collected news titles (mostly Politics) and contents from CNN, Washington
Post, and Kaggle. The Kaggle datasets had news articles from 2014–2020, and
2019–2020 for the CNN and Washington Post news articles. Next, we removed
articles that did not have the desired word length (i.e., 200–500). This resulted
in 130K articles, but only 10K was used for the article generations. See data
generation process in Figure 4.3.

GPT-1 Texts are generated with the Hugging Face github repo [13].
GPT-2 We use 5 GPT-2 pre-trained models - PyTorch model, small (124 million

parameters), medium (355 million parameters), large (774 million parameters),
and x-large (1558 million parameters) to generate texts.

GPT-3 Texts are generated with the OpenAI GPT-3 API using the davinci engine.
GROVER We use code from repo to generate from Grover’s 3 pre-trained models:

GROVER-base, GROVER-large, GROVER-mega.
CTRL Conditional Transformer Language Model For Controllable Generation uses

control codes to guide generation. We use News control code to generate long
articles.

XLM We generated texts using Hugging Face repo [13].
XLNET We generated texts with: 2 XLNET pre-trained models: XLNET-base, and

XLNET-large using Hugging Face.
FAIR_wmt We use two Facebook’s FAIR English models - wmt19 [8] and wmt20 [9] to

generate texts with FAIRSEQ sequence modeling toolkit.
TRANSFORMER_XL We generated texts with this language model’s setup on Hugging Face [13].
PPLM PPLM fuses GPT-2’s pre-trained model with bag of words to generate more

specific texts. We used the Politics bag of words model to generate texts. Next,
we fused PPLM with two pre-trained models (i.e., distilGPT-2, and GPT-2) and
generated texts with them, forming: PPLM_distil, PPLM_gpt2. These models
are gotten from the Hugging Face model repository.

Table 4.1: Description of the text generators in the TuringBench dataset.

4.2 The TuringBench Environment

Figure 4.2 overviews the framework of the TuringBench Environment.

4.2.1 Chosen Language Models

We generated texts using 10 language model architectures - GPT-1 [7], GPT-2 [38], GPT-

3 [31], GROVER [16], CTRL [10], XLM [39], XLNET [40], FAIR [8,9], TRANSFORMER-

XL [41], and PPLM [11]. In addition, some of these language models have multiple
pre-trained models and thus, we were able to generate texts with 19 neural deepofake text-
generators. We choose these 10 language model architectures because they are currently
considered as the SOTA text-generators, many of the text-generators on Hugging Face’s
model repo are variants of these language models, and both their pre-trained models and
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Figure 4.2: The TuringBench Environment.

Figure 4.3: The TuringBench Data Collection, Generation, and Building process.

codes were publicly available.
To generate texts, all 19 neural generators require a short prompt and a specified

number of words to generate texts. Table 4.1 (and Appendix) describes each language
model in detail. Figure 4.3 illustrates the data creation process. Table 4.2 summarizes the
stats of dataset and the model sizes.

4.2.2 TuringBench Benchmark Tasks

4.2.2.0.1 The Turing Test (TT) Task Our proposed Turing Test task aims to answer
the question: Can we determine if a piece of text is human-written or deepfake-generated?

This task is formulated as a binary classification problem with two labels – human and
deepfake – modeled after the classical Turing Test problem. The Turing Test examines the
ability of a deepfake text-generator to exhibit intelligible behavior ascribed to humans.
The goal is to build a model that causes the deepfake-generated texts to fail the Turing
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Text Generator # of words (AVG ± Std. Dev.) # of sentences (AVG ± Std. Dev.) Model Parameter Size

Human 232.7 ± 42.0 15.0 ± 6.6 N/A
GPT-1 316.7 ± 12.9 10.5 ± 3.7 117M
GPT-2_small 118.6 ± 61.0 4.0 ± 3.8 124M
GPT-2_medium 120.9 ± 66.0 4.2 ± 3.7 355M
GPT-2_large 119.7 ± 62.1 4.1 ± 3.8 774M
GPT-2_xl 117.8 ± 63.3 4.1 ± 3.8 1.5B
GPT-2_PyTorch 178.9 ± 55.4 7.03 ± 4.8 344M
GPT-3 129.5 ± 54.9 5.0 ± 3.7 175B
GROVER_base 299.2 ± 108.6 9.4 ± 6.9 124M
GROVER_large 286.3 ± 101.3 8.7 ± 5.9 355M
GROVER_mega 278.9 ± 97.6 9.2 ± 6.1 1.5B
CTRL 398.1 ± 64.8 20.0 ± 10.6 1.6B
XLM 387.8 ± 30.3 4.2 ± 1.7 550M
XLNET_base 226.1 ± 97.5 11.6 ± 7.9 110M
XLNET_large 415.8 ± 53.2 4.3 ± 2.1 340M
FAIR_wmt19 221.2 ± 66.6 14.6 ± 6.0 656M
FAIR_wmt20 100.6 ± 28.1 5.1 ± 3.0 749M
TRANSFORMER_XL 211.7 ± 53.9 9.8 ± 3.1 257M
PPLM_distil 156.9 ± 40.1 10.7 ± 3.6 82M
PPLM_gpt2 188.9 ± 52.0 11.9 ± 4.5 124M

Table 4.2: Summary statistics of the TuringBench dataset.

Test. Lastly, the TT task contains 19 subtasks with 19 human-deepfake pairs (e.g. GPT-2
XL vs. Human, GROVER_base vs. Human, etc.).

4.2.2.0.2 The Authorship Attribution (AA) Task Authorship Attribution is the
identification and proper assignment of the author of a piece of text [169]. Our Authorship
Attribution task aims to answer the question: If we determine that an article is human-

written or deepfake-generated, can we further determine which neural language model

generated all the articles that are said to be deepfake-generated? This is a multi-class
classification problem modeled after the traditional Authorship Attribution problem.

4.2.3 TuringBench Benchmark Dataset

We keep 168, 612 articles out of 200K after cleaning the text (see Appendix for data
pre-processing
details), and we build the benchmark dataset for each benchmark task - TT and AA. For
the TT task, there are 20 labels (i.e., 19 deepfake text-generators and 1 human), thus we
can only have 19 pairs of human vs. deepfake. Therefore, we have 19 datasets for the
TT task. To increase the difficulty of the TT task, we cut each article in the test set in
half, using only 50% of the words. For the AA task, we have 1 dataset containing all the
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Figure 4.4: Python code for loading the TuringBench datasets using the Hugging Face
API.

labels. All datasets have train/validation/test sets which were split using the 70:10:20
ratio, respectively. To avoid topic bias, these sets were carefully split, such that all articles
in the sets were unique to each other. Therefore, all articles generated by a prompt
belonged only to one set.

To make this dataset public, we added our datasets for each benchmark task and
subtask to Hugging Face datasets1. Figure 4.4 demonstrates how to load the TuringBench
dataset.

4.2.3.0.1 Evaluation Metrics We use the traditional evaluation metrics such as:
Precision, Recall, F1 score, and Accuracy to evaluate Machine/Deep Learning models
for the benchmark tasks. However, for the TT tasks, we only use F1 scores since it is a
more robust measure for the imbalanced datasets.

1https://huggingface.co/datasets/
turingbench/TuringBench/tree/main
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Figure 4.5: A screenshot of a leaderboard on the TuringBench website.

4.2.4 The Web Environment

To create this TuringBench environment, we built 2 versions of datasets - binary setting
(i.e., human vs. GROVER-large, human vs. GPT-1, etc.) for the TT tasks, and multi-class
setting (i.e., human vs. GROVER-Large vs. GPT-1 vs. etc.) for the AA task. To track
progress, as shown in Figure 4.5, we create a website where each task and sub-task has
its own leaderboard that displays the evaluation metric scores of models. Furthermore, to
ensure the integrity of the process, even though contributors can obtain the TuringBench
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Figure 4.6: Using GLTR [2] on a piece of text generated by GPT-3. Green represents
the most probable words; Yellow the 2nd most probable; Red is the least probable; and
Purple is the highest improbable words. Deepfake-generated texts are often populated
with mostly Green and Yellow words. However, we see that GPT-3-generated texts are
very human-like.

TT Model Description

GROVER detector We use the GROVER-Large discriminator that is trained to detect GROVER-generated
texts to predict the test labels.

GPT-2 detector We use the trained weights of RoBERTa-large fine-tuned on GPT-2 XL outputs to
predict the human and deepfake label of the test dataset.

GLTR In the GLTR demo, the words are color coded to improve human detection of deepfake-
generated texts. Top 0-10 probable words are green; top 10-100 probable words are
yellow; top 100-1000 probable words are red and top greater than 1000 words are
purple. See Figure 4.6 for an example of using GLTR and interpretation of its color
schemes. Thus, we define human-written texts to be any article that 10% or more of
the words belong in the top >1000 (i.e., purple words).

BERT We fine-tune bert-base-cased on the train set and classify on the test set.
RoBERTa We fine-tune RoBERTa-base, a variant of BERT with the train set.

Table 4.3: Description of the Turing Test (TT) models.

datasets from Hugging Face datasets, we still ask contributors to submit their code and/or
trained model weights for private testing. After testing, we update the website with the
new models’ scores. Lastly, we rank the model performance using the F1 score from best
to worst.

4.3 Experiments

We experiment with several SOTA and baseline models as summarized in Table 4.3 for
Turing Test and Table 4.4 for Authorship Attribution, and Table 4.5 and Table 4.6
show their results.
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AA Model Description

Random Forest Using TF-IDF to represent the data, we classify the texts with Random Forest.
SVM (3-grams) We represent the texts as 3-grams and classify the texts with SVM.
WriteprintsRFC Writeprints features + Random Forest Classifier.
OpenAI detector We re-purposed RoBERTa-base (roberta-base-openai-detector) model that was

originally fine-tuned on GPT-2 XL outputs to detect deepfake texts, by training
the model as a multi-classifier for the AA task.

Syntax-CNN Use Part-Of-Speech to capture the syntax of the texts and classify the texts with
CNN

N-gram CNN Represent the data with n-grams (uni-grams) and classify texts with CNN
N-gram LSTM-LSTM Represent the data with n-grams (uni-grams) and classify texts with LSTM
BertAA Using BERT + Style + Hybrid features to achieve automatic authorship attribu-

tion. Style features include: length of text, number of words, average length of
words, etc. and Hybrid features include: frequency of the 100 most frequent
character-level bi-grams and the 100 most frequent character-level tri-grams.

BERT-Multinomial Using BERT for multi-class classification
RoBERTa-Multinomial Using RoBERTa for multi-class classification

Table 4.4: Description of the Authorship Attribution (AA) models.

Human vs. Human Test Human Test GROVER GPT-2 GLTR BERT RoBERTa AVG
(deepfake) (human vs. deepfake) detector detector

GPT-1 0.4000 0.5600 0.5792 0.9854 0.4743 0.9503 0.9783 0.7935
GPT-2_small 0.6200 0.4400 0.5685 0.5595 0.5083 0.7517 0.7104 0.6197
GPT-2_medium 0.5800 0.4800 0.5562 0.4652 0.4879 0.6491 0.7542 0.5825
GPT-2_large 0.7400 0.4400 0.5497 0.4507 0.4582 0.7291 0.7944 0.5964
GPT-2_xl 0.6000 0.4800 0.5549 0.4209 0.4501 0.7854 0.7842 0.5991
GPT-2_PyTorch 0.5000 0.5600 0.5679 0.5096 0.7183 0.9875 0.8444 0.7255
GPT-3 0.4400 0.5800 0.5746 0.5293 0.3476 0.7944 0.5209 0.5534
GROVER_base 0.3200 0.4200 0.5766 0.8400 0.3854 0.9831 0.9870 0.7544
GROVER_large 0.4800 0.5800 0.5442 0.5974 0.4090 0.9837 0.9875 0.7044
GROVER_mega 0.5400 0.4800 0.5138 0.4190 0.4203 0.9677 0.9416 0.6525
CTRL 0.5000 0.6900 0.4865 0.3830 0.8798 0.9960 0.9950 0.7481
XLM 0.6600 0.7000 0.5037 0.5100 0.8907 0.9997 0.5848 0.6978
XLNET_base 0.5200 0.5400 0.5813 0.7549 0.7541 0.9935 0.7941 0.7756
XLNET_large 0.5200 0.5200 0.5778 0.8952 0.8763 0.9997 0.9959 0.8690
FAIR_wmt19 0.5600 0.5600 0.5569 0.4616 0.5628 0.9329 0.8434 0.6715
FAIR_wmt20 0.5800 0.2800 0.5790 0.4775 0.4907 0.4701 0.4531 0.4941
TRANSFORMER_XL 0.5000 0.5000 0.5830 0.9234 0.3524 0.9721 0.9640 0.7590
PPLM_distil 0.5600 0.4400 0.5878 0.7178 0.6425 0.8828 0.8978 0.7457
PPLM_gpt2 0.5600 0.5000 0.5815 0.5602 0.6842 0.8890 0.9015 0.7233

AVG 0.5358 0.5132 0.5591 0.6032 0.5681 0.8799 0.8280

Table 4.5: Compared Human Test vs. Test F1 scores of Turing Test models (bold and
underlined are #1 and #2 performance, respectively). Human Test (deepfake) asked
humans to decide if a given article is deepfake or not, while Human Test (human vs.
deepfake) asked humans which of the two given texts is deepfake-generated.
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AA Model P R F1 Accuracy

Random Forest 0.5893 0.6053 0.5847 0.6147
SVM (3-grams) 0.7124 0.7223 0.7149 0.7299
WriteprintsRFC 0.4578 0.4851 0.4651 0.4943
OpenAI detector 0.7810 0.7812 0.7741 0.7873
Syntax-CNN 0.6520 0.6544 0.6480 0.6613
N-gram CNN 0.6909 0.6832 0.6665 0.6914
N-gram LSTM-LSTM 0.6694 0.6824 0.6646 0.6898
BertAA 0.7796 0.7750 0.7758 0.7812
BERT-Multinomial 0.8031 0.8021 0.7996 0.8078
RoBERTa-Multinomial 0.8214 0.8126 0.8107 0.8173

Table 4.6: Performance of Authorship Attribution models (bold and underlined are #1
and #2 performance, respectively).

4.3.1 Results from Turing Test

The Turing Test task is formulated as a binary classification problem with human and
deepfake labels. In order to make the TT task even more difficult, we train and validate
on the full articles generated by the text-generators and test on only 50% of the words of
each article in the test set. We intend to capture the differences that will exist between
train and test data in the real world in this scenario.

