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Abstract

There are various environmental and social challenges that disproportionately
affect vulnerable communities in society. Extensive research has been conducted
in various fields, such as agricultural sciences and social sciences, to understand
some of those challenges and design intervention/prevention programs. However,
effective/efficient implementation of mitigation plans is usually highly challenging in
the field. Inspired by recent advances in Machine Learning (ML), this dissertation
mainly focuses on the adaptation of ML-based techniques in certain real-world
domains under various challenges to help address several social problems in a more
effective/efficient manner. In fact, it focuses on two real-world domains, AI for
Agriculture and AI for Social Welfare of Housing-Insecure Low-Income Americans,
and addresses some challenges by proposing solutions tailored to the characteristics
of the motivating problem domain. For example, to address the challenge of a lack
of ground-truth labels, it proposes a label generation approach that translates the
findings of social science research to high-quality labels to facilitate training ML
models. Additionally, it proposes a loss function to improve the learning of neural
networks when only coarse-grained ground-truth labels are available. In conclusion,
this dissertation aims to adapt ML algorithms in specific real-world domains with
particular challenges and characteristics.
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Chapter 1 |
Introduction

In 2015, United Nations designed 17 Sustainable Development Goals (SDGs)1,
which are a call for action to build a better future by addressing various global
challenges. In these SDGs, particular attention is paid to the needs of/challenges
faced by vulnerable communities to improve their lives from multiple perspectives.
For example, SDG#1 (“No Poverty”)1 calls for action to end poverty and ensure that
all vulnerable populations have access to basic services, etc. Inspired by this global
movement, this dissertation proposes Machine Learning (ML) based solutions to
help mitigate several social challenges faced by certain vulnerable populations more
effectively and efficiently; in particular, it focuses on two vulnerable populations,
namely, smallholder farmers in Sub-Saharan Africa and housing-insecure low-income
Americans, and aims to help mitigate some of the challenges that they struggle
with (Figure 1.1 represents the real-world problem domains motivated my Ph.D.
work). [1–4]

Figure 1.1: Real-world domains that have motivated my Ph.D. research.
1https://sdgs.un.org/goals
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From a technical perspective, this dissertation mainly focuses on the adaptation
of ML techniques in real-world domains with particular challenges that mainly
stem from the characteristics of their data, such as the availability of coarse-grained
ground-truth labels alone (rather than fine-grained/individual-level labels) [5], the
absence of any ground-truth labels [6], etc. In fact, depending on the nature of
the social challenge of study and target variable, this dissertation incorporates
various data sources corresponding to the characteristics of individuals and/or
environments, which in turn, are usually collected through surveying2 and remote-
sensing (such as satellite images), respectively. However, sometimes, the available
data has certain characteristics and/or limitations that could adversely affect the
performance of some existing ML models, and hence, need particular attention.
For example, sometimes, the relevant input factors are not necessarily available
at the spatial/temporal resolutions of interest because they might be collected by
various agencies for specific purposes, and also, collecting such data might not be
possible for each data scientist. Furthermore, sometimes, due to the data collection
methodology (such as crowdsourcing human volunteers) or the existing obstacles to
data acquisition, the input data might be significantly sparse, or the target variable
might not be available at the resolution of interest. Therefore, it is important to
consider the limitations/challenges that the data introduces to the application of
ML models in the real world. Accordingly, this dissertation works on some of such
real-world challenges, and studies the performance/weaknesses of several existing
ML models on real-world data with particular characteristics. Then, to address
existing challenges, it proposes solutions tailored to the constraints/characteristics
of the motivating problem domains. In the following sections, we describe the
studied social challenges, characteristics/limitations of the available data, and our
solutions briefly.

2In our work, depending on the granularity of the target variable (individual-level or
neighborhood-level), the granularity of input survey data might change. For example, Chapters
4-6 rely on neighborhood-level survey data as their proposed ML models predict the eviction
condition at the neighborhood level, while Chapter 7 relies on the individual-level survey data
because it works at the individual level.
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1.1 AI for Agriculture
Smallholder farmers and their farms form the backbone of agriculture and food
security in Africa. Unfortunately, due to the prevalence of some biotic/abiotic
stresses, they deal with low crop-productivity, which in turn, significantly affects
their livelihoods and food security [7]; e.g., agriculture on smallholder farms is
an important means of livelihood for over 60% of individuals in Sub-Saharan
Africa [8–11]. Therefore, supporting this vulnerable population and their agriculture
could play a key role in poverty eradication and increasing food security which are the
focus of SDG#1 (“No Poverty”)1 and SDG#2 (“Zero Hunger”)1, respectively [12].

To help mitigate these issues, this dissertation proposes data-driven solutions
to forecast the occurrence of some abiotic and biotic stresses in order to make
better proactive plans. In particular, Chapter 2 focuses on predicting three impor-
tant crop-productivity related variables (namely, net primary production, actual
evapotranspiration, and reference evapotranspiration), which in turn, could help
get to know the occurrence of some abiotic stresses (such as drought) ahead of
time. Then, Chapter 3 focuses on forecasting the presence of Desert Locusts (as
a highly destructive biotic stressor) from crowdsourced data as well as relevant
environmental factors. From a technical perspective, Chapters 2 and 3 work on
addressing two main real-world data challenges, namely Data Variability and
Sparse/Non-Uniformly Distributed Data, in the aforementioned problem domains.
In the following paragraphs, we briefly describe the studied challenges and our
solutions.

Learning under Data Variability. High variability has been seen in time-series
data of a wide region in various domains. In particular, high variability can be
observed when studying crop productivity-related factors across a wide region [13]
because those factors are usually highly associated with climate conditions, crop
type, soil type, and other environmental characteristics of a region, which in turn,
could change considerably across a wide region (such as a continent). Therefore, it
is important to effectively model such variability to build an accurate predictive
ML model in such domains. Accordingly, focusing on the agriculture domain,
Chapter 2 develops a predictive algorithm that models variability in time-series
data through a clustering-based approach. Further, it studies the capability of
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Variational Recurrent Neural Networks (VRNNs) [14] in capturing variability, and
as a result, it empirically finds that training VRNNs sometimes might lead to the
Posterior Collapse issue [15–19], which can hinder their capability in capturing
variability in practice, although they have such a capability in theory.

Learning from Sparse/Non-Uniformly Distributed Data. High data sparsity
could pose a major challenge in the ML domain, and the data collection methodology
and its characteristics play an important role in data sparsity. Accordingly, Chapter
3 focuses on a domain, in which time-series data is collected through crowdsourcing
(rather than sensors) across a wide region, and hence, the data is not distributed
uniformly across space/time (at many points in time, there is no data available
from many regions). Then, to address this issue, it builds a feature representation
approach that turns the crowdsourced data into a suitable form based on the
characteristics of the motivating problem domain. Then, it also develops a model-
agnostic data augmentation approach to further address the challenge of data
sparsity in that specific domain.

1.2 AI for Social Welfare of Housing-Insecure Low-
Income Americans
Many low-income individuals in the United States are at a high risk of eviction
and/or homelessness, partly due to a lack of affordable housing and a gap between
income growth and increases in housing expenses [20, 21]. These crises could
adversely affect their lives from multiple perspectives such as health, education,
employment growth, etc. [20,22]. Therefore, addressing the needs of this vulnerable
population is critically important, and in turn, could make strong contributions to
advancing towards several SDGs such as SDG#1 (“No Poverty”)1 and SDG#11
(“Sustainable Cities and Communities”)1. To this end, this dissertation proposes
AI-powered solutions to help mitigate some challenges faced by this population,
namely eviction and substance use disorder, more effectively/efficiently.

From a technical perspective, this dissertation, in part, proposes computational
approaches to help improve the state of practice under various situations in terms
of the level of access to ground-truth labels. In fact, the availability of large-scale
labeled data plays a key role in the success of various ML-based systems in the real
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world. However, such data is not necessarily available at the resolution of interest
in the field, and collecting ground-truth labels at scale is sometimes highly costly
and time-consuming in many real-world situations. Therefore, it is important to
facilitate the process of learning ML models under a lack of ground-truth labels
of interest. Accordingly, this dissertation, in part, focuses on situations, where
no ground-truth label is available or their resolution is lower than the prediction
resolution, and relies on an interdisciplinary approach to address these challenges.
In the following paragraphs, I will briefly describe the studied challenges and our
solutions.

Learning from Coarse-Grained Ground-Truth Labels. Sometimes, the
granularity of available labels is coarser than the granularity of prediction; i.e.,
it is highly difficult to obtain the ground-truth label for each individual training
data point, however, the labels of a group of data points (in the training set)
are easily accessible. This challenge can hinder the straightforward application of
fully-supervised approaches in those problem domains. Motivated by this challenge,
Chapter 5 focuses on one of such real-world domains, where an accurate regression
model is needed and the spatial resolution of labels is lower than the spatial
resolution of prediction. It studies the capability of existing research [23], and finds
them to not perform well in that specific problem domain. Then, it proposes a new
loss function that (1) leverages low-resolution ground-truth labels to ensure that
the model’s prediction is accurate at a low spatial resolution, and (2) leverages
high-resolution sociological insights to be able to differentiate various data points
(i.e., capture variability among data points), and hence, have accurate predictions
at a high spatial resolution as well.

Learning under Absence of Ground-Truth Labels. Sometimes, ground-truth
labels are not readily available, and also, collecting labels at scale is highly costly
and time-consuming. This, in turn, could pose significant challenges to the process
of building ML models. Chapter 6 focuses on one of such real-world domains, where
the desired output is a categorical variable, and it assumes that no ground-truth
label is available during training. Then, it proposes a label generation approach that
translates the findings of social science research to high-quality binary labels (in an
unsupervised manner), which can then be used to train ML models of interest.

5



1.3 Overview of Dissertation
The remaining part of this dissertation is organized as follows. Chapter 2 focuses
on modeling variability in time-series data and studies the capability of some
variational neural networks in capturing variability in practice. Then, Chapter 3
develops feature representation and data augmentation solutions to facilitate the
process of learning from sparse and non-uniformly distributed data in a specific
domain. Additionally, Chapters 4, 5, and 6 propose various AI-driven solutions to
help improve the state of practice in mitigating the eviction crisis under various
levels of access to ground-truth labels. Finally, as a separate use case, Chapter
7 shows how ML could be used to help mitigate Substance Use Disorder among
homeless youth.
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Chapter 2 |
AI for Agriculture: Abiotic Stress
/ Crop Productivity Prediction
under Data Variability

This chapter focuses on forecasting three important crop-productivity related
variables with the goal of helping smallholder farmers in Sub-Saharan Africa get to
know the occurrence of some abiotic stressors ahead of time, and hence, improve
their productivity and profitability [11]. From a technical perspective, it works on
the variability inside time-series data, and also, examines the capability of some
variational neural networks [24] in capturing variability in practice. In the following
sections, we describe the problem domain, related work, our solution, experimental
results, and several real-world use cases that we envision for such a predictive
algorithm.

2.1 Introduction
Smallholder farms (less than two hectares in size) and their farmers form the back-
bone of African agriculture and food security and constitute a significant proportion
of the Gross Domestic Product (GDP) of several African countries. For example,
agriculture on smallholder farms is the primary means of livelihood for more than
60% of people in Sub-Saharan Africa and is responsible for ∼75% of the region’s
total agricultural production [8–10]. In addition, smallholder agriculture also plays
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a critical role towards meeting several Sustainable Development Goals (SDGs)1

laid out by the United Nations, such as “no poverty and zero hunger”. Thus, devel-
oping techniques to improve the productivity and profitability of these smallholder
farms is of critical importance, as it could lead to significant improvements in the
well-being of many disadvantaged communities in Africa.

Unfortunately, increasing the productivity/profitability of smallholder agricul-
ture is a challenging problem because of several reasons: (1) smallholder farmers
find it difficult to protect their farms against various stressors (e.g., pest and disease
outbreaks); (2) they lack awareness about modern agricultural practices; and, most
importantly, (3) over the last few decades, climate change on the African continent
has significantly hampered the ability of smallholder farmers to achieve high agricul-
tural productivity [25]. In fact, the high reliance of smallholder farmers on rain-fed
agriculture, coupled with a lack of knowledge about future climatic conditions
result in highly uncertain situations for farmers. For example, many farmers do not
know the irrigation needs of their crops at any given point in time [26]. This is one
of the primary factors behind consistently low agricultural productivity among the
smallholder farmers. As such, it is of great importance to help them get a better
understanding of future conditions on their farms, so that they can proactively
assess and address their irrigation needs.

In this chapter, we tackle this important problem by developing CLIMATES
(Clustering Initialized Meta Algorithm for Tackling Environmental Stressors), a
predictive algorithm to forecast three important crop-productivity related variables:
(1) actual evapotranspiration (AET); (2) reference evapotranspiration (RET); and
(3) net primary production (NPP). Intuitively, AET and RET could be used
to measure the amount of water present in soil/needed to support crop growth,
whereas NPP could indicate the amount of crop growth that occurs inside a farm.
Generating accurate predictions for these three variables can help smallholder
farmers understand their irrigation needs better, e.g., if the AET forecast for a
smallholder farm shows stress (i.e., the forecasted AET value is less than what is
required for healthy crop growth), then a farmer can proactively start irrigating
his/her farm to mitigate that stress.

In fact, in this chapter, we make the following main contributions: (1) In
1https://www.un.org/sustainabledevelopment/
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collaboration with PlantVillage2, we identify ∼2,200 smallholder farm locations
across Africa, and gathered remote-sensed data for AET, RET, and NPP for all
these farm locations; (2) We develop CLIMATES, which leverages cluster-based
structural insights of environmental time-series data in this domain, and then uses
a distinct predictive model to make (AET, RET, and NPP) forecasts for each
cluster; (3) We conduct a comprehensive analysis of the effectiveness of various
popular classical ML and deep learning methods for time-series forecasting and
show that CLIMATES outperforms all these baseline models. In particular, we
provide insights about why Variational Recurrent Neural Networks (VRNNs) [24],
which explicitly model variability in sequential data, do not perform comparably.

This work is done in collaboration with PlantVillage. CLIMATES could serve
as the engine of an early warning system for smallholder farmers who can use these
warnings to proactively address the needs of their farms (such as irrigation needs).

2.2 Related Work
In this section, we discuss related studies in the agriculture and AI disciplines.

Agriculture Research. Numerous studies in the agriculture domain [27–29] have
focused on estimating crop-productivity variables (i.e., AET, RET, and NPP) from
meteorological factors, and finding associations between them. However, there have
been a few attempts at using traditional models (such as KNN [30] and ARIMA [31])
and neural models [32] to predict ET. Typically, most of these studies focused on
the data of a small region, which limits our understanding of their performance on
the data of a wide region with large variability. In contrast, the focus of our work
is to forecast NPP, AET, and RET in smallholder farms that span widely across
Africa (and hence, large variability is expected due to various climate conditions,
crop types, etc.). Furthermore, prior work found that statistical/ML models are
more accurate than Historical Average methods (which do not involve learning).
However, mixed results were reported when assessing the superiority of neural
network models to other algorithms. For example, Izadifar [33] found that Multiple
Linear Regression outperforms a neural network model in the task of predicting

2PlantVillage (https://plantvillage.psu.edu) is a non-proft working for assisting farmers
in Africa in adapting to climate change and its consequences.
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AET. However, this work relied on MLP as their neural network model, instead of
using network architectures that were designed to explicitly model the sequential
structure of time-series data, such as RNNs. In our work, we compare CLIMATES
against stronger baselines such as VRNNs, Long Short-Term Memory (LSTM) [34],
etc.

Artificial Intelligence Research. To the best of our knowledge, there have been
no prior studies in the AI community on forecasting these three crop-productivity
variables across a large geographic region. However, there has been a large body
of research on modeling sequential data for time-series forecasting. Some models,
such as SARIMA [35] and TBATS [36], focused on explicitly modeling certain
statistical properties of time-series data. Some other work in the neural network
domain focused on tackling various challenges in different time-series data; e.g.,
State Frequency Model (SFM) [37] combines the ideas behind LSTM and Discrete
Fourier Transform to learn multiple frequency patterns in time-series data. In
particular, one line of prior research focused on building deep latent variable models
to capture variability in sequential datasets; for example, Jia et al. [13] and Chien
and Kuo [14] proposed VRNN-based deep generative models for cropland detection
and speech separation, respectively. In our work, we show that CLIMATES achieves
higher predictive accuracy than many of these baselines.

2.3 Datasets
Through our collaboration with PlantVillage, we identified 2,264 smallholder farm
locations across Africa (as shown with red dots in Figure 2.1). For each farm
location, we collected remote-sensed time-series data for three variables (AET,
RET, and NPP) over five years (from the beginning of 2015 to the end of 2019)
from the WaPOR website3, which is administered by the UN-FAO. For completeness,
we provide a formal definition of these variables.

• Actual Evapotranspiration (AET): AET refers to the summation of
evaporation from soil, canopy transpiration, and interception. It can be used
to derive the water demand of each crop; i.e., the difference between AET

3https://wapor.apps.fao.org/home/WAPOR_2/1
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Figure 2.1: Identified farm locations across Africa

and RET (defined next) can be used to measure drought stress. Its unit is
mm/day and its value ranges between 0.0 to 8.3 in our dataset [38].

• Reference Evapotranspiration (RET): RET refers to the evapotranspira-
tion of a well-watered plant under well-defined standard conditions. Its unit
is mm/day and its value ranges between 1.1 to 12.7 in our dataset [38,39].

• Net Primary Production (NPP): NPP refers to the amount of carbon
dioxide absorbed by plants, and is an indicator of plant growth. The unit of
NPP is gC/m2/day (grams of carbon / square meter / day) and its value
ranges between 0.0 to 9.265 in our dataset [38].

Data Characteristics. The WaPOR website provides data for AET, RET, and
NPP, with a spatial resolution of 0.00223◦ (∼250 m) and a temporal resolution of
one dekad (∼10 days) [38]. Using this data, we generate three separate time-series
datasets (one for each AET, RET, and NPP). Each dataset consists of 2,264 time-
series data points (each data point is the time-series for a specific farm location),
and the length of each time-series is 180 (since we collect dekadal data over five
years, i.e., 36×5 = 180). For each dataset, we consider the first three years of
data (i.e., from the beginning of 2015 to the end of 2017) as the training set. The
data in 2018 (and 2019) is kept as the validation (and test) set, respectively. As a
pre-processing step, we apply Min-Max normalization on the data of each farm,
however, predictive performance metrics are computed after converting the data
back to its original scale.
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2.4 The Meta-Algorithm: CLIMATES
In this section, first, we discuss key structural insights about our dataset which
motivate the design of CLIMATES. Then, we describe our algorithm.

Exploratory Data Analysis. As shown in Figure 2.1, our 2,264 farm locations
span widely across the African landmass. In total, these farm locations span across
20 different countries, each with its distinct climatic conditions. For example, while
our farm locations in north-western Africa belong to the semi-arid Sahel region,
farms in central Africa had tropical rainforest climates, and farms in eastern and
south-eastern Africa had savannah grassland climates, etc.

Due to this geographic and climatic diversity across our farm locations, we
expect significant variability in all three of our datasets. To investigate this further,
we cluster each dataset (separately) using an off-the-shelf feature-based clustering
approach [40]. At a high level, this clustering approach extracts the features of
each time-series data point by applying Discrete Fourier Transform on its training
portion. Once the feature vector for each time-series data point is extracted,
bottom-up agglomerative clustering is used (with the Euclidean distance metric,
and complete-linkage strategy for merging intermediate clusters).

As a result of data clustering, we obtain six clusters that have distinctly different
shapes and patterns. Figure 2.2 illustrates three of these clusters obtained on the
NPP dataset (we see similar results on the AET and RET datasets). Due to this
significant variability, therefore, we hypothesize that forecasting methods that may
work well for data points in one cluster may not necessarily work well on other
clusters. This crucial insight motivates our design of CLIMATES.

The Proposed Meta-Algorithm. Given this strong variability inside our datasets,
we conducted a cluster-by-cluster comparison of the predictive performance of several
popular classical and deep learning-based forecasting methods. This analysis would
help us understand whether a single forecasting method works best across all
clusters, or whether different methods work better in different clusters.

For this comparison, we consider the time-series data points belonging to each
of our six clusters separately. Then, on the data of each cluster, we train and
test a heterogeneous mix of statistical, classical ML, and deep learning methods,
namely TBATS, SARIMA, Linear Regression (LR), Random Forest (RF) [41],
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Figure 2.2: Three (out of six) NPP clusters generated through feature-based
clustering

XGBoost [42], Support-Vector Machine (SVM) [43], LSTM, SFM, and Temporal
Convolutional Network (TCN) [44].

Table 2.1 shows the coefficient of variation (CV)4 achieved by the aforementioned
methods on all six clusters found on the NPP dataset. (analogous results on the
AET and RET datasets are represented in Tables 2.2 and 2.3, respectively). Note
that these results are for single-step forecasting, i.e., we try to predict the next
dekadal NPP, AET, and RET values. These tables confirm that no single forecasting
method works best across all clusters, e.g., on the NPP dataset, statistical methods
like SARIMA work best on the second and third clusters, deep learning methods
like LSTM and SFM work best on the fourth, fifth, and sixth clusters, whereas
Random Forest model works best on the first cluster. Thus, to get accurate
forecasts consistently across the wide expanse of the African landmass, it is critically
important to rely on an ensemble of well-trained models, each of which works well
on a specific region of Africa.

