
The Pennsylvania State University
The J. Jeffrey and Ann Marie Fox Graduate School

TEXT AUTHORSHIP IN THE AGE OF LARGE LANGUAGE MODELS

A Dissertation in
Information Sciences and Technology

by
Saranya Venkatraman

© 2024 Saranya Venkatraman

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2024



The dissertation of Saranya Venkatraman was reviewed and approved by the following:

Dongwon Lee
Professor, College of Information Sciences and Technology
Dissertation Advisor
Chair of Committee

Ting-Hao (Kenneth) Huang
Associate Professor, College of Information Sciences and Technology

Amulya Yadav
Associate Professor, College of Information Sciences and Technology

Rui Zhang
Assistant Professor, Department of Computer Science and Engineering

Carleen Maitland
Professor, College of Information Sciences and Technology
Program Head

ii



Abstract
Tremendous progress in text generation by Large Language Models (LLMs) has led to an
exponential rise in both the quality and quantity of LLM-generated texts. We are now
surrounded by texts that are written entirely or enhanced and edited by autoregressive
models. These texts appear in many contexts, ranging from dialog turns in an interactive
session with ChatGPT to academic articles summarized by an LLM, a news article
generated entirely by a model on social media, and so on. The ubiquity and high quality
of such texts have made tracking and detecting their presence a task of growing and urgent
importance. Particularly, there are developing concerns about copyright infringement,
privacy, malicious use, intellectual property (IP) rights, and academic integrity that
require active efforts to identify and trace LLM texts.

In this thesis, we study machine-generated texts through four authorship-related
tasks: (1) Human v/s Machine-generated Text evaluation: We first study if machines
have human-text-like traits as measured by psycholinguistics-based measures. To do this,
we turn to the Uniform Information Density (UID) principle that states that humans
tend to distribute information or surprisal evenly or smoothly in language production.
We analyze if machine-generated texts follow similar surprisal patterns and find that
the answer depends on the decoding strategy used, with some settings generating more
“human-like” surprisal distributions than others. But overall, we find that machines
distribute surprisal differently than humans. Building upon this, we move to the next
task, (2) Machine-generated text detection and Authorship Attribution: We develop
“GPT-who”, an authorship attributor that uses surprisal-based features to identify if a
text is human-written or machine-generated, and also predicts the exact author LLM.
We then study the reverse problem of (3) Authorship Obfuscation where the goal is to
obfuscate or hide an author’s identity by preserving semantics but altering the writing
style such that it cannot be traced back to the original author. To do this, we present
“ALISON”, an obfuscation method that perturbs individual authors’ syntactic patterns.

Beyond single-authored texts, we explore (4) multi-LLM collaborative text generation
by creating “CollabStory”, a benchmark dataset containing over 35k creative stories
generated jointly by up to 5 state-of-the-art open-source LLMs. We do this to study how
authorship-related tasks evolve when multiple authors are present in a text, in light of
unifying frameworks such as vLLM and LangChain that have enabled this oncoming
scenario. Through these novel methods and datasets, this dissertation advances our
understanding of authorship in the evolving landscape of LLM-generated texts and
provides practical tools for addressing emerging challenges.
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Chapter 1 |
Introduction

Generative Large Language Models (LLMs) are rapidly transforming the landscape of
real-world applications, seamlessly integrating into our daily lives and reshaping how
we perceive and interact with textual data. From virtual assistants that anticipate
our needs and recommend products on retail websites such as Amazon, to intelligent
content creation tools that enhance productivity, LLMs are becoming indispensable in
industries like healthcare, education, and entertainment. As they evolve, their ability to
generate human-like text, solve complex problems, and provide personalized experiences
are redefining the boundaries of what machines can achieve.

LLMs now generate content across a wide array of contexts, including social media
posts, bot-generated responses on online platforms such as Reddit, academic publications,
creative writing, and more [2–9]. The rapid advancements in both the quality and the
capabilities of LLMs have resulted in a substantial proliferation of machine-generated
texts across digital spaces. The volume of machine-generated texts on the internet has
grown exponentially and brought with it the serious implication of how humans are
often unable to detect such texts and perceive them to be written by humans or verified
sources [10–13]. This surge has introduced novel challenges and concerns regarding the
use, origin, and implications of such texts.

This growth in the capabilities, quality, and acceptance of such machine-generated
texts in everyday life has been accompanied by an increasing set of challenges for the
Natural Language Processing (NLP) research community. A particularly crucial aspect of
these emerging challenges involves understanding authorship in the context of LLMs. In
this context, authorship extends beyond traditional notions and encompasses the broader
task of detecting, tracking, and critically analyzing the presence of machine-generated
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texts. The use of LLMs is not limited to generating standalone content but increasingly
involves their participation in collaborative or assistive roles in writing tasks, where they
function as writing assistants or even co-authors in human-machine interactions.

This raises questions about how to attribute authorship when LLMs contribute to text,
whether as part of a machine-in-the-loop writing process or in cases where the text has
been revised or paraphrased by different models. The complexity of these collaborative
relationships between humans and machines introduces a need for more sophisticated
methods to discern the role of LLMs in generating specific portions of text. Additionally,
it necessitates a deeper understanding of how LLMs are being integrated into various
writing tasks, including creative writing, academic work, and professional documentation,
and how this impacts the overall quality and originality of the produced content. As
LLMs become more embedded in routine writing workflows, the NLP community must
develop frameworks that allow for the transparent and accurate assessment of machine
contributions. These frameworks must not only address the technical aspects of detecting
LLM-generated text but also engage with the broader ethical and practical implications
of using LLMs as writing collaborators. This includes evaluating the effectiveness of
LLMs in enhancing writing processes and understanding the potential risks, such as the
introduction of bias, misinformation, fake news proliferation, threats to privacy, or loss
of originality, which might arise from relying on these models [2–9,14].

1.1 Motivation for studying LLM authorhship
The challenges arising from this ever-increasing usage and presence of machine-generated
texts are manifold, complex, and often entangled. One way of organizing such growing
concerns around machine-generated texts is by defining and understanding different
authorship-related tasks that each address different aspects of LLM authorship, which
would, in turn, address the challenges presented so far. In this thesis, we study four such
tasks that capture ongoing challenges brought upon by the LLM era as follows:

• Evaluation: As LLMs increasingly contribute to the volume of textual data being
consumed at scale, it is imperative to examine whether such models enhance the
quality of text output and facilitate improvements in terms of speed of writing,
accuracy in terms of the overall objective of the writing task, and effectiveness.
The task of evaluating machine-generated texts refers to the operationalization
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and study of different measures and metrics of text quality [15–17]. Quality here
refers to different types of measurable properties of text such as readability [18],
coherence [19], lexical diversity [20], semantic quality [21], and grammatical cor-
rectness [22]. Most measures of such quality can be categorized as either human
evaluation measures or automated metrics. Human evaluation measures require
some data collection form human participants or experts rating or qualitatively
assessing the text manually [23–25]. Automatic metrics constitute evaluation
measures that can be calculated based on the text generated or being evaluated
using some operationalizations such as lexical counts, perplexity using a trained
language model, rule-based systems, and deep learning-based methods [26–28]. The
overarching goal of all such metrics is to gauge the quality of the text as measured
along different properties to assess the “goodness” of the text.

In the context of machine-generated texts, the evaluation is focused on measures
of whether the machine-generated text is of similar quality as the human-written
text. This evaluation is crucial to understand and evaluate if machine-generated
texts are more and more human-like and if they contribute meaningfully to the
task at hand. Thus, the choice of evaluation measures matters in informing the
type of implications for any writing task. For example, for an academic writing
assistant, measures of factual correctness, grounding, and logical fallacies might be
more crucial to gauge task success. On the other hand, a creative story-writing task
might benefit more from measures of creativity, plot twists, diversity, and depth of
characters. Thus, the writing task and domain often inform the choice of relevant
evaluating parameters. In the case of machine-generated texts and their comparison
to human-authored texts, the human-written samples are treated as references or
“ground-truth” examples that models should replicate. Hence, comparative studies
of such evaluation measures for the two types of texts can help gain insights into
the general extent to which machine-generated texts follow human performance in
writing tasks and help quantify and compare LLM abilities.

Thus, evaluation not only has implications in understanding the general state of
LLM-authorship but can also help inform directions for further enhancements by
identifying aspects and task criteria that aren’t satisfied. With an expansion of LLM
tasks, the methods of evaluating texts must also evolve and reflect the complexity
and sophistication of machine-generated texts. For example, current LLMs are
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all grammatically accurate; hence, reporting and comparing grammatically might
lead to the wrongful inference that LLM-generated texts are at par with human-
generated texts. This can only be counteracted by including updated measures
to capture the traits that are still challenging for LLMs, such as factuality and
coherence. Thus, as LLMs get better, so should the methods of evaluating their
qualities and comparisons with human performance.

• Attribution: This authorship-centered task broadly involves identifying a text’s
author or mapping any given text to its true writer. Attribution can be done in two
main settings: the machine-text detection setting or the reverse turing test, where
the author can be one of two authors (machines or humans), or the multi-class
extension that entails predicting exactly which human or machine (LLM) authored
a text. Attribution is a task of growing urgency to the the progressive improve-
ments in LLM text qualities that have made them increasingly indiscernible to
both human readers as well as automated methods developed for this task [29, 30].
The attribution task is one of the most crucial authorship-related tasks due to its
implications and potential impacts on how society interacts with and perceives
machine-generated texts at large. One such critical concern in the rapidly ex-
panding and highly competitive LLM market is the issue of content ownership,
and the verification of creative authorship. With LLMs frequently engaging in
the paraphrasing and editing of human-generated texts, a crucial challenge arises:
not only distinguishing machine-generated content from human-authored text, but
additionally identifying the specific contributions.

For instance, consider a scenario in which some parts of a human-written text
is paraphrased by an LLM, with the latter introducing factual inaccuracies or
misinformation. In such cases, being able to discern the contributions of each author
is essential, particularly for identifying potentially malicious actors or detecting the
infiltration of unreliable content into critical domains such as journalism and public
discourse. This capability has far-reaching implications, including its potential use
in detecting perjury and preventing the adversarial manipulation of information,
thereby safeguarding the integrity and credibility of public and media discourse.
Furthermore, accurately identifying LLM-generated content is crucial to preventing
unjust claims of intellectual property (IP) rights. In a competitive landscape,
where the monetization of LLM technologies is increasingly pursued, the ability
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to attribute text accurately to its source prevents undue claims of ownership and
reinforces the defense against erroneous or fraudulent IP assertions. This issue is
particularly salient in academic contexts, where the use of closed-source LLMs by
students or researchers without appropriate declaration of content ownership raises
ethical concerns related to plagiarism and academic integrity.
The ability to trace LLM authorship also has significant implications in cases where
the output of one LLM is misrepresented as the product of another, with the intent
of exaggerating the capabilities of a given model. Such misrepresentation could
be employed to attract investment or support for LLM applications in high-stakes
fields such as healthcare, education, or creative industries, where the perceived
quality and reliability of the model are critical factors in securing financial backing.

• Obfuscation: This task refers to the process of hiding an author’s identity by
changing the overlying text such that it preserves the content or meaning of the
original text while changing the phrasing of it in such a way that it cannot be
mapped back to the original author. This often involved shifting the style of
presenting the content so as to hide an author’s stylistic signatures. The motivation
for obfuscation is the opposite to that of the attribution, with both tasks trying to
undo the efficacy of the other. While attribution is a means to safeguard against
identity theft in some ways, obfuscation is meant to encourage identity theft or
shift so as to protect the original author. This task setting is crucial in settings
with critical data. For example, in the case of political discourse, it is essential to
be able to disguise the identity of an author or potential whistle-blower to protect
the writer from any retaliation for making restricted information public. For law
enforcement, too, incriminating evidence that needs to be presented anonymously is
often subject to obfuscation so as to erase any remaining traces of stylistic nuances
that might give away the author’s or source’s identity.

More generally, obfuscation can also be thought of as a means to “depersonalize”
critical data by removing any signs of which organization or LLM authored a text.
This is of interest to the LLM market competitors who might use obfuscation as
a means to avoid being marked as a source of misinformation, hallucinations, or
fake news that can be of high impact. The obfuscation process can help provide
some legal blanket in such scenarios to organizations trying to avoid lawsuits or
IP-related legalities. Furthermore, there is evidence to suggest that the knowledge
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of authorship can often skew how the content is perceived. This has implications
for reducing biases in the inferred legitimacy, quality or trustfulness of a text based
on just its source. For example, if a news article is obfuscated to emulate the style
of a Republican journalist or publisher, this might increase the trust of that content
by readers who are familiar with their style.

On similar lines, individual writers might also seek to avoid personal bias by ensuring
their work is judged solely on its content rather than their reputation or past work.
In literary and academic contexts, authorship obfuscation can serve as a form of
creative or scholarly experimentation, exploring how style and identity influence
reader perceptions and stylistic consistency. Similarly, authors may alter their
style to adopt fictional personas, creating distinct voices for characters. In regions
with restricted free speech, authors may also obfuscate their identities to evade
censorship or government retaliation, enabling the spread of controversial ideas
without facing persecution. There is also a direct incentive in trying to circumvent
authorship attributors that are responsible for moderating and removing machine-
generated texts in social forums means for human interactions such as Reddit and
Twitter. Thus, obfuscation has implications for free speech protection, privacy,
digital surveillance, and content moderation.

• Collaboration: Most methodologies built to analyze and understand machine-
generated texts make the broad assumption that the texts are strictly written by a
single author end-to-end or homogenous in authorship, style, and the result of a
continuous writing process. However, there is a shift in this paradigm driven by
tools such as CoAuthor [8], CoPoet [31], ChatGPT [32], and other tools that enable
human-machine collaborative writing. One step further, there are frameworks such
as vLLM, HuggingFace, and LangChain that are now enabling simultaneous calls
to multiple LLMs and seamless plug-and-play of LLMs from different organizations,
both open and closed-source. Both of these scenarios are giving rise to an emerging
increase in the amount of multi-authored or collaboratively written texts. However,
this shift in real-world data has not been reflected equally by methods that address
authorship-related concerns listed previously.

There is a need to adapt current machine-text evaluations, attributors, and obfus-
cators to this multi-author setting so that they do not fail from the assumptions
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of single-authored texts. However, a significant roadblock in such efforts has been
the lack of data to train or even fine-tune existing approaches. Thus, there is a
need for open-source datasets that capture the interactions of multiple LLMs in
solving different types of writing tasks collaboratively via sequential prompting
and generation. Such datasets can, in turn, help adapt existing methods to work in
the multi-author setting and automate new tasks that arise, such as the detection
of author boundaries, multi-author attribution, and evaluation.