We compare 3 SOTA TT models - GROVER detector [16], GPT-2 detector [170], and
GLTR [2]. We observe in Table 4.5 that the average F1 scores are 0.56, 0.60, and 0.57,
respectively. Next, using other text classifiers such as BERT [82] and RoBERTa [110]
brings a significant improvement in F1 scores (0.85 for both BERT and RoBERTa).

This performance improvement occurs mainly because BERT and RoBERTa are
fine-tuned with the train set of each TT subtasks, while the TT models’ pre-trained
models were used to classify the test set without any further training.

Additionally, averaging over all the 5 TT models, we find that FAIR_wmt20 and GPT-
3, the most recent text-generators in the list, achieve the lowest average F1 score (0.49
and 0.55), thus making them the language models that produce the most indistinguishable
texts, while XLNET_large has the highest average F1 score (0.87) using all TT models.
XLNET has a high F1 score because it implements a text padding technique for generation
which often negatively affects the generation quality.

We also run two human experiments using the Amazon Mechanical Turk (AMT)
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environment, recruiting workers with at least 95% approval rate of Human Intelligence
Task (HIT). In the experiments, we randomly sampled 50 articles per each language
model (across all 19 models) and performed two tests, where workers (1) vote if a given
article is deepfake or not, and (2) vote which of two given articles is deepfake-generated.
These experiments yielded the AVG-accuracies of 0.535 and 0.513 (random-guess=0.5),
respectively.

This part of experiments was reviewed and approved by the Institutional Review
Board of our institution.

4.3.2 Results from Authorship Attribution

Since there are 20 labels in AA, the chance performance is at 0.05 (i.e., 5% in accuracy).
Due to this difficulty, we use the full article contents in the test set. We compare different
SOTA and popular techniques for automatic authorship attribution for our AA task in-
cluding Random Forest, SVM (3-grams) [171], WriteprintsRFC [100], OpenAI detector2,
Syntax-CNN [83], N-gram CNN [84], N-gram LSTM-LSTM [85], BertAA [172], BERT-
Multinomial [82], RoBERTa-Multinomial [110]. We find that BERT and RoBERTa
outperform all the AA models, sometimes significantly, achieving the F1 scores of 0.80
and 0.81, respectively.

Interestingly, we observe that OpenAI detector, a RoBERTa-base model fine-tuned on
GPT-2 XL outputs, does not outperform BERT-Multinomial and RoBERTa-Multinomial
for this AA task although it performs comparatively, achieving a 0.77 as F1 score. BertAA
achieves a slightly better F1 score (0.78).

4.4 Discussion

We present several observations from our experimental results.

1. Both TT and AA tasks are non-trivial: The average F1 score for each human vs.
deepfake subtask and TT model is below 0.87, with FAIR_wmt20 achieving the
lowest (0.49). FAIR_wmt20 is the newest text-generator in our list and before that
we have GPT-3 which achieves the second lowest average F1 score (0.55). This
suggests a trend that as newer text-generators get built, generated texts will become
even more human-like, making the TT and AA tasks more difficult.

2https://huggingface.co/roberta-base-openai-detector
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Additionally, the difficulty of the AA task is further demonstrated by the PCA plot of
linguistic features LIWC of the TuringBench dataset in Figure 4.7. Using LIWC
to capture stylistic signatures of authors has been studied [26, 173]. However, we
observe that there are quite a few overlaps in linguistic features across different
authors (i.e., language models). This makes these authors’ writing styles linearly
inseparable.

2. No one size fits all: We observe in Table 4.5 that there is no one detection model
that performs well across all 20 TT tasks. For instance, while BERT achieved the
highest average F1 score, it still underperformed in detecting FAIR_wmt20. However,
GROVER detector achieved a highest F1 score in detecting FAIR_wmt20.

3. Humans detect deepfake texts at chance level: First two columns of Table 5
show the results of human detection test. In the first AMT-based tests, we randomly
sampled 50 deepfake texts and asked humans to decide if the given text is human-
written or deepfake-generated (i.e., humans do not know whether they are shown only
deepfake texts in the test). In the second test, we showed two texts at random, one
written by humans and the other deepfake-generated, and asked humans to decide
which of the two is deepfake-generated (i.e., humans know that at least one of two is
deepfake-generated).

Based on the average accuracies of two human tests, by and large, we observe that
humans currently differentiate deepfake texts from human-written ones, not much
better (i.e., 0.535 and 0.513) than the level of random guessing (i.e., 0.5).

4. Not all text-generators are created equal: As shown in Table 4.5, the aver-
age F1 score for each human vs. deepfake subtask and TT model is below 0.87,
with FAIR_wmt20 achieving the lowest (0.49). Consequently, this suggests that
FAIR_wmt20 is the most sophisticated text-generator and thus, the hardest to detect.
Other generators that are also hard to detect based on their < 0.62 F1 scores are:
GPT-3, GPT-2_small, GPT-2_medium, GPT-2_large, and GPT-2_XL.

5. Sophisticated deepfake-generated texts often get detected as human-written: We
observe an interesting phenomenon with these SOTA TT models. For instance, even
though the labels in the binary classification task are approximately evenly split, GPT-
2 detector and GLTR achieve below F1 score of 0.4 in some subtasks. This happens
because TT models do not generalize well to those specific text-generators (i.e.,
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GROVER_base, CTRL, GPT-3, TRANSFORMER_XL) and mistakenly predicts the
majority of the texts as human-written.

6. TT models do not always perform as expected: While both GROVER and GPT-
2 detectors are trained to detect GROVER-generated and GPT-2-generated texts,
respectively, they underperform in detecting those texts. For instance, GROVER de-
tector performs the best in detecting PPLM_distil and PPLM_gpt2 texts, while GPT-2
detector performs significantly better at detecting GPT-1, TRANSFORMER_XL and
XLNET_large texts.

7. Length of texts does not affect model performance: Due to the varying length
of texts (i.e. 100-400) in Table 4.2, we plot the length of generated texts vs. the F1
scores of TT models in Figure 4.8. However, the figure suggests that there is no clear
correlation between model performance and length of texts for all models except
RoBERTa. This suggests that RoBERTa performance is text length-dependent.

8. Traditional AA models cannot fully capture an author’s style “yet”: SOTA
AA models cannot capture all of the stylistic features of human and deepfake text-
generators. From Figure 4.7 we observe that the psycho-linguistic features of the 20
authors in the TuringBench dataset are too similar, causing them to overlap in the
plot. This suggests that deepfake texts are becoming more similar to human-written
texts in styles.

Therefore, traditional ways to capture an author’s writing style will no longer be
sufficient to achieve accurate automatic authorship attribution. This is further con-
firmed in the performance of classical AA models such as SVM and Random Forest.
Similarly, we find that even deep learning-based AA models are still unable to fully
capture the distinct writing styles of all 20 authors. These results suggest that one
needs to develop a model that can unearth more subtle yet distinct patterns that exist
across 20 models.

9. Humans have a wide writing style range: In Figure 4.7, we observe that human-
written features spread out all over the plot, while all deepfake-generated texts
stay in little pockets of the plots. This suggests that humans may have a wider
range of writing levels/styles, while deepfakes have a more limited range of writing
levels/styles (e.g., high school to college).
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Figure 4.7: PCA plot of psycho-linguistics features of the TuringBench dataset, using
LIWC to attempt to capture the stylistic signatures of the dataset

Figure 4.8: Despite the varying lengths of the generated texts (100–400) in Table 4.2, no
correlation between text length and F1 score was found.
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4.5 Summary

In this paper, we have introduced the TuringBench environment and its preliminary
results for both Turing Test (TT) and Authorship Attribution (AA) tasks. While varied,
overall, (1) many contemporary language models can generate texts whose qualities
are, to human eyes, indistinguishable from human-written texts, and (2) while some
computational solutions for both TT and AA tasks can differentiate human-written texts
from deepfake-generated ones much better than random guessing, overall, the community
needs to research and develop better solutions for mission-critical applications. We hope
that the TuringBench environment will provide a platform on which insights into ways
to tackle this urgent issue can be developed and shared.

4.6 Reproducibility: Data Generation & Experiments

4.6.1 Data Generation Implementation

Generating texts with these Language models is very computationally expensive. Some
of the python code used to generate the texts were not written for large-scale generation,
so we had to re-purpose it for our task. We mostly used Google Colab pro’s GPU -
12GB NVIDIA Tesla K80 to generate our texts. However, since PPLM was the heaviest
language model computationally, we used a machine with more GPUs - NVIDIA Tesla
K80s and P100s.

Most generators took 24 – 72 hours to generate 10K articles. However, PPLM took
about 430 hours for PPLM_distil and about 600 hours for PPLM_gpt2. It is important to
note that probably a few coding choices could reduce the computational cost of running
PPLM, we just did not get to it. See the description of building the human dataset and
10 language model architectures used to generate the rest of the dataset. The table also
contains the links to the dataset and github repo of some of the models.

4.6.2 Data Pre-processing

Some of the generated texts contain non-English tokens such as ⟨UNK⟩, ⟨eos⟩, ⟨eod⟩,
⟨eop⟩, ⟨|endoftext|⟩, etc. which we removed. Also, in an attempt to generate texts
with the specified word count (i.e., 400), some of the generators had a tendency to
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Text Generator # of Data samples

Human 8,854
GPT-1 8,309
GPT-2_small 8,164
GPT-2_medium 8,164
GPT-2_large 8,164
GPT-2_xl 8,309
GPT-2_PyTorch 8,854
GPT-3 8,164
GROVER_base 8,854
GROVER_large 8,164
GROVER_mega 8,164
CTRL 8,121
XLM 8,852
XLNET_base 8,854
XLNET_large 8,134
FAIR_wmt19 8,164
FAIR_wmt20 8,309
TRANSFORMER_XL 8,306
PPLM_distil 8,854
PPLM_gpt2 8,854

Table 4.7: # of data samples in the TuringBench dataset

repeat a particular word multiple times consecutively. This introduced bias into our
Machine Learning models, making it easier to detect such generated texts. Therefore,
we removed words that were repeated consecutively, leaving only one. Next, those same
text-generators also had a tendency to generate texts where a random word would have
the last character repeated multiple times. For instance, a word like “expressed", could
be spelled like “expresseddddddddddddddddddddddddddddd”. This also made such
generators easy to detect, so we removed words of more than 20 characters to get rid of
such words. Lastly, the word “CNN” was used heavily by a few generators, making it
easier to detect such generators. Therefore, we removed the word, “CNN" from all the
articles.

Before pre-processing of the data, we had 200K, and after the process, we have
168, 612. See data distribution in Table 4.7 of the cleaned dataset. We can observe
that the distribution of the dataset is still approximately the same. See the detailed
description of the 10 unique architectures used to generate texts for the TuringBench
dataset, including the links to their code bases in Table 4.8.

3https://www.kaggle.com/snapcrack/all-the-news,
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TEXT-GENERATORS DESCRIPTION

Human We collected news titles (mostly Politics) and contents from CNN, Washington
Post, and Kaggle 3 4 5 6 . Next, we removed articles that did not have the desired
word length (i.e., 200–500). This resulted in 130K articles, but only 10K was
used for the article generations.

GPT-1 Texts are generated with the huggingface github repo7.
GPT-2 We use 4 GPT-2 pre-trained models - PyTorch model 8, small (124 million

parameters), medium (355 million parameters), large (774 million parameters),
and extra-large (1558 million parameters) 9 to generate texts.

GPT-3 Texts are generated with the OpenAI GPT-3 API using the davinci engine.
GROVER We use code from repo10 to generate from Grover’s 3 pre-trained models:

GROVER-base, GROVER-large, GROVER-mega.
CTRL Conditional Transformer Language Model For Controllable Generation 11 uses

control codes to guide generation. We use News control code to generate long
articles.

XLM We generated texts using huggingface repo.
XLNET We generated texts with 2 XLNET pre-trained models: XLNET-base, and

XLNET-large using huggingface.
FAIR_wmt We use two Facebook’s FAIR English models - wmt1912 and wmt2013 to

generate texts with FAIRSEQ sequence modeling toolkit.
TRANSFORMER_XL We generated texts with this language model’s setup on huggingface.
PPLM PPLM fuses GPT-2’s pre-trained model with bag of words to generate more

specific texts. We used the Politics bag of words model to generate texts’,
using the code14, and used the perturbed version. Next, we fused PPLM with
two pre-trained models (i.e., distilGPT-2, and GPT-2) and generated texts with
them, forming: PPLM_distil, PPLM_gpt2. These models are gotten from the
huggingface model repository15.

Table 4.8: Description of the Text-generators in the TuringBench dataset.

4https://www.kaggle.com/sunnysai12345/news-summary
5https://www.kaggle.com/ryanxjhan/cbc-news-coronavirus-articles-march-26
6https://www.kaggle.com/patjob/articlescrape
7https://github.com/huggingface/transformers
8https://github.com/graykode/gpt-2-Pytorch
9https://github.com/minimaxir/aitextgen

10https://github.com/rowanz/grover
11https://github.com/salesforce/ctrl
12https://github.com/pytorch/fairseq/tree

/master/examples/wmt19
13https://github.com/pytorch/fairseq/tree

/master/examples/wmt20
14https://github.com/uber-research/PPLM
15https://huggingface.co/models
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Figure 4.9: TuringBench website interface

Model Run-time
GROVER detector 25 – 30 minutes

GPT-2 detector 5 – 10 minutes
GLTR 4 – 5 hours
BERT 25 – 40 minutes

RoBERTa 45 – 1 hour

Table 4.9: TT model Run-time per task

4.6.3 TuringBench Website

We create the TuringBench website using the SQuAD website framework. The website
contains a description of the benchmark datasets and benchmark tasks. Each benchmark
task has a leaderboard that shows the models used to solve the tasks. These models
are rated from best to worst. For the AA tasks, we use the standard Machine learning
evaluation metrics such as: Precision, Recall, F1 score, and Accuracy. And we use only
F1 score for the TT task because it is a binary classification problem and F1 score is
sufficient for the problem. See website interface in Figure 4.9.
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4.6.4 Experiments

All experiments, except GLTR and GPT-2 detector were done using the Google Colab
pro’s GPU stated above. Experiments with GLTR and GPT-2 detector were done in a
machine with 4 GPUs - NVIDIA Quadro RTX 8000.

4.6.4.1 TT models

Each of the models used its default hyperparameters. There was no hyperparameter
tuning performed. We used GROVER-Large discriminator for GROVER detector, the
weights of Roberta-large fine-tuned on GPT-2 XL outputs for GPT-2 detector, and GPT-2
117M model for GLTR. None of these models were trained on our dataset. We tested
their performance by predicting our test set. Next, we fine-tuned BERT and RoBERTa on
our train set and validate these models on our validation set for each TT task. BERT was
fine-tuned for 3 epochs and RoBERTa, 3–5 epochs with 2e−5 learning rate. See Table 4.9
for the run-time of the models.