Based on this finding, we now describe our meta-algorithm. CLIMATES works
as follows: (1) It clusters the time-series data using a feature-based clustering
approach into different clusters. (2) For each of these clustered datasets, it finds
the best-performing forecasting model (i.e., the model with the lowest CV on

4Coefficient of variation (CV) refers to the root mean squared error divided by the average of
the target variable. Therefore, the lower CV is, the better performance a method has.
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Model Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
TBATS 0.2110 0.2860 0.2491 0.5235 0.4417 0.2279
SARIMA 0.1896 0.2409 0.2112 0.3840 0.3518 0.2071
LR 0.1731 0.2424 0.2234 0.3891 0.3603 0.2127
RF 0.1726 0.2481 0.2159 0.3822 0.3510 0.2123
XGBoost 0.1807 0.2555 0.2313 0.3992 0.3788 0.2249
SVM 0.1889 0.2582 0.2486 0.3916 0.4165 0.2301
LSTM 0.1728 0.2505 0.2349 0.3774 0.3446 0.2035
SFM 0.1740 0.2446 0.2199 0.3800 0.3412 0.2186
TCN 0.1890 0.2618 0.2410 0.3817 0.3774 0.2099

Table 2.1: CV of different models on the NPP clusters

Model Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
TBATS 0.1947 0.2285 0.2380 0.3060 0.3564 0.2217
SARIMA 0.1713 0.2044 0.2197 0.2799 0.2990 0.2049
LR 0.1763 0.2051 0.2179 0.2806 0.2981 0.1976
RF 0.1725 0.2058 0.2180 0.2772 0.2834 0.1976
XGBoost 0.1742 0.2104 0.2187 0.2839 0.2943 0.2012
SVM 0.1769 0.2162 0.2262 0.3044 0.3145 0.2002
LSTM 0.1723 0.2097 0.2114 0.2669 0.2728 0.1984
SFM 0.1767 0.2115 0.2115 0.2709 0.2722 0.1967
TCN 0.1764 0.2058 0.2263 0.2693 0.2883 0.2016

Table 2.2: CV of different models on the AET clusters.

the validation set of that cluster). We select the best-performing model on each
cluster out of the nine models shown in Table 2.1. Note that we use this selection
of models inside CLIMATES to ensure a good heterogeneous mix of statistical
methods, classical ML methods, and deep learning methods. We further note that
as more sophisticated time-series forecasting methods are developed, they can also
be used as part of the CLIMATES ensemble. (3) At test time, each time-series
data point is assigned to a subset of clusters. We considered two general strategies
for assigning data points to the clusters: (a) we assign each time-series data point
to the nearest cluster (CLIMATES-I), (b) we assign each time-series data point to
a subset of clusters that falls within d distance from that data point. The threshold
d is set to two heuristically computed values: (1) the average distance between
the data points and their closest cluster (CLIMATES-II), (2) the median distance

14



Model Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
TBATS 0.1259 0.1435 0.1502 0.1029 0.0982 0.1663
SARIMA 0.1084 0.1261 0.1297 0.0910 0.0876 0.1552
LR 0.1014 0.1244 0.1509 0.0898 0.0885 0.1517
RF 0.0998 0.1233 0.1474 0.1050 0.0890 0.1496
XGBoost 0.1018 0.1229 0.1410 0.1038 0.0896 0.1515
SVM 0.1066 0.1307 0.1463 0.1148 0.0921 0.1508
LSTM 0.0988 0.1180 0.1372 0.0839 0.0820 0.1430
SFM 0.0991 0.1203 0.1346 0.0875 0.0792 0.1443
TCN 0.1022 0.1306 0.1365 0.0979 0.0850 0.1492

Table 2.3: CV of different models on the RET clusters.

between the data points and their closest cluster (CLIMATES-III). (4) Finally, the
best-performing model on each selected cluster (in our chosen subset) is used to
get a prediction on that test data point, and the average of the predicted values is
returned as the final forecast of CLIMATES. We now conduct a rigorous evaluation
of the predictive performance of our meta-algorithm against a comprehensive set of
baselines.

2.5 Experimental Evaluation
We provide two sets of results. First, we provide a brief background on the VRNN
architecture and show results comparing the predictive performance of CLIMATES
against VRNNs, which at least in theory, should serve as a strong baseline. Second,
we show results comparing the predictive performance of CLIMATES against a
wide variety of statistical/classical ML and deep learning models.

VRNN Architecture. VRNN is a deep generative model that extends the idea
behind Variational Autoencoders (VAE) [45,46] to sequential data. VRNNs can be
viewed as a sequence of VAEs conditioned on the hidden state of an RNN. Thus,
similar to VAEs, they consist of generative and inference networks; the latter encodes
the input into a latent space, and the former generates the output by reconstructing
the input from the latent space. In fact, the generative process at time t begins
with generating the latent variable zt from a Gaussian distribution. However, unlike
VAE, zt is conditioned on ht−1 (the hidden state of RNN at time t − 1) to be
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Model AET RET NPP
CLIMATES-I 0.2075 0.0989 0.2409
VRNNKL

Deterministic 0.2161 0.1052 0.2594
VRNNDeterministic 0.2166 0.1053 0.2639
VRNNGaussian 0.2836 0.1504 0.4496
LSTMDeterministic 0.2113 0.1039 0.2617
LSTMGaussian 0.2754 0.1507 0.3863

Table 2.4: A CV comparison between CLIMATES and VRNNs/LSTMs

able to model the consistency within a single time-series data point [24]. During
training, VRNN aims to maximize the log-likelihood of observations ℓ(p(x≤T )),
where x≤T = {x1, ..., xT} represents the input time-series of length T . However,
as inferring the log-likelihood is computationally intractable, VRNN maximizes
the variational lower bound of the log-likelihood given in Equation 2.1. This
lower bound consists of two terms: (1) reconstruction likelihood, and (2) the KL
distance between the approximate posterior and the prior distributions. We compare
CLIMATES against VRNNs because their ability to learn explicit representations
of variability across time-series data points (through the sequence of latent variables
z≤T ) makes them ideal models for our domain.

ℓ(p(x≤T )) ≥ Eq(z≤T |x≤T )[
T∑

t=1
(log(p(xt|z≤t, x<t))

−KL(q(zt|x≤t, z<t)||p(zt|x<t, z<t)))] (2.1)

Comparison with VRNNs. We now provide results comparing the performance
of CLIMATES against VRNN and LSTM. In this set of experiments, a separate
LSTM and VRNN is trained (and tested) on each of our three datasets. For both
VRNN and LSTM, we experiment with two different output functions (Deterministic
and Gaussian). Finally, the negative of the variational lower bound given in Equation
2.1 is used as VRNN’s loss function.

Table 2.4 compares the CV achieved by CLIMATES-I against VRNN and LSTM
variants (for single-step forecasting on our three datasets). This table shows that
regardless of the choice of output function, CLIMATES-I outperforms both VRNN
and LSTM models. In fact, CLIMATES-I, on average, achieves 6.3% lower CV than
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VRNNDeterministic, even though VRNNs have latent variables to model variability
inside our datasets. Additionally, applying t-test, we find that the difference between
the CV of CLIMATES-I and these models is statistically significant (p-value is
consistently less than 0.01). Surprisingly, these results show that VRNN is unable
to outperform LSTM on any dataset; in particular, VRNNDeterministic (which has
stochastic latent states) cannot outperform LSTMDeterministic (which does not have
any stochastic components). Counterintuitively, this shows that explicitly learning
representations of variability inside our datasets does not seem to help.

Why Do VRNNs Not Work? To understand VRNN’s poor performance, we
take a closer look at VRNNDeterministic’s learning curves during training (we see
similar results with other output functions). In particular, we separately analyze
the learning curves of two components in the VRNN’s loss function, i.e., (1) the
reconstruction loss, and (2) the KL term. Figure 2.3 illustrates the changes in
the values of these two components with the increasing number of epochs on the
NPP dataset. According to this figure, the KL distance vanishes into zero after a
few epochs; i.e., the approximate posterior becomes equal to the prior in the early
epochs, and hence, the model starts ignoring latent variables in the early stages of
training (we see similar results on other datasets). Thus, we observe that, in practice,
training VRNN leads to a local optimum which hinders capturing variability in
a dataset, even though, in theory, it has the capability of capturing variations.
Similar findings have been reported with VAEs, e.g., prior research found that the
same issue (called “posterior collapse”) occurs in VAE [15–19]. However, to the best
of our knowledge, our work is the first to report this posterior collapse issue with
VRNNs. Further, prior work proposed KL-annealing to tackle posterior collapse in
VAEs [16]; however, as the second row of Table 2.4 (i.e., VRNNKL

Deterministic) shows,
even with KL-annealing, VRNN is unable to beat CLIMATES-I.

Comparison with Other Baselines. Having established the superior predictive
performance of CLIMATES over VRNNs and LSTMs in Table 2.4, we now evaluate
CLIMATES against the same baseline forecasting models that we used in Table
2.1, as all models there form the individual building blocks inside our CLIMATES
approach. Note that we choose these algorithms as baselines in order to establish
the effectiveness of our clustering based meta-algorithm approach over individual
baselines. Further, we note that as more sophisticated time-series forecasting
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Figure 2.3: The learning curves of the two components of VRNN’s loss function
during training on the NPP dataset

methods are developed in the AI community, they can also be utilized as building
blocks inside our meta-algorithm approach. To have a fair comparison between
various models, we conduct hyper-parameter tuning using the grid search approach.

Table 2.5 shows the CV achieved by CLIMATES and all our baselines on
single-step forecasting tasks on all three datasets. According to these results,
CLIMATES outperforms all baselines on all datasets, e.g., CLIMATES-I achieves
a CV of 0.0989 on the RET dataset, whereas the next best-performing baseline
achieved a CV of 0.1002. This establishes the superior performance of CLIMATES
in providing accurate forecasts for AET, RET, and NPP. Additionally, we observe
that the mentioned heuristic strategies for assigning data points to the clusters (i.e.,
CLIMATES-II and CLIMATES-III) lead to similar results. Note that although the
improvement of CLIMATES over baselines does not look significant from an ML
perspective, we will show, in the next section, that this improvement over baselines
could result in considerable cost savings in the real world.

Orthogonally, Table 2.5 shows that although neural network models outperform
popular statistical models by a relatively large margin, their performance is com-
parable to some strong classical ML models. This finding is consistent with prior
research, as there is a growing body of work that questions the superiority of some
recent neural networks over classical models. For example, this finding is consistent
with results reported in prior work in the area of Recommendation Systems [47],
which found that some recent neural network models are not actually superior to
well-tuned classical models. As an analogous result in the time-series forecasting
domain, our findings suggest that despite the easy availability of large-scale datasets
in time-series forecasting (due to easy access to remote sensing data), deep learning
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Model AET RET NPP
TBATS 0.2414 0.1206 0.2856
SARIMA 0.2130 0.1029 0.2503
LR 0.2114 0.1014 0.2492
RF 0.2080 0.1022 0.2427
XGBoost 0.2099 0.1039 0.2445
SVM 0.2110 0.1041 0.2505
SFM 0.2080 0.1002 0.2428
TCN 0.2138 0.1012 0.2432
CLIMATES-I 0.2075 0.0989 0.2409
CLIMATES-II 0.2071 0.0990 0.2409
CLIMATES-III 0.2071 0.0990 0.2409

Table 2.5: CV of CLIMATES and various baselines

does not always beat classical ML models significantly.

2.6 Real-World Use Case
This section explains three possible ways that CLIMATES could be employed to
help smallholder farmers in the field.

Application 1: Forecasting the Level of Water Stress. CLIMATES can
be used to assist farmers in getting to know the occurrence of water stress in
their farms ahead of time. Past literature suggests that water stress in each
farm can be estimated from RET and AET using the following equation: Ks =
AET/(Kc ×RET ) [39]. In this equation, Ks denotes the water stress index (e.g.,
Ks < 0.5 indicates an alarming level of water stress) and Kc refers to the crop
coefficient, for which the suggested values are available at [39]. Thus, CLIMATES
can serve as the engine of a mobile app that can send early warnings to farmers
based on the future value of Ks computed from the forecasted AET and RET.
Further, the output of CLIMATES can be used to generate a heatmap, similar to
Figure 2.4, to represent the water stress index across a large region. In this figure,
the background color shows the forecasted level of water stress (assuming Kc = 1.2)
across Kenya on the first dekad of May 2019 and black circles represent particular
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Figure 2.4: A heatmap of water stress index (Ks) in Kenya

farm locations. According to this heatmap, the farms in western Kenya are at low
risk of water stress (as Ks > 0.5) during that particular dekad.

Application 2: Irrigation Scheduling. CLIMATES can be utilized as an AI
assistant for irrigation scheduling as well. Irrigation scheduling methods aim to
determine the timing of irrigation and the amount of water demand at different
stages of the crop-growing life cycle. One common approach in this space is
ET-based irrigation scheduling, which utilizes ET data to provide customized
suggestions for each farm based on its irrigation system, crop type, etc. According
to this approach, the amount of water demand can be estimated using Equation
2.2 [48]. In this equation, GI denotes the gross irrigation water requirement, ETc

denotes the crop evapotranspiration (ETc = Kc ×RET ), Pe refers to the effective
precipitation that can be consumed by plants, and E denotes the efficiency of the
irrigation system used in the target farm. Thus, providing farmers with information
on the future value of GI (through forecasting RET) can help them estimate the
amount of water needed for mitigating the water stress in their farms.

GI = ETc − Pe

E
= (Kc ×RET )− Pe

E
(2.2)

Real-World Impact of CLIMATES versus Baselines. We now compare the
potential real-world impact of CLIMATES against the best-performing baseline
model in the context of irrigation scheduling. To this end, we translate the
amount of improvement in predictive accuracy (of CLIMATES over the best-
performing baseline) to the corresponding difference between GI (i.e., required
levels of irrigation) computed from the outputs of CLIMATES (i.e., GICLIMAT ES)
and the best-performing baseline (i.e., GIbaseline). This difference in GI (GIbaseline-
GICLIMAT ES) could be an indicator of the amount of water that could be saved as a
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result of employing CLIMATES, rather than the best-performing baseline. However,
translating the difference in predictive performance (in terms of CV) to the amount
of water saving requires several assumptions as the value of CV does not distinguish
under-estimation from over-estimation. In addition, the parameters of Equation
2.2 depend on various characteristics of the farm, e.g., Kc changes with the crop
type and the stage of crop growth. For ease of exposition, we assume that E = 0.60
(which corresponds to the Surface irrigation system [49]) and Kc = 1.2 (which
corresponds to mid-season maize cropping [39]) are used in the target region and
that both CLIMATES and the best-performing baseline (i.e., SFM) overestimate
RET on a given dekad in that region.

In this situation, according to Equation 2.3, the improvement of 0.0013 by
CLIMATES over SFM in terms of CV in the RET prediction task (from Table 2.5)
can be translated into saving about 92 liters of water per hectare each day for a
maize-cropped farm at the mid-season stage. As a result, although the improvement
of CLIMATES against baselines looks small numerically, this improvement can
result in considerable water saving when it comes to employing CLIMATES for
scheduling irrigation within the crop growing season in the real world.

GIbaseline −GICLIMAT ES = Kc

E
(RETbaseline −RETCLIMAT ES) (2.3)

Application 3: Monitoring Crop Growth. CLIMATES can also be employed
to quantitatively monitor plant growth. For example, NPP values forecasted by
CLIMATES can be used to proactively identify some real-world stressors influencing
plant growth such as nutrition shortage. In particular, CLIMATES can produce
customized early warnings based on the amount of gap between the forecasted NPP
and the NPP of the plant under non-stressed conditions.

2.7 Challenges in Implementation
There are several challenges that need to be taken into account when planning for
deployment in this domain. First, many African smallholder farmers live in rural
areas with limited access to the Internet, and CLIMATES is in need of frequent
updates, and due to its computational needs, it needs to be updated on a server.
Thus, access to the most recent information requires establishing a connection with
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a server via the Internet, and consequently, cannot be done offline. To address this
challenge, a feature could be added to the app for automatically sending frequent
updates to the registered farmers via text messages (SMS) so that they can stay
updated even in case of Internet connection issues. The second challenge is related
to farmers’ concerns about the privacy of their data. In fact, many farmers may not
be willing to share some data such as farm size and crop type, as this information
along with their estimated crop productivity could be used to derive their income,
which is personal information to many people.

2.8 Summary
This chapter proposes CLIMATES, an ML-based meta algorithm for forecasting
three important crop-productivity related variables (AET, RET, and NPP) in
smallholder farms across Africa. Leveraging structural insights about these vari-
ables, it attempted to combine the power of several popular time-series forecasting
techniques to produce more accurate forecasts in the face of significant variability,
mainly stemming from the geographic and climatic diversity of different African
countries. The experimental results show that CLIMATES outperforms several
strong baselines, including VRNNs which introduce latent variables to model
variability in time-series data.
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Chapter 3 |
AI for Agriculture: Biotic Stress
Prediction from Sparse Data

This chapter focuses on forecasting the presence/absence of a devastating biotic
stressor, namely Desert Locust, from a diverse set of input data, in which some data
is sparse, and not distributed uniformly across space/time [50]. In the following
sections, we describe the problem domain, related work, our solution, experimental
results, and the real-world use case that we envision for such a predictive model.

3.1 Introduction
In 2020, several parts of the world (especially East Africa and the Middle East)
struggled with the worst Desert Locust (Schistocerca gregaria) swarm infestation
in over 25 years [51]. The Desert Locust is a highly destructive pest during its
swarming phase. Each 2g adult locust can move as much as 100 kilometers/day,
consume its own weight in vegetation each day, and each swarm can contain billions
of locusts [52, 53]. Additionally, the Desert Locust outbreak could have significant
economic, human, and environmental impacts. For example, the 2020 Desert Locust
crisis resulted in the forcible displacement of numerous people and the decimated
crops left by these locust swarms jeopardized the food security of millions of people,
particularly smallholder farmers [52]. Thus, it is critically important to accurately
forecast their occurrence, so that appropriate mitigation measures can be taken.

To tackle this crisis, the Desert Locust Information Service (DLIS) at UN-
FAO [53] has historically relied on highly trained staff conducting field surveys
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in at-risk geographical areas, followed by governments allocating and spraying
pesticides in affected regions. However, due to limited numbers of trained staff
conducting field surveys, especially in countries where desert locusts are not normally
present, the DLIS aims to augment its data collection and decision-making through
crowdsourced data. As a result, in 2020, PlantVillage, at the request of UN-FAO,
developed eLocust3m1, a smartphone application that was designed for non-experts
to use to crowdsource records of locust observations. The introduction of this
eLocust3m application into a well-established system of surveillance by the DLIS
offers opportunities to enhance current locust mitigation operations, particularly
through ML-based approaches. Accordingly, this chapter builds a spatio-temporal
ML model to forecast the Locust presence/absence with a high accuracy.

In fact, this chapter proposes PLAN (Predictor of Locust Activity and movemeNt),
a spatio-temporal deep neural network model that leverages real-world insights as
well as the crowdsourced data of locust observations to accurately forecast locust
presence/absence at high spatial and temporal resolutions across Kenya, Ethiopia,
and Somalia (three countries in East Africa which have suffered great losses due
to the Desert Locust crisis). In particular, in this chapter, we make the following
main contributions: (1) through PlantVillage, a partner of the UN-FAO, we utilize
data from eLocust3m (a first-of-its-kind tool that has been deployed in the field)
and create an image representation of locust survey data to explicitly capture
Locust movement patterns across space and time. (2) Leveraging subject matter
expertise and findings of prior studies in the agriculture domain, we identify ten
environmental factors that contribute to locust breeding, migration, and survival,
and fetch remote-sensed data for each of these ten factors. (3) We propose PLAN,
that takes as input a single geographical location (in terms of latitude and lon-
gitude) and outputs accurate n-day forecasts of locust presence/absence at that
location through learning relevant features from different inputs. PLAN explicitly
models the spatio-temporal relationships in locust movement, and the impact of
environmental factors on locust movement using a combination of Convolutional
Neural Network (CNN) [54] and Long Short-Term Memory (LSTM) [34], and
Feed-Forward Neural Network (FNN) models. (4) Finally, we comprehensively
evaluate the effectiveness of PLAN for this problem domain. The experimental
results show that PLAN outperforms several classical ML baseline models (in terms

1https://play.google.com/store/apps/details?id=plantvillage.locustsurvey
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of the predictive performance) on the nth-step (n ∈ {1, 2, 3, 4}) forecasting tasks.
For example, PLAN is the only model which achieves an AUC score of ∼0.9 for
next-day forecasts. More importantly, PLAN shows a significant improvement (23%
higher F1 score) over the best-performing baseline model in a cross-region test (i.e.,
when we test the performance of ML models on the data of geographical regions
which are far away from the regions where training data was collected), which
illustrates PLAN’s capability of learning useful locust migration patterns.