In this thesis, we focus on the aforementioned authorship-related tasks that provide a
deeper understanding of and insight into the properties of machine-generated texts, their
detection, obfuscation, and collaborative generation. In the next sections we formalize
each of these tasks and provide an overview of the methods and datasets developed as
follows:

Machine-generated texts can be evaluated in many ways. This evaluation can range
from particular properties, such as grammatically, to more complex evaluations, such as
assessing the truthfulness of the text generated. In this dissertation, we aim to evaluate if
machine-generated texts are human-like. To do this, we first define “human-likeness”
using a psycholinguistic theory that delineates a particular property that humans follow in
their language production. This theory is called the Uniform Information Density [33–37]
theory and is crucial to both the evaluation as well as attribution portions of this thesis.
We introduce this psycholinguistic principle in the next section:

1.2 Background
In 1948, in his seminal paper A Mathematical Theory of Communication, Claude Shannon
introduced Information Theory, a theory of communication [38]. According to this theory,
the purpose of communication is to be able to transmit a message (out of all possible
messages) across a noisy channel in a way such that the receiver is able to interpret the
message at their end despite the noise in the channel [38]. Thus, information theory
delineates how information should be transmitted across a channel or medium such that
it is received as was intended by the sender while constructing the message or information
to be shared. This theory has made inroads in how humans communicate via the channel
of language. Specifically, during dialog, interlocutors are in this “information theoretic"
scenario wherein one speaker says an utterance that is received and interpreted by the
other participant in the dialog. The first one then again interprets the response of this
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second speaker, the conversation builds up and flows back and forth based on the mutual
understanding that comes from this exchange of messages. There is an important aspect
here of selecting a message or a particular way of constructing an utterance from all
possible choices. When communicating, speakers are actively making choices such as
what words to use and how to form the syntactical structure of the utterance. The
purpose of this selection remains to be able to convey a meaning clearly and succinctly.
It is here that the principle of Uniform Information Density (UID) positions itself in
human dialog. But before a discussion of the role of UID in dialog, it is important to
establish certain concepts to establish the basis of the theory. To begin with, Shannon
defines the information content of a word as being directly related to its probability in
a given context. Less predictable words have more information and more predictable
words have less information. For example, in the following sentence:

“The Sun rises in the East."

the word “East" is very highly predictable from a semantic standpoint because the
sentence is conveying a known concept. Thus, given its context (“The",“Sun", “rises",
“in", “the") this word (“East") has high predictability, and thus less information content
according to Information Theory. Shannon further goes on to associate information
content with surprisal i.e. the amount of surprise that a word raises in a given context.
Going back to the aforementioned example, the word “East" has very little surprisal as it
is not surprising to read that the Sun rises on the East. Thus, it can be said that low
probability is associated with high surprisal. These two thus go hand in hand with high
information content. Conversely, high probability is accompanied by low surprisal and
subsequently, lower information content.

When speakers engage in language use for the purpose of communication, they replicate
the information theoretic concept of information transmission in a noisy channel of some
limited bandwidth [38]. Shannon’s definition of information content of a component or
unit (n) is given by the inverse logarithm of its probability (p(n)) i.e.

I(n) = −logp(n) (1.1)

Information Theory states that information exchange is optimized when information
travels across the (noisy) channel at a uniform rate i.e. the amount of information
transmitted should remain uniform per time close to the channel’s Shannon (information)
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capacity. In dialog, the way UID is maintained is often through means such as modulating
word length, choice of vocabulary, use of contractions and so on. Thus, a violation of
UID can then be computationally detected when the amount of information content (as
per Shannon’s definition) per linguistic unit (sentence length/number of words) goes
up or down all of a sudden at the onset of a word or sentential element. For language,
the implications of this information optimal information exchange have manifested as a
strategy that speakers use during language production. Frank and Jaeger’s corpus-based
study demonstrated that maintaining UID is one strategy that speakers use to regulate
and optimize production [33]. The study shows how American English speakers tend
to use a contraction (“you’re") as opposed to the lengthened variant (“you are") when
expressing elements of low and high information content, respectively [33]. Their study
thus shows that one would use shorter elements for lower amounts of information and
longer elements/sub sequences for expressing higher amounts of information. Thus, in a
way keeping the information rate in the ‘channel’ close to uniform - which is the premise
of Shannon’s Information Theory.

[34] extended upon their work and addressed the often quoted problem with written-
text based studies in dialog and production by basing their analysis on spoken dialog so as
to capture the nature of conversation as a ‘joint activity’ between two speakers [34]. They
report that UID is consistent at the inter and intra-sentential levels. In their analysis,
the information content drops at the beginning of a new topic (topic shift) and then
eventually grows as the topic is being discussed more, and eventually lowers again as the
topic ends. They also examine the variation in the contribution to information density
from speakers playing different roles (topic initiator v/s topic responder), specifically in
the context of the introduction of a new topic in dialog. They find that topic initiators
and topic responders have decreasing and increasing entropy, respectively [34,39].

In another work concerning UID in production, Jaeger and Levy investigated if
syntactic reduction is a means by which speakers uniformly distribute information in
utterances [40]. They found that speakers chose not to omit an optional function word
at the onset of a less predictable phrase, but that they were more likely to omit the
same word at the beginning of a more predictable phrase. Further, a corpus study [35]
consolidated previous results that in choices that pertain to the syntactic structures
that a speaker might pick, they are regulating those choices as per UID: the speaker is
actively trying to make choices that would distribute the information that needs to be
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conveyed in a uniform manner across the linguistic (speech) signal. This is also another
pivotal study of the foray of UID in production at the level of grammar structures for
monolinguals. They used the Penn Treebank and Switchboard corpus of conversations in
a generalized linear mixed model study of the effect of information density on syntactic
structure preferences. They specifically found the effect that speakers were less likely to
produce a complementizer “that" the lower the information density of the complement
clause onset. This paper [35], thus, established the role of UID in choices at the syntactic
level during production.

In Manin’s work, he puts forth an interesting analysis of the relationship between
word length and its predictability [41]. Specifically, he finds from corpus analysis, that
the logarithm of the probability of a word given context (unpredictability) is linearly
dependent on the length of the word. This is interpreted as a pointer to the notion that
natural language is prone to ‘even out’ information rate such that longer words are less
predictable and hence carry more information. In another study of the correlation of
word length with information content, [36] find that speakers pick the shorter version of a
word (“chimp") as opposed to the longer counterpart (“chimpanzee") in more predictive
(lower information) and less predictive (higher information) contexts, respectively [36].
They attribute this finding to the fact that speakers are in fact smoothing out information
distribution and making ‘information-theoretically efficient’ choices thereby lending even
further support to the notion that word length is correlated with Shannon’s idea of
information content than their absolute frequency in usage [36].

In an expansive study across ten languages, Piantadosi et al. studied the relationship
between word length and the information content of the words according to Shannon’s
definition [42]. They found, for the 10 languages, that information content was a consid-
erably more significant predictor of word length than frequency, given the variation in
the degrees of morphological inflections in them [42]. Finally, [37] studied the usage of
‘less informative’ expressions as a means of conveying meanings with higher predictability
in a large-scale scale experiment that directly assessed comprehenders’ ease of predicting
the referent in an unfolding utterance [37]. They found, from an information theoretic
analysis, that speakers tended to refer to highly predictable referents with short words.
They found that pronouns were used for highly predictable referents while proper names
were used for less predictable referents. This study also lends us an interesting per-
spective on the relative accessibility of pronouns v/s proper names given different contexts.
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Authorship
Task Description Research Question Motivation

Evaluation To assess texts according
to some measure

Do machines distribute
surprises like humans?

To understand if ma-
chines have come close
to human performance in
writing tasks

Attribution To predict the author of
any text

Can surprisal help iden-
tify the author of an arti-
cle?

To safeguard against pla-
giarism and academic in-
tegrity violations

Obfuscation To hide the author’s style
from a text

Can syntactic patterns be
leveraged to hide author-
ship?

To protect whistleblowers
and eliminate biases

Collaboration
To have multiple LLMs
solve writing tasks to-
gether

How can sequential
prompting be used to
generate collaborative
stories?

To enable research efforts
in multi-LLM scenario

Table 1.1: An overview of the authorship tasks, research questions and motivation for
each task presented in this thesis.

1.3 RQ 1 & 2: Machine-Generated Text Evaluation
In light of UID theory, we refine our aim of evaluating if machine-generated texts are
human-like by asking the following research question (RQ1): Do machines distribute
information like humans do? Since UID theory tells us how humans distribute
information or surprisal in their language generation, we aim to operationalize the
surprisals distributions of both human and machine-generated texts. A comparative
study of the two text distributions is presented in Chapter 2. The UID principle states
that humans spread information uniformly or smoothly when planning utterances. We
operationalize this theoretical aspect of human language to define “human-likeness"
using surprisals derived from a language model’s learned probability distribution. This
enables us to measure and mechanistically evaluate the differences between humans
and different machine-generation settings (i.e., decoding strategies) by comparing their
surprisal distributions. We find that humans and machines do, in fact, spread surprisals
differently in their texts.

We also ask a second research question (RQ2): Does more human-like text
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correlate with better text quality? To answer this question, we use our UID
operationalization as the score for human likeness and measure the correlation of this
score with different measures of quality, both automated metrics as well as human
evaluation scores. We conduct a large-scale human evaluation study to evaluate text
generated using different decoding strategies as well as the reference human-generated
text for a dialog response generation task on qualitative measures of how interesting,
relevant, and engaging responses are.

1.4 RQ 3: Authorship Attribution
Attribution refers to the task of automatically identifying the author of a given text.
Since we learn from our evaluation study (RQ1) that humans and machines differ in
how they distribute surprisal or information, we then study if these differences can help
differentiate between human and machine-generated texts (i.e., the Automated Turing
Test) and identify authorship. Our research question in the attribute setting is (RQ3):
Can surprisal distribution help indemnity the author of an article? To this end,
we propose GPT-who, an information-density-based text authorship attributor in Chapter
3. We developed a means to utilize the surprisal measures as part of a fast authorship
attributor and found that these surprisal differences are distinguished between authors.
Thus, UID theory is a useful tool in analyzing and identifying machine-generated texts,
and it captures how machines are not yet human-like as per surprisal distributions.

1.5 RQ 4: Authorship Obfuscation
While automated methods to detect machine-generated texts are on the rise, there is
also a need to counteract detectors or solve the opposite problem of hiding or protecting
authorship. For example, in the case of whistleblowers, journalism/free speech protection,
there is often critical information to be made public or to be shared while needing to
protect any tracing to the author or source. There is also the case of privacy protection,
where an author might not want to be known, or in the case of high-risk or personal data,
where de-personalization is required in the form of authorship style change. In some
instances, hiding the authorship of information can also help reduce perceived biases
or any partial analysis of the content. This leads us to the third task of authorship
obfuscation (Chapter 4). To obfuscate authorship means hiding the identity or making
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the author’s identity hard to identify based on the obfuscated text. We hypothesize that
how a text is presented is the source of its style as opposed to what the text is meant to
convey and that this “how” is captured by syntactic patterns. Thus, we ask the research
question (RQ4): Can syntactic patterns help obfuscate authorship? We present
a novel obfuscation technique called ALISON, which identifies the most frequently used
and important syntactic patterns of each author and changes the corresponding text. We
define syntactic patterns as parts-of-speech (POS) n-gram sub-sequences. Using syntax
to guide the text obfuscation process works and provides evidence for our hypothesis
that author style is sufficiently captured by an author’s syntactic choices to phrase the
information instead of the content or semantics of the information.

1.6 RQ 5: Collaborative Generation
Finally, we move to a forward-looking and upcoming scenario that has not yet been
addressed by most authorship-related methods, including evaluators, detectors, and ob-
fuscators that always assume that every text is generated homogeneously by one author.
Moving beyond such single-author settings, we take into consideration rapid developments
in unifying frameworks such as HuggingFace, vLLM, and langChain that have seamlessly
enabled the collective and interoperable use of multiple LLM authors in the same text.
However, we first need a dataset that captures this multi-LLM authorship to build and
adapt current methods to such an emerging scenario (Chapter 5). This brings us to
the research question (RQ5): To generate a collaborative text benchmark using
sequential prompting. We present CollabStory, a corpus of creative stories co-authored
by multiple different LLMs, and elaborate on the design decisions and prompt formats
that can enable at-scale collaborative generation.

By examining these four areas summarized in Table 1.1, this thesis aims to provide
a comprehensive framework for understanding the current state of authorship-related
tasks in the content of LLM-generated texts. This research not only sheds light on the
technical challenges but also considers the broader implications for society, including the
ethical and legal aspects of authorship in the age of machine-generated content.
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Chapter 2 |
Machine-Generated Text Evalua-
tion: Are machine-generated texts
human-like?

2.1 Introduction
The Uniform Information Density (UID) hypothesis states that humans distribute
information in their utterances evenly for optimal communication [35, 43]. Consequently,
language generation has benefitted from UID-based objectives and regularization [44, 45].
Specifically, [46] argued that UID can be optimized for machine translation using beam
search. Yet, the effect of different decoding algorithms on information density distributions
of generated text are unknown, as is UID’s broader role in neural response generation
in the special case of dialogue models. Here, we investigate (i) if different decoding
algorithms follow the UID principle, and (ii) if following the UID principle is beneficial for
dialogue response generation, and (iii) collect human annotations of qualitative measures
for multiple candidate responses to dialog histories generated using different decoding
algorithms to study the relationship of dialog response quality and UID. We operationalize
UID as the variance of surprisal and measure its correlation with automatic metrics (e.g.,
BLEU, METEOR, BERTScore) as well as human judgments on qualitative measures
of response quality and find that adherence to UID correlates negatively with human
judgments when the responses have very low/high surprisal.
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Figure 2.1: Information density distribution of human and GPT-2 generated responses
for the Persona-Chat dataset. A smaller width of the distribution or more values closer
to 0 implies more uniform responses, and a wider spread (such as for the human response)
indicates more non-uniform responses.