4.6.4.2 AA models

We used the default hyperparamters of the AA models for the AA task. Also, we did
not perform any hyperparameter tuning on these models. Random Forest and SVM

take about 30 minutes – 1 hour to converge. WriteprintsRFC took about 15 minutes to
converge. Syntax-CNN, N-gram CNN, and N-gram LSTM-LSTM took about 30 minutes
to converge. OpenAI detector took about an hour to converge. BERT-Multinomial and
RoBERTa-Multinomial took about 1 – 2 hours to converge. BertAA took about 5 hours to
converge.
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Chapter 5 |
TopRoBERTa: Topology-Aware
Authorship Attribution of Deep-
fake Texts

5.1 Introduction

We define this problem of distinguishing deepfake texts from human texts as Authorship

Attribution for deepfake texts [174]. Authorship Attribution (AA) is the process of
assigning a document to its true author. For deepfake text detection, AA can be divided
into two problems - (1) Binary setting: human vs. deepfake; and (2) Multi-class setting:

Figure 5.1: Illustration of the Authorship Attribution (AA) problem with multiple authors,
including human and many LLM authors
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human vs. deepfake-author_1 vs. deepfake-author_2 vs. ... deepfake-author_n. See
Figure 5.1 for an illustration of the multi-class setting. The binary setting has been
well-studied and is known as the Turing Test problem [1], however, the multi-class setting
has not been as rigorously studied due to its non-trivial nature. Thus, with the popular
usage of ChatGPT (powered by GPT-3.5 or GPT-4), and other LLMs, it will no longer be
sufficient to just ask the question - is this written by human or AI/deepfake algorithms?

but now we know it is AI-generated, can we determine which LLM generated the texts?
This can help researchers and policymakers know which models are more likely to be
used maliciously and in what context (political propaganda, terrorism recruitment, etc.).
Furthermore, if we find that a particular LLM, tends to be used more maliciously in the
social media domain, for instance, then we can build a targeted binary detector for this
particular LLM.

To distinguish deepfake texts from human-written texts, researchers have proposed
several solutions, both utilizing supervised and unsupervised machine learning. Uchendu
et al. [174] surveys these solutions well, creating taxonomies that are discussed in Chapter
2. In the supervised learning setting, researchers have developed stylometric, deep

learning, and hybrid (ensemble of 2 or more) solutions for deepfake text detection. And
for the unsupervised learning setting, only statistical solutions have been developed [174].
Intuitively, deep learning- and hybrid-based techniques achieve the best performance
in terms of accuracy. However, in terms of adversarial robustness, statistical-based
techniques are the most robust models, with hybrid models taking second/first place
in adversarial robustness [174]. To that end, we propose a hybrid solution which is an
ensemble of statistical and deep learning-based techniques to get both benefits - good
performance and robustness. We hypothesize that if our model has adversarial robustness
properties, it could also be noise-resistant and thus be robust to out-of-distribution and
imbalanced datasets, which could be considered softer adversarial perturbations.

Thus, we propose - TopRoBERTa, an ensemble of RoBERTa [110] and Topological
Data Analysis (TDA) techniques. We show 2 techniques in which TDA features can
be extracted from RoBERTa. First, RoBERTa is used as the base model because it still
remains the SOTA for extracting features from text and also because it has over 20K more
tokens in its vocabulary than BERT. We apply TDA techniques to the task of deepfake text
detection because it is able to capture the true shape of data, in spite of noise [175–178].
To achieve accurate deepfake text detection, we need sufficient data, however due to the
expense and restrictive access issues with SOTA LLMs, it is difficult to get sufficiently
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sized datasets in this field. Consequently, most datasets that exist are grossly imbalanced
because they reflect the real world, where there are more human-written texts than
deepfake texts. These issues tend to make deepfake text datasets noisy, making TDA a
suitable application for deepfake text detection. Thus, we show the robustness of our TDA-
based models on imbalanced and noisy datasets - TuringBench [1] & SynSciPass [63].
To build TopRoBERTa, we used a 2D version of the pooled_output to extract TDA
features for TopRoBERTa_pool and attention weights for TopRoBERTa_attn. For both
models, we concatenate the regularized pooled_output and the TDA features and use
this new vector as features for classification. TopRoBERTa_attn technique is inspired
by [24, 179] who use the directed and undirected graphs of the attention weights. We
show that TopRoBERTa_pool is the superior TDA-based technique as it is more stable,
less computationally expensive, and consistently outperforms vanilla RoBERTa.

Finally, with the ensemble of RoBERTa and TDA features we capture syntactic [180,
181], semantic [180, 181], and structural [176] linguistic features with TopRoBERTa
bringing us closer to accurate authorship attribution of human vs. deepfake texts.

5.2 Related Work: TDA applications in NLP

Topological Data Analysis (TDA) is a technique used to quantify shape and structure in
data. Due to this unique ability to obtain the true shape of data, in spite of the noise, it
has been implemented in machine learning problems. More recently, the NLP field has
seen a recent uptake in TDA applications due to its benefits. TDA has been previously
applied to detecting children and adolescent writing [182], law documents analysis [183],
movie genre analysis [184], and explanation of syntactic structures of different language
families [175, 176]. More recently, TDA techniques have been applied to the deepfake
text detection problem [24]. However, they collect the statistical summaries of the TDA
representations of BERT attention weights, represented as a directed and undirected
graph. Using these representations, they classify deepfake texts with Logistic regression
for the binary task - human vs. deepfake. Therefore, for our technique, we train an
end-to-end transformer-based model - BERT & RoBERTa with a TDA layer using the
BERT or RoBERTa representations as the fine-tuning process continues. Next, [179]
uses a similar technique as [24] to show that TDA can improve the robustness of BERT.
Finally, TDA has also been applied to representing documents as story trees [185],
detecting contradictions in texts [186], examining the linguistic acceptability judgments
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of texts [187], and finding loops in logic [188].

Figure 5.2: Flowchart of the Topological classification algorithm. The Red frame
indicates our methodology and technique to transform a Vanilla Transformer-based
model to a Topological Transformer-based model.

5.3 Topological Data Analysis (TDA) features

Topology is defined as “the study of geometric properties and spatial relations unaffected
by the continuous change of shape or size of figures,” according to the Oxford Dictionary.
Topological Data Analysis (TDA) is a “collection of powerful tools that have the ability
to quantify shape and structure in data”1. There are two main TDA techniques - persistent
homology and mapper. We will only focus on persistent homology.

TDA is concerned with the formation and deformation of holes. To obtain the true
shape of an object, holes are counted in infinite dimensions. However, at about the
3-Dimensions, the features become harder to explain [175]. The dimension of the holes
are captured with the betti numbers (βd, d-dimension). The holes in 0-Dimension (β0)
are called connected components and in the 1-Dimension (β1) and 2-Dimension (β2), are
called loops/tunnels and voids, respectively. The most popular technique to obtain the
formation and deformation of these holes is persistent homology. Persistent homology is
a TDA technique used to find topological patterns of the data [188]. This technique takes
in the data and represents it as a point cloud, such that each point is enclosed by a circle.
Each circle contains only one point. For this analysis, the aim is to extract the persistent

1https://www.indicative.com/resource/topological-data-analysis/
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features of the data. Next, it creates simplicial complexes by using different radii within
a predefined range to increase the size of the circles. The rule here is due to the increase
in the size of the circles, they will begin to overlap each other, therefore, if two circles
touch, you draw a line between the two points. This line is called 1-simplex. And if
3 circles touch (2-simplex), you draw a line between all 3 points, forming a triangle.
While a point is a 0-simplex. The TDA features recorded are the birth (formation of
holes), death (deformation or the closing of holes) in different dimensions as well as
the persistence of features. Persistence is defined as the length of time it took a feature
to die (death− birth). This means that if a point touches another point then one of the
points/features has died. The death is recorded with the radii value at which the points
overlapped. In addition, due to all the shifts and changes, from the 1-Dimension and
upwards, some features may appear - a new hole, and this feature is recorded as a birth.
The birth feature is the radii at which it appeared.

However, for our task, we only record holes, known as connected components which
are the holes in the 0-Dimension. We only use connected components features because
we are able to obtain more uniform features across our datasets. Additionally, to obtain
these TDA features, we need at least a 2D matrix as input to get the point clouds needed
to obtain the simplicial complexes. Lastly, due to the rigorous process of counting the
birth and death of new features, TDA is both a data reduction and feature extraction
tool, as the output trims the noise from the original data. The noise-resistant quality
of TDA makes it able to extract the true structure of a dataset. Therefore, for our text
classification task - deepfake text detection, TDA is able to extract linguistic structural
features.

5.4 Topology-Aware Deepfake Text Detector

5.4.1 TopRoBERTa_pool

To build this TDA-infused RoBERTa model, we focus on the four layers needed to convert
vanilla-RoBERTa to Topological-RoBERTa - (1) pre-trained weights of the RoBERTa
model, (2) dropout layer with probability p=0.3, (3) Topological layer for calculating, and
(4) Linear transformation layer. See Figure 5.2 for a flow chart describing the architecture
of TopRoBERTa with the 4 layers.

To train our end-to-end Topological-RoBERTa model, we first fine-tune RoBERTa-
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Figure 5.3: Illustration of how we extract the TDA features using the reshaped RoBERTa
regularized weights as input. First, we reshape the regularized pooled_output from
1 × 768 dimensions to 24 × 32 and use this 2D matrix as input for the Topological
layer. The Topological layer treats this 2D matrix as a point cloud plot and extracts TDA
features (birth & death). Next, these TDA features are plotted in a figure known as
Persistent Diagram, where the birth features are on the x-axis and death features are on
the y-axis. While we plot the features from the 0-Dimension (connected components)
and 1-Dimension (loops), only 0-Dimension features are used for our classification task.

base model. As we fine-tune the model, we take the pooled_output which is a 1× 768
vector containing the latent representations of RoBERTa. We find that RoBERTa weights
are richer than BERT because it is a robustly trained BERT model and has over 20K
more vocabulary size than BERT. These latent representations capture word-level and
sentence-level relationships, thus extracting contextual representations [110]. Due to the
contextual representations captured, RoBERTa weights essentially extract semantic and
syntactic linguistic features [180, 181].

Next, we pass this pooled_output which is a 1×768 vector into a regularization layer,
called dropout. This dropout layer drops a pre-defined percentage (30% in our case)
of our pooled_output to make our model more generalizable and less likely to overfit.
The intuition behind this technique is that by dropping 30% of the pooled_output, the
rest of the 70% is forced to carry more weight and thus be less noisy. The advisable
dropout probability is between 0.1 - 0.5, however, we use a probability of 0.3 as it has
been shown to achieve good results on deepfake text detection [1]. Lastly, the dropped
weights in our pooled_output are converted to zero so that the dimensions of the output
dropout(pooled_output) is the same as the input - 1× 768 vector.

Before, we use our regularized output - dropout(pooled_output) as input for the
Topological layer2, we first reshape it from 1D→ 2D. TDA requires at least a 2D matrix
to construct simplicial complexes that persistent homology technique uses to extract the

2https://github.com/aidos-lab/pytorch-topological/tree/main
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birth and death of TDA features (connected components, specifically) [177]. This is
because the simplicial complexes can only be extracted from the point cloud (which is a
scatterplot of the dataset) and to get this point cloud we need a dataset with 2-coordinates.
We include this Topological layer in RoBERTa because: (1) RoBERTa has richer latent
representations than BERT [110]; (2) TDA is robust to noise, out-of-distribution, and
limited data [178]; (3) TDA is able to capture more features that other feature extraction
techniques cannot capture [175, 176]; and (4) TDA extracts the true structure of data
points [177]. To convert the regularized weights from 1D→ 2D is non-trivial because
we need to get the best shape to obtain useful TDA features which are stable and uniform
(vectors of the same length) across all input of a particular dataset. Therefore, we try
different 2D sizes and find that the closer it is to a square matrix, the more stable the TDA
features are. Stable in this context means that for every input, the TDA layer outputs
the same number of features in a vector. Therefore, we convert the 1× 768 vector to a
24× 32 matrix, since it is the closest to a square matrix as 768 is not a perfect square. We
also find through experimentation that when row > column, TDA features are unstable.
Unstable for our task means that the Topological layer output different vector sizes of
TDA features given the input. Also, sometimes the feature vector can only contain nan

values based on the input which means that it was unable to extract TDA features. Thus,
we find that pooled_output must be reshaped such that row ≤ column and 24 × 32
satisfies this claim. Finally, using the 2D matrix as input to our Topological layer, we
obtain the 0-Dimension features following the process illustrated in Section 5.3. This
yields a 23× 3. These 3 columns represent the birth time, death time, and persistence
features, respectively. Persistence is defined as the length of time it took a feature to die.
Next, this 2D matrix is flattened to a vector size of 1× 69 so it can be easily concatenated
with the 1D dropout(pooled_output). See Figure 5.3 for an illustration of how the TDA
features are extracted. We interpret these TDA features as capturing linguistic structure,
as it is capturing the structure and shape of textual data.

Lastly, we concatenate the regularized RoBERTa weights (dropout(pooled_output))
of size 1× 768 with the TDA features of size 1× 69. This yields a vector of size 1× 837.
Thus, this 1× 837 vector serves as input for the final layer of feature transformation, the
Linear layer. The Linear layer’s latent space increases from 768 to 837 in order to take the
concatenated vector as input. TDA increases the latent space by 69 dimensions. However,
we observe that unlike other TDA-based Transformer classifiers [24, 179], which use
attention weights in which the size is dependent on the length of text, our TDA technique
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increases the latent space minimally. Finally, the output of this Linear layer is a vector
that is the size of batch_size× number_of_labels. Thus, if we have batch_size = 16
and number_of_labels = 20, we obtain a vector of size: 16× 20. Finally, we pass this
vector as input into the softmax layer for multi-class classification.

We train this Topological model for 5 epochs so both the RoBERTa pre-trained
weights and Topological features can be improved. We use Adam optimizer, cross-entropy
loss, and a learning rate of 2e− 5. We experimented with different loss functions - cross-
entropy, topological loss, contrastive loss, Gaussian loss, and different combinations of
these loss functions. We find that just cross-entropy loss achieves the best performance.
Finally, TDA features are compatible with non-TDA features [189], making it a suitable
technique to extract subtle linguistic patterns that distinguish deepfake texts from human-
written ones. Thus, TopRoBERTa_pool captures semantic, syntactic, and structural
linguistic features.