PLAN is meant to be an assistive tool, which can augment the human expertise
of the highly trained staff at DLIS and PlantVillage in their locust prediction and
mitigation efforts.

3.2 Related Work
Historically, locust swarm migration has been studied from multiple perspectives
in prior work. One line of prior research focuses on exploring the role of climatic
factors in the outbreak of migratory locust swarms [55,56]. For example, various
studies have reported that different meteorological factors can have different levels
of impact on locust breeding, maturation, migration, and survival; e.g., (1) high
precipitation can make a region suitable for locust breeding [56], similarly, (2) soil
moisture was also found to be a strong indicator of locust breeding areas [57,58],
(3) wind can facilitate locust migration [56], (4) green vegetation plays a key role
in locust survival [56], and finally, (5) increased temperature resulting from climate
change tends to exacerbate the problem of locust swarm infestation [56].

In addition, few data-driven studies at the intersection of agriculture and AI
have addressed the locust crisis. Ye et al. [59] employed CNN-based models to
detect locust species from imagery data. Kimathi et al. [60] used the Maximum
Entropy (MaxEnt) model to identify potential locust breeding spots from several
environmental factors. Moreover, in January 2021, the Selina Wamucii company2

announced the development of an AI tool (called Kuzi) for predicting locust
occurrence and breeding, however, the details of their underlying model and its
predictive performance were not released [61]. Therefore, to the best of our
knowledge, there had been no prior publicly available research on forecasting locust
presence/absence at high spatial and temporal resolutions. To fill this gap, this

2https://www.selinawamucii.com
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chapter proposes PLAN, an ML algorithm that leverages recent advances in the
field of spatio-temporal forecasting [62,63], as well as findings of prior studies (in
the agriculture domain) on locust outbreaks to generate accurate predictions.

3.3 Datasets

3.3.1 Raw Data Sources

PLAN utilizes two sources of raw data: (1) crowdsourced locust survey data; and
(2) remote-sensed environmental data.

1. Crowdsourced locust survey data. This data is collected through the
“eLocust3m” (or eL3m) Android application, which has been developed by
PlantVillage for the UN-FAO. This smartphone application enables users to
record observations of locust presence/absence at a particular geographical
location (given by latitude and longitude) on a given date. Since 2020, eL3m
has been deployed in many countries around the world, and various groups
(such as PlantVillage, county governments, charities) have employed local
community members to scout the areas and provide geocoded observations of
locust presence/absence via eL3m. In this work, we mostly focus on eL3m
locust presence/absence data collected from Kenya, Ethiopia, and Somalia
(three countries which have been badly hit by the locust crisis) between March
1st, 2020 to September 30th, 2020. In total, during this time period, ∼21,000
locust presence/absence reports were recorded in these three countries via
eL3m. We use all these reports as our first raw data source.

2. Remote-sensed environmental data. This source of data consists of
some environmental factors that could affect locust breeding, migration,
and survival. In fact, we take advantage of subject matter expertise and
prior work in the agriculture discipline [56, 58], and fetch raw remote-sensed
data for the following ten environmental factors from publicly available data
sources cited below: (1) soil moisture [64–66], (2) sand content of soil [67], (3)
precipitation [68], (4) land elevation [69], (5) wind speed at 10 meters [70], (6)
wind speed at 50 meters [70], (7) U wind speed at 10 meters [71], (8) V wind
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speed at 10 meters [71], (9) total biomass productivity in 2019 (TBP_19) [72],
and (10) actual evapotranspiration (AET) [72].

Rationale for the Choice of Environmental Factors. Each environmen-
tal factor chosen by us has been reported in prior work as potentially having
an impact on locust breeding, migration, or survival. For example, high sand
content in soil, and soil moisture is conducive for locust egg-laying [56]; as a
result, precipitation, soil moisture, sand content of soil, and AET can serve
as strong indicators of potential locust breeding spots, which can assist in
forecasting their presence/absence. Further, wind is regarded as the main
means of locust migration [56]. The wind heights most important to locust
movement are 1,000 and 1,500m above sea level. Here, we use wind speed at
10/50 meters and directions (i.e., U/V wind) as they were readily available.
Finally, certain land characteristics are conducive to locust presence; e.g.,
high locust activity is seen at lower elevations [73], and green vegetation is
needed for locust survival [56]. As a result, land elevation, and TBP_19
could play important roles in forecasting locust presence/absence in different
regions.

3.3.2 Data Characteristics

Our eL3m data has certain characteristics, which mainly stem from the nature
of crowdsourced data collection. First, as locust presence/absence is voluntarily
reported by human eL3m users, the total number of reports received each day varies
across time. Users often submit multiple records in close succession resulting in
temporal and spatial aggregation. Figure 3.1 represents the total number of locust
presence/absence reports received across Kenya, Ethiopia, and Somalia over time.
As illustrated in this figure, a large number of locust presence/absence reports were
received each day from the beginning of June until mid-July. In particular, most of
the reports received in June are locust presence (or, positive) reports, whereas the
majority of the reports received in July are locust absence (or, negative) reports.
Second, the spatial distribution of the data is not uniform over time; e.g., on several
days in June, there are many regions in Kenya from which no locust reports were
received. Third, we acknowledge the presence of some noises in the data, because
people voluntarily report the locust presence/absence, and they might not report
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the ground truth intentionally/unintentionally, e.g., there are false positive reports
where users have considered it important to submit positive records even if locusts
are not present (we elaborate on this in Section 3.7).

In addition, remote-sensed environmental factors are available at different
temporal resolutions. For example, wind speed, soil moisture, and precipitation
are available at a daily resolution, whereas AET is only available at a dekadal
resolution. On the other hand, sand content, TBP_19, and land elevation are
static features that do not vary with time. In section 3.3.3, we describe our data
preparation steps.

Figure 3.1: Distribution of eL3m locust presence/absence reports received from
Ethiopia, Kenya, and Somalia over time

3.3.3 Data Preparation

In our dataset, each data point corresponds to a single eL3m locust report with a
binary (present/absent) label. Each of these data points is recorded by an eL3m
volunteer at a particular geographical location (lat, long) and date/time t. For
example, Figure 3.2 illustrates all such data points recorded in Kenya on date t

(similar maps can be drawn for different dates and countries).
In order to represent each individual data point in Figure 3.2 (without loss

of generality, we denote an arbitrary point by the blue GPS pin), we create an
image-based feature representation that can help summarize the non-uniformly
distributed data and capture spatio-temporal relationships in the movement of
locusts in nearby regions (surrounding the blue pin location) over the previous k

days. In particular, for each of the previous k days, we create a separate 7× 7× 2
image representation which summarizes all eL3m locust reports (both presence and
absence) received from surrounding areas which lie in a 7× 7 grid centered on the

28



blue pin location.
More formally, the feature representations for a data point corresponding to

location l = (latitude, longitude) and date (t+n) are created by generating k images
of size 7× 7× 2, one for each date t′ ∈ {t, t− 1, t− 2, . . . , t− (k − 1)}. In order to
build the image for date t′, we grid the geographical area surrounding location l and
create a 7× 7 image, in which each pixel corresponds to a square geographical area
of size d◦ × d◦ (in spatial resolution degrees). This image is centered on location l,
hence the central pixel corresponds to a region of size d◦× d◦ centered on location l,
and other pixels correspond to nearby d◦ × d◦ regions. Finally, each pixel contains
two pieces of information: (1) the total number of locust presence reports from
that d◦ × d◦ region on date t′, and (2) the total number of locust absence reports
from that d◦ × d◦ region on date t′. Using this procedure, we create k images of
size (7× 7× 2).

Intuitively, this time-varying image representation of data points enables us to
explicitly capture the movement of locusts across space and time which can serve as
important predictors for future locust movement, e.g., locust presence in a region
increases the likelihood of locust presence in nearby regions in the near future and
vice versa. Thus, this set of k images (one for each of the previous k days) forms
the first part of the feature representation for each data point in our dataset.

Figure 3.2: Schema for image representation of a single locust presence/absence
report received on date t

The second part of feature representation for each data point comprises time-
series values for six remote-sensed environmental variables (i.e., precipitation, soil
moisture, U wind at 10 meters, V wind at 10 meters, wind speed at 10 meters, and
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wind speed at 50 meters) over the previous k days. Finally, the third part of feature
representation comprises single values for our static environmental variables (i.e.,
sand content, TBP_19, land elevation, and AET of the last dekad). We normalize
each of these features independently via Min-Max normalization.

Our final dataset consists of 21,012 data points, out of which 42.35% correspond
to locust presence reports (i.e., positive class). Each data point consists of the
following input features: (1) k matrices of size (7× 7× 2), which correspond to the
image representation of locust survey data on each day of the past k days, (2) six
time-series data of length k, each of which corresponds to the historical pattern of
an environmental factor, and (3) a vector of four elements which corresponds to
values of our four static variables.

3.4 The Proposed Framework: PLAN
We now describe PLAN, a deep learning framework for generating accurate forecasts
of locust presence/absence at different geographical locations. PLAN takes the
(latitude, longitude) of the target location and the current date t as input, and
generates as output a binary forecast about whether locusts will be present (or not)
at that (latitude, longitude) n days into the future (i.e., on the day t + n).

Figure 3.3 illustrates the network architecture of PLAN. At a high level, it
consists of three components: (1) a CNN+LSTM network for capturing spatio-
temporal relationships from our image-based feature representations; (2) an LSTM
for capturing temporal relationships in time-series environmental variables; and
(3) a Feed-Forward neural network (FNN) for extracting relevant features from
the static environmental factors. In the following paragraphs, each component is
explained in detail.
Module A: CNN + LSTM Model. We model spatio-temporal relationships
in eL3m locust reports as follows. (1) For each data point, we build k image
representations of locust report data (as described in Section 3.3.3) to summarize
the locust reports received from surrounding regions over the last k days. (2) Each
image is passed through a separate CNN network followed by a fully-connected
(FC) layer, which outputs dense latent representations of the spatial relationships
that exist in that image. (3) The output from each FC layer is then fed as input to
the hidden state of an LSTM network which captures locust migration patterns
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Figure 3.3: The architecture of PLAN

over space and time. Each of our CNN networks (in Figure 3.3) consists of three
convolutional layers with 16 filters of size 3× 3 and the FC layer has 64 neurons.
Similarly, the hidden state size of the LSTM network is 256.

Module B: LSTM Model. We model the impact of environmental factors on
locust movement as follows. (1) For each data point, we concatenate the time-series
values of six environmental factors (i.e., soil moisture, precipitation, wind speed
at 10/50 meters, and U/V wind at 10 meters) at that data point’s geographical
location over the previous k days. (2) This 6× k time-series data is passed through
an LSTM network with h hidden states (with hidden state size = 64), which enables
capturing time-varying patterns of environmental factors at a specific geographical
location.

Module C: FNN Model. Prior studies in the agriculture domain show that locust
presence could be associated with land characteristics. For example, sandy soil is
favorable for locust breeding, and high locust activity is seen at lower elevations,
etc. [56,73]. As a result, PLAN takes four of such factors (i.e., land elevation, sand
content of soil, TBP_19, and AET in the last dekad) as input and uses a FNN
with a FC layer to extract relevant features of the target region from these factors.

Finally, the output representations discovered by the last hidden layers of LSTMs
in Modules A and B as well as the output of Module C are fed into a softmax layer
to generate a predicted forecast of locust presence/absence n days into the future.
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3.5 Experimental Evaluation
In this section, first, we discuss our evaluation approach and experimental settings.
Then, we evaluate PLAN’s performance as follows: (1) We compare PLAN with
several baseline models to show its superior predictive performance on various
forecasting tasks. (2) We conduct an ablation analysis to show the impact of
different parts of PLAN’s architecture on its predictive performance. (3) We
conduct a cross-region test to evaluate PLAN’s performance when being tested
on the data of a distant geographical region that is far away from the training
region. (4) To tackle data sparsity, which stems from the unavailability of reports
from many geographic regions, we propose a model-agnostic data augmentation
algorithm, and then, assess its effectiveness in this problem domain.

3.5.1 Evaluation Approach

To evaluate the performance of various models, we take advantage of the walk-
forward testing approach [74–76] and adapt it to our problem domain. At a
high level, walk-forward testing extends the idea behind K-fold cross-validation to
sequential time-series data. This method enables a more robust and trustworthy
assessment of the performance of various forecasting models because each model
is evaluated under a series of time-varying conditions. In our domain, given the
heterogeneous distribution of eL3m locust reports over time (see Figure 3.1), walk-
forward testing enables us to evaluate our models’ performance across a number of
sequenced and time-shifted train/test splits.

However, in walk-forward testing, the overall predictive performance of a fore-
casting model (in terms of F1) is computed by averaging the F1 score achieved
by the model across different time-shifted test sets (similar to macro-averaging in
multi-class classification). Unfortunately, in our problem domain, the total number
of eL3m locust reports per day changes over time (see Figure 3.1). Consequently,
the different time-shifted test sets created during walk-forward testing have different
numbers of data points. Therefore, it is not fair to report the average F1 score
(or other evaluation metrics) computed on each time-shifted test set as the overall
predictive performance of the model. To address this challenge, we combine all
time-shifted test sets (and the predictions on those test sets) into a single larger
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test set. We compute all evaluation metrics on this single test set, and use these
metrics to evaluate and compare different forecasting models. Prior literature has
shown that this approach to computing the overall performance produces unbiased
estimates of predictive performance in several situations, e.g., this approach is
commonly used with k-fold cross-validation, etc. [77].

3.5.2 Set-Up

All experiments are run on a machine with one NVIDIA Tesla T4 GPU, 4 vCPUs,
and 15 GB RAM. Except for Table 3.1, the window length w of walk-forward
testing is set to 7 days in all experiments. Finally, all experiments are run five
times, and the average performance over all runs is reported.

The hyper-parameters are set as follows. All fully connected layers in PLAN’s
architecture use Sigmoid activation function. The batch size is set to 64, and the
Adam optimizer [78] with a learning rate of 0.001, β1 of 0.9, and β2 of 0.999 is used.
For all our experiments, we set the value of k = 7, i.e., both LSTM networks in
Modules A and B of PLAN’s architecture (Figure 3.3) take the data of the past
7 days as input. Further, we set the value of d = 0.2◦, i.e., the spatial resolution
of each pixel in our image representations (Figure 3.2) is set to 0.2◦, which makes
each pixel correspond to a 22.2 km × 22.2 km geographical region. The value of d

was set via hyperparameter tuning.

3.5.3 Comparison with Baseline Models

To evaluate the effectiveness of PLAN, we compare its performance with the
following baselines: (1) Logistic Regression (Logit), (2) Support-Vector Machine
(SVM) with RBF kernel [43], (3) AdaBoost [79], and (4) XGBoost [42]. Building
these baseline models requires one further pre-processing step as they cannot handle
imagery data; i.e., we flatten the image representations of the eL3m locust report
data, and concatenate them with all environmental factors to build the input
feature representations for these baseline models. Note that we chose these classical
ML models as baselines, as there was no comparable prior work on sophisticated
deep learning models to predict locust movement. Thus, any deep learning model
that we compare PLAN against would have to be developed from scratch. Further,
we note that during our ablation analysis, we compared PLAN against several
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w = 7 days w = 14 days w = 21 days
Model Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC
Logit 0.7417 0.7026 0.7810 0.7366 0.6958 0.7652 0.7233 0.6823 0.7398
SVM 0.7772 0.7303 0.8433 0.7678 0.7104 0.8076 0.6853 0.5545 0.7870
AdaBoost 0.7585 0.7317 0.8282 0.7492 0.7247 0.8137 0.7408 0.7049 0.8002
XGBoost 0.7848∗ 0.7612∗ 0.8650∗ 0.7730∗ 0.7436∗ 0.8493∗ 0.7516∗ 0.7206∗ 0.8338∗

PLAN 0.8174 0.7918 0.8904 0.8060 0.7750 0.8781 0.8052 0.7814 0.8798
Improv. +4.15% +4.01% +2.93% +4.26% +4.22% +3.39% +7.13% +8.43% +5.51%

Table 3.1: The predictive performance of different ML models on the 1st-step
prediction task with various window lengths (w)

neural network architectures (i.e., variants of PLAN) to evaluate the contribution
of different modules to PLAN’s performance.

Table 3.1 compares the predictive performance of PLAN against baseline models
on 1st-step prediction tasks (i.e., next day forecasts) with different choices of window
lengths w ∈ {7, 14, 21} (for walk-forward testing). The best model’s performance
is shown in bold, whereas the second-best model’s performance is shown with an
asterisk. According to the results, PLAN consistently outperforms all baseline
models; in particular, PLAN achieves an F1 score of ∼ 0.792 with a window length
w = 7, which improves upon XGBoost’s (the best-performing baseline) performance
by ∼ 4%. This is a significant finding, as the high-stakes nature of decision-making
in this domain means that any increases in predictive accuracy over baseline models
could potentially lead to widespread impact (in terms of increased food security,
better management of the locust crisis, etc.) at the scale of nations.

In addition, PLAN tends to be more robust to increasing window lengths w as
compared to baseline models. In particular, the percentage improvement achieved
by PLAN over XGBoost (in terms of F1) significantly increases with increasing
window length sizes. For example, PLAN improves upon XGBoost’s F1 score
by 4.01%, 4.22%, and 8.43% with window length sizes of w =7, 14 and 21 days,
respectively. This finding illustrates that with increases in the window length size
w, the distribution of training and test sets are more likely to differ from each
other; as a result, the performance of all models is likely to degrade. However,
Table 3.1 shows that PLAN is significantly less sensitive to potential covariate shift
problems as compared to baseline models, e.g., when the window length is increased
from w = 7 to w = 21, PLAN’s F1 score minimally degrades by ∼ 1%, whereas
XGBoost’s F1 score degrades by ∼5%.
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2nd-step prediction 3rd-step prediction 4th-step prediction
Model Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC
Logit 0.7297 0.6933 0.7691 0.7210 0.6907 0.7692 0.7166 0.6855 0.7634
SVM 0.7569 0.7050 0.8244 0.7424 0.6887 0.8114 0.7407 0.6956 0.8017
AdaBoost 0.7438 0.7158 0.8028 0.7303 0.7014 0.7834 0.7302 0.7049 0.7992
XGBoost 0.7717 0.7522 0.8507 0.7578 0.7374 0.8346 0.7507 0.7329 0.8380
PLAN 0.7908 0.7588 0.8637 0.7726 0.7429 0.8497 0.7692 0.7340 0.8427

Table 3.2: The predictive performance of different ML models for 2nd-step, 3rd-step,
and 4th-step prediction tasks

Next, we evaluate the predictive performance of different models on the nth-step
prediction task, as forecasting farther ahead into the future tends to be a more
difficult task. Table 3.2 compares the predictive performance of different models
on 2nd-step, 3rd-step, and 4th-step forecasting tasks. As expected, the performance
of all ML models degrades with increasing forecast horizons. However, PLAN
consistently outperforms baseline models at all forecast horizons. In particular,
PLAN achieves an average AUC of 0.85 (across all horizon values) which shows its
high capability of distinguishing positive/negative samples even when forecasting
farther ahead into the future. In summary, Table 3.1 establishes PLAN’s superior
performance against strong classical ML baseline models on a real-world task for
which no comparable prior deep learning models existed.

3.5.4 Ablation Study

Having established PLAN’s superior performance, we now conduct two sets of
ablation studies to investigate the impact of different parts of PLAN’s architecture
on its overall performance. Our first ablation study evaluates the impact of different
input features on PLAN’s performance. We build the following variants of PLAN:
(1) PLAN\Env: All ten input environmental variables (both time-series and static
ones) along with Modules B and C are removed from PLAN’s architecture. (2)
PLAN\eL3m: All eL3m locust report data along with Module A is removed
from PLAN’s architecture. (3) PLAN\LAbs: Instead of using dual-channel image
representations of eL3m locust reports (where we store both the numbers of locust
presence and absences reported at each pixel), we experiment with single-channel
image representations by only storing locust presence numbers at each pixel in the
image; as a result, the size of our input images becomes 7× 7× 1.
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Our second ablation study investigates the impact of different components of
PLAN’s architecture on its predictive performance (i.e., all input features are used
for the prediction task, but the architecture is changed). We build the following
variants of PLAN: (1) PLAN\CNN: CNNs are removed from the architecture of
PLAN; instead, all image data is flattened and is passed through the FC layers
in Module A, the output of these FC layers is passed into the LSTM network in
Module A. Modules B and C are unchanged in PLAN\CNN. (2) PLAN\LSTM:
Both LSTMs are removed from the architecture of PLAN; instead, the outputs
of FC layers in Module A, the inputs of Module B, and the output of Module C
are concatenated and fed into the output layer. (3) PLAN\CNLS: All LSTMs and
CNNs are removed from the architecture, and instead, a FC layer with the same
number of neurons as the size of the LSTM hidden state is used to replace those
networks. Therefore, PLAN\CNLS is similar to a Multi-Layer Perceptron model.