2.2 Related Work

2.2.1 Language production in humans

Spreading information content evenly in utterances is a marker of optimally strategized
responses, and humans follow this UID principle as a means to state their thoughts
clearly and to make themselves intelligible [33,47]. The probability of a sentence has been
associated with the cognitive load it incurs [48]. As a means to avoid salient variations
in the information content (surprisal, i.e., negative log probability) of responses, speakers
maintain UID through linguistic choices such as that at the phonetic [49], syntactic [35]
and lexical level [36].

2.2.2 Response generation in machines

While large-scale pre-trained language models provide a rich prior for dialogue response
generation, the choice of decoding algorithm used at the time of generation is crucial
for the quality of generated responses [50–54]. While vanilla sampling often tends to
produce incoherent text, greedy decoding leads to safe and repetitive responses. More
recently, top-p/nucleus [50] and top-k sampling [55] are used to tune values of p/k to
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Figure 2.2: Histogram of UID Scores of responses generated using different decoding
algorithms. The farther the UID score from 0, the less uniform or more non-uniform
the response. Human-generated reference text (left-top) has a higher frequency of non-
uniform responses as compared to any model setting as can be seen from the wider
spread of scores away from 0. Also, as the values of p and k increase (left to right), the
information density distribution slowly approaches reference text-like non-uniformity.

Figure 2.3: Surprisal at every token in candidate responses to the same dialog history,
color-coded with human-annotated interesting scores. Plots (left to right) are arranged
in increasing order of uniformity (i.e. variance along y-axis). Less uniform the surprisal
(left-most), better the score.

balance the diversity-quality trade-off [51,56].

2.2.3 The UID principle and decoding algorithms.

Both the UID principle and decoding algorithms (examples in Table 2.1) can be seen as
guiding mechanisms for dialogue response production in humans and generation in ma-
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Decoding Strategy Description
Greedy Always pick most likely token
Vanilla Sample from Language Model’s probability distribution
Top-k Sample from k most probable tokens

Top-p /Nucleus Sample from p portion of the probability mass

Table 2.1: Common decoding strategies in text generation using language models.

chines, respectively. UID’s role in machine-generated dialogue is not well understood, with
previous work mainly focused on machine translation and language modeling [45,46,57].
To address this gap, we present a comparative study of decoding methods to develop a
deeper understanding of the role of UID in dialogue response generation.

It is thus a natural question to ask if dialogue models leverage the UID principle to
improve generation quality. Despite its significance in human dialogue [33,47], its inte-
gration with models of human language production is not yet clear. Decoding algorithms
in generative language models suggest a competition account that assumes that multiple
words are available for selection (in the case of the common autoregressive models),
although unlike in some psychological accounts, they do only compete by their relative
probabilities. UID could, of course act on available representations differently, and this
work makes no claim with respect to alternative accounts of how UID is implemented
from the psycholinguistic perspective.

Information density is a measure derived from the probabilities of the generated text
under the model’s learnt distribution. lends itself to the idea that the information density
patterns of different sampling settings would vary from each other and also from that
of the gold standard or human-generated reference text. We examine if and how the
information density patterns of common sampling methods differ. Further, we investigate
if the differences in the response quality of the sampling/decoding methods could be
explained by their information density patterns.
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Generation Type Length BLEU chrF METEOR
p = 0.3 -.10 .00 .14 .12
p = 0.5 -.05 .03 .13 .10
p = 0.6 -.04 .06 .14 .13
p = 0.8 -.10 .03 .06 .05
p = 0.9 -.11 -.00 .03 .04
Greedy -.14 .01 .14 .13
k = 10 -.04 .15 .03 .05
k = 20 -.05 .14 .05 .06
k = 50 -.09 .01 .03 .03
k = 100 -.07 .04 .00 .02

Table 2.2: Part A: Pearson’s correlation coefficient (r) between UID score and Length,
BLEU, chrF, and METEOR metrics of dialog responses generated using different decoding
settings.

Generation Type BertScore BLEURT RoBERTa SacreBLEU
p = 0.3 .17 .17 0.19 .13
p = 0.5 .18 .17 .2 .15
p = 0.6 .01 .06 .01 .00
p = 0.8 .18 .16 .2 .15
p = 0.9 .16 .15 .19 .14
Greedy .06 .05 .06 .06
k = 10 .07 .08 .07 .07
k = 20 .05 .04 .06 .04
k = 50 .06 .03 .03 .05
k = 100 .11 .08 .08 .08

Table 2.3: Part B: Pearson’s correlation coefficient (r) between UID score and BertScore,
BLEURT, RoBERTa, and SacreBLEU metrics of dialog responses generated using
different decoding settings.

2.3 Experimental Details

2.3.1 Model & dataset

We use the fine-tuned GPT-2 [58] model provided by HuggingFace and use their data
preprocessing and response generation scripts1. We used the Persona-Chat [59] data split

1https://github.com/huggingface/transfer-learning-conv-ai
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provided by the ConvAI2 challenge [60]2. We then generated responses for 7500 dialogue
histories randomly picked from 7801 validation set examples using vanilla, top-p, top-k
sampling and greedy decoding.

Decoding algorithms

Vanilla sampling randomly picks the next token from the model’s probability distribution,
including many long-tail samples. Top-k samples from the k most probable tokens;
Greedy decoding is Top-k = 1 decoding, always selecting the most probable next token.
Top-p (Nucleus) sampling selects the next token from the top p portion of the probability
mass.

2.3.2 Uniform Information Density score

We measure UID as the variance of the surprisal (negative log likelihood) of each token
in the response [45, 46,61]. This measure is able to capture any sudden variations in the
surprisal of the tokens in the sentence. UID Score is formulated as follows: the dialogue
model learns a conditional probability p parameterized by θ to predict the next token
(yt) in the sentence. The surprisal (u) of the next token yt is,

u(yt) = − log(pθ(y|x, y < t)), (2.1)

for t ≥ 1 where y0 =< EOS >, t = time step, and x = dialogue context. Higher the
surprisal, lower its probability and vice-versa. Thus, surprisal indicates how unexpected
or surprising a token is in a given context. Average surprisal of a sentence (y) is defined
as,

µ(y) = 1
|y|

∑
t

(u(yt)) (2.2)

Finally, the UID score of a sentence (y) is defined as the negative normalized variance of
the surprisal:

UIDscore(y) = − 1
|y|

∑
t

(u(yt)− µ)2 (2.3)

2https://github.com/DeepPavlov/convai/tree/master/2018
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From this formulation, a perfectly uniform sentence would have a variance equal to 0
(i.e. the surprisal of every token in the sentence is equal). Since we take the negative
of the variance, the higher the absolute value of UID score, the more non-uniform its
information density.

2.3.3 Information density of decoding algorithms

For all the model and human generated responses to dialogue histories taken from the
Persona-Chat validation set, we calculate and plot histograms of UID scores as shown in
Figure 2.2 so as to gauge how different decoding algorithms distribute information in
their model responses. We also visualize the histogram of average surprisals for the same
set of candidate responses as shown in figure 2.8.

2.3.4 Response evaluation

Automatic metrics

We measure the quality of responses using length (number of tokens), BLEU3 [62],
METEOR3 [27], character level F-score (chrF)3 [63], BLEURT4 [64], a RoBERTa [65]
based text similarity score5 [66], BERTscore4 [28] and SacreBLEU4 [67].

Human evaluation

To study the effect of adherence to UID on the perceived quality of generated responses
beyond n-gram, reference-based, and learned automatic metrics, we collected human
judgments along 3 measures – related (to the dialogue history), furthering (if a response
keeps the conversation going/is encouraging for the dialogue partner) and interesting
(if the response provides engaging/new information). We provide screenshots of the task
interface (Figure 2.5 and instructions in Figure 2.6.

Raters were selected based on the criteria that they be located in the US, and had
attempted a minimum of 500 HITS at an accepted work rate greater than 97% on
MTurk. We asked raters on MTurk to answer if a candidate response satisfied each of the

3https://github.com/nltk/nltk/tree/develop/nltk/translate
4https://github.com/huggingface/datasets/tree/master/metrics
5https://github.com/UKPLab/sentence-transformers/blob/master/docs/usage/semantic_

textual_similarity.md
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Dialog History

 Speaker A: hello, how are you today?

 Speaker A: that is cool! i just like to skateboard! 

 Speaker B: good. yourself? listening to classical music.

 Speaker B: CANDIDATE RESPONSES 

Human Annotation Scores

Candidate Responses

can you do a kick flip

haha. i love skating too, but i have a truck to keep as well.

nice. i love to do stuff like that. i also swim.

are you a skater or do you do it daily?

Type

Reference Text

Nucleus sampling

Top-k

Greedy

Related

{3,3,3}

{.,.,.}

{.,.,.}

{.,.,.}

Furthering

{3,3,3}

{.,.,.}

{.,.,.}

{.,.,.}

Interesting

{3,2,2}

{.,.,.}

{.,.,.}

{.,.,.}

Figure 2.4: Our dataset contains 4 candidate responses for every dialog history, along
with human annotations for 3 qualitative measures.

qualitative measures (interesting, furthering and related) and gave them three response
options: "Yes", "Somewhat" and "No". In a pilot study of 360 responses, we also included
a measure for fluency. All of the responses were rated “Yes" by majority vote and we
removed this measure from further analysis as all the generations in this study were
fluent as indicated by the pilot study and from our observation. Figure 2.4 shows an
overview of the data format collected in this study.

For correlation calculations, we assign integer score values to each of the three response
options as 3 for "Yes", 2 for "Somewhat" and 1 for "No". Thus, the higher the score, the
better the response is rated. Following the pilot study, for 194 dialogue histories, we
showed the raters 4 candidate dialogue responses (total of 776 dialogue responses) and
collected ratings on all *3* measures from *3* raters per dialogue history. In all, we
obtained a total of 776*3, i.e., 2328 total response-rating pairs. To calculate the score
for each response along every measure, we take the mean of all ratings as the score. For
cases where at least 2 out of 3 raters agree, we take majority vote as the final score.
This constituted (2018 out of 2328) 86.68% of all the ratings collected. We show the
overall distribution of qualitative scores for all the response-rating pairs in Figure 2.7. We
verified the rater responses by checking if they were rating human-generated responses
highly as those came from a trusted source (Persona-Chat). We also manually inspected
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Figure 2.5: Screenshots of our MTurk study interface for collecting human judgments on
4 candidate responses per dialogue history, along 3 quality measures.

a random subset of dialog history-candidate response sets and found the results to be in
accordance with our intuitions.

2.4 Results

2.4.1 Information density of model responses

We plot the histograms of UID scores computed for all of the generated responses in
Figure 2.2. The information densities of human-generated responses have a wider spread
than responses produced by the models. Overall, the human-generated reference text
has more non-uniform sentences than all model-generated responses. We notice a very
high and narrow peak in the case of greedy decoding. This is not surprising as responses
sampled using greedy search maximize the probability of the next token (minimize
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Figure 2.6: Instructions and examples from MTurk study.

surprisal). Consequently, such responses would have very low surprisal at almost every
word, hence lower variance. Vanilla sampling uses the probability distribution learned
from the training data, which might be why it is also closer to the validation set (refer-
ence text) distribution. With increase in p and k, we see that the information density
distribution spreads across a larger range and includes more non-uniform responses,
slowly approaching that of the reference text.
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The UID scores distribution for top-p and top-k sampling can thus be thought of as
lying between the two extremes of greedy (k=1) where most responses are very uniform to
vanilla (k=size of vocabulary) where responses are relatively non-uniform due to random
spikes in surprisal. Thus, the larger the portion of the model’s learned distribution being
accessed by the decoding algorithm, the more non-uniform or reference/human-like the
responses generated using them in terms of information density.

We find that i. vanilla sampling follows the information density distribution of the
human-generated text or the UID principle; ii. Greedy sampling leads to generations that
are more uniform than the vanilla distribution. For top-p/k sampling, as the value of p/k
increases, the generations progressively become non-uniform, gradually approaching the
vanilla distribution; iii. UID does not correlate with n-gram/reference-based automatic
metrics, though they do correlate with human judgements along measures of relatedness
and interestingness. Thus, providing evidence that UID does capture nuances about
generation quality that go beyond automatic metrics that are insufficient to measure task
performance for open-ended dialogue. Finally, we also propose a speaker-specific UID reg-
ularizer that attunes the information density of model generations for multi-turn dialogue.

Higher values of p and k have shown to produce better quality text than lower cut-off
criteria. In addition, these two sampling methods have also been known to produce
better text than greedy or vanilla sampling. The differences in the UID distributions
and the known differences in their generation quality thus need a further exploration of
the relationship of UID score with quality metrics. Thus it is crucial to study the effect
of UID while controlling for surprisal.

For the task of dialogue generation on PersonaChat, we find that nucleus sampling
and top-k sampling do not follow the UID principle at higher values as argued for the task
of machine translation in [46]. This confirms that it cannot be assumed that truncated
probability distributions follow the same information distribution patterns as ground
truth or human-generated data. For example, we see that vanilla sampling has a UID
score histogram most similar to the reference text. This can be attributed to the fact that
GPT-2 was fine-tuned on human-human dialogue and vanilla sampling utilizes GPT-2’s
learnt probability distribution as it is. We see, in contrast to our expectation, that
the reference text isn’t as uniformly distributed as other types of generation, and the
information density curves exhibited by the sampling distributions rely on the distribution
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Pearson’s r between
UID score and qualitative metrics

Surprisal interval n Related Furthering Interesting

(0.8, 1.2) 24 .17 -.03 -.30∗

(1.2, 1.6) 64 .12 .08 -.13
(1.6, 2.0) 91 .05 -.23∗ -.07
(2.0, 2.4) 109 -.04 -.13 -.00
(2.4, 2.8) 111 -.06 -.21∗ -.05
(2.8, 3.2) 105 -.02 .01 -.10
(3.2, 3.6) 99 -.23∗ -.10 .19
(3.6, 4.0) 66 .03 -.05 -.09
(4.0, 4.4) 42 -.33 -.22 -.09
(4.4, 4.8) 24 -.14 -.61∗ .04
(4.8, 5.2) 12 -.33 -.14 -.54∗

(5.2, 5.6) 13 -.98∗ -.64 -.38

Table 2.4: Pearson’s r between UID score and and human judgments of qualitative
measures for dialog responses bucketed by surprisal [Surprisal interval = the ranges of
surprisal values used for bucketing responses, n = number of responses in each surprisal
interval, ∗p-value < .05]

of fine-tuning data, and thus UID might not be an inherent quality of any sampling
method. It is also key to note that the task of attuning sampling methods is necessary
in the cases where the truncated probability distribution no longer follows the UID
distributions of the reference text or the vanilla distribution.