5.4.2 TopRoBERTa_attn

TopRoBERTa_attn uses the same architecture as TopRoBERTa_pool, except we use
the attention weights which is of size Max_length× 768 as input for the Topological
layer. This technique is inspired by [24, 179] who use the directed and undirected graphs
of the attention weights. Thus, instead of increasing the computational cost by building
graphs with the attention weights, we use the attention weights as input for extracting the
TDA features. This technique provides a fairer comparison to TopRoBERTa_pool.

Thus, using this large matrix as input, we obtain TDA features of size: Max_length−
1× 3 matrix. This 2D matrix is then flattened to a 1D vector of size 1× 3 ∗Max_length.
However, we find that unlike TopRoBERTa_pool, TopRoBERTa_attn can be unstable.
Unstable here means that the TDA feature vectors are not always the same length, so we
had to implement normalization techniques to ensure that the TDA feature vectors are
the same length. Additionally, we find that the feature vector changes per data, when
we use the attention weights as input for the TDA layer because the maximum length is
not fixed. For instance, if a dataset has a maximum length of 512 tokens, then the TDA
feature space will be of size 511× 3 which will be further flattened to 1× 1533. Next
we concatenate the pooled_output which is of size 1× 768 with the TDA features, and
obtain a vector of size 1× 2301. This increases the latent space of the Linear layer from
768 to 2301. Finally, following the same procedure of TopRoBERTa_pool, we pass the
Linear layer output into the softmax layer for multi-class classification.
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5.5 Experiments

Dataset Train Validation Test # Labels

TuringBench 16K 5.4K 2.7K 20
SynSciPass 87K 10K 10K 12

Table 5.1: Dataset summary statistics

5.5.1 Datasets

Since the focus of this paper is multi-class authorship attribution of deepfake texts
vs. human-written texts, we evaluated our models on two deepfake text datasets -
TuringBench [1] and SynSciPass [63]. Furthermore, these datasets are a reflection of the
real world, where we currently have more human-written texts examples than deepfake
texts.

TuringBench dataset is a news (mostly politics) dataset comprised of both human-
written and deepfake-generated texts. It has 20 labels - 1 human & 19 deepfake text
generators. These 19 deepfake labels are generated using different pre-trained models of
10 unique generation model architectures. We cleaned the dataset further than the version
used in the TuringBench paper [1] and skewed the dataset to maintain a more realistic
real-world scenario. This skewed version contains 100% of the human examples and
only 10% of each of the 19 deepfake examples. See Table 5.1 for the train, validation,
and test splits of TuringBench dataset.

SynSciPass dataset is comprised of scientific articles, authored, by both human and
deepfake authors. In addition to being grossly imbalanced, the SynSciPass dataset is
noisy. This is because, unlike the TuringBench dataset where all the deepfake texts are
generated with open-ended text-generators like GPT-3, SynSciPass’s deepfake labels are
generated with 3 types of text-generators. These are open-ended generators, translators
like Google translate (e.g. English→ Spanish→ English), and paraphrasers like SCIgen
and Pegasus. Using these different text-generation techniques introduces a noisiness in
this dataset. We use the 12 labels - 1 human & 11 deepfake text-generators. However,
due to the different NLG methods employed, this data also has 4 heterogeneous labels -
human, generators, translators, and paraphrasers. See Table 5.1 for the train, validation,
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MODEL Precision Recall Accuracy Macro F1 Weighted F1 % Gain

BERT 0.6884 0.7066 0.8058 0.6842 0.7891 -
Gaussian-BERT 0.6820 0.6871 0.7871 0.6832 0.7862 0.1% ↓
TopBERT_attn 0.7297 0.7265 0.8177 0.7137 0.8081 3% ↑
TopBERT_pool 0.7264 0.7265 0.8177 0.7178 0.8115 4% ↑

RoBERTa 0.7185 0.7162 0.8098 0.7030 0.8010 -
Gaussian-RoBERTa 0.6582 0.6629 0.7706 0.6572 0.7673 4% ↓
TopRoBERTa_attn 0.5276 0.3625 0.3405 0.2650 0.3186 39% ↓
TopRoBERTa_pool 0.7366 0.7386 0.8249 0.7205 0.8130 2% ↑

Table 5.2: TuringBench Authorship Attribution results. The best performance is boldened
and the second best is underlined. The percentage gains reported in the % Gain are
calculated from the Macro F1.

MODEL Precision Recall Accuracy Macro F1 Weighted F1 % Gain

BERT 0.8585 0.8148 0.9791 0.8327 0.9785 -
Gaussian-BERT 0.8404 0.7709 0.9745 0.7933 0.9735 4% ↓
TopBERT_attn 0.8022 0.8022 0.8080 0.8001 0.9799 3% ↓
TopBERT_pool 0.8682 0.8298 0.9807 0.8471 0.9802 2% ↑

RoBERTa 0.9012 0.8554 0.9853 0.8719 0.9846 -
Gaussian-RoBERTa 0.8929 0.8809 0.9872 0.8847 0.9870 1% ↑
TopRoBERTa_attn 0.9154 0.8826 0.9879 0.8923 0.9875 2% ↑
TopRoBERTa_pool 0.9177 0.8978 0.9892 0.9058 0.9890 4% ↑

Table 5.3: SynSciPass Authorship Attribution results. The best performance is boldened
and the second best is underlined. The percentage gains reported in the % Gain are
calculated from the Macro F1.

and test splits of SynSciPass dataset. The human label has 79K examples, while the rest
of the labels have between 600-850 examples. Finally, since this dataset looks at the
task from a different perspective, as well as being grossly imbalanced, we evaluated our
models on these constraints.

5.5.2 Authorship Attribution

We train all the models with the same hyperparameters & parameters - dropout probability
p=0.3, learning rate of 2e− 5, cross-entropy loss, batch size of 16 and 5 epochs. Also,
tested with other loss functions (contrastive loss, topological loss, and Gaussian loss) and
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found cross-entropy to be the best. See models:

• BERT: We use BERT-base cased pre-trained model.

• TopBERT_attn: We add a Topological layer to the BERT model described above
and follow the process described in Section 5.4.2.

• TopBERT_pool: We add a Topological layer to the BERT model described above
and follow the process described in Section 5.4.1 and Figure 5.2.

• Gaussian-BERT: This is a BERT-base model with a Gaussian layer to add Gaus-
sian noise to the weights. The hypothesis is that if TopBERT achieves superior
performance randomly then adding a Gaussian layer should have a similar effect.

• RoBERTa: We use RoBERTa-base pre-trained model.

• TopRoBERTa_attn: We add a Topological layer to the RoBERTa model described
above and follow the process described in Section 5.4.2.

• TopRoBERTa_pool: We add a Topological layer to the RoBERTa model described
above and follow the process described in Section 5.4.1 and Figure 5.2.

• Gaussian-RoBERTa: This is similar to the Gaussian-BERT architecture, except
we use RoBERTa-base instead of BERT-base. The hypothesis also remains the
same here but applied to TopRoBERTa.

We only compare BERT and RoBERTa model variants to our deepfake text detection
models to show the robustness of the models, as they are still the SOTA models. Further-
more, we did not compare other AA models as they have been shown to fail in the task
of deepfake text detection [1, 190]. In fact, when such AA models outperform RoBERTa,
they only achieve only a 1% increase in performance for our task.

Lastly, we evaluated the performance of these AA models with established evaluation
metrics for machine learning - Precision, Recall, Accuracy, Macro F1 score, Weighted F1
score. However, due to the imbalanced nature of the datasets, we focus on the macro F1
score and use it to calculate positive and negative percentage gains for the classification
task.
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MODEL Precision Recall Accuracy Macro F1 Weighted F1 % Gains

BERT 0.9576 0.9264 0.9895 0.9414 0.9894 -
BERT_pool 0.9616 0.9221 0.9895 0.9412 0.9893 0.02% ↓
RoBERTa 0.9601 0.8767 0.9869 0.9064 0.9857 -

TopRoBERTa_pool 0.9865 0.9638 0.9960 0.9746 0.9959 7% ↑

Table 5.4: SynSciPass Authorship Attribution results with 4 labels - Human vs. Genera-
tors vs. Translators vs. Paraphrasers. The best performance is boldened and the second
best is underlined. The percentage gains reported in the % Gain are calculated from the
Macro F1.

5.6 Results

Our proposed models - TopBERT_pool and TopRoBERTa_pool are evaluated on their
ability to more accurately attribute human- vs. deepfake-authored articles to their true
authors. We specifically used an imbalance dataset - TuringBench and a noisy & imbal-
anced dataset - SynSciPass. From Tables 5.2 and 5.3, we observe that TopRoBERTa_pool
excels in the AA task, consistently outperforming all other models. TopRoBERTa_pool
outperforms RoBERTa by 2% and 4% for TuringBench and SynSciPass, respectively.
Similarly, TopBERT_pool outperform BERT by 4% and 2% for TuringBench and Syn-
SciPass, respectively. While TopRoBERTa_attn underperforms RoBERTa by 39% for
TuringBench and outperforms RoBERTa by 2%. Also, TopBERT_attn is observed to
outperform BERT by 3% for the TuringBench dataset, and underperform by 3% for
the SynSciPass dataset. Furthermore, we observe that Gaussian-BERT underperforms
BERT for both datasets. However, Gaussian-RoBERTa underperforms RoBERTa for
TuringBench and outperforms RoBERTa for SynSciPass. This suggests that only Top-
BERT_pool and TopRoBERTa_pool consistently outperform their base models, given
the constraints - noise and imbalance.

5.7 Further Analysis of TopRoBERTa_pool

The results in Tables 5.2 and 5.3 suggest that the addition of a Topological layer improves
performance for our main contribution, the TDA pooled_output technique. More specifi-
cally in Table 5.3, this improvement is exaggerated, with TopRoBERTa_pool, achieving a
4% increase in macro F1 score for the SynSciPass dataset. To understand these improve-
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Figure 5.4: PCA plots from RoBERTa vs. TopRoBERTa training embeddings - Turing-
Bench (above) & SynSciPass (below). For all plots, the black clusters are the human
label and the other clusters are the deepfake labels.

ments further, we compare the weights of vanilla RoBERTa and TopRoBERTa_pool.
This is done by plotting the PCA features of vanilla RoBERTa vs. TopRoBERTa_pool
weights for the TuringBench and SynSciPass dataset. The hypothesis here is that if
TDA captures more features than the base Transformer-based models, there will be a
distinct or at least a subtle difference in the structure of these two models. In addi-
tion, due to the superior performance of TopRoBERTa_pool, we should also, observe
more distinct clusters of the multiple authors with the Topological model than with the
vanilla or base model. See Figure 5.4 for the PCA plots of the weights of RoBERTa and
TopRoBERTa. For TuringBench, we observe that the shapes are similar with minimal
differences in structure, however, there are more distinct clusters for TopRoBERTa. Next,
for the SynSciPass dataset, TopRoBERTa shows not only more distinct clusters but also
a very different shape from RoBERTa’s PCA plot. These more distinct clusters observed
from TopRoBERTa for both datasets could further explain the superior performances of
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TopRoBERTa which is further discussed in Section 5.8.
Lastly, to further show the robustness of TopRoBERTa_pool to noisy data with

heterogeneous labels, we run further experiments to compare vanilla Transformer-based
models with Topological Transformer-based models. For this task, there are 4 labels
of the SynSciPass dataset - Humans vs. Generators vs. Translators vs. Paraphrasers.
Heterogeneous labels refer to a situation where the labels in a classification task are
diverse and encompass multiple distinct categories or types. Due to the noisy and
heterogeneous nature of the dataset with the 4 labels, we observe up to 7% increase in
performance from TopRoBERTa_pool. However, TopBERT_pool performs similarly as
BERT for this task, further confirming the superiority of TopRoBERTa_pool.

5.8 Discussion

See below for the observed strengths and weaknesses of adding a Topological layer to a
Transformer-based model:

1. Deepfake text has a shape which TDA captures: The ultimate goal of TDA
is to capture the true shape of data which is what TopRoBERTa_pool does for
the TuringBench and SynSciPass dataset. These subtle and distinct structural
differences observed between RoBERTa and TopRoBERTa_pool’s PCA plots
in Figure 5.4 confirm this. This phenomenon is supported by [175, 176, 189]’s
findings that TDA captures features that other feature extractors are unable to
capture. However, since text takes on the shape of its numerical representer,
the structural features that TDA extracts from textual data are dependent on the
numerical representer. Therefore, we can only claim that TDA extracts the shape of
text data as best it can, given the input. This means that TDA captures the shape of
deepfake texts as accurately as it can, given the BERT and RoBERTa weights. We
also understand that using PCA for dimension reduction inherently loosely some
information as well. Therefore, while we claim that TDA captures the structure of
data, we do not claim that the PCA plots are the true or accurate shapes of each
author’s writing style. Furthermore, while structural features are important for
accurate authorship attribution, text does not have an intuitive shape, so there is
currently no technique to intuitively visualize the TDA features from text data that
represent the shape of an author’s writing style.
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Figure 5.5: Plot of the death features of authors - Human, GPT-3, FAIR_wmt20, and
XLNet_large. All authors are considered very good writers, except for XLNet_large.
We show that TDA is capturing distinct features that complement BERT and RoBERTa
weights which improve the classification. There are 23 death features from the TDA
pooled_output technique as the input for extracting TDA features are 24 × 32 which
gives us 24 point clouds, yielding 23 non-trivial TDA features for birth, death, and
persistent columns.

2. TDA is robust to noise, imbalanced, and heterogeneous datasets: One of the
benefits of TDA is that the persistent homology technique is a process to dis-
cover persistent features, such that noise is ignored, making TDA noise-resistant
[177]. This is evident by the 4% increase in macro F1 (from RoBERTa-87% to
TopRoBERTa_pool-91%) for the SynSciPass dataset which is grossly imbalanced,
noisy, and heterogeneous. Heterogenous means that the SynSciPass has diverse
categories, which is why it can be further distinguished by 4 labels - Humans
vs. Generators vs. Translators vs. Paraphrasers. We observe a 7% increase in
performance from TopRoBERTa_pool when classifying with these 4 labels (See
Table 5.4). This further confirms the robustness of TDA to noise and heterogeneous
labels [178]. Intuitively, we observe only a 2% increase in TopRoBERTa_pool’s
performance on the TuringBench dataset because although it is also grossly imbal-
anced, it is not noisy.
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3. TDA’s structural features complement RoBERTa weights: There are currently
5 linguistic levels - phonology, pragmatics, morphology, syntax, and semantics.
And due to the complex nature of language, they may not be enough to capture
an author’s unique writing style. However, RoBERTa captures a broad range of
linguistic patterns, such as contextual representations in terms of syntactic and
semantic relationships. However, using only syntactic and semantic linguistic
features is not sufficient to achieve accurate authorship attribution. Therefore, with
TDA, additional features are extracted to push us closer to accurate authorship
attribution. TDA features capture the shape and structure of data. These features
in the context of NLP, can be interpreted as linguistic structures. Finally, by
combining these 3 linguistic features - syntactic, semantic, and structural linguistic
features, our model - TopRoBERTa_pool is able to more accurately distinguish
deepfake texts from human-written ones, as observed in Tables 5.2, 5.3 and 5.4.
Furthermore, in Figure 5.5, we observe that TDA captures some distinctness in
terms of the persistence of the features between authors, which suggests that TDA
captures additional features that complement RoBERTa.