Table 3.3 compares the predictive performance of our different ablations on the
1st-step forecasting task. The results show that PLAN\eL3m (which ignores eL3m
data along with Module A) leads to the greatest decrease in PLAN’s predictive
performance by reducing F1 scores by ∼22%. This illustrates the importance of
the crowdsourced eL3m data in the predictive performance of PLAN. Further,
PLAN\LAbs, which removes locust absence information from the input images
(of Figure 3.2) results in a 6.97% decrease in F1 score, which shows that locust
presence reports (by themselves) are not enough to generate accurate forecasts,
and incorporating locust absence reports in image-based feature representations
has a significant impact on the performance of PLAN. Additionally, PLAN\Env,
which removes environmental factors, results in a 1.47% decrease in F1 score, which
is consistent with domain insights on the role of environmental factors in locust
activity and movement. Results from our second ablation study show that removing
CNNs (i.e., PLAN\CNN) or LSTMs (i.e., PLAN\LSTM) from the architecture
leads to ∼1.2% reduction in F1 score. Additionally, removing both CNNs and
LSTMs results in further decrease (∼2.6%), in F1 score. This shows that different
components of PLAN play roles of differing importance in its overall predictive
performance.
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Model Accuracy F1 AUC
PLAN\Env 0.8057 0.7801 0.8822
PLAN\eL3m 0.6381 0.6162 0.7039
PLAN\LAbs 0.7398 0.7366 0.8512
PLAN\CNN 0.8050 0.7822 0.8816
PLAN\LSTM 0.8109 0.7820 0.8835
PLAN\CNLS 0.7960 0.7708 0.8686
PLAN 0.8174 0.7918 0.8904

Table 3.3: The results of ablation study

3.5.5 Cross-Region Test

Until now, we trained PLAN on a portion of the data collected from Kenya,
Ethiopia, and Somalia, and tested it on another portion of the same data. Now,
we evaluate the performance of PLAN when trained and tested on datasets from
two geographically distant regions. We hypothesize that in this cross-region test,
Module A, (i.e., the component designed for capturing spatio-temporal patterns of
locust movement) should still be able to learn useful location-agnostic patterns of
locust migration.

For this purpose, in addition to the data from Kenya, Ethiopia, and Somalia,
we use eL3m data collected from Iran during the same time-period (i.e., March 1,
2020 to September 30, 2020) which consists of 5,117 locust reports. To check the
aforementioned hypothesis, in each iteration of walk-forward validation, we use the
same training portion of the data from Kenya, Ethiopia, and Somalia to train the
PLAN model. Then, we replace the test data with the locust reports received from
Iran in that particular test period and evaluate the performance of the trained
model on this new test set.

Table 3.4 shows the predictive performance achieved by PLAN and XGBoost in
our cross-region test on the 1st-step prediction task. As expected, the predictive
performance of both ML models degrades in this cross-region test. However, PLAN
consistently outperforms XGBoost on each evaluation metric, e.g., PLAN achieves
∼23% higher F1 score than XGBoost in this cross-region test. More importantly,
comparing PLAN with PLAN\Env shows that removing environmental factors
from PLAN results in a significant improvement in its predictive performance when
being tested on the data of Iran. This improvement (that results from removing
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Model Accuracy F1 AUC
XGBoost 0.5276 0.3322 0.6464
PLAN 0.6576 0.4115 0.7480
PLAN\Env 0.7363 0.4819 0.8062

Table 3.4: The results of cross-region test (i.e., the models are trained on the data
of three East African countries and tested on the data of Iran)

environmental factors) makes sense because the climatic conditions in Iran differ
completely from conditions in Kenya, Ethiopia, and Somalia. Consequently, training
our models on environmental variables from East Africa could add noise to the
model’s forecasts when tested on Iran. Additionally, PLAN\Env achieves an AUC
of ∼0.8, which indicates its capability in learning useful locust movement patterns
that can help it generate relatively accurate forecasts about locust presence in
regions located far away from the training region.

3.5.6 Model-Agnostic Data Augmentation

As locust observations were voluntarily reported by human eL3m users, locust
reports are not available for many geographical regions on any given day. Thus,
there are many 0’s in the image representations of eL3m locust report data, as each
image summarizes the total number of locust (presence/absence) reports received
from a specific region on a particular day. To account for this data sparsity, we
implement a model-agnostic linear interpolation approach for data augmentation
and evaluate its impact on model predictive performance.

Our linear interpolation-based data augmentation approach relies on the follow-
ing intuition about locust movement: if locusts are reported to be present (absent)
in location l on two separate days (t1 and t2) that are close in time, it is highly
likely that locusts are present (absent) at location l on all the days between t1 and
t2.

More formally, in our data augmentation procedure, to forecast locust pres-
ence/absence in location l on date t, we take the following steps after creating
image representations of eL3m reports received by date (t − 1): (1) if no locust
report (neither locust presence nor locust absence) is available for a specific region,
we set the value of the corresponding pixel to NULL in both image channels (locust
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Accuracy F1 AUC
Model Before After Gain (%) Before After Gain (%) Before After Gain (%)
Logit 0.7417 0.7709 +3.93% 0.7026 0.7303 +3.94% 0.7810 0.8130 +4.09%
SVM 0.7772 0.7859 +1.11% 0.7303 0.7259 -0.60% 0.8433 0.8544 +1.31%
AdaBoost 0.7585 0.7978 +5.18% 0.7317 0.7608 +3.97% 0.8282 0.8651 +4.45%
XGBoost 0.7848 0.8099 +3.19% 0.7612 0.7749 +1.79% 0.8650 0.8819 +1.95%
PLAN 0.8174 0.8306 +1.61% 0.7918 0.8036 +1.49% 0.8904 0.9021 +1.31%
Avg +3.00% +2.11% +2.62%

Table 3.5: Impact of data augmentation on the predictive performance of different
ML models

presence and absence channels of the image). (2) For each region (i.e., pixel), we
impute the time-series data of locust presence (absence) at each pixel separately
using linear interpolation. (3) If no reports are available from specific regions, all
elements of the time-series data could be NULL. Therefore, the remaining NULL
values are replaced with 0 again. This procedure enables us to impute values for
pixels that contain [0, 0] (i.e., pixels that have no locust presence and absence
reports at all). Further, to forecast locust presence/absence in location l on date t,
we do not rely on the reports received after date (t− 1), and therefore, this data
augmentation approach is consistent with the time-series nature of the problem.

Table 3.5 shows the impact of data augmentation on the predictive performance
of ML models on the 1st-step forecasting task. Each evaluation metric’s value
before/after data augmentation is reported in the Before/After columns, respectively.
The percentage of improvement achieved by applying data augmentation is reported
in the Gain column. Table 3.5 shows that incorporating data augmentation improves
the predictive performance of all ML models; in particular, it improves the accuracy
and F1 score by about 3.0% and 2.1%, respectively (on average), which shows this
data augmentation technique’s effectiveness in this domain. Importantly, PLAN
achieves an AUC of ∼0.9 with this data augmentation technique. Thus, we propose
to use PLAN with this data augmentation technique in future operational systems.

3.6 Real-world Use Case
One possible way in which PLAN can be used to assist farmers, policymakers, and
human experts at UN-FAO is through the generation of high-resolution heatmaps
(containing accurate forecasts of locust presence/absence). These heatmaps can
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give all three stakeholders an improved understanding of the future susceptibility
of locust swarm infestation for different geographical regions, which in turn, can
hopefully help them make a more well-informed locust mitigation plan. For example,
these heatmaps can assist decision-makers in strategically allocating scarce resources
(e.g., helicopters, pesticides, etc.) among high-risk geographical areas in order to
ensure efficient resource usage and a corresponding reduction in locust populations.

Figure 3.4 illustrates a heatmap of 1st step forecasts (for June 10th, 2020)
generated by PLAN. This heatmap is generated by running PLAN’s prediction
model for each geographical location in Kenya on June 10th, 2020. This heatmap
shows North West Kenya and East Kenya as two potential hotspots of locust
presence on June 10th (characterized by a high predicted likelihood of locust
presence), whereas it shows Central Kenya as a potential source of locust absence
reports (characterized by low predicted likelihood of locust presence). In this figure,
the light blue circles and light green crosses show the eL3m locust presence and
absence reports (respectively) received on June 10th, 2020 across Kenya. These
circles align well with our forecasted hotspot in North West Kenya, whereas the
crosses align well with Central Kenya. Thus, this indicates that PLAN’s predictions
have high recall in this example.

In order to understand why PLAN forecasted East Kenya as another hotspot,
we plot dark blue circles and dark green crosses to represent eL3m locust presence
and absence reports (respectively) received from June 11th to 13th, 2020 across
Kenya. Interestingly, the dark blue circles align extremely well with the forecasted
hotspot in East Kenya, whereas most of the dark green crosses align well with
Central Kenya. We hypothesize that this is due to delays in data reporting by
human volunteers, i.e., locusts arrived in East Kenya on June 10th, but they were
reported by eL3m users on June 11th to 13th. Since we don’t have ground truth
information, it is impossible to completely validate this hypothesis. However, we
argue that the forecasted hotspot in East Kenya should not be viewed as false
positives output by PLAN, as eL3m locust presence reports are recorded from
the East Kenya hotspot within a period of 24 hours of our day of forecast. This
illustrates that PLAN’s predictions also possibly have high precision.
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Figure 3.4: PLAN’s forecasts about the likelihood of locust presence across Kenya
on June 10th, 2020 along with the ground truth reports received from Kenya on
this particular date

3.7 Challenges in Implementation
The ubiquity of smartphones offers the possibility that well-designed mobile apps
(such as eL3m) can enable the collection of large amounts of data in a short period of
time. For humanitarian challenges like locusts (but also including floods, droughts,
and other pests that damage crops), the potential benefits of such an application
are very high. However, the major trade-off is data quality. Here we sought to use
the data received from the crowd as-is in order to develop an ML model that could
effectively use noisy data. We found that PLAN has led to an increased predictive
performance over baseline models. While this is recognized, we understand that a
major implementation challenge is the acceptance of such approaches by local actors
such as governments in charge of the control operations. It would be expensive
in both resources and time to deploy control operations to areas where locusts do
not generally occur, but the model predicts their presence. As such, we think a
major challenge will be to familiarise the decision-makers with the opportunities
and pitfalls associated with ML-augmented desert locust predictions. We think one
important role that PLAN could play is helping human experts more readily spot
false records submitted by the crowd. This would reduce time spent in cleaning
up databases which is currently a major task for staff at DLIS and PlantVillage.
Thus, we hope that the use of PLAN would lead to a greater acceptance of ML to
augment the human expertise at PlantVillage, UN-FAO, and other stakeholders.
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3.8 Summary
This chapter proposes PLAN, which relies on a modular neural network architecture
to forecast the locust presence/absence from crowdsourced data as well as remote-
sensed environmental data. Experimental results show that PLAN achieves a
superior predictive performance against several classical ML baseline models on a
wide variety of forecasting tasks.
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Chapter 4 |
AI for Social Welfare of Housing-
Insecure Low-Income Americans:
Eviction Filing Prediction with
Fine-Grained Ground-Truth La-
bels

This chapter focuses on the eviction crisis faced by many low-income renters in the
United States and develops predictive ML models to forecast the number of tenants
at-risk of formal eviction when fine-grained ground-truth labels are available [80].
In the following sections, we describe the problem domain, related work, our
solution, experimental results, and the real-world use case that we envision for such
a predictive algorithm.

4.1 Introduction
Eviction is an urgent societal issue, which severely affects the lives of low-income
individuals in the U.S. from multiple perspectives. In particular, it puts evicted
families into material hardship [20] and could increase the risk of various health
issues (such as depression and parental stress) and reduce their prospects of future
decent housing [20, 22, 81, 82]. Furthermore, it could intensify various types of
social problems such as poverty and housing inequality [82, 83]. Therefore, tackling
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the eviction crisis plays a critical role in improving the lives of this vulnerable
population, and helps make a progress on the SDG #1 “No Poverty” and SDG #11
“Sustainable Cities and Communities”1.

To mitigate the eviction crisis, several eviction prevention/diversion programs
(such as the Emergency Rental Assistance Program2) have been designed and
implemented in the field. In particular, the federal government has allocated various
financial resources (such as cash assistance, vouchers, etc.) to help households
who have difficulty paying their rent. In spite of their availability nationwide,
there is a large variability in the use of those resources; i.e., while the allocated
resources have been used completely in some regions, parts of the allocated resources
have been returned to the federal government from some other regions [84]. This
observation suggests a need for a more efficient resource allocation strategy, which
in turn, requires more accurate forecasts of the future number of tenants at-risk
of eviction in target regions. Thus, any attempt to improve the accuracy of the
forecasted number of tenants at-risk of eviction could have substantial impacts on
the effectiveness of existing policies to disperse resources.

To this end, this chapter leverages recent advances in the ML domain [50,62] to
forecast the number of tenants at-risk of formal eviction in various census tracts3 at
a temporal resolution of one month. Our model, named as MARTIAN (Multi-view
model forcAsting the numbeR of Tenants at-rIsk of formAl evictioN) leverages data
sources of various spatial and temporal resolutions (namely, eviction filing records,
American Community Survey (ACS) data4, and labor statistics) to forecast the
total number of tenants at-risk of eviction in each census tract n months into the
future. Then, we evaluate the predictive performance of MARTIAN under various
conditions using a real-world dataset consisting of information about eviction cases
filed across Dallas County, TX since 2019. The results of our experiments show
that MARTIAN outperforms a wide variety of baseline models in all considered
situations; in particular, it achieves 5% lower Root Mean Square Error (RMSE)
than the best-performing baseline model (on average). Further, it achieves a
Spearman of 0.685, which shows that the ranking of census tracts is preserved to a

1https://sdgs.un.org/goals
2http://tiny.cc/3vhouz
3A census tract is a sub-region of a county and is defined by the U.S. Census Bureau for taking

surveys and representing its results.
4https://www.census.gov/programs-surveys/acs/data.html
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high extent in MARTIAN’s forecasts. Additionally, the results of our cross-region
test suggest that MARTIAN’s superior predictive performance is generalizable to
unseen census tracts. This research has been conducted in collaboration with Child
Poverty Action Lab (CPAL)5, which is an NGO aiming at tackling poverty-related
issues across Dallas County, TX.

4.2 Related Work
As a pathway into various social problems (such as homelessness) [85,86], the eviction
crisis has drawn the attention of scholars from several disciplines. In particular,
there has been extensive research in social science literature on understanding the
risk factors6 of eviction and its consequences. As a result, past literature found
three key categories of risk factors: (1) individual-level factors such as the number
of children, job loss, and drug use disorder [87–90]. (2) neighborhood-level factors
such as crime rate, and eviction rate in a neighborhood [88]. (3) network-level
factors such as the number of disadvantaged people in a tenant’s network [88].

Additionally, there has been a growing body of knowledge on the consequences
of eviction and its impacts on individuals’ lives. For example, prior work found
that eviction could result in various health issues such as parental stress and
depression [20,91]. Furthermore, once getting evicted, tenants’ credit rating gets
debased, which in turn, puts more distance between them and the public housing
program, and could exacerbate the housing inequality in society [92]. Although
these empirical findings are informative and conducive to understanding the whole
context of eviction, these studies do not focus on the problem of forecasting the
number of tenants at risk of eviction. In contrast, this chapter leverages the findings
of prior work in social sciences as well as ML techniques to forecast the number
of tenants at risk of eviction, which could assist the government and NGOs in
proactively tackling the eviction crisis in a more efficient and effective manner.

In addition to the social science studies, there has been some research from the
AI community on mitigating the housing problems. For example, Ye et al. [93] and
Tan [94] employed ML techniques to predict the risk of landlord harassment and
the eviction rate, respectively. However, these studies have some limitations: (1)

5https://childpovertyactionlab.org
6Risk factors denote factors that are linked to the higher chance of a negative outcome.
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the developed ML models forecast at the temporal resolution of one year, which
limits their usability in our problem domain, where a forecasting tool with a higher
temporal resolution (such as one month) is needed, or (2) they mainly relied on
classical ML models and did not consider differences in the nature of various data
sources in their design, e.g., time-series data and static data are treated the same.
To address these limitations, we build a deep learning-based model that leverages
various data sources with different spatial and temporal resolutions to forecast the
number of tenants at-risk of getting formally evicted at the monthly resolution.
Further, we conduct extensive experiments under various conditions to assess the
superiority of MARTIAN to a wide variety of baseline models.

4.3 A Problem Statement
This chapter aims at building an ML model to precisely forecast the number of
tenants at-risk of formal eviction (i.e., the number of eviction filings) at each census
tract n months into the future.

Assume that Ec
t refers to the total eviction cases filed at census tract c in month

t and Lc
t is a vector of length q representing the labor statistics at census tract c in

month t (q refers to the total number of features in the labor statistics data). Also,
suppose that ACSc

t is a vector of length r representing the most recent values of
ACS factors available at month t for census tract c (r refers to the total number of
features selected from the ACS data). Note that as the U.S. Census Bureau releases
the ACS data with a delay of about two years, at each point of time, ACSc

t contains
statistics of two years ago. Then, this chapter aims at building a forecasting model
M such that:

M : Ec
t+n ← f({Ec

t−k+1, ..., Ec
t−1, Ec

t }, {Lc
t−k+1, ..., Lc

t−1, Lc
t}, ACSc

t )

Please note that the value of k is chosen through hyper-parameter tuning, and
a separate experiment has been conducted for different values of n.
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Data Source An Explanation of Selected Input Feature(s)
Eviction Historical data on the total number of eviction cases filed in each census tract
Records
Labor Unemployment rate
Statistics Historical data on the number of employees in each of the following non-farm industries7:

Mining, Logging and Construction – Education&Health Services – Manufacturing
Information – Leisure&Hospitality – Professional&Business Services – Government
Trade, Transportation, and Utilities – Financial Activities Other Services

ACS # of renter-inhabited units
# of renter-inhabited housing units, for which % of income contributing to housing expenses ≥ 30%
# of renter-inhabited housing units, for which the householder’s income ≤ 0 in the last 12 months
# of families receiving SSI and/or cash public assistance income who are below the poverty level
# of renter-inhabited housing units, for which the householder’s literacy level < high school
# of renter-inhabited housing units, for which the householder’s literacy level = high school graduate
# of renter-inhabited housing units, for which the householder’s literacy level = a college or associate’s degree
# of renter-inhabited housing units, for which the householder’s literacy level = bachelor’s degree or higher

Table 4.1: The definition of input features.

4.4 Datasets
This work uses three data sources: (1) Eviction filing records, (2) Labor statistics,
and (3) American Community Survey (ACS). We extract our input features using
these data sources, which are then used by an ML model to compute the value of
the target variable. Table 4.1 provides detailed information on the input features
extracted from each data source. In the following paragraphs, we introduce each
data source and explain why we incorporate them into the model.

(1) Eviction Filing Records. This dataset consists of detailed information about
eviction cases filed in judicial courts across Dallas County, TX. We get access to this
dataset via CPAL, which receives daily updates (except for holidays) on new eviction
cases filed in Dallas County. Each eviction record contains detailed information, e.g.,
the plaintiff’s name, the defendant’s name and address (geographical coordinates),
the filing date, etc. However, the court’s final decision regarding each case is not
available in our dataset.

In this work, we use eviction filing data (since 2019) to compute the target
variable and extract input features; in particular, we use the historical data on the
number of eviction filings as input because overall eviction rate in a neighborhood
is found to be associated with a greater likelihood of individuals’ eviction [88].

(2) Labor Statistics. The U.S. Bureau of Labor Statistics releases monthly data
on labor statistics7, which contains various pieces of information related to the

7https://www.bls.gov/eag/eag.tx.htm#eag_tx.f.2
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economy of a region, e.g., the unemployment rate and the number of employees
in various non-farm industries (e.g., manufacturing and government). This data
enables policymakers to monitor the economic/employment status over time and
to make appropriate policies accordingly. Given a strong association between work
status and the risk of eviction [88, 90], we believe that this data would provide
useful signals to MARTIAN regarding monthly work status. This data is mainly
released for each metropolitan area (rather than each census tract) and we use the
data of the “Dallas-Fort Worth-Arlington” area.

(3) American Community Survey. The U.S. Census Bureau releases the
ACS data, which is basically an annual report on various demographic/housing
characteristics of different regions across the U.S. In particular, for renter-inhabited
housing units (and their householders), it summarizes the value of the following
metrics, which are found to have some associations with the risk (or number) of
eviction and housing instability: work status [88, 90,95], educational attainment
[90,96], income level, and monthly housing cost per income [21]. Accordingly, we
utilize the 5-Year Experimental Estimates ACS data, which is available for each
census tract in our study. Although the ACS data is not available at the monthly
resolution, we think that it could still provide an insightful big picture of the
situation in various census tracts.

Pre-processing. To pre-process our data, we take three main steps: (1) similar to
prior work [97], we remove eviction filing records with commercial defendants and
duplicate records from the dataset of eviction filing records, (2) we compute the
total number of eviction filings in each census tract (out of 529 census tracts within
Dallas County, TX) per month, (3) we scale the data of each input feature and the
target variable into the range of [0, 1] using the Min-Max normalization. Please note
that the predictive performance of all models is calculated after transforming the
data to the original range (the parameters of min-max normalization are computed
using the training data).