2.4.2 UID score & automatic metrics

We present the correlation between UID scores and automatic metrics calculated for the
generated dialogue responses in Tables 2.2 and 2.3. UID scores have a weak correlation
with RoBERTa-based similary scores for two settings of nucleus sampling. Other than
that, UID scores are not correlated with automatic metrics of response generation. We
take this to be an indication that if UID scores do capture any aspect of response quality,
it goes beyond what is measured by such metrics and might provide for a better evaluation
criteria.
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Generation Type Pearson’s r
Reference Text -.69

Greedy -.23
p = 0.3 -.43
p = 0.5 -.50
p = 0.6 -.56
p = 0.8 -.65
p = 0.9 -.68
k = 10 -.40
k = 20 -.45
k = 50 -.56
k = 100 -.63
k = 200 -.65
k = 500 -.69
Vanilla -.74

Table 2.5: Pearson’s correlation coefficient (r) between UID score and average
sentence surprisal (all p < 0.01)

Figure 2.7: Frequency of responses (Yes/Somewhat/No) for each qualitative measure in
our human annotated dataset.
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Pearson’s r
Quality UID Score Surprisal
Related .01 -.13∗

Furthering .03 -.10∗

Interesting -.04 -.01

Table 2.6: Pearson’s correlation coefficient (r) of UID score and surprisal with
human judgments of qualitative metrics (∗p<0.01)

Figure 2.8: Histograms of average sentence surprisal for responses generated using
different decoding settings and human-generated reference text (left-top).

2.4.3 UID score & human Judgments

Motivated by the fact that UID score is derived from surprisal, we test if surprisal is a
confounding factor and find that, indeed, UID scores were highly correlated with average
surprisal (Table 2.5). To tease apart the effect of UID scores on response quality, we
controlled for surprisal by grouping or bucketing responses into 12 intervals of surprisals
(within a range of 0.4 units as shown in the first column on Table 2.4). Within these
intervals, surprisal had no correlation with generation quality (Table 2.7). Once we
control for surprisal i.e. analyse dialog responses with similar surprisals but varying
UID scores, we observe that UID scores negatively correlate with human judgments, to
varying degrees of strength, for responses in very low or high surprisal intervals (see
Table 2.4). Thus, for the extremities of the surprisal range, UID scores indicate that
better rated responses are non-uniform.
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Pearson’s r
Surprisal interval n Related Furthering Interesting

(0.8, 1.2) 24 -.03 -.04 -.00
(1.2, 1.6) 64 -.10 -.16 .08
(1.6, 2.0) 91 .05 .14 .10
(2.0, 2.4) 109 -.14 -.08 -.27∗

(2.4, 2.8) 111 -.12 .05 .09
(2.8, 3.2) 105 -.02 .06 -.00
(3.2, 3.6) 99 -.13 .12 .01
(3.6, 4.0) 66 .02 -.06 .06
(4.0, 4.4) 42 -.01 -.00 .06
(4.4, 4.8) 24 .20 .34 .23
(4.8, 5.2) 12 -.13 -.37 -.12
(5.2, 5.6) 13 .60 .83 .76

Table 2.7: Pearson’s r between surprisal and human judgments of qualitative
measures for dialog responses bucketed by surprisal [Surprisal interval = the ranges of
surprisal values used for bucketing responses, n = number of responses in each surprisal
interval, ∗p-value < .05]

Dialogue history

Speaker A: hi, i m susie. how are you?

Response
type

Response text UID
Score

Interesting

Reference
Text

i’m good. just got back from some vol-
unteering. how are you doing?

-1.99 3

Candidate 1 hi. i am very good. just enjoying my
favorite pastime. how are you?

-1.43 2

Candidate 2 i am great! i volunteer at a soup kitchen
and watch movies with my kids.

-1.19 2

Candidate 3 i’m doing well. how are you? -0.18 1

Dialogue history

Speaker A: that’s cool. my dad made us italian food tonight.
Speaker B: oh nice, i love italian food. my favorite is the garlic
bread. what is yours?
Speaker A: pasta, my son loves pizza though!

28



Speaker B: i like that too, have to eat lots of carbs for my
training.

Response
type

Response text UID
Score

Interesting

Candidate 1 wow, my son took us and my two daugh-
ters to a super fast food joint the other
day

-4.83 3

Candidate 2 that is too bad, i like the cheesy stuff. -2.08 2
Reference
Text

do you have a favorite genre of movies? -1.73 2

Candidate 3 i also like to stay home with my son. -0.88 1

Dialogue history

Speaker A: hello i hope your sunday is great , what is your
favorite kind of music?
Speaker B: hey there . been a relaxed sunday . yours ? music
eclectic.
Speaker A: my sunday has been exciting ! i enjoy death metal.
Speaker B: death metal . cool . i spent the morning volunteering.
Speaker A: i volunteer too , at the local pool to be a swim coach.

Response
type

Response text UID
Score

Furthering

Candidate 1 nice. such a nice day. how long have
you been coaching?

-9.99 3

Reference
Text

that is great! we both volunteer! mine
is rescuing bunnies.

-7.59 2

Candidate 2 that’s cool. i donate my pay to the local
zoo. humane societies.

-3.89 2

Candidate 3 sick sick. beautiful color, navy blue is
my favorite.

-2.79 1

Dialogue history

Speaker A: have you heard about the juggalos? weird.
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Response
type

Response text UID
Score

Furthering

Reference
Text

what are those? do they juggle balls? -6.88 3

Candidate 1 no i have not. i like that band myself -5.19 2
Candidate 2 we will not tell. do you like comics? -4.27 2
Candidate 3 i have not heard of them. i’ve dolls too. -2.8 1

Dialogue history

Speaker A: hello, how are you today?
Speaker B: good. yourself? listening to classical music.
Speaker A: that is cool! i just like to skateboard!

Response
type

Response text UID
Score

Related

Reference
Text

can you do a kick flip? -14.11 3

Candidate 1 haha. i love skating too, but i have a
truck to keep as well.

-11.28 3

Candidate 2 nice. i love to do stuff like that. i also
swim.

-10.25 3

Candidate 3 are you a skater or do you do it daily? -9.05 2

Dialogue history

Speaker A: i hope it is a healthy snack. i am doing well, just
moved here.
Speaker B: it is. i am vegan. just moved here too! where from?
Speaker A: i too am vegan from germany. have you seen lafer!
lichter! lecker! on tv?
Speaker B: oh yes! i love shows like that and watched it back
home a lot.

Response
type

Response text UID
Score

Related

Reference
Text

they do amazing things with the hum-
mus. where is back home for you?

-6.86 3
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Candidate 1 you must have a lot of fun watching
them.

-4.53 2

Candidate 2 they have the best new vegan cookbooks,
but i am more adventurous.

-2.93 3

Candidate 3 i do love the sky diving, too! i have seen
the first few seasons.

-2.47 1

Table 2.8: Examples of dialogue histories followed by 4 response candidates arranged
by increasing UID score i.e. from more non-uniform to uniform responses and their
corresponding human judgment scores.

2.5 Discussion
Humans tend to follow the Uniform Information Density (UID) principle by distributing
information evenly in utterances. We study if decoding algorithms implicitly follow
this UID principle, and under what conditions adherence to UID might be desirable
for dialogue generation. We generate responses using different decoding algorithms
with GPT-2 on the Persona-Chat dataset and collect human judgments on their quality
using Amazon Mechanical Turk (see detailed examples of dataset collected in Table
2.8). We find that (i) surprisingly, model-generated responses follow the UID prin-
ciple to a greater extent than human responses, and (ii) decoding algorithms that
promote UID do not generate higher-quality responses. Instead, when we control
for surprisal, non-uniformity of information density correlates with the quality of re-
sponses with very low/high surprisal. Our findings indicate that encouraging non-
uniform responses is a potential solution to the “likelihood trap” problem (quality
degradation in very high-likelihood text). Our dataset containing multiple candidate
responses per dialog history along with human-annotated quality ratings is available at:
https://huggingface.co/datasets/saranya132/dialog_uid_gpt2. We find that (i)
UID correlates with human judgments on how interesting and furthering the generated
responses are when the surprisal of the responses is too high/low; and, (ii) surprisingly,
decoding algorithms generate responses that are more uniform text than the human-
generated reference text.

Contrary to our expectations, we find non-uniformity to be a more desirable property
in machine-generated responses. Overall, UID scores and surprisal do not correlate with
human judgments (Table 2.6). But when controlled for surprisal, we observe that UID
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score is correlated with human judgments for certain intervals (examples in Figure 2.3
and Table 2.8). Our results suggest that optimizing UID to generate uniform text might
not be the right objective for regularizing decoding algorithms. Instead we find that non-
uniform information density could be a potential solution to the “likelihood trap" problem
according to which models generate lower quality text (as per human judgments) when
sampling from the extremities of their likelihood space [68]. Consequently, we suggest
that decoding algorithms be tuned to follow the information density patterns of human-
generated non-uniform data when generating responses outside of the “safe” likelihood
range as a means to generate higher quality responses across the entire likelihood space.
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Chapter 3 |
Authorship Attribution using In-
formation Density-based features

3.1 Introduction
The recent ubiquity of Large Language Models (LLMs) has led to more assessments of
their potential risks. These risks include its capability to generate misinformation [69,70],
memorized content [71], plagiarized content [72], toxic speech [73], and hallucinated
content [74, 75]. To mitigate these issues, researchers have proposed automatic and
human-based approaches to distinguish LLM-generated texts (i.e., machine-generated)
from human-written texts [69,76–78].

Automatically detecting machine-generated texts occurs in two settings- Turing Test
(TT) which is the binary detection of human vs. machine; and Authorship Attribution
(AA) which is the multi-class detection of human vs. several machines (e.g., GPT-3.5 vs.
LLaMA vs. Falcon) [79]. While the TT problem is more rigorously studied, due to the
wide usage of different LLMs, in the future, it will be imperative to build models for the
AA tasks to determine which LLMs are more likely to be misused. This knowledge will
be needed by policymakers when they inevitably institute laws to guard the usage of LLMs.

To that end, we propose GPT-who, the first psycholinguistically-inspired supervised
domain-agnostic task-independent multi-class statistical-based detector. GPT-who calcu-
lates interpretable Uniform Information Density (UID) based features from the statistical
distribution of a piece of text and automatically learns the threshold (using Logistic
Regression) between different authors. Such features are calculated using the surprisals of
tokens in a text, for example, the variance of surprisals, the mean, and so on (elaborated
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Billionaire investor 
Bill Ackman recently suffered a
massive blow, as his holdings

in Valeant Pharmaceuticals and
Herbalife plummeted.

 During Pershing Square’s second
quarter call, Ackman said that results

for his various funds fell
between 14 percent and 18 percent.

1
2

Author 1

Author 2

GPT-who

Figure 3.1: GPT-who leverages psycholinguistically motivated representations that cap-
ture authors’ information signatures distinctly, even when the corresponding text is
indiscernible.

in Section 3.3.1). However, these techniques have limitations: (1) supervised learning
approaches utilize deep learning or feature-based techniques which are computationally
heavy and require decently sized datasets to perform well; (2) unsupervised techniques
are all binary statistical-based approaches that require heuristic techniques to define
thresholds used to distinguish these two main authors (LLM vs. Human). To showcase
the detection capabilities of GPT-who, we use 4 large LLM benchmark datasets: Turing-
Bench [79], GPABenchmark [80], ArguGPT [1], and Deepfake Text in-the-wild [81]. We
find that GPT-who outperforms state-of-the-art statistical detectors and is at par with
task and domain-specific fine-tuned LMs. This performative gain is consistent across
benchmark datasets, types of LLMs, writing tasks, and domains.

In addition to improved detection performance, GPT-who is computationally inex-
pensive as it eliminates the need for any LLM fine-tuning. It utilizes a freely available
off-the-shelf LM to compute token probabilities, followed by logistic regression using a
small set of carefully crafted and theoretically motivated UID features. GPT-who also
provides a means to interpret and understand its prediction behaviors due to the rich
feature space it learns from. UID-based features enable observable distinctions in the
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surprisal patterns of texts, which help in understanding GPT-who’s decision-making on
authorship (Figure 3.1).

We also analyze the UID feature distributions of different LLMs and human-generated
texts for the 4 datasets and find that humans distribute information more unevenly and
diversely than models. In addition, UID features are reflective of differences in LLM
architectures or families such that models that share architectures have similar UID
distributions within but not outside their category. We find that UID-based features
are a consistent predictor of authorship. Even when there are no glaring differences
between uniform and non-uniform text, the differences in UID distributions are easily
detectable and a powerful predictor of authorship, since they capture patterns that go
beyond the lexical, semantic, or syntactic properties of text. Our work indicates that
psycholinguistically-inspired tools can hold their ground in the age of LLMs and a simpler
theoretically-motivated approach can outperform complex and expensive uninterpretable
black-box approaches for machine text detection.

3.2 Related Work

3.2.1 Uniform Information Density (UID)

Shannon’s Information Theory states that information exchange is optimized when
information travels across the (noisy) channel at a uniform rate [38]. For language
production, this uniform rate of information content is the basis of the UID hypothesis
that posits that humans prefer to spread information evenly, avoiding sharp and sudden
peaks and troughs in the amount of information conveyed per linguistic unit. The
information content or “surprisal” of a word is inversely proportional to its probability
in a given context. Less predictable words have more surprisal while highly predictable
words convey lower information. For example, in the sentence “I enjoy listening to
vinyl records", the word “records" is highly predictable from a semantic standpoint
given prior words such as “listening" and “vinyl". Thus, given its context, “records"
has high predictability, and thus less information content or surprisal according to
Information Theory. Formally, Shannon’s definition of information content or Surprisal
of a component or unit (n) is given by the inverse logarithm of its probability (p(n)) i.e.

Surprisal(n) = −log p(n) (3.1)
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UID in human language production has been studied by measuring the amount of
information content per linguistic unit (number of words) or by studying any sudden
changes in surprisal at the onset of a word or sentential element [39,40]. A rich body of
work in psycholinguistics has led to the finding that, in language production, humans
try to spread information content or surprisal evenly and maintain UID through their
lexical, syntactic, phonological, and semantic choices [33–36].