4. The quality of TDA features depend on input: The performance difference
between TopBERT and TopRoBERTa indicates the significance of the initial input
for extracting valuable TDA features. To build an effective Topological-based
text classification model, a reliable numerical representation of the texts is crucial.
Since Transformer-based models like BERT and RoBERTa are still considered
state-of-the-art, they remain the optimal choices. Consequently, our Topological-
RoBERTa (TopRoBERTa_pool) outperforms Topological-BERT (TopBERT_pool)
because RoBERTa extracts richer features compared to BERT for this task. This
can be attributed to RoBERTa being a robustly trained BERT model with 20K
additional tokens, enabling it to capture stronger linguistic features. This is poten-
tially why TopRoBERTa_pool outperforms RoBERTa by a 7% margin on detecting
heterogeneous labels and TopBERT_pool performs about the same as BERT in
Table 5.4. Additionally, we find that to obtain stable and useful features, the
better input for our Topological layer is a 2D matrix of size row ≤ column of the
pooled_output. Stable features refer to obtaining the same number of features for
each article, ensuring a consistent vector size. Lastly, when using TDA features
extracted with attention weights, we observe that TopRoBERTa_attn performs com-
parably to TopRoBERTa_pool for SynSciPass but underperforms for TuringBench.
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This inconsistency further supports our findings that TDA is sensitive to input,
emphasizing the need for better numerical representations of texts.

5. Improvement with TDA is not random: As RoBERTa is a black-box model,
to confirm that TopRoBERTa’s performance is not due to training with the right
kind of “noise,” we compare with Gaussian models - Gaussian-BERT & Gaussian-
RoBERTa. The hypothesis is that if TopRoBERTa’s performance is due to noise,
then Gaussian models trained on noise should perform similarly. We observe
from Tables 5.2 & 5.3 that Gaussian-BERT underperforms BERT for both datasets,
however Gaussian-RoBERTa underperforms RoBERTa for TuringBench but outper-
forms on the SynSciPass dataset. Furthermore, TopBERT_attn and TopRoBERTa_attn
are also observed to perform inconsistently like the Gaussian models. While Top-
BERT_pool and TopRoBERTa_pool consistently outperform their base models.
Thus, due to the consistency in performance from TopRoBERTa_pool and Top-
BERT_pool, it suggests that their improvement is not random.

6. Reshaped pooled output is a better TDA input than attention weights: Most
researchers that apply TDA for NLP tasks commonly use word2vec embeddings
or attention maps as input to extract TDA features [24, 179,183–186]. However,
we use reshaped pooled outputs because while using the attention weights as input
is more intuitive, the pooled_output contains richer features for classification than
attention weights. Furthermore, we also discover in confirmation with [24] that
using attention weights to extract TDA features is unstable. This could potentially
be the reason why previous studies first construct a directed and undirected graph
with the attention weights prior to TDA feature extraction to encourage stabil-
ity [24, 179]. Nevertheless, these techniques significantly increase computational
costs. The attention weights are large matrices, such as 400× 768 for TuringBench
and 512× 768 for SynSciPass datasets. After TDA feature extraction, the flattened
vectors are 1× 1197 and 1× 1533 for the TuringBench and SynSciPass datasets,
respectively. These increase the latent space of the Linear layer by a large margin -
768 to 1965 and 2301 for the TuringBench and SynSciPass datasets, respectively.
Additionally, to maintain consistent dimensions for TDA features, we employ nor-
malization techniques when TDA features for some articles differ from the majority.
In contrast, our main technique increases the dimensions of the linear layer to 837
for both datasets without requiring normalization. The inconsistent performance
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of TopBERT_attn and TopRoBERTa_attn further supports the superiority of using
pooled_output as input for obtaining TDA features compared to attention weights.

7. TopBERT_attn and TopRoBERTa_attn performance are inconsistent because
attention weights are length-dependent: Unlike the pooled_output, the attention
weights are length-dependent because attention weights are word-level representa-
tions while pooled_output are sentence-level representations. This is because each
row of the attention weights matrix is a 1× 768 vector representing each word in a
text, such that if the max length is 200, the attention weight is of size - 200× 768.
Thus, when this attention weight is used as input for the Topological layer, the
TDA features take in length, extracting structural length-based features. However,
as articles, both news and scientific tend to have varying lengths, length features
become a weak feature. Furthermore, as mentioned above, the Topological layer is
sensitive to input, and since attention weights are not a good feature for deepfake

text detection, TopBERT_attn and TopRoBERTa_attn perform inconsistently.

5.9 Summary

In conclusion, we propose a novel solution to accurately attribute the authorship of
deepfake texts vs. humans. This novel technique entails including a Topological layer
to RoBERTa-base model, such that the Linear layer’s input is a concatenation of the
RoBERTa regularized weights and the TDA features. We showed 2 techniques to extract
TDA features with RoBERTa - TopRoBERTa_pool and TopRoBERTa_attn. We find
that our novel technique - TopRoBERTa_pool is superior. Furthermore, we evaluated
our models on noisy, grossly imbalanced, and heterogeneous datasets. We observe that
TopRoBERTa_pool consistently outperforms all other models. Also, to investigate if our
TopRoBERTa_pool’s superior performance is random, we compare it to Gaussian models
and find that in fact the Gaussian models are inconsistent, while our model remains
consistent. Lastly, in the future, we would scrutinize our models under stricter constraints
such as evaluation on adversarial robustness, known as Authorship Obfuscation, and
out-of-distribution datasets, such as low-resource languages, multi-lingual, multi-domain,
imbalanced, and insufficiently sized datasets.
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Chapter 6 |
Understanding Individual and
Team-based Human Factors in
Detecting Deepfake Texts

6.1 Introduction

In this work, we investigate the task of determining if a given text is a deepfake text or not.
While the field of open-ended text generation is still relatively new, both computational
and non-computational detection of deepfake texts have been extensively studied in recent
years and well surveyed in [174]. In particular, what we are interested in answering is
how “humans" are able to detect deepfake texts better. Clearly understanding human
capacity and their limitations in detecting deepfake texts would help the development of
both computational and non-computational (and even hybrid) tools for detecting deepfake
text better. Recent literature (e.g., [1, 31, 191, 192]) has shown that, by and large, humans
are not good at detecting deepfake texts, performing only slightly better than the level of
random guessing. Even if humans are trained to detect deepfake texts, the performance
has not improved significantly (e.g., [23, 118, 191]).

Our task is modeled similarly to the Turing Test problem defined by Alan Turing in
the 1950s. The Turing Test is a test administered by a human as the judge who has a
conversation with an unknown entity and decides if they are speaking with a human or
machine/AI model. If the machine is labeled as human, then the machine has passed the
test. However, for our task, due to the security risks deepfake texts pose, it is imperative
that the NTG does not pass the test. To that end, we propose a framework that increases
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Figure 6.1: (A) Example of a multi-authored (Human & Deepfake) 3-paragraph article;
(B) Task: Detecting Deepfake texts; (C) Description of three research questions. “Image
from [3].”

the probability of GPT-2 failing the Turing Test.
Therefore, in this work, we aim to find ways to improve humans in detecting deepfake

texts better and understand human factors at play. Especially, we wonder if individual
humans, trained or not, are not good at detecting deepfake texts, does their collaboration
or expertise matter? As such, we pose the following three research questions (RQs):

RQ1 Do collaborative teams/groups perform better than individuals in deepfake text
detection?

RQ2 Do experts perform better than non-experts in deepfake text detection?

RQ3 What are the factors that maximize the performance gain?

RQ1 aims to investigate what improves human performance from the baseline -
team collaboration or individuals, and if collaboration improves human performance
significantly, which collaboration technique matter - synchronous or asynchronous col-
laboration? The hypothesis here is that synchronous collaboration will improve human
performance in deepfake text detection because humans perform better when there is infor-
mal discussion and sharing of ideas, as shown in prior literature (e.g., [193], [194], [195]).
Given the benefits of collaboration, we hypothesize that collaboration will improve hu-
man performance. RQ2 aims to investigate how English experts vs. English non-experts
detect deepfake texts differently. English experts are defined as individuals with at least a
Bachelor’s degree in English (and related programs). We aim to investigate the character-
istics that make one or more settings significantly outperform others. An example here
is that we hypothesize that experts will focus more on high-level errors such as logical
fallacies and non-experts will focus more on low-level errors such as grammar issues.
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RQ3 aims to investigate the human factors that may help improve human performance
in deepfake text detection. See Figure 6.1(C) for a visual representation of the research
questions.

Finally, our main contribution is investigating human participants’ ability to detect
deepfake texts with different settings – non-expert vs. expert and individual vs. collabo-
rative. Our key findings are summarized as follows: (1) both expert and non-expert in the
individual settings outperform the baseline significantly; (2) experts improve significantly
from individual to collaborative settings; and (3) experts more frequently use strong
indicators of deepfake texts as justification (which explains their superior performance).

6.2 Methodology

To improve human performance in deepfake text detection, we first, define a realistic
problem - detecting deepfake texts in an article authored by both human and an AI (i.e.,
GPT-2). This is done by randomly replacing 1 out of 3 human-written paragraphs with
a GPT-2-generated paragraph. Next, we define 2 variables for our study - individual

vs. collaboration and non-expert vs. expert. After using these variables to facilitate
crowdsourcing recruitment, we ask the human participants to select 1/3 paragraphs that
is deepfake and provide justification for selection.
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Figure 6.2: Illustration of the data generation process. “Image from [3].”
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6.2.1 Data Generation

We first define the goal of distinguishing deepfake texts from human-written texts. As
this problem has been studied by several researchers [2, 15, 117, 191, 196] and shown to
be very non-trivial and difficult to solve, we develop a novel way of administering the
Turing Test. Thus, we implement a realistic setting of the problem - detecting deepfake

texts in an article authored by both humans and an NTG. This setting is motivated by the
fact that while NTGs currently have very impressive generations, humans still produce
more natural speech than NTGs. This means that it will be natural for humans to edit
machine-generated articles to make them sound more authentic. We study this non-trivial
problem by asking human evaluators to: (1) Of 3 paragraphs, two written by a human,
and one machine-generated, select the machine-generated paragraph. (2) Please check
all explanations that satisfy the reason(s) for your choice. See Figure 6.1(B) for a visual
representation of our task. We provide seven pre-defined rationales that correspond to
flaws typically observed in deepfake text [192] - grammatical issues, repetition, lacks
common sense, contains logical errors, contradicts previous sentences, lack of creativity
or boring to read, writing is erratic (i.e. does not have a good flow) or choose to write on
their own.

To build this dataset, we collected 200 human-written news articles (mostly politics
since this work is motivated by mitigating the risk of mis/disinformation or fake news
dissemination) from reputable news sources such as CNN and Washington Post. Next, of
the 200 articles, we took the first 50 articles with at least 3 paragraphs. Then, we removed
all paragraphs after the 3rd paragraph. Since the goal is to have a multi-authored article
(human and AI), we randomly select 1/3 paragraphs to be replaced by GPT-2’s [38]
generated texts. We used only GPT-2 to generate the deepfake texts because: (1) GPT-2
and GPT-3 are similar. Based on [15, 191], human performance on detecting GPT-2 and
GPT-3 texts have similar accuracies; and (2) GPT-2 is cheaper to generate texts with than
GPT-3 since GPT-2 is open-source and GPT-3 is not. For generation, we used GPT-2
XL which has 1.5 billion parameters and aitextgen1, a robust implementation of GPT-2
to generate texts with the default parameters. We followed the following replacement
process:

1. If paragraph 1 is to be replaced: Use Title as a prompt to generate GPT-2 replace-
ment

1https://github.com/minimaxir/aitextgen
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Label Paragraph1 Paragraph2 Paragraph3
Count 23 16 11

Table 6.1: Data labels of deepfake texts.

2. If paragraph 2 is to be replaced: Use Paragraph 1 as a prompt to generate GPT-2
replacement

3. If paragraph 3 is to be replaced: Use Paragraph 2 as a prompt to generate GPT-2
replacement

Since we are unable to control the number of paragraphs GPT-2 generates given a prompt,
we use a Masked Language model to choose the best GPT-2 replacement that fits well
with the article. We use a BERT-base [82] as the Masked Language model to get the
probability of the next sentence. Let us call this model G(.), it takes 2 inputs - the first
and probable second sentence/paragraph (G(Text_1, T ext_2)) and outputs a score. The
lower the score, the more probable Text_2 is the next sentence.

For instance, say GPT-2 texts is to replace Paragraph 2 (P2) of an article

• We use P1 as prompt to generate P2 with GPT-2

• GPT-2 generates another 3-paragraph article with P1 as the prompt

• To find the suitable P2 replacement, we do G(P1, each GPT-2 generated paragraph)

• Since low scores with G(.) is considered most probable, the P2 replacement is the
GPT-2 paragraph that yielded the lowest score with G(.)

We use a random number generator to select which paragraphs are to be replaced and
got the following deepfake text replacement for the paragraphs in Table 6.1. See Table
6.2 for the average count of characters, words, and sentences in each of the 3 paragraphs.
After we created these multi-authored articles, we manually did a quality check of a few
of these articles by checking for consistency and coherence. See Figures 6.2 for the data
generation process and 6.1(A) for an example of the final multi-authored article.

Next, as we have defined this realistic scenario, we hypothesize that collaboration
will improve human detection of deepfake texts. Thus, we define 2 variables for this
experiment - Individual vs. Collaboration and English expert vs. English non-expert.
We investigate how collaboration (both synchronous and asynchronous) improves from
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Label Paragraph1 Paragraph2 Paragraph3
# Char 231.64 261.12 260.64
# Word 38.42 44.06 43.98

# Sentence 2.86 2.96 3.20

Table 6.2: Summary statistics of the articles

individual-based detection of deepfake texts. The hypothesis here is that when humans
come together to solve a task, collaborative effort will be a significant improvement
from average individual efforts. Additionally, as human detection of deepfake texts is
non-trivial, we want to investigate if the task is non-trivial because English non-experts
focus on misleading cues as opposed to English experts.