4.5 The Forecasting Model: MARTIAN
In this section, we explain our forecasting model. Leveraging recent advances in
the ML domain [50,62], we build a multi-view neural network to incorporate data
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sources of different spatial/temporal resolutions into the prediction process. Figure
4.1 represents the architecture of MARTIAN. As illustrated, it has three views, each
of which extracts features from one of the three aforementioned data sources: (1)
The first view employs a Long Short-Term Memory (LSTM) network [34] followed
by two fully-connected layers to learn patterns from the time-series data of eviction
filings in the census tract of interest, (2) the second view extracts features from
the time-series data of labor statistics using an LSTM network followed by two
fully-connected layers, and (3) the third view employs a Multi-Layer Perceptron
(MLP) to learn features from the factors selected from the ACS data. Then, the
outputs of these three views are concatenated and given to the output layer to
forecast the value of the target variable.

Figure 4.1: The architecture of MARTIAN.

4.6 Experimental Evaluation
In this section, first, we explain our experimental set-up and baseline models. Then,
we compare the predictive performance of MARTIAN with that of baseline models
and conduct an ablation study. Finally, we conduct a cross-region test to evaluate
its generalizability.

4.6.1 Set-Up

To have a trustworthy and robust evaluation of the predictive accuracy of different
models, we employ the walk-forward testing approach with a window length (w)
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corresponding to 3 months [74]. Then, for each performance metric, we compute
and report the average performance over all test sets. In addition, to train neural
network models, the batch size, loss function, and maximum number of epochs are
set to 32, MSE, and 200, respectively. We also utilize an Adam optimizer [98] with
a learning rate of 2× 10−4 and the early stopping approach [99] with a patience
value of 10 epochs. Finally, as a result of hyper-parameter tuning, the value of k

(i.e., the length of time-series inputs) is set to 6.

4.6.2 Comparison with Baseline Models

We compare the predictive performance of MARTIAN with that of an extensive
set of baselines. The first set of baselines consists of the following classical ML
models: (1) Ridge regression [100] (2) Support-Vector Machine (SVM) [43], (3)
XGBoost [42], (4) Random Forest [41], and (5) LightGBM [101]. Additionally, we
considered various deep learning-based models in our study as well. In particular,
we conduct a performance comparison between MARTIAN and its building blocks,
i.e., LSTM and MLP, to show the effectiveness of the multi-view architecture in
this problem domain. We also compare its predictive performance with some strong
deep learning models, namely TabNet [102] and Gated Recurrent Unit (GRU) [103],
which are shown to work well on the tabular data and time-series data, respectively.
Please note that the input of time-series models at time-step t is a concatenation of
Ec

t ,Lc
t , and ACSc

t . However, for the remaining models, the input is a concatenation
of static features and all k steps of time-series inputs.

Table 4.2 compares MARTIAN with various baseline models for n ∈ {1, 2, 3}.
We use two metrics to evaluate the predictive performance of forecasting models:
(1) RMSE, which intuitively measures the average difference between each model’s
predictions and the actual number of eviction filings, and (2) Spearman correlation8,
which intuitively shows the extent to which the forecasted values preserve the actual
orders of census tracts in terms of the number of eviction filing values. In this table,
one row is considered for each ML model of interest and each column corresponds
to the value of a performance metric for a specific value of n. Also, the best
performance is shown in bold and the last row (Gain) shows the percentage of
improvement that MARTIAN achieves over the best-performing baseline model.

8The value of Spearman ranges between -1 and 1. A higher Spearman shows a better
performance of a forecasting model.
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Model n = 1 n = 2 n = 3 Avg. (n ∈ {1, 2, 3})
RMSE Spearman RMSE Spearman RMSE Spearman RMSE Spearman

Ridge 6.711 0.610 7.266 0.588 7.251 0.253 7.076 0.483
SVM 5.985 0.588 6.566 0.547 6.533 0.538 6.361 0.557
XGBoost 4.881 0.679 4.819 0.676 4.832 0.660 4.844 0.671
Random Forest 4.717 0.688 4.735 0.680 4.782 0.670 4.744 0.679
LightGBM 4.869 0.681 4.893 0.667 4.822 0.666 4.861 0.671
MLP 4.652 0.645 4.759 0.540 4.770 0.645 4.727 0.610
LSTM 4.585 0.639 4.717 0.639 4.753 0.631 4.685 0.636
GRU 4.590 0.649 4.686 0.648 4.755 0.631 4.677 0.642
TabNet 4.955 0.541 5.106 0.460 4.998 0.520 5.019 0.507
MARTIAN 4.383 0.697 4.444 0.686 4.503 0.673 4.443 0.685
Gain (%) 4.40% 1.30% 5.16% 0.88% 5.25% 0.44% 5.00% 0.88%

Table 4.2: Performance comparison of forecasting models.

According to the results, MARTIAN outperforms all baselines for all different values
of n; in particular, on average, MARTIAN outperforms the best-performing baseline
model by achieving 5.00% smaller RMSE and 0.88% higher Spearman, which shows
its superiority against several strong ML models for this problem domain.

Additionally, MARTIAN achieves a Spearman value of 0.685 (on average), which
shows that the ranking of census tracts in terms of the number of tenants at risk of
formal eviction is preserved to high extent in MARTIAN’s output.

Furthermore, MARTIAN outperforms both MLP and LSTM models, which
form its building blocks; i.e., on average, it achieves 6.00% lower RMSE and 12.29%
higher Spearman than MLP and improves the predictive performance of LSTM by
5.16% and 7.70% in terms of RMSE and Spearman, respectively. This could show
the value of using multi-view architecture for incorporating data sources of various
resolutions, rather than treating all inputs the same.

Moreover, comparing the performance of classical models, we see that decision-
tree based models outperform the other ones (i.e., SVM and Ridge) significantly;
i.e., on average, decision-tree based models achieve 28.31% and 29.42% better
RMSE and Spearman, respectively. This could show that in case of any difficulty in
using deep learning, decision-tree based ensemble models could be more appropriate
ML choices for this task. Also, in spite of its high performance in several other
domains, TabNet achieves the poorest performance among all our deep learning-
based baselines and ensemble models. Therefore, this attention-based model does
not seem to be an appropriate choice for this case.
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Model n = 1 n = 2 n = 3 Avg. (n ∈ {1, 2, 3})
RMSE Spearman RMSE Spearman RMSE Spearman RMSE Spearman

MARTIAN 4.383 0.697 4.444 0.686 4.503 0.673 4.443 0.685
MARTIAN-w/o-View1 5.887 -0.346 5.891 -0.385 5.862 -0.489 5.880 -0.406
MARTIAN-w/o-View2 4.731 0.623 4.748 0.650 4.878 0.574 4.785 0.615
MARTIAN-w/o-View3 4.615 0.689 4.673 0.676 4.686 0.572 4.658 0.645

Table 4.3: The results of MARTIAN’s ablation study.

4.6.3 Ablation Study

We also conduct an ablation study to assess the impact of each view on the
MARTIAN’s predictive performance. To this end, we remove one view each time,
train the new model, and then, evaluate its performance. Table 4.3 represents the
results of our ablation study for n ∈ {1, 2, 3}. According to the results, removing
view1 (i.e., features extracted from the time-series data of eviction filings) leads to
a significant decrease in the predictive performance of MARTIAN; i.e., it results
in 32.34% increase in RMSE and 159.27% decrease in Spearman (on average). In
particular, we observe that MARTIAN-w/o-View1 cannot preserve the rank of
census tracts with respect to the number of eviction filings as it has a negative
spearman value. This makes sense because the time-series data of eviction filings is
the only input data available at our forecasting spatial and temporal resolutions,
and the other two data sources (i.e., labor statistics and ACS) are unavailable either
at the census tract level or at the temporal resolution of one month. Therefore,
two other data sources can only provide a big picture and alone are not enough for
accurately forecasting the eviction crisis at high spatial and temporal resolutions.

Additionally, removing view2 (i.e., features extracted from the labor statistics
data) results in a 7.69% increase in RMSE and a 10.21% drop in Spearman (on
average). Thus, as expected, incorporating the monthly status of employment
helps enhance the predictive performance of MARTIAN, even though it is not
available for each census tract and it only reports the work status for “Dallas-Fort
Worth-Arlington”. Furthermore, excluding view3 (i.e., features extracted from the
ACS data) leads to a 4.83% increase in RMSE and a 5.83% decrease in Spearman
(on average). Therefore, although the ACS data reports the annual conditions
of each census tract, its information on renter-inhabited housing units (and their
householders) is still helpful for predicting the number of eviction filings at the
census tract level for each month. In conclusion, as a result of this ablation study,
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Model n = 1 n = 2 n = 3 Avg. (n ∈ {1, 2, 3})
RMSE Spearman RMSE Spearman RMSE Spearman RMSE Spearman

Ridge 6.620 0.596 6.528 0.582 6.725 0.561 6.624 0.579
SVM 6.298 0.618 6.374 0.588 6.467 0.564 6.379 0.590
XGBoost 5.268 0.667 5.238 0.655 5.276 0.632 5.260 0.651
Random Forest 5.126 0.675 5.062 0.662 5.068 0.653 5.085 0.663
LightGBM 5.145 0.653 5.251 0.634 5.180 0.655 5.192 0.647
MLP 4.941 0.639 4.944 0.640 5.013 0.629 4.966 0.636
LSTM 4.998 0.619 4.978 0.612 5.032 0.601 5.002 0.610
GRU 4.994 0.625 4.948 0.620 5.034 0.605 4.992 0.616
TabNet 5.371 0.450 5.541 0.390 5.466 0.381 5.459 0.407
MARTIAN 4.827 0.698 4.755 0.688 4.823 0.680 4.801 0.688
Gain (%) 2.30% 3.40% 3.82% 3.92% 3.79% 3.81% 3.32% 3.77%

Table 4.4: Performance comparison of forecasting models in the cross-region test.

we find that both labor statistics and ACS data are useful auxiliary input signals
for our forecasting task.

4.6.4 Cross-Region Test

In all our previous experiments, we trained forecasting models on the training
portion of the Dallas data, and then, evaluated their performance on the testing
portion of the same data. We now conduct a cross-region test, in which the
training and testing datasets are created from the data of two disjoint sets of census
tracts. This helps us evaluate if MARTIAN’s superior predictive performance is
generalizable to unseen regions (whose data has not been seen by the model in
the training phase). To this end, we take the following steps: (1) we create two
disjoint sets of census tracts (with almost equal size) through random sampling
such that the statistics (minimum, maximum, median, and average) of the total
number of eviction filings for these two sets look similar, (2) we train the forecasting
models on the training portion of the first set, and (3) we assess the performance
of forecasting models on the testing portion of the second set. Please note that we
still use the walk-forward testing approach and the time frame of training and test
sets is the same as before.

Table 4.4 shows the results of our cross-region test. According to the results,
MARTIAN outperforms all baseline models for different values of n; in particular,
on average, it achieves 3.32% lower RMSE and 3.77% higher Spearman than the
best-performing baseline model. This shows that MARTIAN’s superior predictive
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performance is generalizable to various unseen regions.

4.7 Real-World Use Case
Our tool could serve as an AI assistant to (1) shed light on the number of tenants
at risk of getting formally evicted in the future; e.g., the output of MARTIAN
can be used to generate a heatmap of the forecasted number of tenants at-risk
of eviction for each month in the future (similar to Figure 4.2), and (2) make a
more well-informed resource allocation plan to mitigate evictions in a more efficient
and effective manner. In particular, we contacted officials at Texas Housers (i.e.,
Texas Low Income Housing Information Service)9, which is an organization aiming
at mitigating housing problems in Texas. Ben Martin, who is an official at Texas
Housers and is working on the eviction and foreclosure data, stated that:

“Knowing where evictions are being filed helps advocates, administrators,
elected officials, and legal aid to identify where they need to direct their
efforts, funds, and other resources in order to keep renters housed"

In particular, he elaborated on the potential impacts of such forecasting tools
in the real world as follows:

“The number of eviction cases filed or of a certain outcome, might, for
example, be used as a baseline for setting program funding levels. If a
somewhat accurate tool could be developed, it would be incredibly useful for
advocacy with the legislators, elected officials, and agencies responsible for
eviction court and eviction diversion"

we also conduct a synthetic simulation to get a better estimate of the value of
our predictive approaches for resource allocation. In fact, we assume that each
at-risk tenant only gets $100, and the funding is allocated exactly based on the
predicted number of tenants at-risk of eviction, and then, by comparing the results
with the ground-truth numbers of eviction filing, we estimate the amount of unused
funding and shortage resulting from each approach. In particular, we compare

9https://texashousers.org
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Figure 4.2: MARTIAN’s forecasts about the number of tenants at-risk of formal
eviction at various census tracts within Dallas County, TX in December 2021.

MARTIAN and LSTM for the task of first-step forecasting, and according to the
empirical results, it seems that using MARTIAN results in about 4.4% and 5.6%
decrease in unused funding in some regions, and shortage in funding in some other
regions (compared to LSTM), respectively.

Therefore, all these pieces of evidence show the value of an accurate eviction
forecasting tool and the extent to which it could help policymakers enhance eviction
diversion/prevention programs in the field.

4.8 Summary
This chapter developed a neural network model, named as MARTIAN, that leverages
data sources of various resolutions and forecasts the number of tenants at-risk
of getting formally evicted at the census tract level n months into the future
in a fully-supervised manner. The results of our empirical evaluation show that
MARTIAN outperforms various baseline models in terms of RMSE and Spearman
in all considered situations. Additionally, the results of our cross-region test show
that MARTIAN’s superior predictive performance is generalizable to unseen census
tracts. MARTIAN could help policymakers direct funding and other resources in
a more efficient manner and enhance the existing eviction prevention/diversion
programs by providing data-driven insights on the future condition of each census
tract in terms of eviction filings.
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Chapter 5 |
AI for Social Welfare of Housing-
Insecure Low-Income Americans:
Eviction Filing Prediction with
Coarse-Grained Ground-Truth
Labels

Similar to the previous chapter, this chapter develops predictive ML models to
forecast the number of tenants at-risk of eviction at a high resolution. However, in
this chapter, we assume that ground-truth eviction filing data is only available at a
low spatial resolution, rather than high resolution [5]. In the following sections, we
describe the problem domain, related work, our solution, experimental results, and
some real-world implications.

5.1 Introduction
To help mitigate the eviction crisis, Chapter 4 develops predictive ML models
to forecast the number of tenants at-risk of formal eviction. Relying on the
fully-supervised learning approach, it mainly assumes that ground-truth labels
are available at the spatial resolution of interest. However, this assumption is
somewhat strong because, for many regions, individual-level eviction data is not
readily available and the spatial resolution of available data might be much lower
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than the resolution of interest, which in turn, adversely affects the performance
of some commonly-used fully-supervised learning methods (such as the MSE loss
function alone) in this situation.

To address this challenge, recent research [23] proposed a coarsely-supervised
training approach for a regression task; i.e., it proposes a loss function to ensure
that the predictive model returns similar values for similar data points, while the
average of predictions at a low resolution is close to ground-truth. While being
effective for the task of vegetation monitoring, according to our empirical evaluation,
this solution does not seem to perform well in our problem domain. Consequently,
inspired by this method [23], we propose a loss function that leverages low-resolution
ground-truth eviction data as well as sociological insights to facilitate the process of
training neural networks in the face of a lack of high-resolution ground-truth labels.
To be more specific, we use a proxy factor that tends to be positively associated
with eviction and is available at a high resolution. Then, our loss function tries
to ensure that model’s predictions can preserve the ranking of data points with
respect to that proxy factor, while the model’s of predictions is close to the ground
truth at a low spatial resolution (similar to [23]).

We conduct various experiments to analyze the effectiveness of our solution
under various conditions. According to the results, leveraging a proxy factor
in the loss function results in considerable improvement in predictive accuracy.
Furthermore, we analyzed the link between our loss function’s effectiveness and the
level of association between the proxy factor and the target variable. As a result,
we find that our proxy factor’s association with eviction indeed plays a key role
in the effectiveness of our solution. Then, to get a better understanding of the
real-world implications of this approach, we also conduct a synthetic simulation to
compare the value of incorporating our predictive approach for allocating funding,
and the results suggest that our approach could potentially have significant positive
impacts on enhancing resource allocation and reducing the amount of unused
funding (compared to some considered baselines).

5.2 Related Work
There has been extensive research on mitigating the eviction crisis or addressing
the challenge of a lack of high-resolution labels. This section surveys several recent

57



studies under these two categories.

Research on the Eviction Crisis. As mentioned in the previous chapter, many
of the prior studies on the eviction crisis come from the social science discipline,
where scholars studied the association of various factors (such as job loss, crime
rate, etc.) with eviction [88] and the consequences of eviction [92]. While highly
insightful, those works mostly rely on statistical analysis and prevalence studies and
did not focus on forecasting future conditions in terms of eviction. Additionally,
there has been a couple of studies that relied on ML approaches to help mitigate
the eviction crisis [80, 104], however, they assume that enough ground-truth labels
are available at the spatial resolution of interest, which limits their usability in this
problem domain.

Research on ML under Lack of High-Resolution Labels. In the ML literature,
there are numerous studies on facilitating the training of ML models with limited/no
ground-truth labels. Some research proposed to train neural networks on a proxy
factor associated with the target variable, and then, fine-tune their weights using
a limited number of ground-truth labels [105, 106]. While effective, they assume
that a small number of ground-truth labels is available at the instance level, which
does not align with the assumptions mentioned in this chapter. Additionally,
there has been research on multiple-instance learning [107] and weakly-supervised
learning [6, 108], however, they mostly focused on the classification task. Recently,
Fan et al. [23] proposed a coarsely-supervised training approach, which is very
close to our solution; i.e., they suggested a new loss function, which penalizes the
prediction of too different values for similar inputs (through a smoothness loss
term), while trying the preserve the model’s predictions close to the ground-truth
at a low resolution. However, our empirical results show that it does not seem to
work well in our problem domain. Inspired by this approach, we propose a new
loss function that relies on a proxy factor, rather than input similarity, to capture
differences among training data points.

5.3 Datasets
Similar to the previous chapter, we relied on three datasets.
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(1) Eviction Filing Data. We use the eviction filing data of Dallas County, TX
(from 2021 to 2022), released by CPAL at https://northtexasevictions.org/.
It includes the monthly number of eviction filing for each census tract. Please note
that, during training, we assume that, for each month, only the total number of
eviction filings for the entire county is available, and we only use the high-resolution
ground-truth number of eviction filings to evaluate the accuracy of different neural
network models in the testing phase.

(2) American Community Survey (ACS). As mentioned before, this data1

consists of various pieces of information about the characteristics of renter-occupied
housing units and the work status. Its temporal resolution is one year, and in this
study, we rely on the data of 2020.

(3) Labor Statistics. This data2 includes monthly statistics on the unemployment
rate and employment rate in various fields. Due to the strong association between
work status and eviction [88], this source of data tends to be a useful auxiliary
signal for forecasting the number of eviction filings [80].

5.4 The Proposed Methodology
In this section, we propose a new loss function that can be used for training various
neural network models. This loss function incorporates low-resolution eviction data
as well as a high-resolution proxy factor to facilitate the process of training in the
face of a lack of high-resolution ground-truth labels. In this section, we, first, define
some formal notations, and then, describe our loss function.

Formal Notation. For the task of 1st-step forecasting, we show each training
data point as follows:

({xEviction
Dallas,{t−k,...,t−1}, xLabor

Dallas,{t−k,...,t−1}, ..., xACS
ci,t−1}, yci,t)

In this formula, xEviction
Dallas,{t−k,...,t−1} refers to a vector of length k that represents the

average number of eviction filings in Dallas County over the preceding k months,
and xLabor

Dallas,{t−k,...,t−1} refers to a vector of length k that represents the labor statistics
1https://www.census.gov/programs-surveys/acs/data.html
2https://www.bls.gov/eag/eag.tx.htm#eag_tx.f.2
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over the past k months, xACS
ci,t−1 denotes the corresponding ACS factors, and yci,t

refers to the total number of eviction filing in census tract i at month t. Please
note that, as mentioned before, we assume that, during training, yci,t is unknown,
and we only know the total (or average) number of eviction filings in Dallas County
at month t.

The Proposed Loss Function. Inspired by [23], our proposed loss function is
a weighted sum of two terms as follows: Lcoarse + α × Lpairewise−ranking. Similar
to [23], the first term (Lcoarse) ensures that, at each point in time, a model’s
prediction is close to the ground-truth value at a low spatial resolution (i.e., at
the county level) and is defined as the mean squared error between the average of
model’s prediction for census tracts within Dallas County and the corresponding
ground-truth. However, this term is not enough for capturing differences among
various census tracts of a county; i.e., a model can output the same prediction for
all census tracts, while ensuring that their average is close to that county’s average
number of eviction filings, and this is not a desirable result.