Frank and Jaeger’s corpus-based study demonstrated that humans tend to use shorter
elements for lower amounts of information and longer elements/sub-sequences for ex-
pressing higher amounts of information [33]. Thus, in a way keeping the information rate
close to uniform. [34] extended upon this work and reported that UID is consistent at
the inter and intra-sentential levels [34,39]. [40] found that speakers chose not to omit an
optional function word at the onset of a less predictable phrase, but that they were more
likely to omit the same word at the beginning of a more predictable phrase. [35] and [36]
consolidated previous findings that humans regulate their choices as per UID, actively
distributing the information that needs to be conveyed evenly across the linguistic signal.

[37] studied the usage of ‘less informative’ expressions as a means of conveying
meanings with higher predictability in a study that directly assessed comprehenders’
ease of predicting the referent in an unfolding utterance [37] and found that speakers
referred to highly predictable referents with short words. Thus, in language, humans try
to spread information content or surprisal evenly and maintain UID through their lexical,
syntactic, phonological, and semantic choices.

3.2.2 Machine-Generated Text Detection

Large Language Models (LLMs) such as GPT-3.5, GPT-4 [82], LLaMA [83], Falcon [84],
have the capacity to generate human-like-quality texts, which can be easily construed
as human-written [85–87]. However, while such LLMs are remarkable, it, therefore,
makes them susceptible to malicious use. These include the generation of toxic and
harmful content, like misinformation and terrorism recruitment [69, 75,79]. Due to such
potential for misuse, we must develop techniques to distinguish human-written texts
from LLM-generated ones to mitigate these risks.

To mitigate this potential for misuse of LLMs, researchers have developed several
types of automatic detectors. These techniques include supervised [69, 70, 79, 88–90] and
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unsupervised approaches [78,91–94]. These supervised approaches tend to be stylometric,
deep learning, and ensemble-based models, while most unsupervised approaches are
statistical-based detectors [77, 95].

More recently, due to the increased ubiquity of LLMs, we need more interpretable,
and less deep learning-based models. Deep learning models have been shown to be the
most susceptible to adversarial perturbations than others [76]. To that end, we propose
a supervised statistical-based technique, that calculates UID-based features of a given
text and uses a classical machine learning model to automatically decide thresholds.

3.3 Method: GPT-who
We propose a psycholinguistically-motivated statistical-based machine-generated text
detector GPT-who that uses a GPT-based language model to predict who the author
of an article is. GPT-who works by exploiting a densely information-rich feature space
motivated by the UID principle. UID-based representations are sensitive to intricate
“fluctuations” as well as “smoothness” in the text. Specifically, operationalizations of
UID are aimed at capturing the evenness or smoothness of the distribution of surprisal
per linguistic unit (tokens, words), as stated by the UID principle.

For example, in Figure 3.2, we show sequences of tokens that correspond to the
highest and lowest UID score spans within an article. Here, the differences between
the two segments of texts might not be obvious at the linguistic level to a reader, but
when mapped to their surprisal distributions, the two segments have noticeably distinct
surprisal spreads as can be seen by the peaks and troughs i.e. variance of token surprisals
along the y-axis about the mean (dotted line). Most approximations of this notion
of “smoothness” of information spread and UID, thus, formulate it as the variance of
surprisal or as a measure of the difference of surprisals between consecutive linguistic
units [45, 46,61,96].

In measuring the distribution of surprisal of tokens, UID-based features can capture
and amplify subtle information distribution patterns that constitute distinct information
profiles of authors. Using just an off-the-shelf language model to calculate UID-based
features, GPT-who learns to predict authorship by means of a simple classifier using UID
representations. In addition, as these features can be directly mapped to their linguistic
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"Every coin has two sides "and it
is also the case to the problem whether children should

be taught to compete or to cooperate
 ………. It is better to have 

a child who is competitive and cooperative at the same time,
rather than having him compete and cooperate at different times in his life.

Figure 3.2: An example of UID span feature extraction that selects the most uniform
and non-uniform segments from the token surprisal sequence. As can be seen in this
example, two texts that read well can have very different underlying information density
distributions in a given context. UID features capture these hidden statistical distinctions
that are not apparent in their textual form.

token equivalents, GPT-who offers a more interpretable representation of its detection
behavior, unlike current black-box statistical detectors, as illustrated in Figure 3.2. The
use of a psycholinguistically motivated representation also enables us to better interpret
the resulting representation space. It can capture surprisal distributions indicative of
and commonly occurring in human-written or machine-generated text.
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GPT-who is one of the first text detectors that focus on informing a simple classifier
with theoretically motivated and intuitive features, as it only requires a fixed-length
UID-based representation of length 44 and learns to predict authorship based on just
these features, without the need for the full text or any LM fine-tuning in the process
(See GPT-who’s complete pipeline in Figure 3.3).
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Figure 3.3: GPT-who uses token probabilities of articles to extract UID-based features.
A classifier then learns to map UID features to different authors, and identify the author
of a new unseen article.

3.3.1 UID-based features

We use the 3 most widely used measures of UID scores as defined in previous works
[45,46,61,96] as follows: We first obtain the conditional probability p of each token (yt)
in an article using a pre-trained LM (GPT2-XL). The surprisal (u) of a token yt is,

u(yt) = − log(p(y|y < t)), (3.2)

for t ≥ 1 where y0 =< BOS >, and t = time step.
The lower the probability of a token, the higher its surprisal and vice-versa. Thus,

surprisal indicates how unexpected a token is in a given context.

1. Mean Surprisal (µ) of an article (y) of length |y| in number of tokens is defined
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as follows:

µ(y) = 1
|y|

∑
t

(u(yt)) (3.3)

2. UID (V ariance) score or global UID score of an article (y) is calculated as the
normalized variance of the surprisal:

UID(y) = 1
|y|

∑
t

(u(yt)− µ)2 (3.4)

From this formulation, a perfectly uniform article would have the same surprisal at
every token and hence 0 UID (variance) score.

3. UID (Difference) score or local UID score of an article (y) is calculated as the
average of the difference in surprisals of every two consecutive tokens µ(yt−1) and
µ(yt) :

UID(y) = 1
|y| − 1

|y|∑
t=2

abs(µ (yt)− µ (yt−1)) (3.5)

4. UID (Difference2) score is defined as the average of the squared difference in
surprisals of every two consecutive tokens µ(yt−1) and µ(yt) :

UID(y) = 1
|y| − 1

|y|∑
n=2

(µ (yt)− µ (yt−1))2 (3.6)

From this formulation, both local measures of UID capture any sudden bursts of
unevenness in how information is dispersed in consecutive tokens of the articles.

Maximum and minimum UID spans In addition to previously used approxi-
mations of UID, we also craft a new set of features using the most and least uniform
segments of an article. Our intuition for this feature is to focus on the extremities of the
UID distribution in an article, as the most and least uniform spans would be the most
expressive and distinct sequences from a UID perspective. All other spans or segments
in an article necessarily lie in between these two extremities. Thus taking account of
these two spans would ensure coverage of the whole range of surprisal fluctuations within
an article. Thus, for each article, we calculate UID (variance) scores for all spans of
consecutive tokens of a fixed length using a sliding window approach. We tuned this
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Random No Spans Span Length (N) of Min/Max UID spans
Human v. UID spans N=4 N=10 N=15 N=20 N=30
GPT-1 0.75 0.76 0.99 0.99 0.98 1.00 0.99
GPT-2_small 0.62 0.64 0.75 0.82 0.88 0.88 0.85
GPT-2_medium 0.63 0.63 0.73 0.80 0.88 0.87 0.84
GPT-2_large 0.65 0.62 0.73 0.79 0.88 0.88 0.83
GPT-2_xl 0.65 0.61 0.72 0.80 0.88 0.89 0.85
GPT-2_PyTorch 0.55 0.64 0.83 0.84 0.87 0.85 0.86
GPT-3 0.63 0.69 0.71 0.73 0.77 0.84 0.74
GROVER_base 0.63 0.65 0.76 0.77 0.79 0.81 0.78
GROVER_large 0.59 0.60 0.71 0.71 0.73 0.75 0.72
GROVER_mega 0.55 0.56 0.67 0.67 0.68 0.72 0.67
CTRL 0.79 0.83 0.99 0.98 0.98 0.99 0.98
XLM 0.62 0.69 0.96 0.96 0.96 0.99 0.96
XLNET_base 0.62 0.71 0.95 0.97 0.98 0.98 0.99
XLNET_large 0.49 0.70 0.99 0.99 0.99 1.00 0.99
FAIR_wmt19 0.54 0.57 0.74 0.75 0.78 0.74 0.76
Fair_wmt20 0.62 0.63 0.72 0.75 0.88 1.00 0.89
TRANSFO_XL 0.70 0.70 0.79 0.80 0.83 0.79 0.84
PPLM_distil 0.57 0.62 0.92 0.91 0.93 0.95 0.93
PPLM_gpt2 0.54 0.58 0.88 0.88 0.90 0.89 0.88
TuringBench (Avg F1) 0.62 0.65 0.82 0.84 0.87 0.88 0.86
InTheWild (Avg F1) 0.72 0.75 0.79 0.83 0.86 0.88 0.87

Table 3.1: Max. & Min. UID spans ablation study: Setting a span length of N=20
tokens maximized performance (F1 score) across large-scale datasets (N>30 leads to
subsequently lower and eventually consistent performance). It can be seen that our
min/max features tremendously impact performance against randomly sampled or no
span features at all.

window size and found that a window size of 20 tokens per span sufficiently represented
an article’s UID range. We also experimented with randomly drawn and re-ordered spans
and found that random features did not contribute to task performance (see Table 3.1
for ablation study results). We use the surprisal values corresponding to the highest and
lowest UID scoring span as additional features and obtain fixed length UID features of
length 44 for each article.

We use [57]’s implementation of UID-based scores1 and use the publicly available
off-the-shelf pre-trained GPT2-XL language model2 to obtain conditional probabilities.

1https://github.com/rycolab/revisiting-uid/tree/main
2https://huggingface.co/gpt2-xl
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Figure 3.4: Distribution of UID Scores of 20 authors from the TuringBench dataset
grouped (dotted line) by architecture type. LMs that share architectures tend to distribute
UID scores similarly.

For all our experiments, we calculate the UID features for the publically released train
and test splits of all datasets of each of the 4 benchmarks as they were released by the
dataset developers. We train a logistic regression model3 using these features on the
train splits and report performance on the test splits. We averaged performance over 3
different random seeds and set the number of maximum iterations hyperparameter to
10k after testing a set of values. We replicate all the original evaluation settings and
metrics for each of the datasets (except one setting from the ArguGPT [1] dataset that
required access to unreleased human evaluation data). We do this to be able to directly
compare the performance of GPT-who with current state-of-the-art detection methods
reported so far.

Datasets

To test the applicability of GPT-who across text detection tasks, we run all experiments
across 4 large-scale and recent datasets that span over 15 domains and 35 recent LMs.

TuringBench Benchmark [79] dataset is the largest multi-class authorship attribution
dataset that contains over 168k news articles generated by 19 neural text generators
using 10K prompts from CNN and the Washington Post.

3https://scikit-learn.org/stable/
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GPABenchmark [80] or GPT Corpus for Academia is a multi-domain (Computer
Science (CS), Humanities and Social Sciences (HSS) and Physics (PHX)) academic
articles dataset aimed at helping detection of LLM use or misuse in academic writing. It
contains 150k human and 450k ChatGPT-generated articles for 3 task settings (comple-
tion, writing, and polishing).

ArguGPT [1] is a prompt-balanced dataset of argumentative essays containing over
4k human-written essays and 4k articles generated by 7 recent LLMs (including many
variants of ChatGPT) using prompts from English datasets such as TOEFL11 [97] and
WECCL [98] datasets.

“InTheWild” Deepfake Text Detection in the Wild [81] dataset is, to our knowledge,
the largest text detection dataset consisting of over 447k human-written and machine-
generated texts from 10 tasks such as story generation, news article writing, and academic
writing. They use 27 recent LLMs such as GPT-3.5, FLAN-T5, and LLaMA. We refer to
this dataset as the “InTheWild” dataset going forward for brevity.

3.3.2 Baselines & Detectors

We compare our proposed method against the following: DetectGPT 4 [78], GLTR5 [91],
an open-source implementation6 of GPTZero [99], ZeroGPT [100], OpenAI’s detector
[101], [81]’s LongFormer-based detector7 tuned for the InTheWild benchmark (we refer
to this method as “ITW”), a stylometric detector8 [102] and fine-tuned BERT9 [103].
We are unable to report results for exhaustively all methods across all datasets due to
inherent inapplicability in certain task settings. For example, most SOTA text detectors
cannot be applied to the ArguGPT dataset as it only contains text written by multiple
machines, while most text detectors are designed to differentiate between human-written
and machine-generated texts. Beyond such limitations, we have utilized all applicable
methods for 4 benchmark datasets.

4https://github.com/eric-mitchell/detect-gpt
5https://github.com/HendrikStrobelt/detecting-fake-text
6https://github.com/BurhanUlTayyab/GPTZero
7https://github.com/yafuly/DeepfakeTextDetect
8https://github.com/shaoormunir/writeprints
9https://huggingface.co/docs/transformers/training
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3.4 Results

3.4.1 UID Signatures of Authors

Given that humans tend to optimize UID, we study if different models spread surprisal
in ways that are distinguishable from each other and human-written text and if we
can observe unique UID signatures of different LM families. To this end, we plot the
UID score distributions of different text generators across (see Figures 3.4, 3.5(a), and
3.5(b)). We observe that, generally, the UID scores of human-written text have a higher
mean and larger standard deviation than most machine-written text across writing task
types, domains, and datasets. This implies that human-written text tends to be more
non-uniform and diverse in comparison to machine-generated text. Hence, machines
seem to be spreading information more evenly or smoothly than humans who are more
likely to have fluctuations in their surprisal distributions.

Going a step further, if we compare models to other models, we see that models that
belong to the same LM family by architecture tend to follow similar UID distribution.
For example, in Figure 3.4, the dotted lines separate LMs by their architecture type and
it can be seen, for example, that all GPT-2 based models have similar UID distributions,
all Grover-based models have similarities, but these groups are distinct from each other.
This indicates that UID-based features can capture differences in text generated by
different LM families. To our knowledge, this is the first large-scale UID-based analysis
of recent machine and human-generated text across writing tasks and domains.

We see that for most cases, humans have a higher UID (variance) score than machines,
as can be seen by the higher means of their scores in the box plots. This holds when
comparing human-written texts with multiple machine-generated texts over shared tasks
(Figure 3.5(a)) and also when comparing their differences between tasks (Figure 3.5(b)).