Finally, we observe that based on the replacement algorithm, some bias in detection
may be introduced. Replacing paragraph 3 may be seen as easier because there is no
other paragraph after it to judge the coherency. However, we keep the generation process
fair by only using the text right before the paragraph as a prompt to generate the next
paragraph. Thus, to replace paragraph 3, we only use paragraph 2 as a prompt, not the
previous paragraphs and title.

6.2.2 Participant Recruitment

6.2.2.1 AMT

Inspired by [191], [117], and [197], we used Amazon Mechanical Turk (AMT) to collect
responses from non-expert evaluators. We deployed a two-stage process to conduct the
non-expert human studies. First, we posted a Qualification Human Intelligence Task
(HIT) that pays $0.50 per assignment on MTurk to recruit 240 qualified workers In terms
of the qualification requirements, in addition to our custom qualification used for worker
grouping, three built-in worker qualifications are used in all the HITS, including i) HIT
Approval Rate (≤98%), Number of Approved HITs (≥3000), and Locale (US Only)
Qualification.

Next, we only enabled qualified workers to enter the large-scale labeling tasks. The
approximate time to finish each labeling task is around 5 minutes (i.e the average time of
two authors on finishing a random HIT). Therefore, we aim for $7.25 per hour and set
the final payment as $0.6 for each assignment. Further, we provide “double-payment”
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Participant Gender Education Group

P1 Female Bachelor’s degree
G1P2 Female Bachelor’s degree

P3 Female Bachelor’s degree
P4 Female Bachelor’s degree

G2P5 Male Bachelor’s degree
P6 Male Graduate degree
P7 Female Graduate degree

G3P8 Female Graduate degree
P9 Female Bachelor’s degree

P10 Female Bachelor’s degree
G4P11 Female Bachelor’s degree

P12 Male Bachelor’s degree
P13 Female Graduate degree

G5P14 Female Bachelor’s degree
P15 Male Graduate degree
P16 Female Bachelor’s degree

G6P17 Male Bachelor’s degree
P18 Male Bachelor’s degree

Table 6.3: Upwork participant demographics.

to workers who made correct submissions as an extra bonus to motivate non-expert
participants to make better predictions.

6.2.2.2 Upwork

We employed Upwork as a platform to enlist proficient evaluators, particularly those with
specialized knowledge in writing domains. Upwork is a prominent freelance website
with an extensive network, generating an average of 40 million monthly visits2. It
has revolutionized the freelance industry by offering access to skilled freelancers in
various fields such as writing, graphic design, and web development. Using its automated
recommendation system, Upwork can effectively match clients and workers based on
their respective requirements.

On UpWork, we initially posted a job containing the description of our research
problem and detailed information about what we are looking for in a participant - at least
18 years and an English native speaker. Next, we get more specific in our questions: (1)

2https://sellcoursesonline.com/Upwork-statistics
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Figure 6.3: User Interface for the AMT Collaborative Group workers to choose the
machine-generated paragraph. “Image from [3].”

What is the highest level of education you have attained? (2) Did you major in English
or English Literature during your studies? (3) Can you share any recent experience you
have had with projects similar to this?

To ensure that we recruited eligible participants, we assessed their age, language
proficiency, and education by reviewing the information provided in their profiles. Ad-
ditionally, we evaluated their proposal responses. Based on these criteria, we selected
18 finalists who were then invited to participate in the study. Prior to activating their
Upwork contracts, we sent them the consent form through the platform’s messaging
function. We proceeded with the contract only after receiving the signed consent form
from each participant. The primary purpose of these contracts was to enable clients to
compensate workers for their submitted hours through the Upwork system. The hourly
wages requested by the participants ranged from 25−35, depending on their education
levels and prior experience. We are pleased to report that all 18 participants successfully
signed both documents and were compensated accordingly. For more details about the
demographic breakdown of the recruited Upworkers, please refer to Table 6.3.
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B Example Trial and Error

Figure 6.4: The instructions to train users by providing prompt feedback. “Image
from [3].”

A B Writing ExplanationsSelecting Explanations

Figure 6.5: Select (A) vs. Write (B) justification question type. “Image from [3].”

6.2.3 Experiment Design

6.2.3.1 AMT

During the large-scale labeling task, we divide the recruited qualified workers into two
groups to represent the individual vs. collaborative settings, respectively. We define group
1 as Individual Group, in which each worker was asked to select the machine-generated
paragraph without any references. See Figure 6.3, for example, humans in Individual

Group can only see the introduction with panels (A) (B), and (C). On the other hand, we
design group 2 to be Collaborative Group, where the workers were asked to conduct
the same task after the Individual Group finishes all HITs (i.e., see panel (A), (B), (C)
in Figure 6.3). In addition, workers from the Collaborative Group could also see the
selection results from the group 1 in an asynchronously manner, as the example shown in
Figure 6.3(D), to support their own selection.

In addition, we investigate the capability of Individual vs. Collaboration of non-
expect human participants to improve human performance in deepfake text detection.
To do this, we compare 2 ways the human participants can provide justification for
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their answer - Select & Write. For the select setting, the question type was inspired by
RoFT [117], a gamification technique for improving human performance in deepfake text
detection. In the RoFT framework, participants were asked to select from a pre-defined
list one or more reasons such as repetition, grammar errors, etc. Participants were also
given another option, where they can enter their own justification if they do not find any
suitable selection from the provided list. However, as this may be limiting because we
pre-define the justifications, we also investigated another question type - write. In this
setting, participants were asked to provide their reasoning. To help, we also share the list
of justifications in the select setting to give the participants an idea of what justifications
look like. See Figure 6.5 for select and write AMT interface.

Furthermore, we take actions to incentivize workers to provide qualified results: i) in
our instruction, we provide immediate feedback on the worker’s selection to calibrate
their accuracy. In specific, after reading the HIT instruction (i.e., Figure 6.4 (A)), workers
can get a deeper understanding of “which paragraph is generated by AI machine” by
trial and error on selecting one example (i.e., Figure 6.4 (B)). Participants were given
unlimited chances to change their answers. This example-based training process was
inspired by [191]’s human evaluation study and was found to be the most effective
training technique. ii) We pay double compensations to the workers who provide correct
answers as mentioned in Section 6.2.2.1. This aims to encourage workers to get high
accuracy on selecting the correct machine-generated paragraphs. iii) We set the minimum
time constraint (i.e., one minute) for workers to submit their HITs so that the workers
will concentrate on the task for at least one minute instead of randomly selecting one
answer and submitting the HIT. Note that we also disabled the copy and paste functions
in the user interface to prevent workers from searching for the paragraphs from online
resources.

6.2.3.2 Upwork

Our Upwork study comprises of two sub-experiments that aim to compare the accuracy
of expert deepfake text detection in individual and collaborative settings. These two
experiments, require participants to perform a task individually, and later on, perform the
same task, collaboratively with 2 other participants in a synchronous way.

For the generation and dissemination of the study form, we used the Qualtrics3 service.
The form’s user interface was equivalent to the select scenario presented in Figure 6.5.

3https://www.qualtrics.com
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Upwork participants were given one week to complete the survey. Upon completion,
we randomly assigned three participants per team, resulting in a total of six teams for
synchronous collaboration (refer to Table 6.3). We conducted all discussions on the
video communication software, Zoom4, and utilized Zoom’s built-in audio transcription
feature, powered by Otter.ai5, for discourse analyses. Prior to the start of each session,
verbal consent was obtained from all participants for their participation in the discussion
and audio recording, in addition to the written consent obtained during the recruitment
procedure. One member of the study team acted as a moderator for the meetings.
Depending on the participants’ schedules and levels of commitment within their group,
each meeting lasted between 1.5 to 3 hours.

6.2.4 Analysis Methods

To address RQ1 and RQ2, we begin by conducting a quantitative comparison of human
participants’ performance (Section 6.3.2). This involves measuring the mean accuracy
of participants at the article level. Subsequently, we categorize the rationales provided
by participants and compare their distributions based on correct and incorrect responses,
which supports RQ3 (Section 6.3.3 & 6.3.4). Consistent with the analyses of RQ1 and
RQ2, for RQ3, we compare the frequency of justifications across different settings such
as individual vs. collaboration and non-experts (AMT) vs. experts (Upwork). Finally, we
outline the implications of our findings in Section 6.4.

6.3 Results

6.3.1 Performance Measurement

We evaluated the performance of participants in different experimental settings by mea-
suring their accuracy in completing a set of 50 questions Q=q1, q2,..., q50. The proportion
of participants who answered a question correctly was calculated as accn =ln/mn * 100,
where ln is the number of participants who answered qn correctly and mn is the total
number of participants who attempted qn. This resulted in a list of accuracy scores
ACC=acc1, acc2, ..., acc50, representing the performance of participants across 50 arti-
cles. We used an unpaired independent sample T-test to compare the means of accuracy

4https://zoom.us
5https://otter.ai
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SETTING Select Write

Mean Accuracy p-value Mean Accuracy p-value

Baseline vs. Individual 32% vs. 44.99% 0.0004 32% vs. 45.92% 0.002
Baseline vs. Collaboration 32% vs. 51.35% 0.00007 32% vs. 51.97% 0.00003

Individual vs. Collaboration 44.99% vs. 51.35% 0.187 45.92% vs. 51.97% 0.26

Table 6.4: T-test Results for AMT Experiments (RQ1).

SETTING Select

Mean Accuracy p-value

Baseline vs. Individual 31% vs. 56.11% 9.1e-12
Baseline vs. Collaboration 31% vs. 68.87% 7.3e-15

Individual vs. Collaboration 56.11% vs. 68.87% 0.008

Table 6.5: T-test Results for Upwork Experiments (RQ1).

scores between different groups (individual vs. collaborative & non-experts vs. experts
settings). To ensure the validity of the T-test, we conducted the Kolmogorov-Smirnov test
and confirmed the normality assumption. Here, we present the results of the statistical
testing.

6.3.2 Deepfake Text Detection Performance (RQ1 & RQ2)

6.3.2.1 RQ1: Individual vs. Collaboration

The AMT participants’ baseline accuracy, which is equivalent to random guessing, is
32%. However, in the select and write settings, AMT-Individual improved their accuracy
to 45% and 46%, respectively. On the other hand, AMT-Collaboration achieved 51% and
52% accuracy in the select and write settings, respectively. Both individual and team-
based problem-solving in AMT experiments significantly outperformed random guessing,
with a p-value less than 0.05 (Table 6.4). However, there was no significant difference
in mean accuracy between individual and collaborative settings. In contrast, Upwork
participants had a baseline accuracy of 31% and achieved an accuracy of 56% and 69%
for Individual and Collaboration, respectively. All Upwork results were significant. For
the average accuracy of AMT and Upwork participants, refer to Tables 6.4 and 6.5,
respectively.
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SETTING Select Write

Mean Accuracy p-value MeanAccuracy p-value

AMT-Individual
vs. Upwork-Individual 44.99% vs. 56.11% 0.005 45.92% vs. 56.11% 0.028

AMT-Collaboration
vs. Upwork-Collaboration 51.35% vs. 68.87% 0.002 51.97% vs. 68.87% 0.003

Table 6.6: T-test Results for AMT vs. Upwork (RQ2).

6.3.2.2 RQ2: Non-Experts (AMT) vs. Experts (Upwork)

The study included both non-expert participants from AMT and expert participants from
Upwork. In the Individual setting, non-experts achieved an accuracy of 45%, while
experts achieved an accuracy of 56%. Similarly, in the Collaboration setting, non-experts
achieved an accuracy of 51% compared to the experts’ accuracy of 69%. The statistical
analysis revealed that the differences between non-experts and experts in all settings were
significant, with p-values < 0.05 for baseline vs. individual, baseline vs. collaboration,
and individual vs. collaboration comparisons. Refer to Table 6.6 for a detailed T-test
result of human performance on deepfake text detection between non-experts and experts.

6.3.3 Justification Patterns - select (RQ3)

Based on previous research [191, 192], we identified 7 types of justifications that partici-
pants could use to identify a paragraph as deepfake: grammar issues, repetition, lacks

common sense, contains logical errors/fallacies, contradicts previous sentences, lack of

creativity or boring to read, writing is erratic/incoherent. If none of these categories
were applicable, participants were asked to provide an additional justification under the
category of other.

To compare the frequency of justifications used by participants in different experi-
mental conditions (individual vs. collaboration and non-experts vs. experts), we first
computed the frequency of each justification category cited by each of the 4 groups. We
then calculated the overall frequency of justifications used and the frequency of justifi-
cations used for correct and incorrect responses. Finally, we conducted an independent
sample T-test to evaluate the statistical significance of the differences in the use of these
justification categories.
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Justification Type
Correct Incorrect

AMT Upwork AMT Upwork
Mean Accuracy p-value Mean Accuracy p-value Mean Accuracy p-value Mean Accuracy p-value

Grammar 13.97 vs. 23.08 0.016 15.33 vs. 24.6 0.013 15.65 vs. 16.89 0.675 14.22 v.s 12.07 0.469
Repetition 6.73 vs. 6.69 0.986 4 vs. 6.4 0.266 8.53 vs. 5.62 0.113 1.67 vs. 2 0.725

Common Sense 9.25 vs. 15.48 0.036 13 vs. 28 9.67e-05 13.02 vs. 9.94 0.206 3.33 vs. 5.56 0.171
Logical Errors 11.64 vs. 10.24 0.589 7.78 vs. 14.4 0.006 18.54 vs. 7.7 4.66e-05 3.89 vs. 4 0.942

Self-Contradiction 9.35 vs. 5.57 0.092 7.67 vs. 14.8 0.011 18.01 vs. 6.7 1.53e-06 6.56 vs. 3.6 0.054
Lack of Creativity 12.87 vs. 13.49 0.843 8.33 vs. 7.6 0.734 16.9 vs. 14.13 0.322 8.11 v.s 3.6 0.004

Coherence 14.64 vs. 19.29 0.174 20.56 vs. 32 0.019 11.65 vs. 10.06 0.513 13.78 vs. 9.2 0.05
Other 0 vs. 0 N/A 12.22 vs.18.4 0.053 0 vs. 0 N/A 6.78 vs. 8.4 0.519

Table 6.7: T-test Results of select Justification Frequency w.r.t. Correctness (Individual
vs. Collaboration).

6.3.3.1 Individual vs. Collaboration

Figure 6.6 and 6.7 present the frequency of justifications used for correct and incorrect
responses, respectively. Table 6.7 provides detailed statistical significance scores for
the comparison between individual and collaborative settings. The top three dominant
categories mentioned by AMT participants for correct responses were ’grammar’, ’com-
mon sense’, and ’coherence’, followed by ’lack of creativity’. On the other hand, the
least frequent justifications used for correct responses were ’other’, ’repetition’, and
’self-contradiction’. Interestingly, no participants chose the ’other’ option during the
experiment to provide an explanation that did not fit into the 7 predefined categories.