To circumvent the aforementioned challenge, we introduced the second term
(Lpairewise−ranking), which aims to ensure that a model’s prediction preserves the
ranking of census tracts in terms of eviction. To this end, we take the following
major steps. First, similar to the previous chapter, we review social science literature
to find what factors tend to be highly associated with eviction, and then, try to look
them up in ACS data. If the exact factor is not found, we choose a semantically
close factor instead. Then, one factor is selected as the proxy factor, and in this
chapter, we choose the number of renter-occupied housing units, for which the
housing cost is more than 30% of householder’s income because prior work showed
that more than 70% of low-income renters devote more than half of their income on
housing expenses and eviction tends to be prevalent among low-income population,
and so, it looks close to sociological insights [6,20,21,109]. Next, we split the range
of its value into n bins3. Then, Lpairewise−ranking intuitively aims to ensure that, for
each census tract, the average of predicted values over one year is positively ranked
with respect to the value of the proxy factor. In fact, it is defined as the aggregation
of pair-wise ranking loss [110, 111] between the data points of two consecutive bins.

3n is a hyper-parameter, which is set through hyper-parameter tuning.
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5.5 Experimental Evaluation
This section provides the results of various experiments that we conduct to analyze
the effectiveness of our loss function under different conditions. First, we train
multiple neural network models with various loss functions and compare our loss
function with a number of baselines. Then, we analyze the impact of the choice of
proxy variables and its association with eviction on the effectiveness of our solution.
We also conduct a simulation to provide insights on the impact of predictive
modeling and the achieved improvements on enhancing funding allocation.

5.5.1 Set-Up

Following prior research [80], we use the walk-forward testing approach [74] (the
window size is set to 1; i.e., one month). Additionally, we use the Adam optimizer
[98] with a learning rate of 10−4, and the early stopping approach [99]. Finally, n

(number of bins for splitting the proxy variable), k (length of time-series historical
data), and the maximum number of epochs are set to 10, 6, and 1000, respectively.
All experiments are run 3 times and the average is reported in the following
subsections.

5.5.2 Comparison with Baseline Models

In this section, we compare our loss function with the following ones: (1) Coarse
Loss, which only uses the low-resolution labels during optimization, (2) Pair-
wise ranking loss, which is the second term of our proposed loss function, and
(3) Coarsely-Supervised approach [23], which assign large loss values if model’s
predictions for similar inputs differ a lot. We adopted the original method to our
time-series situation as follows: At each point in time, the similarity of two census
tracts is defined as the euclidean distance between their input features, and the
similarity of two data points at different time frames is considered to be 0.

These loss functions can be used for training different types of neural network
models, and in this work, we trained the following models: (1) Multi-Layer Per-
ceptron (MLP), (2) Long Short-Term Memory (LSTM) [34], (3) Gated Recurrent
Units (GRU) [103], and (4) MARTIAN [80].
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Step Loss Function MLP LSTM GRU MARTIAN
RMSE spearman RMSE spearman RMSE spearman RMSE spearman

1

Coarse Loss 8.480 0.151 8.466 0.121 8.477 0.091 8.459 0.196
Pairwise Ranking 9.150 0.520 9.300 0.523 9.191 0.542 8.986 0.489

Coarsely Supervised 8.471 0.050 8.464 0.163 8.477 -0.023 8.458 0.263
Our proposal 8.221 0.452 8.145 0.533 8.138 0.511 8.100 0.527

2

Coarse Loss 8.475 -0.124 8.470 0.158 8.464 0.000 8.452 0.249
Pairwise Ranking 9.098 0.505 9.305 0.529 9.286 0.530 8.987 0.490

Coarsely Supervised 8.480 -0.235 8.459 0.327 8.443 0.415 8.449 0.245
Our proposal 8.234 0.542 8.163 0.531 8.231 0.531 8.167 0.514

3

Coarse Loss 8.465 0.113 8.471 -0.051 8.459 0.041 8.448 0.321
Pairwise Ranking 9.086 0.512 9.319 0.516 9.237 0.543 8.987 0.491

Coarsely Supervised 8.453 0.140 8.459 0.279 8.444 0.341 8.445 0.427
Our proposal 8.290 0.380 8.163 0.528 8.169 0.534 8.133 0.517

Table 5.1: The accuracy of various neural networks with different choices of the
loss function on the nth-step forecasting task.

Table 5.1 shows the performance of various neural networks with different
loss functions on the nth-step forecasting task. According to the results, our
proposed solution outperforms the coarsely supervised approach [23] in all considered
situations, and on average, it achieves 3.2% and 155.2% better RMSE and spearman
than the coarsely-supervised approach, respectively. Furthermore, comparing
coarsely supervised training [23] and coarse loss, we see that, in many cases, the
smoothness term in [23] helps improve the predictive performance, however, it is
less effective than the pairwise ranking terms proposed in this study. Additionally,
the smoothness term seems to be effective for capturing the ranking (to some
extent), however, it does not seem to help much in improving RMSE. In contrast,
our proposed ranking loss term helps improve the predictive performance of the
underlying model in terms of both RMSE and spearman.

Additionally, the results suggest that using either coarse loss or pairwise ranking
is not enough for accurate prediction. In fact, while pairwise ranking loss is helpful
for preserving the ranking of predictions in terms of the number of eviction filings,
as expected, the predicted values are not necessarily close to the actual values, and
removing the coarse loss results in 12% increase in RMSE, on average. Also, using
coarse loss is not enough for preserving the ranking of data points in terms of the
number of eviction filings, and removing the pairwise ranking loss terms results
in 79.3% decrease and 3.4% increase in spearman and RMSE, respectively (on
average), and the spearman value becomes 0.1, on average. Therefore, our solution
uses both terms to be able to improve both performance metrics.
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5.5.3 Impact of the Choice of Proxy Variable

While the previous experiments confirm the effectiveness of our solution, compared
to some baselines, we hypothesize that the effectiveness of our solution is closely
associated with the proxy factor’s correlation with the number of evictions in our
dataset. To check this hypothesis, first, we select a couple of ACS factors that have
different levels of association with the number of eviction filings. Then, we train a
separate MARTIAN using each of these ACS factors and evaluate its performance
on the task of first-step prediction.

Figure 5.1 shows changes in the values of RMSE and spearman with different
choices of proxy factors. In this figure, the y-axes show the RMSE and spearman
values and the x-axis represents a correlation metric between one proxy factor
and the average number of eviction filings according to our dataset. As expected,
the correlation between the proxy variable and eviction plays a key role in the
effectiveness of our proposed solution.

Figure 5.1: Effectiveness of our solution with different proxy factors with various
levels of association with the number of eviction filings.

5.6 Real-World Use Case
As described in the previous chapter, such predictive models could provide insights
to policymakers regarding future conditions in terms of the potential number of
tenants at-risk of eviction and help them in their efforts at mitigating the eviction
crisis across the United States. In particular, efficient resource allocation is a
challenging issue in the field; e.g., a large difference has been observed in the use of
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allocated function, and some regions sent back millions of dollars of rental assistance
funding to the government [80]. As a result, it is important to enhance the existing
programs [84], and an accurate predictive tool could assist in allocating funding in
a more efficient/effective way [80]

In this section, we also conduct a synthetic simulation to get a better estimate
of the value of our predictive approaches for resource allocation. In fact, we assume
that each at-risk tenant only gets $100, and the funding is allocated exactly based
on the predicted number of tenants at-risk of eviction, and then, by comparing the
results with the ground-truth values, we estimate the amount of unused funding
and shortage resulting from each approach. In particular, we use the output of
MARTIAN for the first-step prediction task with different loss functions in this
analysis.

Table 5.2 shows the amount of demanded funding, unused funding (expected
to be returned from some census tracts), and shortage in funding (in some other
census tracts). According to the results, on average, the model trained on the
coarse loss demands $356,800, but about $168,100 remains unused, while $194,300
more funding is needed in other regions. However, if we repeat the same process
using the model trained on our proposed loss function, it demands $307,600, but
$123,000 remains unused, and $198,400 more money is needed from other regions
(on average). As a result, we see that our proposed solutions could help reduce
the amount of unused funding by 26.7%, and fulfill the demands of other regions
comparably, although it demands 13.7% less funding (in total), compared to the
coarse loss case. Additionally, the empirical results show that the model trained on
coarse loss works similar to the model trained on coarsely-supervised loss in this
case. Furthermore, as expected, incorporating the pair-wise ranking alone is not
enough to accurately estimate the total amount of required funding.

Loss Function Demanded Funding Funding Shortage Unused Funding
Coarse Loss $356,800 $194,300 $168,100

Pairwise Ranking $142,100 $284,400 $43,500
Coarsely Supervised $355,000 $194,600 $166,700

Our Proposal $307,600 $198,400 $123,000

Table 5.2: Real-world impact of various loss functions for resource allocation.

In conclusion, as a result of these analyses, we hypothesize that using our
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proposed solution at scale could lead to a major improvement in allocation funding
compared to using the coarse loss (or the coarsely-supervised method [23]).

5.7 Summary
This chapter proposes a new loss function to facilitate the training of neural network
models under a lack of ground-truth labels at the spatial resolution of interest.
In particular, it leverages sociological insights as well as low-resolution labels to
accurately forecast the number of eviction filings at a high resolution under a lack
of access to high-resolution ground-truth labels. Our empirical evaluation shows
that it highly outperforms a recent approach in terms of RMSE and Spearman.
We also conduct a simulation to assess the value of using such predictive models
for funding allocation, and we find that using the proposed loss function could
be a better choice to enhance resource allocation programs, compared to some
considered baseline methods.
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Chapter 6 |
AI for Social Welfare of Housing-
Insecure Low-Income Americans:
Eviction Filing Hotspot Detec-
tion with No Ground-Truth La-
bels

Previous chapters focused on developing predictive ML models when either low-
resolution or high-resolution labels are available for training ML models of interest.
However, this chapter focuses on the eviction crisis, and aims to detect eviction filing
hotspots from publicly available data under a lack of ground-truth labels [6]. In
the following sections, we describe the problem domain, related work, our solution,
experimental results, and real-world application.

6.1 Introduction
Numerous low-income renting families across the USA are at a high risk of eviction,
mainly due to a shortage of federal housing assistance, and an ever-increasing gap
between income growth and increases in housing cost, e.g., about 70% of the low-
income renters devote most of their income towards housing expenses [20, 21].
Further, eviction is an important cause of several societal problems, such as
homelessness [85,86], and has long-lasting negative effects on individual’s health,
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and housing stability [20, 22, 81, 82]. As a result, mitigating the eviction crisis is of
the utmost importance in order to enhance the well-being of this community.

To tackle this crisis, NGOs and policymakers have been implementing multiple
programs at the pre-filing and post-filing stages [112–114]; especially, they assign
several types of resources to increase housing stability and affordability. Efficient
resource allocation for these eviction prevention programs is possible with a data-
driven understanding of eviction filing hotspots across the USA. Unfortunately, there
is no national eviction database [115] and some state/local policies and resource
limitations restrict access to ground-truth eviction filing records for many regions
of USA. For example, in Illinois, bulk data retrieval is not allowed or in California,
tenants may block public access to their eviction records [97]. Furthermore, the
high cost of data collection in some other regions makes it infeasible to collect
eviction filing records at scale, e.g., obtaining eviction filing data from some courts
requires in-person data collection [97]. These obstacles limit our understanding
of eviction filing hotspots in those regions [97], which in turn, calls for a need for
some solutions to fill this gap and help policymakers more effectively/efficiently
implement eviction diversion programs under a lack of access to court records.

To this end, this chapter proposes WARNER (Weakly-supervised Aid to Relieve
Nationwide Eviction Rate), a weakly-supervised ML model that leverages publicly
available satellite imagery as well as sociological insights (instead of ground-truth
labels) to predict eviction filing hotspots across the USA. In fact, this chapter
makes the following contributions: (1) to account for the lack of sufficient labeled
training data in this domain, it proposes a label generation approach that leverages
the findings of past literature in sociology to produce high-quality labels for a
subset of unlabeled training data, (2) it develops a neural network model to predict
eviction filing hotspots from satellite imagery of different shapes, and (3) it does
several experiments to assess the accuracy of WARNER using a real-world dataset
with eviction filing records in Dallas County, TX.

Our empirical evaluation shows the high quality of the labels generated by
our proposed label generation approach. Furthermore, it shows that WARNER
outperforms multiple strong baseline models by obtaining about 36.0% and 1.4%
higher F1 and AUC (respectively), which illustrates its suitability for this domain.
Additionally, the superior accuracy of WARNER can be generalized to different
counties across the USA. This work is conducted in collaboration with CPAL.
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6.2 Related Work
This section surveys past literature in the areas of sociology and Machine Learning.

Sociological Research Prior work in sociology mostly focuses on understanding
the factors associated with eviction using statistical and descriptive analysis. In
fact, prior work has studied the association between the risk of eviction and various
individual and neighborhood-level characteristics. e.g., they found that job loss and
crime rates in a neighborhood tend to increase the risk of eviction [88]. Further,
prior research found that low-income single mothers who have young children tend
to be at a high risk of getting evicted [116]. Additionally, according to their findings,
eviction could lead to long-lasting health problems (e.g., depression) [20]. Even
though this line of work gleaned unique insights about the eviction crisis, they did
not address the problem of predicting eviction (or eviction filing) hotspots across
the USA (which is the focus of our work).

Some other prior work focuses on finding eviction hotspots in certain geographic
regions by counting the total number of eviction filings in their sub-regions. As a
result, they find that a large number of evictions in a region can be attributed to
a small number of sub-regions [82,117]. However, these works require the actual
number of evictions (or eviction filing records), which is inaccessible (or highly
expensive to obtain) for many regions due to restrictive state/local policies and
infrastructure limitations [97]. Therefore, their methodology is not generalizable to
all regions within USA. In contrast, this chapter proposes a highly generalizable
ML-based framework that relies on satellite imagery and sociological insights (rather
than the actual number of eviction filings) to predict eviction filing hotspots within
US counties in the absence of court records.

Machine Learning Research There has been a large number of research on
applying ML techniques to tackle societal problems. One line of research developed
predictive ML models using a tabular dataset consisting of several factors with
potential impacts on the dependent variable [93, 94]. For example, Ye et al. [93]
relied on classical ML models to predict the risk of landlord harassment using a
tabular dataset. However, these models have limited real-world usability, as their
predictive performance is highly dependent on data sources that are either (1)
unavailable for many regions across the USA, or (2) highly expensive to obtain
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as they need to be gathered by conducting surveys. Additionally, earlier in this
dissertation, we developed neural network models that forecast the number of
eviction filings for each census tract. However, we assumed that the historical
eviction filing data is available for the target region, but this assumption does
not necessarily hold at the national scale. In contrast, in this chapter, we rely on
publicly available datasets that cover all census tracts across the USA (namely,
satellite imagery and the American Community Survey data1).

Another line of research takes advantage of imagery data and variants of
Convolutional Neural Network (CNN) models [118] to predict factors related to
poverty and human development. In particular, some prior work focused on
predicting poverty from satellite imagery in the face of sparsely labeled data
[105,106], and to tackle this issue, they proposed to incorporate night-time light
intensity as a proxy for poverty during training. However, a subsequent study [119]
showed that this methodology does not necessarily generalize to predicting some
other human development factors (such as access to water and average child weight-
to-height percentile). Additionally, some studies used computer vision approaches
(such as object detection techniques [120,121], panoptic image segmentation [122],
and CNN-based neural networks [123, 124]) for predicting poverty and/or other
development indicators from imagery data. However, relying on a supervised
learning paradigm, all these studies trained their models on a dataset consisting of
ground-truth labels. In contrast, this chapter proposes a framework for predicting
eviction filing hotspots without access to ground-truth labels; instead, it addresses
the lack of labeled training data by leveraging insights from prior work in sociology
to develop a weak supervision approach to generating labels.

6.3 A Problem Statement
This section provides a formal definition of the problem of identifying eviction filing
hotspots in US counties. Intuitively, eviction filing hotspots of a county c over
a period of m years refer to the census tracts (in that county c) which “consistently
have high contributions” to the total eviction filings in c during a period of m years.

More formally, we define top-k% eviction filing hotspots of a county c over a
period of m years as follows. Suppose that c has n census tracts, and Ei

t denotes the
1https://www.census.gov/programs-surveys/acs/data.html
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total number of eviction filings in the ith census tract of c in year t (t ∈ {1, ..., m})
after sorting census tracts of c in the descending order of their number of eviction
filings in year t. Additionally, let Sd

t refer to the largest set of census tracts (in
descending order) whose combined number of eviction filings is less than or equal to
d% of the total number of filings in c in year t (i.e., ∑

tracti∈Sd
t

Ei
t ≤ d

100 ×
∑n

i=1 Ei
t).

Please note that we add census tracts to Sd
t in decreasing order of the number of

eviction filings. Then, the top-k% eviction filing hotspots of c over a period of m

years are defined as the set ∩m
t=1S

d
t such that | ∩m

t=1 Sd
t | ≈ ⌈k×n

100 ⌉. In this definition,
k and m are considered to be fixed (defined by stakeholders) and d is chosen to be
the largest number such that | ∩m

t=1 Sd
t | ≤ ⌈k×n

100 ⌉. Note that these conditions can be
satisfied with fractional values of d and k.

Finally, we formulate the problem of identifying top-k% eviction filing hotspots
as a binary classification problem, in which the ultimate goal is to predict if a
census tract belongs to the top-k% eviction filing hotspots of its county (i.e.,
positive label) or not (i.e., negative label). This chapter builds an ML model
that takes the satellite images of a census tract ({xtract

1 , xtract
2 , ..., xtract

m }) and its
county ({xcounty

1 , xcounty
2 , ..., xcounty

m }) as input and outputs a prediction for the
binary variable of interest. To assess the effectiveness of the proposed model for
this problem domain, we experiment with different values of k in Section 6.6.

6.4 Datasets
In this study, we use three datasets: (1) American Community Survey data, (2)
Satellite imagery, and (3) Eviction filing records.

American Community Survey (ACS) As mentioned before, ACS data contains
various pieces of information on demographic characteristics, housing characteristics,
work status, and poverty status in the past 12 months. This dataset is published
by the U.S. Census Bureau annually, but with a delay of about two years. We use
ACS 5-Year Experimental Estimates in this work as it provides annual statistics for
all census tracts in the U.S. Note that we only use the ACS data to generate weakly
supervised labels for our satellite imagery training datasets, which we describe next.

Satellite Imagery We use Sentinel imagery2, which provides a bird’s eye view
2https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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of the environment with spatial and temporal resolutions of 10 meters and 10
days, respectively. For each census tract, we crawl one image corresponding to the
bounding box of that tract (i.e., the minimum rectangle surrounding the polygon
of that census tract). Further, for each image, we generate a mask matrix to be
able to distinguish the pixels that fall inside that census tract (i.e., valid pixels)
from the other ones (i.e., invalid pixels).

Eviction Filing Records This dataset consists of individual eviction cases filed
across Dallas County, TX since 2017 and we got access to this data through our
collaboration with CPAL. Each record contains information about the eviction
filing time, tenant’s address (i.e., latitude and longitude), names of both parties
(i.e., landlord and tenant), etc. Please note that while this dataset on eviction filing
records is available for Dallas County (through our collaboration with CPAL), getting
similar datasets from other U.S. counties is very challenging, if not impossible.
Since we want a generalizable ML model that can predict eviction filing hotspots
across all US counties (not just Dallas County), we do not use this dataset to
train our ML model. Instead, we only use this source of data for evaluating the
performance of WARNER.

Data Preparation We now explain our data preparation process. For each census
tract (and county), we consider the median of the three least cloudy satellite images
collected from the beginning of June to the end of July of a year3 as the satellite
image of that census tract (and county) in that year. Then, we convert the value of
each pixel into the range of [0, 1]. Additionally, to prepare the eviction filing records
of Dallas county (for which we have ground-truth labels), we take three main
steps. First, following [97,125], we exclude the eviction cases filed against business
defendants and remove duplicates. Then, for each census tract, we calculate the
number of eviction records in each year. Finally, the data is split into the ratio of
60:20:20 while keeping the class distribution among train, validation, and test sets.

3We use the satellite images taken in summer because, over that period of time, the climate
condition seems to be suitable across the USA for taking clear images.
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6.5 The Proposed Framework: WARNER
We propose a weakly-supervised framework to address the problem of predicting
eviction filing hotspots from satellite imagery in the face of a lack of ground-truth
eviction filing data. Figure 6.1 illustrates the architecture of WARNER, which is
composed of two components: (1) a label generation model that generates probabilis-
tic labels for a subset of an unlabeled satellite imagery dataset by leveraging insights
from prior work in sociology as well as the ACS data, and (2) a hotspot prediction
model that predicts eviction filing hotspots from satellite imagery (along with the
generated labels) using a neural network model. In the following subsections, we
elaborate on the architecture of each component.

Figure 6.1: The architecture of WARNER.

6.5.1 The Label Generation Model

As the first step toward predicting eviction filing hotspots, we build an ML model
that uses sociological insights along with the ACS data (as input) to generate
labels for our satellite imagery training dataset. In fact, the following steps are
taken: (i) we survey past literature in sociology to find several factors that are
highly associated with eviction. (ii) Then, we define one labeling function (LF)4 for
each associated factor; i.e., a labeling function labels each data point based on the
value of the underlying associated factor. (iii) Finally, we use a weak supervision
framework via Snorkel [108] to combine the results of various labeling functions;
i.e., since each data point might be labeled by several labeling functions, we use

4A labeling function is a piece of code that takes a data point (i.e., census tract) as input
and assigns a label (positive, negative, or abstain for binary classification) using some rules (or
heuristics, etc.).
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Snorkel to convert that set of potentially noisy labels into one probabilistic label.
The following paragraphs provide further details regarding each step.