3.4.2 Machine Text Detection Performance

Overall, GPT-who outperforms other statistical-based detectors and is at par with
transformers-based fine-tuned methods for 2 out of 4 benchmarks. For GPABenchmark
(Table 3.2), across all task types and domains, GPT-who outperforms GPTZero, ZeroGPT,
DetectGPT and, OpenAI’s detector by over 40%. The machine-generated texts for this
task are from 7 very recent and highly sophisticated LLMs (including GPT3.5, GPT3
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(a) Pairwise comparisons of human and different machine-generated texts for shared tasks:
Distribution of UID Scores of 8 authors (7 models + human) from the InTheWild dataset. (m)
indicates machine and (h) indicates human written texts. This is followed by the model name
along the x-axis labels to indicate the different authors.

(b) Pairwise comparisons of human and different machine-generated texts for different tasks:
Distribution of UID Scores of humans v.s. machines per task type. (m) indicates machine and
(h) indicates human written texts. This is followed by the writing task type along the x-axis
labels to indicate the different tasks.

Figure 3.5: Human and machine-text pairwise comparisons: Comparing UID Score
(Variance) distributions
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Task 1
Method CS PHX HSS
GPTZero 0.30 0.25 0.72
ZeroGPT 0.67 0.68 0.92
OpenAI Detector 0.81 0.70 0.63
DetectGPT 0.58 0.54 0.57
BERT 0.99 0.99 0.99
ITW 0.98 0.98 0.96
GPT-who 0.99 0.98 0.98

Task 2
Method CS PHX HSS
GPTZero 0.17 0.06 0.44
ZeroGPT 0.25 0.10 0.62
OpenAI Detector 0.64 0.24 0.27
DetectGPT 0.16 0.17 0.20
BERT 0.99 0.96 0.97
ITW 0.81 0.76 0.29
GPT-who 0.84 0.90 0.80

Task 3
Method CS PHX HSS
GPTZero 0.02 0.02 0.20
ZeroGPT 0.03 0.03 0.25
OpenAI Detector 0.06 0.04 0.06
DetectGPT 0.03 0.05 0.06
BERT 0.97 0.97 0.99
ITW 0.38 0.31 0.08
GPT-who 0.63 0.75 0.62

Table 3.2: Test Set Performance (F1 Scores) for Task 3 across different domains.

variants), making the detection of machine-generated text a much more challenging task
on which GPT-who outperforms other detectors.

For TuringBench (Tables 3.3 and 3.4), GPT-who significantly outperforms GLTR by
0.32 F1 points, and at par with BERT fine-tuned for the task. The InTheWild dataset
contains 6 testbeds with varying levels of detection difficulties, such as out-of-domain,
out-of-distribution, and unseen-task test sets. We used all 6 testbeds to analyze the
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Human v. GROVER GLTR GPTZero DetectGPT GPT-who
GPT-1 0.58 0.47 0.47 0.51 1.00
GPT-2_small 0.57 0.51 0.51 0.51 0.88
GPT-2_medium 0.56 0.49 0.50 0.52 0.87
GPT-2_large 0.55 0.46 0.49 0.51 0.88
GPT-2_xl 0.55 0.45 0.51 0.51 0.89
GPT-2_PyTorch 0.57 0.72 0.50 0.52 0.85
GPT-3 0.57 0.35 0.47 0.52 0.84
GROVER_base 0.58 0.39 0.52 0.51 0.81
GROVER_large 0.54 0.41 0.47 0.52 0.75
GROVER_mega 0.51 0.42 0.42 0.51 0.72
CTRL 0.49 0.88 0.67 0.67 0.99
XLM 0.50 0.89 0.67 0.67 0.99
XLNET_base 0.58 0.75 0.51 0.67 0.98
XLNET_large 0.58 0.88 0.67 0.52 1.00
FAIR_wmt19 0.56 0.56 0.56 0.51 0.74
Fair_wmt20 0.58 0.49 0.50 0.51 1.00
TRANSFO_XL 0.58 0.35 0.49 0.52 0.79
PPLM_distil 0.59 0.64 0.52 0.67 0.95
PPLM_gpt2 0.58 0.68 0.51 0.51 0.89
Average F1 0.56 0.57 0.52 0.55 0.88

Table 3.3: Test Set Performance (F1 score) for TuringBench dataset.

performance of GPT-who in detecting machine-generated texts across increasing levels of
‘wildness’ and find that overall, GPT-who outperforms all other methods except the one
specifically tuned to the task (ITW) across all testbeds. More importantly, GPT-who
performs well even for the most challenging or ‘wildest’ testbed settings of unseen model
and unseen domain distributions (see Table 3.5).

For the ArguGPT dataset (Table 3.6), we find that GPT-who outperforms human
experts and stylometry in predicting authorship by 0.31 F1 points, but is outperformed
by fine-tuned BERT. Although unable to perform as well as BERT, GPT-who is one of
the only statistical-based detectors that can handle distinctions between machine-only
texts. We were unable to evaluate other detectors as their human-generated texts were
not publicly released, and they only work in human v/s machine settings.

GPT-who is a statistical-based approach that outperforms other statistical-based
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Human v. RoBERTa BERT ITW Stylometry GPT-who
GPT-1 0.98 0.95 0.92 0.99 1.00
GPT-2_small 0.71 0.75 0.47 0.75 0.88
GPT-2_medium 0.75 0.65 0.47 0.72 0.87
GPT-2_large 0.79 0.73 0.46 0.72 0.88
GPT-2_xl 0.78 0.79 0.45 0.73 0.89
GPT-2_PyTorch 0.84 0.99 0.47 0.83 0.85
GPT-3 0.52 0.79 0.48 0.72 0.84
GROVER_base 0.99 0.98 0.49 0.76 0.81
GROVER_large 0.99 0.98 0.52 0.71 0.75
GROVER_mega 0.94 0.97 0.53 0.68 0.72
CTRL 1.00 1.00 0.91 0.99 0.99
XLM 0.58 1.00 0.92 0.96 0.99
XLNET_base 0.79 0.99 0.84 0.95 0.98
XLNET_large 1.00 1.00 0.93 1.00 1.00
FAIR_wmt19 0.84 0.93 0.49 0.74 0.74
Fair_wmt20 0.45 0.47 0.47 0.73 1.00
TRANSFO_XL 0.96 0.97 0.81 0.79 0.79
PPLM_distil 0.90 0.88 0.51 0.92 0.95
PPLM_gpt2 0.90 0.89 0.49 0.88 0.89
Average F1 0.88 0.61 0.88 0.82 0.88

Table 3.4: Test Set Performance (F1 score) for TuringBench dataset.

Setting Testbed Type GPTZero GLTR DetectGPT BERT ITW GPT-who

ID

DS-MS 0.65 0.94 0.92 0.98 0.97 0.93
CD-MS 0.63 0.84 0.6 0.98 0.97 0.88
DS-CM 0.57 0.8 0.57 0.49 0.87 0.86
CD-CM 0.57 0.74 0.57 0.49 0.78 0.86

OD UM 0.58 0.65 0.6 0.84 0.79 0.74
UD 0.57 0.72 0.57 0.68 0.8 0.77
Average F1 0.60 0.78 0.64 0.74 0.86 0.84

Table 3.5: Test Set Performance (F1 score) for InTheWild dataset. ITW refers to the
LongFormer-based detector trained by Li et al. (2023) specifically for this benchmark.
Acronyms used in this table are as follows: ID = In-distribution, OD = Out-of-distribution,
DS-MS = Domain-specific Model-specific, CD-MS = Cross-domains Model-specific, DS-
CM = Domain-specific Cross-models, CD-CM = Cross-domains Cross-models, UM =
Unseen Models, UD = Unseen Domains

48



Author Experts* Stylometry BERT GPT-who

text-babbage-001 0.47 0.45 0.84 0.85
text-curie-001 0.47 0.45 0.83 0.84
text-davinci-003 0.66 0.59 0.95 0.77
gpt-3.5-turbo 0.63 0.69 0.96 0.84
gpt2-xl 0.37 0.49 0.95 0.91

Average F1 0.52 0.53 0.91 0.84

Table 3.6: Test Set Performance (F1 score) for ArguGPT dataset.* denotes results
reported in [1].

approaches but is unsurprisingly outperformed by fine-tuned methods in 2 out of 4
benchmarks. In the case of statistical-based methods, it is typically very hard to come
close to fine-tuned performance as such methods rely only on derived properties of the
text and do not utilize the full raw text in training as is the case in the latter [104].
Despite this, GPT-who can exceed fine-tuned LM performance by 10% for 2 benchmarks.

3.4.3 Running Time

We measured the time taken for the one-time training or fine-tuning and inference for 6
testbeds from the InTheWild Dataset (the largest of all our benchmarks). We compare
the average running times of DetectGPT, BERT, GPT-who and a stylometric detector in
Table 3.7 and find that GPT-who is the fastest as it eliminates the need for any LM fine-
tuning and makes a single inference call per text sample. Other methods require either
LM fine-tuning or multiple inference calls (for example, DetectGPT). This computational
load is greater than a single forward inference pass through one LM (GPT2) followed by
logistic regression which is what GPT-who requires.

Method One-Time Training Inference
DetectGPT >10 hours 60 sec
BERT ∼1.5 hours 2 sec
Stylometry ∼1.5 hours 2 sec
GPT-who 20 min 0.8 sec

Table 3.7: Average Running time over 6 testbeds from the InTheWild dataset.

49



3.5 Conclusion
The Uniform Information Density (UID) principle posits that humans prefer to spread
information evenly during language production. We examine if this UID principle
can help capture differences between Large Language Models (LLMs)-generated and
human-generated texts. We propose GPT-who, the first psycholinguistically-inspired
domain-agnostic statistical detector. This detector employs UID-based features to
model the unique statistical signature of each LLM and human author for accurate
detection. We evaluate our method using 4 large-scale benchmark datasets and find
that GPT-who outperforms state-of-the-art detectors (both statistical- & non-statistical)
such as GLTR, GPTZero, DetectGPT, OpenAI detector, and ZeroGPT by over 20%
across domains. In addition to better performance, it is computationally inexpensive
and utilizes an interpretable representation of text articles. We find that GPT-who
can distinguish texts generated by very sophisticated LLMs, even when the overlying
text is indiscernible. UID-based measures for all datasets and code are available at
https://github.com/saranya-venkatraman/gpt-who. We present the largest analysis
of the UID-based representations of human and machine-generated texts (over 400k
articles) to demonstrate how authors distribute information differently, and in ways that
enable their detection using an off-the-shelf LM without any fine-tuning.

3.6 Discussion
We propose GPT-who, a statistical-based machine-generated text detector that utilizes
features inspired by the Uniform Information Density (UID) principle rooted in the ob-
servation that humans tend to evenly distribute information or surprisal in language.We
leverage UID-based features, including variance of surprisals and minimally/maximally
uniform sub-sequences extracted from the surprisal sequence generated by an off-the-shelf
LM. We demonstrate that these features are highly effective in discerning machine-
generated text from human-generated text as they capture nuances in how models and
humans distribute surprisal in their texts. Our findings have implications for enhanced
text authenticity assessment.

We turn to the UID principle, which states that humans prefer to spread information
evenly in language, to automatically extract features that measure the spread and flow
of information content or surprisal in texts. Our UID-based features are formulated to
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capture how surprisal is distributed in an article as they measure the local and global
variance, mean, and most uniform and non-uniform segments of a text. This rich and
succinct representation space drives the predictive capability of our proposed detector
and the interpretability of its representations. Analysis of this feature space reveals
that human-written text tends to be more non-uniform in comparison to
machine-generated text. Hence, machines seem to be spreading information more
evenly or smoothly than humans who are more likely to have fluctuations in their surprisal
distributions.

However, this finding does not imply that humans are not producing uniform text.
It is important to note that our work cannot provide support for or refute the UID
hypothesis which comes from psycholinguistic studies such as those in Section 3.2.1. Our
work shows that, given our operationalization of UID based on prior works, machine text
is relatively more uniform than human-written text. While this might seem contradictory
to UID theory, it does not still disprove that humans are uniform in their language
production.

We conjecture that this unexpected finding is because we use GPT-2’s probability
distribution to calculate surprisal, which is potentially a poor approximation of the
“human” probability distribution. A closer-to-human probability distribution might (or
might not) show humans to be more uniform than machines, though this determination
is not within the scope of this work. It is crucial to note that uniformity is relative, and
while machines are more uniform under this operationalization, it would still be true that
human text is uniform as per the human’s probability distribution (that we do not have
access to and can only approximate using some LM distribution, for example, GPT2-XL
in our case). UID theory does not make any predictions on where machine-generated
text might lie in the uniform to non-uniform spectrum but only indicates that humans
are arranging utterances evenly as per their own language distribution.

Irrespective of its alignment with what theory suggests, we find that the UID-based
features are very useful in distinguishing authors, which is the focus of this work. This is
an important consideration and helps disentangle the utility of UID-inspired features
from the cognitive plausibility of those feature calculations or UID approximations. Thus,
this operationalization of UID does not imply that humans are “less human” or machines
are “more human” as it is an approximation of a theory that states that humans are
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uniform as per their language distribution. It does not have any further implications
for machine-generated text and is unable to predict what happens in the case of machines.

We find that UID-based features can capture differences between text generated by
not only humans and models but also capture differences between multiple models and
LM families. Our main contribution is a psycholinguistically-inspired domain-agnostic
statistical-based machine-generated text detector, GPT-who, that:

• Outperforms statistical approaches across 4 large-scale benchmark datasets that
include texts from over 35 LLMs across more than 10 domains.

• Generalizes better to out-of-distribution datasets than SOTA detectors.

• Computationally more efficient than other supervised detectors as it does not
require the fine-tuning or training of any LLMs.

• Interpretable due to its psycholinguistically motivated UID-based feature space.

While our detector may not significantly outperform fine-tuned transformers-based
models, it is essential to highlight its independence from fine-tuning, offering nearly
comparable performance at significantly lower computational costs and remains one of
the only statistical-based detectors that can operate in multi-author settings beyond the
Turing Test. These findings indicate that approaches rooted in psycholinguistic theories
that delineate indicators of “human-like” language use hold enormous and untapped
potential in tackling the fast catapulting and ever-changing LLM landscape. This work
has implications for cognitively plausible and explainable solutions to complex challenges
arising from ever-growing automated text generators.