Additionally, the usage of ‘grammar, ‘common sense’, and ‘coherence’ categories
increased the most from Individual to Collaboration settings, with ‘grammar’ and ‘com-
mon sense’ experiencing a significant increase of 9.11% and 6.23% respectively (p =
0.016, p = 0.036).

Moving on to the analysis of incorrect responses, we found that AMT participants
frequently cited ‘grammar’, ‘logical errors’, ‘self-contradiction’, and ‘lack of creativity’
as justifications for their choices. Interestingly, the frequency of all these categories
decreased from Individual to Collaboration, except for ‘grammar’. Moreover, the drop in
‘logical errors’ and ‘self-contradiction’ was found to be statistically significant.

The Upwork participants commonly provided the following justifications - ‘coher-
ence’, ‘grammar’, and ‘common sense’, regardless of whether they discussed the task
or not. The ‘other’ category was also frequently chosen, with off-topic and off-prompt
being the most common justifications provided. In contrast to AMT workers, Upwork
participants rarely cited ‘repetition’ to justify their decisions. However, when they solved
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Figure 6.6: Justification Category Distribution w.r.t. Correct Responses. “Image from
[3].”

the task collaboratively, there was a significant increase in the frequency of providing
certain reasons. These included ‘grammar’ (+9.27%, p = 0.013), ‘common sense’ (+15%,
p < 0.0001), ‘logical errors’ (+6.62%, p = 0.006), ‘self-contradiction’ (+7.13%, p =
0.011), and ‘coherence’ (+11.44%, p = 0.019). The only category that was used less
frequently in collaborative problem-solving than individual problem-solving was ‘Lack
of Creativity’, but it was not statistically significant.

Furthermore, the most commonly used justifications for incorrect answers from
Upwork participants in the individual-based setting were ‘grammar’, ‘coherence’, and
‘lack of creativity’. However, for team-based collaboration, all justification types except
‘repetition’, ‘common sense’, ‘logical errors’, and ‘other’ decreased in frequency. Despite
an increase in the frequency of ‘grammar’, ‘common sense’, ‘logical errors’, and ‘self-
contradiction’ categories, statistical significance was not observed. Moreover, during the
team-based approach, ‘lack of creativity’ and ‘coherence’ categories were less commonly
cited than in the individual-based approach.

6.3.3.2 Non-Experts vs. Experts

We present the comparative analysis results between AMT-Individual vs. Upwork-
Individual and AMT-Collaboration vs. Upwork-Collaboration in Table 6.8. It is notewor-
thy that while AMT participants are non-experts, Upwork participants are experts.

The analysis of correct responses indicates that ‘grammar’ and ‘coherence’ were
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Figure 6.7: Justification Category Distribution w.r.t. Incorrect Responses. “Image
from [3].”

Justification Type
Correct Incorrect

Individual Collaboration Individual Collaboration
Mean Accuracy p-value Mean Accuracy p-value Mean Accuracy p-value Mean Accuracy p-value

Grammar 13.98 vs. 15.33 0.57 23.08 vs. 24.6 0.747 15.65 vs. 14.22 0.53 16.89 vs. 12.07 0.175
Repetition 6.73 vs. 4 0.107 6.69 vs. 6.4 0.919 8.54 vs. 1.67 3.46e-07 5.62 vs. 2 0.029

Common Sense 9.25 vs. 13 0.086 15.48 vs. 28 0.004 13.02 vs. 3.33 6.49e-07 9.95 vs. 5.6 0.06
Logical Errors 11.64 vs. 7.77 0.056 10.24 vs. 14.4 0.151 18.54 vs. 3.89 1.14e-10 7.7 vs. 4 0.089

Self-Contradiction 9.35 vs. 7.67 0.398 5.57 vs. 14.8 0.002 18.01 vs. 6.56 4.7e-08 6.7 vs. 3.6 0.097
Lack of Creativity 12.87 vs. 8.33 0.026 13.49 vs. 7.6 0.071 16.9 vs. 8.11 1.17e-05 14.13 vs. 3.6 7.26e-05

Coherence 14.64 v.s 20.56 0.066 19.29 vs. 32 0.011 11.65 vs. 13.78 0.283 10.06 vs. 9.2 0.75
Other 0 vs. 12.22 1.1e-11 0 vs. 18.4 1.11e-09 0 vs. 6.78 6.5e-08 0 vs. 8.4 0.0003

Table 6.8: T-test Results of select Justification Frequency w.r.t. Correctness (Non-experts
vs. Experts).

the most frequently cited justifications among individuals of different expertise levels,
including both AMT and Upwork participants. Interestingly, ‘repetition’ was the least
commonly used justification by both groups. Upwork participants tended to use ‘gram-
mar’, ‘common sense’, ‘coherence’, and ‘other’ more often than AMT participants,
although only the difference in the use of ‘other’ was statistically significant (0% vs.
12.22%, p < 0.0001). This is potentially because AMT participants did not have the
opportunity to provide written explanations for their choices. Moreover, the frequency of
‘lack of creativity’ was significantly lower among Upwork-Individuals (8.33%) compared
to AMT-Individuals (12.87%) (p = 0.0264).

Although ‘grammar’ and ‘coherence’ were still popular justifications for correct an-
swers among both AMT and Upwork participants in the collaborative setting, Upwork par-
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Justifications Code

Writing is erratic (i.e., does not have a good flow)

LowGrammatical issues
Repetition

Sentence structure issues
Lacks common sense

High

Lack of creativity or boring to read
Contains logical errors/fallacies
Contradicts previous sentences
Too much/too little information

Off-prompt
Off-topic

Incorrect Information
low-level+ high-level Hybrid

Table 6.9: Code book for error level annotation.

ticipants cited ‘common sense’ more frequently than ‘grammar’ in Upwork-Collaboration.
In addition, justifications such as ‘contradicts previous sentences’ (+9.23%, p = 0.002),
‘lacks common sense’ (+12.7%, p = 0.011), and ‘coherence’
(+12.51%, p = 0.004) was more strongly associated with correct responses in Upwork-
Collaboration than in AMT-Collaboration.

AMT-Individuals and Upwork-Individuals cited ‘lack of creativity’ as a top-3 jus-
tification for incorrect responses, while AMT-Individuals also frequently used ‘logical
errors’ and ‘self-contradiction’, and Upwork-Individuals often chose ‘grammar’ and
‘coherence’. Except for ‘coherence’ and ‘other’, all justification categories decreased
in frequency from AMT-Individuals to Upwork-Individuals. However, the decrease in
‘grammar’ was not statistically significant (p > 0.05), and despite an increase in mentions
of ‘coherence’, the difference was also not significant. Both AMT and Upwork partici-
pants mentioned grammatical errors the most within incorrect answers in the collaborative
context. Interestingly, repetition’ (-3.63%, p = 0.029) and ‘lack of creativity’ (-10.53%,
p < 0.0001) were the only categories that showed a significant drop in frequency from
AMT-Collaboration to Upwork-Collaboration.

6.3.4 Justification Patterns - write (RQ3)

The write setting differs from the select setting in that it does not limit the error types
to a predetermined set of 7 (excluding ‘other’). This allows for more in-depth analysis.
Inspired by [191]’s discovery that participants tended to focus on the text’s form rather
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Justification
Level

Correct Incorrect

AMT Upwork AMT Upwork
Mean Accuracy p-value Mean Accuracy p-value Mean Accuracy p-value Mean Accuracy p-value

Low 19.54 vs. 21.08 0.675 21.89 vs. 20.4 0.668 24.95 vs. 19.78 0.121 23.11 vs. 12.8 0.0009
High 20.94 vs. 21.88 0.812 20.33 vs. 19.13 0.744 25.75 vs. 24 0.68 15.11 vs. 8.4 0.006

Hybrid 5.56 vs. 9.67 0.103 13.67 vs. 28.67 0.0003 3.27 vs. 3.6 0.825 5.67 vs. 9.6 0.067

Table 6.10: T-test Results of Justification Level Frequency w.r.t. Correctness (Individual
v.s. Collaboration).

than its content, we manually reviewed and sorted the justifications into three categories:
low-level, high-level, and hybrid. A low-level justification pertains to the text’s format,
style, and tone; a high-level justification identifies errors based on the text’s meaning,
and a hybrid justification indicates instances where evaluators used both low-level and
high-level justifications. One researcher created a codebook (Table 6.9) with 7 predefined
categories and initially coded responses provided by AMT workers. We added new
justifications to the codebook as we encountered additional information in the data.
Subsequently, two other researchers independently labeled the responses. The agreement
among the three annotators was evaluated using Fleiss’ Kappa coefficient [198] (0.924
for individual responses and 0.94 for collaborative responses), indicating high reliability
in the generated labels.

As the Upwork experiments did not include the writing setting, we had to rely on the
justifications provided in the select style, including those categorized as ‘Other’. We then
conducted T-tests to compare the distribution differences across the three labels.

6.3.4.1 Individual vs. Collaboration

Table 6.10 illustrates that when solving the task individually, AMT participants’ correct
responses were associated more strongly with either low or high error levels, rather
than both. In the collaborative setting, their use of hybrid reasoning, as well as low and
high-level justifications, increased, but these increases were not statistically significant.
Regarding incorrect answers, approximately 25% of AMT individuals used low-level or
high-level justifications to explain their judgments, while only 3% provided both. When
performing the task collectively, the frequency of low-level justifications decreased to
20%, but the drop was not statistically significant. There was minimal change in high
and hybrid-level errors.
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Justification
Level

Correct Incorrect

Individual Collaboration Individual Collaboration
Mean Accuracy p-value Mean Accuracy p-value Mean Accuracy p-value Mean Accuracy p-value

Low 19.54 vs. 21.89 0.482 21.08 vs. 20.4 0.858 24.95 vs. 23.11 0.558 19.78 vs. 12.8 0.032
High 20.94 vs. 20.33 0.838 21.88 vs. 19.13 0.545 25.75 vs. 15.11 0.003 24 vs. 8.4 8.9e-06

Hybrid 5.56 vs. 13.67 0.0007 9.67 vs. 28.67 1.3e-05 3.27 vs. 5.67 0.083 3.59 vs. 9.6 0.008

Table 6.11: T-test Results of Justification Level Frequency w.r.t. Correctness (Non-
Experts v.s. Experts).

In individual problem-solving, Upwork participants, like their AMT counterparts,
also cited one error type more frequently than both for correct responses. However, the
frequency of hybrid reasoning almost doubled after group discussions, becoming the
most common justification type with p < 0.05. There was no significant decrease in low
or high-level errors, however. When it came to incorrect responses, low-level errors were
the most frequently mentioned by Upwork participants in individual problem-solving,
with an average of 23.11% per question using this justification type. In a collaborative
environment, this percentage dropped to 12.8%, and the drop was statistically significant.
Similarly, the shift in frequency of high-level justifications from 15.11% to 8.4% was
significant. Hybrid-level errors, however, became more frequent after collaboration but
were not significant.

6.3.4.2 Non-Experts vs. Experts

Table 6.11 presents the T-test outcomes for comparing the AMT and Upwork experiments.
The results indicated that, in both individual and collaborative problem-solving settings,
the proportion of participants who cited low- or high-level reasoning for their correct
responses did not significantly vary between AMT and Upwork studies. Regardless of
their language proficiency, the percentages of low- or high-level justifications ranged from
20% to 23%. However, for individual problem-solving, the frequency of hybrid reasoning
was significantly higher in Upwork (8.11% more) than in AMT. In the collaborative
environment, the gap between AMT and Upwork in the frequency of both low- and high-
level justifications increased from 8.11% to 19%, and the difference became statistically
more significant.

For incorrect responses, the difference between AMT and Upwork individual partici-
pants in citing low-level errors as their justification was negligible, with p > 0.05. The
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difference in hybrid-level errors was also not significant. However, there was a statis-
tically significant difference in the frequency of high-level explanations, with Upwork
participants having a much lower frequency than AMT participants.

In the collaborative setting, AMT participants cited more low- and high-level justifica-
tions compared to Upwork participants. Specifically, the rate of high-level justifications
was approximately three times greater in the AMT setting. Conversely, hybrid-level
errors were more common in Upwork, and the difference was significant.

6.4 Discussion

6.4.1 Summary of Results

This paper presents a comprehensive analysis of the performance of laypeople on Amazon
Mechanical Turk (AMT) and English professionals on Upwork in detecting deepfake
texts. Additionally, it explores the impact of asynchronous and synchronous collaboration
on their performance and sheds light on the correlation between different textual elements
and detection accuracy. The key findings from Section 6.3 are summarized below:

Individual vs. Collaboration

1. Collaboration only significantly improved Experts’ performance: Although
there is no significant difference in deepfake text detection performance between
AMT-Individual and AMT-Collaboration, Upwork-Collaboration outperforms
Upwork-Individual significantly, with a detection rate of 69% compared to 56%.

2. In the collaborative setting, experts cited coherence, logical fallacies, and
self-contradiction errors significantly more often as justifications for deepfake
text detection compared to the individual setting: There is a difference in the fre-
quency of citing coherence, logical fallacies, and self-contradiction errors between
Upwork-Individual and Upwork-Collaboration, with Collaboration citing these
errors more frequently, while no difference was observed in the AMT experiments.

3. Non-experts showed no significant difference in their use of the three error
levels between the individual and collaborative scenarios, unlike the experts:
Although there were no differences in the frequency of low, high, and hybrid error
levels between AMT-Individual and AMT-Collaboration, Upwork-Collaboration’s
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use of the hybrid level was significantly higher than Upwork-Individual - (Individ-
ual vs. Collaboration usage percentage - 13.67 vs. 28.67 for correct responses).

Experts vs. Non-experts

1. Experts outperformed non-experts in terms of detection accuracy for deepfake
texts: Although both AMT (45%) and Upwork (56%) individual groups showed a
significant improvement in their deepfake text detection performance compared
to the baseline (32% and 33%, respectively), Upwork participants outperformed
AMT participants in both individual and collaborative environments.

2. Non-experts focused more on the creativity of articles than experts: Upwork
participants provided fewer justifications related to a lack of creativity compared to
AMT participants for correct responses. When comparing non-experts to experts
(12.87 vs. 8.33 for correct responses and 13.49 vs. 7.6 for incorrect responses),
creative errors were used more frequently as a justification by non-experts.

3. Experts showed a greater focus on consistency issues within the articles com-
pared to non-experts: Upwork participants were able to identify errors related
to consistency, such as off-topic and off-prompt, which AMT participants were
unable to detect.