Sociological Insights. To mitigate the eviction crisis, sociologists and social work
scientists have been studying various aspects of the eviction crisis and housing
instability. As a result, they have discovered several data-driven insights; for
example, they found a high level of association between the risk of eviction and some
demographic and financial characteristics of renters (and neighborhoods) [88,90,95].
However, these studies rely on datasets collected through conducting in-person
surveys from a relatively small population, and thus, their datasets and studied
features are not available as-is for all U.S. census tracts. To tackle this challenge, we
use the ACS dataset, which consists of various demographic, financial, and housing
characteristics at the census tract level (across the entire U.S.). Next, we review
prior work in sociology to find a set of factors associated with eviction and housing
instability [21,88,90,95,96]. For each associated factor, we try to locate that factor
among the set of features present in the ACS dataset. If an associated factor is
not found as-is in the ACS dataset, an ACS feature that is semantically close to
that factor is selected, instead. Note that in spite of their association with eviction,
some neighborhood-level characteristics (such as past eviction rate) [88] and social
network properties (such as network disadvantage) [88] are not considered in this
study because they are not gathered in the nationwide ACS dataset. As a result
of taking these steps, we successfully locate nine associated factors (as reported
in prior sociology literature) in the ACS dataset (similar to [125]), and these nine
factors form the basis of our label generation model.

Table 6.1 provides the definition of these nine associated factors that were
located in the ACS dataset. Each of the selected factors is shown to have some
sort of association with eviction. For example, while job loss, and hence, zero
income (LF#2) tend to increase the risk of eviction [88,90], being employed (LF#9)
has shown to be a protective factor5 for housing instability [95]. Additionally,
most low-income renting families reportedly spend a considerable amount of their
income on housing expenses; in fact, about 70% of them devote most of their
earnings on housing expenses [21]. Accordingly, we include LF#3 in our feature
set. Furthermore, individuals with educational attainment of less than high school

5Protective (risk) factors refer to factors that are associated with a lower (higher) chance of a
negative outcome.
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(LF#4) tend to be at higher risk of eviction [90], whereas having higher level of
education (LFs #5, #6, and #7) tends to be associated with a lower likelihood of
housing instability [96]. Intuitively, census tracts with higher numbers of renter-
inhabited housing units (LF#1) tend to have high contributions to the county’s
total evictions. Finally, recipients of public assistance (LF#8) are found to be at
lower risk of housing instability [95,96]. Please note that due to the potential ethical
implications of labeling data points only based on some protected characteristics
(such as gender, race, and age), we did not utilize such factors for defining labeling
functions. Next, we describe how we use this set of associated factors to generate
probabilistic labels for an unlabeled dataset.

Table 6.1: The definition of ACS factors underlying our labeling functions.

LF# Explanation of the Underlying ACS Feature Polarity
1 # of housing units occupied by renters Positive
2 # of renter-occupied units whose householder has zero or negative earnings in the previous 12 months Positive
3 # of renter-occupied units, with monthly housing costs ≥ (0.3×income) Positive
4 # of renter-occupied units whose householder’s level of education is less than high school Positive
5 % of renter-occupied units whose householder is a high school graduate (or equivalent) Negative
6 % of renter-occupied units whose householder has a college or associate’s degree Negative
7 % of renter-occupied units whose householder has at least a bachelor degree Negative
8 % of families below poverty line who get paid SSI or cash public assistance income Negative
9 % of full-time workers with some earnings Negative

Design of Labeling Functions. Although prior work distinguishes between
protective and risk factors for eviction, no rule has been defined for identifying a
concerning level of eviction (or eviction filing) risk from the value of an associated
factor. In this paper, we propose a novel approach to design such rules that mainly
relies on (i) the shape of the probability distribution of the selected ACS features,
(ii) whether the underlying factor is found to be a risk factor or a protective factor,
(iii) the value of k (i.e., the desired percentage of hotspots in a county), and (iv)
the characteristics of the county of each census tract. In the following paragraphs,
we elaborate on the role of the aforementioned criteria in the design of our labeling
functions.

We define a labeling function for each of our nine associated factors (as shown
in Table 1) separately. Each of these labeling functions can abstain from providing
labels for a data point if it is highly uncertain about the label of that data point.
To this end, we analyze the probability distributions of our nine factors in each
county separately and find out that all distributions are right-skewed (similar to
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Figure 6.2), where the distribution’s right tail is longer than its tail on the left
side. Therefore, the data points that fall on the left-hand side of the probability
distribution look somewhat similar to each other with respect to that selected
factor. This piece of evidence has motivated us to design labeling functions that
abstain from labeling the data points that fall on the left-hand side.

Next, we need to decide on the polarity of each labeling function, which refers
to the type of labels that it can assign (e.g., in a binary classification problem, the
polarity can be any of the following: Positive, Negative, or {Positive, Negative}).
The polarity of each labeling function is defined as follows: A labeling function
corresponding to a risk factor only assigns positive labels, and similarly, the one
corresponding to a protective factor only assigns negative labels. We made this
decision because when a factor is known to be a risk factor (resp. protective factor)
for the prevalence of eviction, it is positively correlated with the higher (resp. lower)
number of eviction. Thus, a larger (resp. smaller) value of this factor provides a
signal on a larger (resp. smaller) number of evictions and eviction filings in that
region. The polarity of our labeling functions is given in Table 6.1.

Furthermore, we need to specify the exact value of the threshold (shown in
Figure 6.2) to complete the definition of our labeling functions. Since we want to
find the top-k% hotspots of each county and both high precision and recall are
equally important in this domain, the threshold for factor f and county c is defined
as the ⌈k×n

100 ⌉
th largest value of that factor among census tracts in county c, where

n refers to the total number of census tracts in county c. As a result, each labeling
function labels about k% of data points. Figure 6.2 summarizes our schema for
defining labeling functions. Next, we explain how to integrate these noisy signals
to assign (at most) one probabilistic label to each data point.

(a) Risk factor Fr (b) Protective factor Fp

Figure 6.2: The proposed approach for defining labeling functions.
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Probabilistic Label Generation. Each labeling function provides a signal,
with unknown accuracy, regarding the label of each data point. Now, we need to
integrate those signals to generate (at most) one label per data point. One simple
approach is to take the majority vote, however, due to some potential correlations
between selected factors, majority voting might result in the “double counting”
issue [126]. Therefore, we use Snorkel [108] to integrate the outputs of our labeling
functions. To produce a probabilistic label, Snorkel learns a generative model (over
labeling functions) that (1) models the correlations between labeling functions,
and (2) estimates their accuracy (through examining the overlaps/conflicts in their
output) during learning [108]. Please note that this step is done in an unsupervised
manner and Snorkel does not utilize any ground-truth labels for integrating the
outputs of labeling functions. In section 6.6.2, we evaluate the gain of employing
Snorkel rather than the majority voting approach.

Although the proposed labeling approach is suitable (i.e., fast, easy to compute,
and inexpensive) for creating a labeled training set from a large unlabeled dataset,
it has two weaknesses that limit its usability for identifying eviction filing hotspots
directly: (i) It does not necessarily label all data points (i.e., census tracts) because
the underlying labeling functions refrain from labeling a data point if they are
highly uncertain (i.e., the total coverage is associated with the value of k). (ii)
The algorithm relies on the ACS data, which is released with a delay of about two
years, and hence, it cannot be used for monitoring the most recent situation as
the input of the model is not available for the past two years. Next, we propose a
neural network model that can label all data points using satellite imagery, which
is available at a high temporal resolution.

6.5.2 The Hotspot Prediction Model

In this section, first, we explain our rationale for choosing satellite imagery as input.
Then, we describe the architecture of our proposed neural network model that aims
at identifying top-k% eviction filing hotposts from satellite imagery.

Rationale for the Use of Satellite Imagery. We choose satellite imagery as the
input of our model mainly because of three reasons: (i) Past literature [127,128]
has shown that urban poverty can be identified using satellite imagery (e.g., urban
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trees provide useful signals for identifying income inequalities, and distinguishing
poor neighborhoods from the rich ones [129,130]), and given the strong association
between eviction and poverty, we believe that satellite imagery would be a suitable
source of data for identifying eviction filing hotspots at the census tract level as well.
(ii) We hope that our neural network model can identify signs of gentrification, which
has been shown to be associated with eviction, from satellite imagery [131–133].
(iii) Satellite imagery is available at high spatial (∼10 meters) and temporal (∼10
days) resolutions, which makes it an appropriate source of data for monitoring
eviction filing hotspots in a timely manner.

The Neural Network Model. We now describe the architecture of our hotspot
prediction model (the component on the left-hand side of Figure 6.1). The model
takes the satellite images of a census tract and its county (as well as the mask
matrices) as input and predicts whether that census tract is among the top-k%
hotposts of that county or not. This neural network model extends the idea behind
the ResNet model [134], while considering the challenges and characteristics of this
problem domain. In the following paragraphs, we elaborate on these challenges and
how they are addressed in this model.

The first challenge is that different census tracts have various shapes and sizes,
and hence, input images can have various sizes. To address this challenge, we take
the following steps: (1) we set the width (and height) of each satellite image to
the third quartile of the width (and height) of all satellite images, (2) we build a
mask matrix for each image to distinguish valid pixels from invalid ones, and (3)
we incorporate Partial Convolutional Layer [135,136] into our instance of ResNet
(Partial ResNet) to make sure that the result of convolution in each layer only
depends on the valid pixels. Partial ResNet mainly consists of three residual blocks
whose parameters are the same as the first three residual blocks in ResNet-18.
Please note that the kernel initializer for all partial convolutional layers is set to
he_normal [137].

Furthermore, as the hotspots are defined with respect to each county, the neural
network should consider the characteristics of that county in the prediction process.
To this end, we employ the feature concatenation approach [138]; i.e., we apply a
CNN model (i.e., CNNcounty) on the satellite images of a county and concatenate
extracted features (i.e., the output of FC1) with the output of our Partial ResNet
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model. CNNcounty applies a partial convolutional layer with 4 filters on each input
image of a county, concatenates their outputs, and then, employs three partial
convolutional layers with 16, 32, and 64 filters (respectively). The kernel size for
all partial convolutional layers in CNNcounty is set to (7× 7). Also, FC1 and FC2

(represented in Figure 6.1) are fully-connected layers with 64 and 128 neurons
(respectively) and the ReLU activation function.

Finally, since the generated probabilistic labels could be noisy, we consider
two loss functions in our experiments: (1) the binary cross-entropy loss function
(Equation 6.1), which is commonly used under a small noise rate, and (2) the Active
Passive Loss (APL) (Equation 6.2), which has been shown to be highly effective
under a large noise rate [139]. APL is defined as the sum of Normalized Cross
Entropy (the left term in Equation 6.2) and Reverse Cross Entropy [140] (the right
term in Equation 6.2). In the following equations, p refers to the output probability
of the neural network classifier and q denotes the ground truth.

−
1∑

K=0
(q(k|x)× log p(k|x)) (6.1)

−∑1
K=0 q(k|x) log p(k|x)

−∑1
j=0

∑1
K=0 q(y = j|x) log p(k|x)

−
1∑

K=0
(p(k|x)× log q(k|x)) (6.2)

6.6 Experimental Evaluation
In this section, we first describe the set-up and data preparation process. Then, we
provide an empirical evaluation of the performance of our label generation approach.
Finally, we conduct a comparison between the accuracy of WARNER and various
baselines and assess the contributions of its components to the overall performance.

6.6.1 Set-up

We implemented our codes in Python and used the following packages/libraries:
keras (v. 2.7.0), tensorflow (v. 2.7.0), pandas (v. 1.1.5), numpy (v. 1.19.5), and
scikit-learn (v. 1.0.2). In our experiments, we utilize Adam [98] with a learning
rate of 2 × 10−4, β1 of 0.9, and β2 of 0.999 as the optimizer for training the
neural network models. Also, the maximum number of epochs is 100 and the early
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stopping technique [99] is used to stop the training process once the loss value on
the validation set does not degrade after ten epochs.

6.6.2 Evaluation of Generated Labels

In this section, we evaluate the accuracy of the generated labels (under various
conditions) by comparing them to the ground-truth labels available for Dallas
county, TX. Table 6.2 compares the performance of our label generation approach
against the majority voting technique with different choices of k (k ∈ {5, 10, 15})
and training regions. We make the best performance bold and report the percentage
of increase (in the predictive performance) achieved by employing WARNER (in
the best case) compared to the majority voting approach in the last row (i.e., Gain).
Please note that all performance metrics are computed on the subset of the test set
(i.e., the testing portion of Dallas data) labeled by all models. In our experiments,
the set of data points labeled by our model is a superset of the set of data points
labeled by majority voting.

According to the results, on average, the majority voting approach (which does
not involve learning an ML-based model) achieves an AUC of 0.711, which could
be an indicator of the good quality of our labeling functions. Further, in general,
employing Snorkel leads to a considerable improvement against majority voting. In
fact, on average, our model outperforms the majority voting approach by 21.8% in
terms of AUC, which shows the value of employing Snorkel (compared to taking
the majority vote) for integrating outputs of our labeling functions.

Additionally, we do a cross-region test to investigate the generalizability of our
label generation approach; i.e., we train our model on the unlabeled data of other
counties in TX (i.e., all Texas counties except Dallas County), and then, evaluate
its performance on the testing portion of the Dallas data. As a result, it achieves
an AUC of 0.866 (on average), which is higher than the average AUC of the model
trained on the training portion of Dallas data (i.e., 0.843). This shows that our
label generation approach could be generalized to different counties within the
USA.

Finally, in spite of the high accuracy with different choices of k, the coverage of
this label generation approach can change with the value of k (as the coverage of
the underlying labeling functions changes with k); e.g., in total, about 77%, 59%,
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Table 6.2: A comparison between the performance of our label generation model
and majority voting.

k = 5 k = 10 k = 15 Avg. (k ∈ {5, 10, 15})
Model Training Region F1 AUC F1 AUC F1 AUC F1 AUC

Majority Vote — 0.307 0.690 0.538 0.809 0.400 0.634 0.415 0.711
WARNER Dallas County, TX 0.307 0.851 0.666 0.914 0.500 0.766 0.491 0.843
WARNER Other counties in TX 0.666 0.886 0.533 0.943 0.533 0.771 0.577 0.866

Gain (%) 116.9% 28.4% 23.7% 16.5% 33.2% 21.6% 39.0% 21.8%

and 35% of data points are labeled by at least one labeling function when k is equal
to 15, 10, and 5, respectively. However, a low coverage does not result in a serious
issue in our problem domain because unlabeled data can be collected easily.

6.6.3 Evaluation of the Hotspot Prediction Model

We conduct three sets of experiments to assess the effectiveness of WARNER for
the task of top-k% hotspot prediction. First, we conduct a comparison between
the accuracy of WARNER and several strong deep learning-based baseline models.
Then, we investigate the impact of WARNER’s components on the value of different
performance metrics. Finally, we evaluate the potential of WARNER trained for
a specific k (e.g., k = 10) to be generalized (easily) to other values of k (e.g.,
k ∈ {5, 15}).

Comparison with Baseline Models. In this set of experiments, we consider
the following three baseline models: (1) A Convolutional Neural Network (CNN)
model with four convolutional layers, (2) Partial-CNN that incorporates partial
convolutional layers [135] into the CNN model, instead of the standard convolutional
layer, and (3) ResNet-18 [134] which is a residual network with 18 layers. While
CNN and ResNet-18 take masked satellite images as input, Partial-CNN takes
satellite images and mask matrices as separate inputs as it can distinguish valid
and invalid pixels. Further, the binary cross-entropy loss function is utilized for
training all neural models and evaluated on the testing portion of the Dallas data
(in the next section, we compare the effectiveness of cross-entropy with that of APL
in our problem domain).

Table 6.3 shows the performance of WARNER and the aforementioned baselines
for k ∈ {5, 10, 15}. The first three rows show the performance of baseline models
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Table 6.3: An evaluation of the performance of WARNER and baseline models.

k = 5 k = 10 k = 15 Avg. (k ∈ {5, 10, 15})
Model Training Region F1 AUC F1 AUC F1 AUC F1 AUC
CNN Dallas County, TX 0.000 0.631 0.162 0.544 0.136 0.560 0.099 0.578
ResNet-18 Dallas County, TX 0.000 0.632 0.166 0.588 0.138 0.634 0.101 0.618
Partial-CNN Dallas County, TX 0.000 0.639 0.208 0.596 0.200 0.639 0.136 0.624
Partial-CNN Other counties in TX 0.000 0.580 0.117 0.528 0.181 0.638 0.099 0.582
WARNER Other counties in TX 0.083 0.650 0.222 0.644 0.250 0.607 0.185 0.633

being trained on the ground-truth data of Dallas County in a fully-supervised
manner. In addition, the fourth and fifth rows represent the performance of Partial-
CNN and WARNER (respectively) being trained on the labels that our label
generation approach produced for the data of other counties in Texas. According to
the results, WARNER outperforms the best-performing fully-supervised model (i.e.,
Partial-CNN) by 36.0% and 1.4% (on average) in terms of F1 and AUC, respectively.
Therefore, although WARNER has not seen any data from Dallas County during
the training phase, it works better than the best-performing fully-supervised baseline
model trained on the training portion of the Dallas data, which has ground-truth
labels.

Further, we observe higher improvements when training WARNER and the
best-performing baseline model (i.e., Partial-CNN) on the same training dataset.
In fact, the results of training both WARNER and Partial-CNN on the data of
other counties in TX (with generated labels) show that WARNER outperforms
Partial-CNN by 86.8% and 8.7% (on average) in terms of F1 and AUC, respectively.
Further, the performance of Partial-CNN decreases significantly (by 27.2% and
6.7% in F1 and AUC, respectively) when being trained on the data of other counties
and evaluated on the testing portion of Dallas data. This observation could show
the impact of considering the satellite imagery of a county in the decision-making
process because different characteristics of various counties could mislead the
network.

Additionally, comparing the accuracy of fully-supervised baselines, we see that
incorporating partial convolutional layers into CNN improves F1 and AUC by
37.3% and 7.9% (on average), respectively. Also, employing residual learning with a
deeper network (i.e., ResNet-18) leads to 2.0% and 6.9% improvement (on average)
in terms of F1 and AUC, respectively.

Finally, we note that almost all deep learning-based models have an AUC of
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over 0.6 in the task of predicting top-5% hotspots (with a significantly imbalanced
dataset), which could show the models’ capability in distinguishing positive samples
from negative ones. However, achieving a high F1 (which is calculated using the
threshold of 0.5 on the predicted probability of belonging to the positive class) is
an extremely difficult task in this case and we plan to address that in our future
research.

Ablation Study. We now investigate the effect of various components on the
overall accuracy of WARNER. Table 6.4 shows the outcome of the ablation study
on WARNER while assuming k = 10. According to the results, replacing partial
convolutional layers with the standard convolutional layers (i.e., WARNER-w-Conv)
results in 20.2% and 9.0% decrease in F1 and AUC, respectively. This observation
suggests that simply masking the invalid pixels could pose significant challenges to
the learning process of our neural network.

Further, we compare the suitability of the feature concatenation approach
with that of a recent condition approach called Feature-wise Linear Modulation
(FiLM) method [141]. In fact, three common approaches have been usually used for
incorporating multiple signals into a model [138]: input concatenation, feature con-
catenation, and conditioning layer. As the size of county images differs a lot from the
size of census tract images, input concatenation is not an appropriate choice in our
case. However, we tried a conditioning layer approach (i.e., WARNER-w-FiLMLayer)
called Feature-wise Linear Modulation (FiLM) [141]. WARNER-w-FiLMLayer takes
the following steps: (i) for the ith census tract, it extracts two sets of features (i.e.,
aj

i,m and bj
i,m) from the output of FC1 through applying linear layers, and then (ii)

use them to influence the mth feature map of the jth convolution layer (f j
i,m) in

the Partial ResNet via the feature-wise affine transformation given in Equation
6.3 [141]. According to the results, in our problem domain, employing FiLM leads
to 22.0% and 14.5% decrease in F1 and AUC, respectively. Thus, the use of a
concatenation layer seems to be a more appropriate choice.

FiLM(f j
i,m|a

j
i,m, bj

i,m) = aj
i,m × f j

i,m + bj
i,m (6.3)

Additionally, comparing the performance of WARNER with that of WARNER-w-APLLoss
shows that incorporating either of the two mentioned loss functions, i.e., cross-
entropy and APL, results in a similar predictive performance. Finally, to evaluate
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the value of our label generation approach in the WARNER framework, we replace
it with a naive label generation approach and train our neural network model on
this newly labeled data. This naive approach works as follows: A census tract is
among top-k% hotspot if it shows up among the top-k% census tracts of its county
in terms of the total population. The experimental results show that, the use of
this naive label generation approach, i.e., WARNER-w-NaiveLabel, leads to 31.0%
and 14.1% decrease in F1 and AUC, respectively. This observation shows the key
role of our label generation approach in the WARNER’s architecture for building a
more accurate eviction filing hotspot prediction model.