In our pursuit of a comprehensive examination of texts produced by recent large
language models, we encountered limitations arising from resource constraints and the
availability of publicly accessible datasets. These factors constrained our ability to
encompass a more diverse array of models and tasks, including summarization and
question-answering. Furthermore, our study did not delve into whether UID-based meth-
ods extend their utility beyond detecting machine-generated text to identify potential
issues such as misinformation and plagiarism. We acknowledge these constraints as part
of our ongoing commitment to refining and expanding our efforts in future research
endeavors.
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It is important to note that there are inherent limitations of AI-based tools and
automated machine text detectors such as in this work. Acknowledging the fallibility of
these detectors, particularly in generating false positives, we note that there is still a
crucial need for human oversight and discretion in the usage of such detectors in real-
world settings. For example, ethical concerns surrounding over-vigilance in scrutinizing
student-written text are an important consideration for striking a balance between the
convenience of automated detection and the preservation of academic integrity. By
advocating for responsible development and implementation, we hope to contribute to a
landscape where ethical considerations guide the integration of automatic text detection
systems in educational settings, safeguarding against undue reliance and promoting
fairness, equity, and respect for individual expression.
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Chapter 4 |
Authorship Obfuscation using syn-
tactic n-gram patterns

Authorship Attribution (AA) and Authorship Obfuscation (AO) are two opposing tasks
of growing significance in privacy research. Modern AA techniques utilize an author’s
distinct writing style to identify the author of a given text through an AA classifier. In
contrast, AO aims to alter a text in such a way that its meaning remains intact, but an
AA model is unable to accurately determine its authorship. While new AO methods
have been introduced to counter the privacy risks posed by advanced AA models, they
often remain impractical due to slow training and obfuscation times, sometimes taking
several hours. To address this, we present ALISON, a practical AO method that (1)
significantly reduces training and obfuscation time, offering over 10x faster performance
than current AO approaches, (2) delivers superior obfuscation results, improving by 15%
over competing methods when attacking three transformer-based AA models across two
benchmark datasets, (3) does not rely on direct feedback from the target AA classifier
during obfuscation, and (4) incorporates unique stylometric features for explainable
and interpretable obfuscation. Additionally, ALISON proves effective in preventing four
advanced AA models from identifying the authorship of texts generated by ChatGPT,
while making minimal changes to the original text’s meaning.

4.1 Introduction
Writing styles tend to be consistent across texts written by the same author, while they
can vary significantly between different authors. As a result, the identity of an anonymous
author can often be uncovered by examining the writing style and matching it to a set of
known authorship indicators, a process called Authorship Attribution (AA). In machine
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I just received my first memo today

ALISON

I got back my first memo today

Authorship
Attributor

10x faster

VBD RB

Author A

RB VBD Author B

    15 % 
 success

Figure 4.1: An example of ALISON successfully obfuscating a text by changing its style
while preserving semantics.

learning, these authorship indicators are predictive signals that distinguish one author’s
writing style from others, commonly referred to as stylometric features. Stylometric
features encompass various types, including lexical features (e.g., word structure and
frequency of specific character sequences), syntactic features (e.g., part-of-speech pat-
terns and the use of functional words and punctuation), and content features (e.g., the
semantics of words and phrases within the text). These features are crafted to enable a
machine learning model to assign a text to the correct author. These engineered features,
such as Writeprints [105], often include not one but several interpretable signals such as
word and character bigrams, word length distributions, or special character frequencies
to improve the classification accuracy.

However, recent AA techniques [106, 107] utilize complex transformer models–e.g.,
BERT [108], RoBERTa [109], BertAA [106], to automatically learn useful features for
AA from raw text. This removes the need to rely on explicitly engineered stylometric fea-
tures. While these models are more computationally expensive to train and notorious for
their lack of interpretability, they significantly outperform traditional AA classifiers [106].

As Authorship Attribution (AA) techniques become increasingly accurate and efficient,
they pose a growing threat when misused by malicious actors to uncover the identities
behind anonymous texts. This is particularly harmful to vulnerable groups such as NGO
activists, whistleblowers, and journalists. Given the strength of current state-of-the-art
(SOTA) transformer-based AA models, it is crucial to develop methods that mitigate
the risk of revealing the true authorship of anonymous texts. In response, we focus on
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the reverse task of AA, known as Authorship Obfuscation (AO), which seeks to defeat
authorship attribution classifiers by systematically altering a text. Effective AO misleads
the classifier, causing it to incorrectly attribute the text’s authorship from a pool of
candidates. Since AA performance generally diminishes when the number of potential
authors becomes large (i.e., more than 100), and adversaries can often narrow the pool
of authors to a small, finite set, we focus on authorship obfuscation in this constrained
scenario rather than an open-world setting. Figure 4.1 illustrates a successful example of
obfuscation against a BERT-based AA model [107].

For AO to be practical, it should meet three key criteria: (1) the ability to function
with minimal knowledge of the adversary, (2) rapid execution time for long-form texts
(under one second, as opposed to minutes or hours), and (3) intuitive interpretability to
ensure a trustworthy obfuscation process.

First, an ideal AO approach is one that can operate successfully without significant
knowledge of the adversary and its perturbation results must be able to transfer across
different AA models. Methods utilizing trial and error assume that the attacked AA
classifier is foreknown and accessible via callable APIs. However, such assumption is often
not satisfied in real life. Moreover, there are different possible variations in the training
schemes and architectures of current SOTA transformer-based text classifiers that make
the obfuscation task much more challenging in practice. Although these classifiers might
differ from each other in their architectures, it is an increasingly important task to
develop powerful and practical authorship obfuscation methods to protect the individuals
who wish to publish text-based content anonymously, such as activists or whistleblowers.
Because of the varied natures and training schemes adopted by transformer architectures,
an optimal authorship obfuscation method must be able to operate successfully without
significant knowledge of the adversary and must be able to potentially transfer success
to many adversaries.

A short running time will ensure that a higher volume of texts can be obfuscated
in a shorter timeframe so as not to diminish the productivity of an author. When
computational complexity becomes especially prohibitive, the identity of an author may
become at risk of being revealed. However, current methods [110,111] utilize large and
slow models to perform obfuscation, resulting in a sub-optimal runtime. An authorship
obfuscation method must be practical for longer texts and maintain a short running time
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for obfuscation to make it accessible for individuals without significant computational
resources but who still wish to publish in a way that preserves privacy. A short running
time will ensure that a higher volume of texts can be obfuscated in a shorter timeframe
so as not to diminish the productivity of an author. When computational complexity
becomes especially prohibitive, the identity of an author may become at risk of being
revealed. However, current methods [110,111] utilize large and slow models to perform
obfuscation, resulting in a sub-optimal runtime.

Third, an ideal AO technique should be interpretable. When the reasoning behind
obfuscation decisions is unclear, it is difficult to communicate to the users that the obfus-
cation is performed in a trustworthy and sound manner. Unfortunately, state-of-the-art
(SOTA) AO methods fail to meet these practical requirements. They typically involve
lengthy running times to obfuscate text in a black-box manner, relying on repeated calls
to the target model. These approaches are impractical for several reasons: obtaining a
black-box understanding of the attacked model is often unrealistic, the long execution
times significantly hinder an author’s ability to maintain anonymity efficiently, and the
lack of interpretability during the obfuscation process undermines trust in these methods.

By being enabled to interpret the decisions made by the AO method, the users also
gain insight into important stylometric features of specific authors and how they are
interchanged for obfuscation. However, current AO methods–e.g., [110,111], lack such
interpretability. This is due to the fact that they employ genetic-based search algorithms
to optimize the text perturbation process, which are often very challenging to summarize
with clear interpretability.

To address the aforementioned limitations of current AO methods, we propose a novel
stylometry-grounded novel obfuscation method, ALISON: (Fast Stylometric Authorship
Obfuscation), which overcomes these challenges as follows:

• ALISON significantly reduces obfuscation runtime by over 10x while maintaining
superior semantic preservation during the obfuscation process.

• ALISON consistently outperforms competing methods, achieving about 15% higher
success rates in obfuscation (i.e., lowering the prediction F1-score of state-of-the-art
transformer-based AA classifiers).

• ALISON also provides interpretable explanations for its obfuscation outcomes
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through the use of stylometric features, offering insights into the obfuscation
process.

Repeat L times

Help me pick a
place to work

Tokens

<VB> <PRP> <VB> <DT>
<NN> <TO> <VB>

POS N-gram
Generation

<VB> <DT> <NN>
...
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Help me <MASK> <MASK>
 <MASK> to work
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Masked Token
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<VB> <PRP> <VB> <IN>
<NNS> <TO> <VB>

Help me
search for offices to work

Obfuscated Text

Figure 4.2: ALISON: Our proposed obfuscation pipeline.

Performing adversarial attacks against text models is a highly studied problem. Attack
strategies can be broadly classified into operating in three settings: white-box, black-box,
and blind. Attacks operating in a white-box setting have complete knowledge of the
defender’s model, including its architecture, training data, and the ability to query the
model parameters and its prediction logits. In the black-box attack setting, the model’s
architecture, parameters, and training data are unknown, but the attacker has the ability
to query the black-box model for prediction probabilities. In the blind attack setting, the
attacker has no knowledge of the defender. In this work, we will only conduct attacks in
the blind attack setting to systematically evaluate the performance of each method in a
consistent manner.

4.1.1 White-Box Attacks

It has been demonstrated that white-box attacks are extremely effective [112, 113],
demonstrating near complete degradation of adversarial accuracy while retaining almost
all of the original text. These methods access the target model’s gradients and compute
the most optimal perturbations to most negatively degrade the target model’s logits.
Gradient-based attacks are able to perform so well because their complete knowledge
allows them to definitively identify the parts of the text contributing most to the final
prediction, and are therefore able to minimally change the text to achieve successful
obfuscation.

4.1.2 Black-Box Attacks

While the black-box attack setting is intuitively more difficult to attack in, SOTA black-
box attacks are able to find a nearly comparable success rate. For example, TextFooler
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[108] leverages the black-box ability to query logits from the adversarial classifier to
find the most important words in the classifier’s prediction formation, through finding
the maximum confidence decrease when a word is removed. These important words are
then replaced to achieve a high obfuscation success rate. Because TextFooler is a widely
accepted textual attack method in the black-box setting, we repurposed it for blind use by
using it to attack maintained internal classifiers different from the hidden target classifiers.

BERT-Attack [114] utilizes a similar approach to attack BERT [107] models in the
black-box setting. To rank words, they measure the logit changes as words are replaced
with [MASK], and utilize BERT to replace words identified as important. The concept
of these attack strategies was improved upon using locality-sensitive hashing to group
potential replacements for candidate words, reducing the number of queries needed to
perform a successful attack while sacrificing minimal performance [115].

The blind attack setting is the most difficult to perform. However, it is the most
practical because information about the target may be difficult or impossible to obtain
in practice. General textual adversarial attack strategies may be used to attack AO clas-
sifiers in their respective settings, however, additional methods exist for AO specifically.
We describe a few works in this setting specifically pertaining to the blind attack setting.

We focus our work on the blind AO setting, where the adversarial attack on the AA
classifier operates under two key constraints: (1) the attacker cannot directly query the
AA classifier, and (2) the attacker has no access to its architecture, training data, or
other internal details. These restrictions make the AO task more challenging but also
more realistic compared to existing threat models in the literature, which often assume
access to a public API for the target AA classifier. The following section reviews relevant
work within this blind AO context.

Mutant-X [110] is an automated obfuscation method that employs genetic algorithms
to iteratively perform single-word substitutions, guided by the confidence degradation
obtained from a black-box perspective of the target model. Although originally designed
as a black-box attack, we adapted it for use in the blind attack setting, following the
transferability studies outlined in its initial work [110]. Avengers Ensemble [111] seeks
to enhance Mutant-X by reducing its dependence on black-box knowledge of the target
classifier. It achieves this by leveraging an ensemble-based internal classifier, which
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improves the method’s transferability across a range of adversaries, leading to better
performance in the blind attack scenario. For the remainder of this paper, we refer to
this method simply as Avengers.

Rule-based obfuscation utilizes a set of specific rules to match and change specific pat-
terns of text, however, these methods have been found to be too conservative to obfuscate
against most classifiers [116]. Anonymouth [117] is a popular semi-automated obfusca-
tion technique, meaning that it requires continuous human input to perform obfuscation,
and therefore its performance is dependent on the user. We utilized the recommended
internal classifiers for Mutant-X, however, we did not use these internal classifiers as tar-
get models, due to the low attribution accuracy of the classical machine-learning methods.

Other popular greedy-based black-box methods in the NLP adversarial literature, such
as TextFooler [108] and BERT-Attack [118], often have a high degree of dependence on
the accessibility to the target AA classifier they attack. These methods make queries to
the victim model per token in order to obtain a logit-based ranking of word importance.
Then, top tokens may be replaced with close neighbors in precomputed embedding
spaces [108] or by leveraging token representations of large language models [118]. How-
ever, these methods often demonstrate a sharp decline in performance once the attacks
are transferred to different target classifiers [108]. Additionally, such methods generally
lack interpretability, as model explanations are based solely on the black-box model that
is being attacked instead of revealing identifying linguistic patterns.

Lastly, large generative language models, such as ChatGPT [119], have demonstrated
impressive paraphrasing capability which may be suitable for AO applications. A user
may obtain a stylometrically different but semantically consistent text by prepending a
fixed paraphrasing prompt to query a language model. Therefore, these model explana-
tions have limited value beyond the black-box setting.

Because of the complexity of genetic algorithms, Mutant-X and Avengers are com-
putationally very expensive, taking a relatively long amount of time for inference, or
producing obfuscated samples. Additionally, they lack interpretability, as they make
word substitutions according to the learned patterns of the genetic algorithm, which
are not readily apparent. For these reasons, these methods are not practical to deploy
in a real-world scenario for privacy enhancement. We aim to address these limitations
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with ALISON, comparing ALISON with the SOTA methods TextFooler, Mutant-X and
Avengers.

4.2 Proposed Method: ALISON

4.2.1 Problem Formulation

Given a text corpus X , we define an AA classifier f trained on X , such that for arbitrary
text x ∈ X , f(x) attributes the authorship of x. Given T is a set of texts to obfuscate,
our objective is to thwart f for any text t ∈ T by transforming t into t′ such that
f(t) ̸=f(t′). We assume that X and T share the same pool of potential authors and are in
a similar domain–e.g., news articles, blog posts– but do not contain any identical texts.