4. Experts tended to use hybrid-level justifications more frequently than non-
experts.: The use of hybrid-level justifications was more frequent among Upwork
participants than AMT participants, particularly in the collaborative setting for cor-
rect responses. The comparison of non-experts versus experts in the collaborative
setting showed a frequency of 9.67 versus 28.67 for correct responses in the use of
hybrid-level errors.

6.4.2 Implications

We will examine the implications of the summarized results below to deduce the underly-
ing reasoning or phenomena behind the findings.

6.4.2.1 Individual vs. Collaboration

1. Collaboration only significantly improved Experts’ performance: It is widely
acknowledged that a group’s performance can surpass that of an individual’s, even
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the most knowledgeable person [199]. This phenomenon is further confirmed
in the performance between individual and asynchronous collaboration for AMT
experiments, while Upwork-Individual participants not only outperformed the
baseline but also benefited from synchronous collaboration. One possible reason
for this is that synchronous collaboration encouraged workers to be more engaged,
creative, and sociable. Existing literature in the field of Computer-Supported Coop-
erative Work (CSCW) has argued that the advantages of synchronous collaboration
outweighs those of asynchronous collaboration [200–202]. Another explanation
for these mixed results could be that Upwork collaborators share the same English
expertise background, which may have positively impacted their group intelligence
due to their familiarity with each other’s fields and individual high intelligence
levels.

2. In the collaborative setting, experts cited coherence, logical fallacies, and self-
contradiction errors significantly more often as justifications for deepfake text
detection compared to the individual setting: The study found that non-experts
did not show any differences in the use of coherence, logical errors, and self-
contradiction justifications between individual and collaborative settings. However,
experts used coherence and self-contradiction justifications more frequently in
collaboration when detecting deepfake texts accurately and less frequently when
detecting them inaccurately. This suggests that these high-level errors (Table 6.9)
are challenging to detect and require advanced linguistic skills, which English
professionals are more likely to possess. The results reported by [192] confirm
this phenomenon. In contrast, logical fallacy errors were used more frequently
by experts in the collaborative setting but were found to be a weaker predictor of
deepfake texts.

3. Non-experts showed no significant difference in their use of the three error
levels between the individual and collaborative scenarios, unlike the experts:
We categorized errors into low, high, and hybrid levels based on the form and
content of the text. Non-experts did not show any significant pattern in error level
usage between independent and collaborative settings for both correct and incorrect
responses, suggesting that their collaboration did not improve their performance
significantly. In contrast, experts showed a more than doubled prevalence of hybrid-
level errors for correct responses when collaborating, indicating that discussing
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and finding more errors were possible in collaboration than working independently.
The use of hybrid-level errors suggests that considering both form and content-wise
error is a useful strategy for deepfake text detection.

6.4.2.2 Experts vs. Non-experts

1. Experts outperformed non-experts in terms of detection accuracy for deepfake
texts: Unlike previous studies where humans performed at or below the chance
level [1, 117, 118, 191], both experts and non-experts in our study surpassed the
baseline performance. We tried various interface designs and
example-based training to improve the performance of non-experts. However,
Upwork participants with profound writing experience performed significantly
better than AMT workers. Interestingly, non-experts who received additional
training was still unable to outperform experts without any training, suggesting
that existing training procedures are insufficient for non- experts. Therefore, more
nuanced approaches tailored to the patterns that English professionals adopt should
be explored.

2. Non-experts focused more on the creativity of articles than experts: Experts
mentioned a lack of creativity less frequently than non-experts for correct re-
sponses, but their superior performance suggests that lack of creativity is not a
strong indicator of deepfake texts. Non-experts frequently mentioned lack of cre-
ativity for both correct and incorrect responses, reinforcing this argument. The
Upwork participants were able to leverage their knowledge of writing domains and
expected writing styles in political news articles when making decisions. Therefore,
creativity errors may be a misleading indicator for detecting deepfake texts in the
politics-related news domain and further research is needed for other news topics.

3. Experts showed a greater focus on consistency issues within the articles com-
pared to non-experts: Expert participants were more successful than non- experts
in detecting off-topic and off-prompt errors, which are challenging for language
models. This is because these types of errors require careful reading and thinking.
Additionally, experts’ ability to detect errors that go beyond the provided error
categories indicate that they possess advanced linguistic skills. This ability to
identify consistency errors suggest that they are strong indicators of deepfake texts.
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4. Experts tended to use hybrid-level justifications more frequently than non-
experts.: Upon analyzing both non-experts and experts, we found a significant
difference in the frequency of hybrid-level error detection. This suggests that a
combination of low-level and high-level error detection is more effective in accu-
rately identifying deepfake texts than relying on only one type of error. Detecting
hybrid-level errors requires a more thorough analysis than identifying basic errors
like grammar and repetition. While detecting low-level errors may be easier, re-
lying solely on them can lead to erroneous judgments. Experts’ ability to detect
hybrid-level errors demonstrates their expertise in deepfake detection tasks, as
they can look beyond obvious error types. The results also suggest that experts’
deductive reasoning skills, advanced linguistic abilities, and prior experiences
inform their use of hybrid-level errors.

6.5 Limitations

To implement design choices and run manageable experiments, we made a few simplifi-
cations that may limit our findings. First, since, we only use GPT-2 to generate deepfake
texts, our findings may not be directly applicable to other NTGs. However, we believe
that the choice of GPT-2 is reasonable because: (1) prior research reported that human
detection performance of deepfake texts by the later GPT-3 and GPT-2 is similar [1, 191],
and (2) using the largest parameter size of GPT-2 enabled us to generate deepfake texts
more effectively that closely resembles GPT-3 quality. Furthermore, as we use the default
hyperparameters of GPT-2 to generate the texts, we believe that the results may be limited
to that sampling technique. However, we mitigated this issue by manually checking
the quality of a few of the articles and found the deepfake texts to be human-like. This
preserved the integrity of the experiments as the task remained non-trivial.

Next, for the non-expert vs. expert analysis, we compared AMT to Upwork, where
AMT are the non-experts and Upwork, experts. However, since they are different forms of
collaboration, AMT being asynchronous and Upwork being synchronous, the comparison
may be different. Although a few prior works explored the space of synchronous
collaboration between AMT workers, these systems tend to be engineering-heavy and
are rarely used in real-world applications. We thus believe asynchronous collaboration
is a more realistic way of using AMT. We understand that this design decision might
compromise the comparability of the two settings but we believe it is a reasonable trade-
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off. Furthermore, Upwork’s interface supports the recruitment of English experts, as well
as provides a framework for synchronous collaboration. To mitigate this limitation, we
calculate the accuracy of AMT and Upwork participants in the same way (per-article
accuracy) to have a fairer comparison.

6.6 Summary

In this paper, we studied human performance in deepfake text detection. To be more real-
istic, we built a 3-paragraph article with 1/3 paragraphs, machine-generated (deepfake)
and 2/3 paragraphs, human-written. We ask human participants to select which paragraph
is deepfake and to provide justification for their selection out of 7 error types. Specifically,
we studied human performance with two variables - individual vs. collaboration and
English non-expert vs. English expert. To achieve this, we recruit non-expert human
participants from AMT and experts from Upwork. Furthermore, we run asynchronous
collaboration with AMT and compared it to synchronous collaboration with Upwork.
Finally, our results suggest that the synchronous collaboration of expert human partici-
pants significantly improves human performance in deepfake text detection. We further
identify several factors (such as coherence and consistency) that deepfake texts excel
at or fail by analyzing their justification patterns. Lastly, the enhanced performance of
participants (particularly non-experts) from baseline in the individual setting indicates
that our Turing Test framework facilitates the improvement of humans’ deepfake text
detection performance.
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Chapter 7 |
Open Challenges and Conclu-
sion

7.1 Open Challenges in Deepfake Text Detection

Although there have been several meaningful works on the current landscape of Au-
thorship Attribution (AA) and Authorship Obfuscation (AO) models, the two research
problems are still in their early development, especially the direction of deepfake text

detection. In this section, as such, we discuss some of the remaining challenges. Also, see
Figure 7.1 for a Venn diagram of AA & AO open problems and challenges for deepfake
text detection.

7.1.1 Need for Comprehensive Benchmark

Generally, existing literature tends to create or use particular datasets in silos, making
their findings limited and incomparable across the literature. As mentioned in [19, 30],
however, the study of DTD can be greatly improved with the availability of more
comprehensive and generalizable datasets whose coverage varies across diverse: (1)
domains (e.g., news, online forum, recipe, stories), (2) language models, (3) decoding
strategies, or (4) length of texts. Further, not all AA/AO models share their codebase
and experimental configurations, making the comparative analysis difficult. However,
generating and maintaining a large number of deepfake texts across different settings
cost significant resources and effort. [1] attempted to propose a benchmark for AA
research, TuringBench, but it does not satisfy the needs fully. Therefore, it is greatly
needed to develop a comprehensive benchmark with diverse datasets of AA/AO problems,
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Figure 7.1: Current Open problems and challenges in the Authorship Attribution (AA)
and Authorship Obfuscation (AO) for deepfake text detection.

along with the codebase of known methods in a unified environment, so that objective
comparison can be carefully performed to understand the pros and cons of existing
solutions and brainstorm new ideas for improvement.

7.1.2 Call for Complex AA/AO Variations

With the introduction of “machine” in writing high-quality texts, the set-up of “authors”
in future scenarios can be more complex. For instance, one could generate a more realistic
text using multiple language models in sequence (e.g., each language model improves
upon the text generated by another language model in a previous step) or in parallel
(e.g., each language model generates only parts of a long text). Symmetrically, it is also
plausible to use multiple AO solutions in sequence or parallel to improve the overall
performance of obfuscation. Yet another possible scenario is to think of “human-in-the-
loop” attribution or obfuscation. For instance, would a team (of humans, of machines, or
of humans and machines) outperform an individual (of human or machine) in solving
AA or AO task? To our best knowledge, there is no study of AA/AO for such complex
scenarios.

116



7.1.3 Need for Interpretable AA/AO Models

Currently, there are only a few interpretable AA models (e.g., GLTR) and AO techniques
(e.g., Homoglyph) for deepfake texts, as summarized in Tables ?? and 2.4, respectively.
That is, when an AA model detects a text as machine-generated or human-written, or
when an AO model modifies parts of a text to hide authorship, it often cannot explain
“why?” Ideally, however, such models should be able to provide an easy-to-understand
and intuitive explanation, especially to users with no linguistic expertise, as to why a
given text is attributable to a particular DTG or why a particular phrase of a text is critical
to reveal an author’s identity. In addition, more research is needed to develop an intuitive
human interface or visualization toward explainable AA/AO models.

7.1.4 Need for Improved Human Training

In parallel to improving the performance of AA/AO solutions, it is equally important
to raise the awareness of AA/AO problems in the presence of deepfake texts, and to
be able to train human users to detect deepfake texts better (e.g., identify phishing or
misinformation message that includes deepfake texts as parts) or use AO solutions to
hide one’s authorship (e.g., an activist posting his/her message on social media without
revealing true identity). As we illustrate in Section 2.5.2, however, humans are not good
at detecting deepfake texts, and there are not many AA/AO solutions suitable for novice
users to benefit from in solving AA/AO tasks. Worst, still, is that even a few AA models
such as GLTR that were shown to be able to help human users to detect deepfake texts
better have become less effective with the advancement of DTGs. Therefore, great needs
exist to have a better way to train human users in solving AA/AO tasks.

7.1.5 Call for Robust AA/AO Solutions

In section 2.4, we surveyed all literature that evaluated the robustness of AA/AO models
and found that most existing AO techniques do not preserve the original semantics of
text well and thus cannot easily evade the attribution of AA solutions, especially human
detection. Similarly, as we adopt more sophisticated hybrid approaches for AA tasks,
successful AO attacks to hide authorship will become more challenging. Part of the
reason for these vulnerabilities in existing AA/AO solutions is that the bulk of existing
literature has studied either AA or AO problems in separation, thus greatly limiting
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their robustness against the other problem. Therefore, to stay relevant and synonymous
with a real-life scenario, both AA and AO solutions need to learn from each other, and
co-train/co-evolve, as in a min-max optimization game.

7.2 Conclusion

In this dissertation, we answer 3 Research Questions (RQs) - (1) Can one detect subtle
linguistic differences between deepfake texts and human-written ones? (2) Can one
build an accurate deepfake text detector to distinguish between human vs. deepfake text
authorship? (3) How can one improve human performance in detecting deepfake texts?

For RQ1, we investigated, distinguishing linguistic differences between deepfake
texts and human-written texts. To answer this RQ, we use LIWC (Linguistic Inquiry &
Word Count), Flesch’s readability measure and entropy (number of unique characters)
features to examine these texts. We find that humans write more formally in the context
of news articles and less revealing in writing.

Next, for RQ2, which is the main part of this dissertation, we implemented several
types of automatic deepfake text detectors. First, we implemented a stylometric detector
using the linguistic features extracted for RQ1. This yielded a superior performance of
90% macro F1 score in attributing the authorships of 1 human vs. 8 LLMs. Second, we
attribute the authorship of 1 human vs. 19 LLMs using 2 deep learning-based detectors -
BERT & RoBERTa. This detector entails fine-tuning BERT and RoBERTa base models
on our proposed benchmark dataset - TuringBench. Finally, we surveyed Authorship
Attribution (AA) and Authorship Obfuscation (AO) techniques for deepfake texts and find
that hybrid AA solutions perform better in terms of accuracy and robustness. Therefore,
we propose an end-to-end hybrid-based deepfake text detector which is an ensemble of a
Transformer-based model and Topological Data Analysis (TDA) techniques. We find that
this technique is especially robust to noisy and imbalanced dataset which is the realistic
nature of generalizable deepfake text datasets.

Lastly, for RQ3, the hypothesis here is that it is not enough to only build accurate
automatic deepfake text detectors without understanding how humans perform in the task.
To that end, we initially performed 2 studies - (1) given this one article, can you decide if
it is machine-generated or not? (2) given 2 articles, one machine-generated and the other,
human-written, can you decide which is machine-generated? The human participants
underperformed on this task, achieving random-guessing accuracy. Interestingly, for
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study (1), we only provided the human participants with machine-generated texts, which
they still failed to accurately identify. Thus, given the difficulty of this task, we proposed
a novel solution for improving human performance through collaboration. Furthermore,
we hypothesized that English experts will perform better on the task of deepfake text
detection than English non- experts. English experts in this context are defined as people
who have earned an educational degree in English or a related program, while non-experts
are people without an educational degree in English or related programs. Therefore, we
compare the performance of English non-experts and English experts in an individual and
collaborative setting. We also compare asynchronous collaboration for non-experts and
synchronous collaboration for experts. Intuitively, we find that collaboration improves
performance, however, the improvement is only significant for experts.
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