Table 6.4: The results of ablation study when k = 10.

Model F1 AUC Drop in AUC (%)
WARNER 0.222 0.644 —
WARNER-w-Conv 0.177 0.586 -9.006%
WARNER-w-FiLMLayer 0.173 0.550 -14.596%
WARNER-w-APLLoss 0.226 0.643 -0.001%
WARNER-w-NaiveLabel 0.153 0.553 -14.130%

Generalizability of WARNER to Various Values of k. In our previous
experiments, we trained a separate model for each value of k because the task
changes with the value of k; i.e., if k1 ̸= k2 → p(yk=k1|x) ̸= p(yk=k2|x) (in this
formula, yk shows the binary label of interest for different values of k). However,
training a separate model for each k of interest could be time-consuming. To tackle
this challenge, we propose to use a transfer learning approach [142] to be able to
easily transfer knowledge from a single pre-trained WARNER to the target task.
The transfer learning algorithm works as follows: First, we train a single model for
a specific value of k. Then, we freeze all weight matrices, except the parameters of
the last two layers (as a result of freezing, the knowledge can be transferred to the
target task). Finally, we fine-tune the parameters of the last two layers using the
training data of the target task.

Table 6.5 represents the results of fine-tuning a WARNER model trained with
k = 10 (i.e., source task) to the target tasks of top-5% hotspot prediction and
top-15% hotspot prediction (please note that the results of training a separate
WARNER for each target task are given in parenthesis). This table shows that
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employing the aforementioned transfer learning approach leads to comparable
results. Thus, we can easily transfer knowledge from a pre-trained WARNER model
(trained with k = 10, for example) to the task of top-k′ hotspot prediction with
various values of k′ (e.g., k′ ∈ {5, 15} in our experiments).

Table 6.5: An evaluation of the generalizability of a pre-trained WARNER (with
k = 10) to the task of top-k′ hotspot prediction (k′ ∈ {5, 15}).

k′ F1 (original) AUC (original)
5 0.000 (0.083) 0.676 (0.650)
15 0.181 (0.250) 0.590 (0.607)

6.7 Real-World Use Case
One possible use case for WARNER is to help NGOs, policymakers, and/or federal
agencies improve their resource allocation plans to enhance housing stability. In
fact, various rental assistance programs (like Emergency Rental Assistance Program
(ERAP) [114]) are being implemented to assist high-need renters. While being
available nationwide, a big variability has been observed in the utilization of those
financial resources across the USA; e.g., some regions have sent back part of the
funding to the government as it was too much money for those regions [84]. One
potential reason for this issue could be the limited understanding of the distribution
of eviction filings at the local level, which, in turn, results from some existing
obstacles to eviction data acquisition. As a result, in the absence of ground-truth
eviction filing data, WARNER could serve as an ML-based assistant for informing
actions across the USA. In other words, WARNER’s predictions can be visualized as
a map of hotspots similar to Figure 6.3. Figure 6.3 represents WARNER’s prediction
of the top 10% hotspots (shown in red) across Texas over a period of three years
(from 2017 to 2019). Such a heatmap could assist NGOs and policymakers in (i)
monitoring eviction filing hotspots over a period of time, (ii) identifying high-need
areas, particularly hidden hotspots (i.e., actual hotspots from where no/limited
reports have been received due to the aforementioned obstacles to data acquisition),
and hence, (iii) distributing resources and funding more efficiently.

Regarding the potential benefits of eviction data tools for mitigating the eviction
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Figure 6.3: The WARNER’s prediction regarding the top-10% eviction filing
hotspots over a period of three years (from 2017 to 2019) across Texas. Hotspots
and non-hotspots are shown with red and gray colors, respectively.

crisis, Ben Martin, an official at Texas Housers, mentioned that:

“Eviction data tools are like the smoke that help us find the fire, and once we
find the fire we can figure out what tools and resources to use to mitigate
the problem.”

He also described the importance of monitoring the eviction-related situation
when eviction data is out of reach. Further, he provided more details on the
contributions of such tools to improving the existing eviction diversion programs
and related policies as follows.

“Eviction data tools can contribute to these programs by, for instance, setting
a baseline of need. Or, for a statewide ERA program, eviction data tools
could help administrators identify areas of high need for targeted outreach.”

The results of this discussion confirm (1) the significance of such ML-based
tools for improving the existing eviction mitigation plans in the absence of eviction
filing records (across a large region), and hence, (2) their high potential for making
significant social impacts in the field.
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6.8 Summary
This chapter proposed WARNER, which is a weakly-supervised ML- based frame-
work for identifying eviction filing hotspots in US counties from satellite imagery in
the absence of court records. In fact, first, it proposes a label generation approach
that leverages sociological insights on the eviction crisis to label an unlabeled
training dataset of satellite imagery. Then, relying on those generated labels, it
built a neural network model for predicting eviction filing hospots from satellite
imagery. To assess the performance of WARNER, it conducted various experiments
using eviction filing data of Dallas County, TX. The experimental results show
the suitability of the proposed label generation approach for this problem domain.
Furthermore, WARNER outperforms multiple strong (fully-supervised) baseline
models and its superior accuracy could be generalized to various counties within
the US. In the absence of eviction filing records, the data-driven insights produced
by WARNER could assist policymakers in distributing resources more efficiently
and improving eviction mitigation programs.
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Chapter 7 |
AI for Social Welfare of Housing-
Insecure Low-Income Americans:
Predicting Homeless Youth’s Sus-
ceptibility to SUD

As a use case of ML, this chapter develops an ML model to identify homeless youth
at-risk of Substance Use Disorder (SUD) with the goal of helping policymakers in
their efforts at mitigating this urgent social problem [143].

7.1 Introduction
SUD refers to a pattern of harmful substance use (e.g., alcohol, marijuana, street
and prescription opioids, stimulants, etc.) resulting in significant impairments [144].
Despite their negative side effects, sufferers continue to use these substances. SUD
is a widespread and costly issue in the USA with abuse of tobacco, alcohol, and
illicit drugs imposing over $740 billion each year [145]. In fact, about 19.7 million
adults were reportedly suffering from SUD in 2017 [146]. More importantly, the
SUD-related mortality rate has been increasing every year - it rose from 16 cases
per 100,000 people (in 2002) to 27.5 cases per 100,000 (in 2015) [147].

In particular, SUD is more prevalent among the homeless youth population
compared to the general public. For example, Busen and Engebretson [148] found
that about 46% of their surveyed homeless youth suffered from SUD. Thus, any
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attempt at tackling SUD at a national level crucially depends on our success at
minimizing the rates of SUD among homeless youth.

Various programs and initiatives have been designed/implemented to tackle
substance use/abuse among youth. One of them is the group-based intervention pro-
gram [149,150]; in this intervention program, youth is split into multiple sub-groups,
in which they get the opportunity to talk to peers, share their experiences, and
hopefully, reinforce protective behaviors related to substance use. Such interactive
programs are considered to be more effective to tackle substance use/abuse among
young people than lecture-style programs because they take their peer’s words more
credible [150,151]. However, the success of these programs is highly dependent on
the sub-group formation strategy; e.g., assigning several high-risk individuals to
the same sub-group could reinforce negative drug-using behaviors, a phenomenon
which is known as deviancy training [149, 150]. Therefore, accurate information
on the likelihood of each homeless youth suffering from SUD could potentially be
helpful in effectively implementing such intervention programs among homeless
youth.

As a step toward achieving this goal, we use a real-world dataset collected from
∼1,400 homeless youth from six states in the USA and build ML models to predict
each homeless youth’s susceptibility to SUD. Our best-performing model achieves
an AUC of ∼0.85, which illustrates its high accuracy.

7.2 Related Work
In this section, we survey recent studies on alleviating the problems faced by the
homeless population. These studies fall into two broad scientific areas: Artificial
Intelligence and social science.

Artificial Intelligence Research. To the best of our knowledge, there had
been no prior work on building and understanding models for predicting SUD
among homeless youth. There has been a lot of interest in predicting substance
use from social media data. Ding et al. [152] took advantage of several ML and
text mining techniques to predict SUD. Hassanpour et al. [153] utilized a deep
learning approach to predict the risk of substance use from Instagram profile data.
However, the focus of these studies was mainly on the general population, and
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thus, their results might not apply readily to homeless youth. Also, there is a
growing body of work in AI on tackling problems faced by homeless youth. Yadav
et al. [154,155] and Rahmattalabi et al. [149,156] focused on preventing Human
Immunodeficiency Virus (HIV), substance abuse, and suicidal tendencies among the
homeless youth population. However, most prior work in this space is concerned
with finding prescriptive solutions, e.g., Yadav et al. [154] prescribe the selection of
key influential homeless youth to spread awareness about HIV. On the other hand,
this work aims to predict the susceptibility of homeless youth to SUD.

Social Science Research. Research with homeless populations is conducted in
multiple social science disciplines with much of the work coming from sociology and
psychology. While some of this work examines the effectiveness of interventions
to address problems associated with homelessness, prior work also examines the
experience of being homeless and how this relates to other aspects of an individual’s
life and well-being. Specifically, prior research investigates factors associated with
an individual developing SUD. These factors can help identify at-risk individuals,
which is important for outreach centers as they intervene in homeless populations.
In particular, any form of child maltreatment (especially physical or sexual abuse) is
shown to be a factor strongly associated with SUD [157–159]. While on the streets,
trauma remains an associated factor for SUD irrespective of whether the individual
witnessed a friend or loved one being victimized (indirect victimization), or if they
had experienced the trauma themselves (direct victimization) [160]. Mental health
disorders are also factors associated with SUD [157]. Other factors linked to SUD
include demographic characteristics such as gender and age with young homeless
men considered as one of the highest risk groups [158,159]. Typically, prior studies
in this space chose two or three groups of factors to investigate the level of their
association with SUD. However, they did not focus on predicting the susceptibility
of homeless youth to SUD, which is the focus of this chapter.

7.3 Dataset
In this work, we rely on a dataset collected from ∼1,400 homeless youth across six
states in USA, namely California (CA), Arizona (AZ), Colorado (CO), Missouri
(MO), Texas (TX), and New York (NY), from June 2016 until July 2017. Each
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homeless youth was given a questionnaire to fill up, which consisted of questions
about various topics including socio-demographic information (SD), criminal history
(CH), sexual-risk behaviors (SR), victimization experiences (VE), gang involvement
(GI), mental health characteristics (MH), and technology access (TA). Table 7.1
represents those topics along with the features corresponding to a couple of sample
questions under these topics. This survey was approved by institutional review
boards. For more information regarding the data collection procedures, please
kindly refer to Barman-Adhikari et al. [161].

Topic Feature Explanation
SD gender Male, Female, Transgender, Gender queer, and other

CH jail_homeless Any jail or prison experiences since becoming unstably housed or homeless
gunaccess Having access to a gun or knowing how to access a gun easily
avoid_police Purposely avoiding situations that may expose you to interaction with police

SR
life_sexpartners The number of sex partners in life
last_sui_di Drinking alcohol or using drugs before having sexual intercourse
online_sexpart Having sex with someone you met online

VE ace Experience of trauma and stress in childhood
anyst_phy_vict Any physical street victimization (e.g., assaulted with a weapon)
witness_gun_di Witnessing someone get attacked by a gun

GI Juggalo_di Ever been a Juggalo or a Juggalette?

MH

depression The 9-item questionnaire (PHQ-9) is used to assess the level of depression
ptsd A 4-item questionnaire is used to measure PTSD
perc_stress Perceived stress during the past month
unmet_ever History of unmet mental health needs
hospit_ever History of staying in a hospital to treat mental health conditions
medication_ever Using medication to treat mental health conditions
cope_8 How often do you use anger to get out of painful situations
cope_9 How often do you use drugs or alcohol to deal with problems

TA soc_media_prof Having a profile on a social media site

Table 7.1: Summary of questionnaire topics with a couple of sample questions

Data Pre-processing. We pre-process the original dataset in two steps. First,
as there are a lot of missing entries (∼18.5%) in our dataset (as homeless youth
could choose not to answer a question that made them feel uncomfortable), we
used the MissForest algorithm [162], an off-the-shelf data imputation method to
impute missing values in our dataset. Second, we apply feature standardization
(i.e., Z-score normalization) to all features in our dataset. Finally, we randomly
select 80% of samples as the training set and consider the remaining 20% as the
test set. The class distribution in the training and test sets is set to be the same as
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in the full dataset. At the end of this process, our data had 1,367 data points, each
of which had 231 features and a binary label for predicting SUD.

7.4 SUD Prediction Model
We formulate the problem of predicting the susceptibility of homeless youth to SUD
as a binary classification problem. To find the best performing model, we compared
the accuracy of the following classification models: Logit, SVM [43], Classification
And Regression Tree (CART) [163], Conditional Inference Forest (CForest) [164],
XGBoost [42], AdaBoost [79], and an MLP with two hidden layers (the number of
neurons in each hidden layer is half of that in the previous layer).

Table 7.2 compares the predictive performance of all our ML models across
several widely used evaluation metrics. The rows in this table represent different
classification algorithms and the columns represent different evaluation metrics
(Accuracy, Precision, Recall, F1, and AUC). According to the results in Table
7.2, AdaBoost is the best-performing model in terms of all evaluation metrics.
In particular, it achieves an AUC of 0.8546 which indicates its excellent class
separation capability.

Model Accuracy Precision Recall F1 AUC
Logit 0.7032 0.5729 0.5789 0.5759 0.7776
SVM 0.7692 0.7285 0.5368 0.6181 0.8360
CART 0.7289 0.6779 0.4210 0.5194 0.6850
CForest 0.7728 0.7619 0.5052 0.6075 0.8507
XGBoost 0.7545 0.7000 0.5157 0.5939 0.8304
AdaBoost 0.7985 0.7702 0.6000 0.6745 0.8546
MLP 0.7362 0.6575 0.5052 0.5714 0.7010

Table 7.2: Performance of different ML models on predicting the susceptibility of
homeless youth to SUD

In summary, experimental results show that it is indeed possible to train highly
accurate ML models to predict the susceptibility of homeless youth to SUD. Next,
we will conduct a feature importance analysis.
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7.5 Feature Importance Analysis
In this section, first, we conduct an ablation study to investigate the relative
importance of various sets of features on the overall performance of our prediction
model. Then, we conduct an important analysis at the feature level.

Ablation Study. We now conduct a preliminary investigation into the relative
importance of different sets of features in the predictive performance of our AdaBoost
model. Specifically, we conduct an ablation study as follows: (1) we divide the
features in our dataset into seven separate feature blocks (mentioned in section 7.3);
each feature block consists of features related to a specific topic, e.g., one feature
block ascertains involvement with gangs (GI), another block ascertains criminal
history (CH), etc.; (2) we remove one feature block from the feature space (at a
time), and then re-train an AdaBoost model on the remaining set of features; (3)
finally, we report the percentage decrease in AUC values for our model.

Figure 7.1 shows the result of ablating different feature blocks. The X-axis
shows the ablated feature block and the Y-axis shows the percentage decrease in
AUC. According to the results, among all feature blocks, removing mental health
characteristics (MH) leads to the greatest decrease in the model’s predictive accuracy.
At the same time, removing any of sexual risk behavior (SR), gang involvement
(GI), and victimization experiences (VE) also leads to about 3% decrease in the
model’s AUC. In general, the results of our ablation study are consistent with a
large body of literature that has established strong connections between mental
health [165], sexual risk behavior [166], and victimization experiences [167] and
SUD [168,169].

Figure 7.1: The results of ablation study
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Importance of Individual Features. We now discover the subset of “important”
features as follows: (1) we rank all features in our dataset based on their importance
values; (2) starting from the most important feature, we add features one by one in
the decreasing order of importance to the dataset and re-train a separate AdaBoost
model (with only the restricted set of features). Figure 7.2 shows the AUC of the
AdaBoost models trained with an increasing number of features. The X-axis shows
the (increasing) number of features used to train the model and the Y-axis shows
the AUC of the resulting AdaBoost model. This figure exhibits diminishing returns
(in terms of the increases in AUC) beyond the addition of the 18 most important
features in our dataset. Thus, we restrict our attention to these 18 features.

Figure 7.2: AUC of AdaBoost with different number of features

Figure 7.3 shows these 18 features ranked according to their importance values.
The definition of these features can be seen in Table 7.1. Overall, we categorize
these 18 features into three broad categories: environmental factors, psychological
factors, and sexual-risk behaviors, and further analyze these categories in detail.

1. Environmental Factors. Our model finds some environmental factors
important for predicting the susceptibility of homeless youth to SUD. In
particular, perceived stress (perc_stress, Imp=0.662), adverse childhood
experiences (ace, Imp=0.547), and some types of victimization experience
(anyst_phys_vict and witness_gun_di, Average Imp=0.504) are among
top-ranked features. This observation is consistent with existing literature
as follows: (1) there is a lot of prior work which hypothesizes that homeless
people’s lifestyle (e.g., sleeping outside) increases the likelihood of experiencing
victimization [170]. For example, Stewart et al. [171] show that ∼85% of
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Figure 7.3: The importance value of 18 important features

the homeless population have experienced trauma and victimization. (2)
These victimization experiences are shown to be significantly related to
psychological distress and painful situations among youth [172]. (3) The
importance of these factors along with factors related to coping strategies
(cope_8 and cope_9, average Imp=0.749) are consistent with prior work on
SUD in homeless populations which shows that these youth self-medicate
substances to alleviate the effect of painful situations and to cope with stressful
situations [173].

Additionally, factors associated with law enforcement (avoid_police and
jail_homeless, Average Imp=0.483) show up among important features.
Intuitively, this makes sense because SUD involves the use of illicit substances
(such as crack and cocaine), and an encounter with law enforcement could
result in the individual being arrested and sent to jail. Even someone using
a legal substance (e.g., alcohol) could be arrested for being intoxicated in
public. Given the high punitive cost of engagement with law enforcement
agencies, therefore, it is reasonable to expect that youth suffering from SUD
would prefer to avoid encounters with law enforcement, or else they might
end up in jail at some point during their time on the streets.

2. Psychological Factors. Our model finds some psychological factors im-
portant as well. In particular, certain mental health disorders (ptsd and
depression, Average Imp=0.638) and mental health needs (e.g., unmet_ever,
hospit_ever, medication_ever, Average Imp=0.505) show up among im-
portant features. The importance of these factors makes sense because prior
work [174] suggests that people struggling with PTSD self-medicate and use
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substances to cope with PTSD symptoms. Furthermore, the simultaneous
presence of PTSD and depression among important factors along with the
victimization experiences feature block is consistent with prior work [175],
which shows that the comorbidity of depression and PTSD are highly likely
among adolescents with victimization experiences.

3. Sexual-Risk Behaviors. Our model finds some factors pertaining to
sexual-risk behavior important for predicting the susceptibility of homeless
youth to SUD. In particular, we observe that factors related to sex part-
ners (life_sexpartners and online_sexpart, Average Imp=0.595) and
using substances before sex are among the important features (last_sui_di,
Imp=0.724). In general, this could be justified (to some extent) by the
existing literature [176] on the relationship between drug use and sexual risk
behaviors. In particular, they explained that sex partners of drug users are
highly likely to use drugs, and in this case, factors pertaining to sexual risk
behaviors could be related to SUD.

7.6 Limitations
This work has a few limitations, many of which stem from the dataset that we
use. The nature of the homeless population necessitates some decisions that limit
the claims we can make with this research. The youth population surveyed for
this study was not randomly selected which makes it more difficult to generalize
our results to the entire population of homeless youth. Our data also relies on
self-report measures, which have their own set of limitations. With self-report
data, participants may not be completely honest when responding to the survey.
Circumstances in this study make this more likely because the questions in the
survey related to different conditions that have a stigma, making it possible that
the individual would give a more socially acceptable answer instead of truth. As
such, it is possible that conditions like SUD are under-reported in this dataset.
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7.7 Summary
This chapter takes an ML-based approach to help policymakers and practitioners
in their efforts to mitigate the prevalence of SUD among homeless youth. In fact, it
develops an ML model with high accuracy to predict homeless youth’s susceptibility
to SUD. Then, it conducts feature importance analysis to obtain further insights.
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Chapter 8 |
Future Work

This chapter describes a few future research pathways.

Multidisciplinary Approach to Label Generation. The lack of ground-truth
labels is an important obstacle to the development of deep learning algorithms. In
the future, I plan to build upon the existing research (such as [126]) and study how
to generate high-quality labels of different types automatically. In particular, I am
interested in translating findings of prior work in other disciplines into the target
variable of interest in order to facilitate incorporating domain expertise into the
process in an inexpensive and efficient manner.

Robust ML under Real-World Inaccuracies/Noises. Recent advances in
the area of adversarial ML provide a great opportunity to develop ML models
that are robust to adversarial perturbations, especially, many of them focused on
classification tasks such as [177–179]. However, in certain real-world situations,
accurate regression algorithms are needed, and the level of noise/inaccuracy might
not necessarily be low. Accordingly, in the future, I plan to build upon existing
research and design algorithms (with particular attention to regression tasks) that
are robust to such real-world noises/inaccuracies.
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