Moreover, we also assume no access to X by the adversary. However, they do have
access to another non-overlapping corpus X ∗ with a similar size containing the same pool
of authors and domain with X . Such assumption is reasonable in practice, especially
when online social networks have made it very convenient for anyone to access text
content generated by millions of people worldwide. To evaluate our approach in this
setting, we split each publicly available text classification corpus into three disjoint sets,
X , X ∗, and T stratified by unique authorship labels. ALISON is designed to reduce
computational complexity while advancing obfuscation success and semantic preservation
during obfuscation. To do this, we employ three overarching strategies. First, we train
an internal, lightweight AA classifier once that uses intuitive linguistic properties of
part-of-speech (POS) sequences to guide the obfuscation process. Second, we aim to
obfuscate a phrase of multiple words at a time instead of perturbing token by token.
Third, we leverage an advanced pre-trained language model (PLM) to generate the
replacement token sequence that best fits the sentence context and semantics without
making queries to an embedding space. We present the entire obfuscation pipeline in
Figure 4.2 and discuss each step and component in the following sections.

4.2.2 One-Time Stylistic Internal AA Classifier Training

Because blind attacks on AA models often rely on an internal approximation of an arbi-
trary adversarial classifier to choose candidate words or phrases to be replaced, tuning
the internal classifier for maximal transferability to other target classifiers is integral to
producing high obfuscation success rate [111]. Therefore, we augment the traditional
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Figure 4.3: An example of extracting POS trigrams.

internal classifier feature space of character n-grams with POS n-grams, features we
believe to be more heavily rooted in true style. We hypothesize that while writing
style encompasses word and character frequencies, more generally, writing style also
encompasses frequencies of individual POS tags and their collocations. Intuitively, POS
and sequences of several POS tags capture writing style because they do not describe the
content of the text but rather how the ideas in the text are synthesized. Generally, an
author’s texts should contain similar POS sequence patterns, as they represent common
textual structures used to synthesize different ideas.

Data Extraction. We first extract the POS tags of all texts in the corpus X ∗. Next,
we extract character and POS tag n-grams of various lengths as features for training the
internal classifier. Figure 4.3 demonstrates the procedure of extracting POS n-grams
from a sample sentence with n←3.

An n-gram is a contiguous sequence of n linguistic units (e.g., characters, words, POS
tags) within a text. Given a set of sequence lengths V , for each length l ∈ V , we extract
all character and POS level l-grams over the entire training corpus and collect the L

most frequent character and POS l-grams. The normalized frequencies of these L most
frequent character and POS l-grams for each length l ∈ V are concatenated to form the
stylistic representations of the text.

We, therefore, hypothesize that POS n-grams will be a more generally transferable
feature to base 0.15scation technique on, as any highly-performing attribution model
must rely on stylistic features, addressing objectives 2 and 4. Additionally, by replacing
phrases governed by the POS n-grams, we reduce the computational complexity by
replacing phrases instead of words, addressing objective 1.

A typical neural network is often represented by hΘ, where Θ is a list of tunable
parameters or weights (Θ = {θ1, θ2, ..., θn}). In an ideal case, the feature space of a given
task is embedded in Θ after the parameters are fully optimized. Cross-entropy loss was
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applied to guide neural network learning by providing feedback during the training.

LCE = −
n∑

i=1
yi ∗ log(pi), (4.1)

where yi is the value of the ground-truth at label i and pi is the predicted probability
of label i. The loss is minimized by adjusting Θ to push the probability of the target
label to 1. The goal of neural network training is to converge to an optimal set of weights
for the model that outputs the desired result on a given task, upon which training is
terminated. The weights are iteratively updated during the training from an initially
randomized set.

4.2.3 Model Architecture

With V = 1, 2, 3, 4 and L = 250, for a sufficiently large corpus, the size of the feature set
is generally at least 1500. Therefore, we utilized a NN with all hidden layers excluding the
last having 1750 neurons, and the last hidden layer having 256 neurons. The NN model
consisted of 12 total layers. Additional layers marginally improved the accuracy of the
model while increasing training time. We applied Dropout to each layer except the last,
at a Dropout proportion of p = 0.40. We empirically determined that a high Dropout
proportion decreased dependence on any one feature and increased the obfuscation
success. Dropout also serves as a form of regularization, preventing model overfitting on
the training set.

4.2.4 Internal Classifier Training

The resulting vector representations are then used to train a fully connected neural
network (NN) model on the authorship attribution task. We opt for a simple NN due to
its computational efficiency without much compromise on generalization. To utilize this
model for prioritizing which phases or words in a sentence to perturb first, we then extract
a list of features, ranked by importance, for ∀t ∈ T using Integrated Gradients [120], a
model interpretability algorithm that assigns an importance score to each input feature
by approximating the integral of the gradients with respect to the input by making a
small number of calls to the gradient of the model. The method can be applied to any
differentiable model and can be used to understand feature importance by extracting
rules from the model.
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Integrated Gradients is a widely used SOTA method for input sensitivity analysis
and feature-attribution explanation. Formally, the importance of a feature i is calculated
by Integrated Gradients (Integrated_Gradientsi(x)) as shown in Equation 4.2.

(xi − x′
i) ∗

∫ 1

α=0

∂F (x′ + α ∗ (xi − x′
i))

∂xi

dα (4.2)

Where x is the input, x′ is some baseline input with the absence of features (usually a
null input or random noise), and α is some interpolation constant for feature perturbation
from the baseline. Since the calculation of this definite integral is computationally
expensive and is not generally necessary, the value of the definite integral is generally
approximated through a Riemann sum.

We also multiply each extracted importance by the term clength(feature) for each feature’s
attribution, where c is a constant. During experimentation, we empirically observed
that shorter POS n-grams were more abundant at the beginning of the attribution-
ranked n-gram lists. We believe that this behavior is because of the necessarily lesser
frequency of an arbitrarily longer POS n-gram in typical texts, as each longer n-gram
occurrence necessarily is an occurrence of all contiguous substrings of the n-gram, i.e.,
shorter n-grams. Therefore, we introduced this scaling constant to artificially inflate the
importance of longer POS n-grams to compensate for this behavior.

4.2.5 Replacement Phrase Generation via Masked PLM

To perform obfuscation, we must be able to generate replacement phrases using existing
phrases as prompts. To do this, we leverage the masked language modeling approach
used by [107]. More specifically, given a sentence and the desired word tokens to be
replaced, we mask the tokens to be replaced and use this modified text as input for a
BERT model under a masked token prediction task. The top prediction for each masked
token is used as the word’s replacement. By using a SOTA language model, we aim to
minimize the degree of information loss, as the language model will be able to infer much
of the contents of the phrase through context but may scramble POS sequences, which
hides authorship. This token-sequence masking procedure lies at the core of ALISON’s
speed-up, allowing a single PLM forward pass to perturb multiple tokens.
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4.2.6 Text Obfuscation Process: One N-Gram at a Time

To obfuscate each t ∈ T , we first extract the POS tags and n-gram features for t, which
are used to compute importance values as described previously. Then, we iterate through
the ranked feature list in descending order of importance, omitting character n-gram
features (only considering POS n-gram features) and pick the top L features. We omit
character n-grams because important character n-grams are generally functional words
or involve punctuation, which would negatively impact fluency upon perturbation.

Next, we attempt to match each of the top L POS n-grams to the POS n-gram profile
of t. For each n-gram match found, we update t through the phrase generation procedure
as described previously. Lastly, we mark this phrase as changed so that it cannot be
changed in subsequent steps as to prevent any specific section of text from deviating
significantly from the original. Obfuscation is complete once all matches for the top L

POS n-grams are processed.

Often, phrase replacement more than twice results in the language model predicting
punctuation only for each word in the phrase to be masked, which is not desirable due
to punctuation carrying no semantic meaning. One unique property of ALISON is that it
will modify the text even if the internal classifier believes it will be classified incorrectly.
This property is desirable because ALISON will uniformly obfuscate all texts, likely
decreasing adversarial classifier confidence even if a complete obfuscation is unsuccessful.
This differs from logit query-based methods because they do not attempt to perform
any obfuscation if their internal classifier’s prediction does not match the ground truth,
leading to a large proportion of t ∈ T being completely unedited and therefore vulnerable.

4.3 Experimental Setup
We evaluate our obfuscation method under the blind attack setting, meaning that we
have no knowledge of the adversarial classifier’s training data or architecture and also
have no ability to query the target AA model.
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4.3.1 Datasets

We use TuringBench [121] to evaluate ALISON on machine-generated texts. TuringBench
is a collection of 160K human and machine-generated texts across 20 authors, 19 of which
are neural text generation models, and one of whom is human. All texts generated from a
specific prompt are in a specific subset of the data (training, validation, or testing) to limit
topic bias in experimentation. TuringBench is split into 70:10:20 training, validation, and
test proportions, respectively. TuringBench was designed to serve as the first benchmark
environment for a variety of NLP tasks, including authorship attribution, and provides a
current leaderboard of authorship attribution performances1. The texts are on a variety
of topics, and all contain a large number of tokens. As all texts were found to be of
sufficient length (between approximately 100 and 400 tokens), we did not remove any
samples from the dataset during any portion of the experiments.

We also use the Blog Authorship Corpus [122] to evaluate ALISON on human-written
texts. The dataset consists of the aggregated blog posts of 19,320 bloggers gathered from
blogger.com, of which we select only the blogs from the top-10 most frequent authors.
Both datasets are publicly available. We report all AO results on the test set.

Target Classifiers. We use three SOTA transformer-based models as target AA
classifiers to attack: BERT [107], DistilBERT [123], and RoBERTa [109]. These tar-
get classifiers were trained on the disjoint halves of the training and validation sets.
BERT [107] is a ubiquitous language model utilizing a novel transformer architecture.
RoBERTa [109] advances the pre-training approach that BERT uses, while DistilBERT
is a lightweight version of BERT trained through knowledge distillation. These adver-
sarial classifiers were trained on the 1st disjoint half of the training and validation sets.
They achieved around 80% testing accuracy on on TuringBench, while demonstrating
varying performance on the Blog Authorship Corpus, ranging from approximately 85%
(DistilBERT) to 95% (RoBERTa) testing accuracy.

Obfuscation Baselines and Internal Classifier Training. We utilize TextFooler,
Mutant-X, Avengers, BERT-Attack, and ChatGPT as baselines to compare against our
proposed AO framework ALISON. Except for ChatGPT, these methods all maintain an
internal classifier for reference during obfuscation. While many of these are black-box

1This leaderboard can be found here: https://turingbench.ist.psu.edu/
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attack methods, we repurposed them for the blind attack setting using the internal
classifier specifications given in transferability studies instead of giving them access to
our SOTA target models. Our neural-network-based n-gram classifier is trained on the
disjoint 2nd half of the training and validation data that was not used to train our SOTA
target models using V = {1, 2, 3, 4}. Internal classifiers for Mutant-X and Avengers
were trained as outlined by their papers [110, 111] on the same data as our internal
classifier. Specifically, we trained a random forest classifier on the Writeprints feature
set for the Mutant-X method, and an ensemble consisting of multiple SVM and random
forest classifier models under a soft voting scheme for Avengers. We picked these internal
classifier configurations because as [110] and [111] indicated that these were the most
high-performing for obfuscation and attribution. TextFooler was trained with both word-
based CNN (wordCNN) [124] and word-based LSTM (wordLSTM) internal classifiers
as specified in their public implementation. We additionally tested TextFooler using
our n-gram-based NN model (denoted as TextFooler-POS) to provide a fair comparison
and illustrate the effectiveness of our stylometry-grounded approach. BERT-Attack was
trained using standard BERT [107]. ChatGPT-based obfuscation was performed by
pretending a fixed paraphrasing prompt to each text and obtaining the returned machine
response.

Obfuscation and Evaluation Procedure. We randomly select a sample of 100 texts
from the test set, stratified by label, for obfuscation. For each victim model, we only retain
the obfuscation samples that the model classifies correctly, resulting in approximately
80 samples for obfuscation on TuringBench, and varying from 85 to 95 samples for
the Blog Authorship Corpus. After obfuscation, we measure a few key metrics. These
metrics can be broadly divided into two groups: metrics measuring obfuscation success,
or the success of obfuscation in evading the adversarial classifier, and metrics measuring
semantic preservation, or how semantically similar the original and obfuscated texts are.

4.3.2 Evaluation Metrics

• Obfuscation Success. The most intuitive measure of obfuscation success is
measuring the target AA model’s accuracy. Because there is a potential for the
label distribution to become skewed during the removal of misclassified samples,
we also measure F1-Score, a more robust metric in such a setting. To analyze
the obfuscation success, we also monitor the reduction in target model accuracy
between the original and obfuscated texts. Because we only retain correctly classified
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TuringBench

Method Obfuscation Success (Lower is Better)
Accuracy↓ F1-Score↓

BERT
Mutant-X 0.8987 0.8798
Avengers 0.8354 0.8334
TextFooler-wordCNN 0.7089 0.6797
TextFooler-wordLSTM 0.7342 0.6935
TextFooler-POS 0.7595 0.7011
BERT-Attack 0.9114 0.9179
ChatGPT 0.7089 0.6566
ALISON 0.6962 (-1.79%) 0.6065 (-7.63%)

DistilBERT
Mutant-X 0.9494 0.9464
Avengers 0.9113 0.8515
TextFooler-wordCNN 0.7848 0.7556
TextFooler-wordLSTM 0.7722 0.7705
TextFooler-POS 0.7972 0.7955
BERT-Attack 0.8228 0.8172
ChatGPT 0.7456 0.6474
ALISON 0.5823 (-21.90%) 0.4925 (-23.93%)

RoBERTa
Mutant-X 0.9014 0.8527
Avengers 0.8028 0.7393
TextFooler-wordCNN 0.6901 0.6074
TextFooler-wordLSTM 0.7606 0.6682
TextFooler-POS 0.7606 0.6760
BERT-Attack 0.8451 0.8412
ChatGPT 0.7924 0.6569
ALISON 0.6620 (-4.07%) 0.5624 (-7.41%)

Table 4.1: Obfuscation success across various models. Best performance is shown in
boldface. The percentage (%) indicates the performance gain of ALISON compared to
the 2nd best competition if positive (or drop if negative) per each metric.

samples for obfuscation, the baseline accuracy and F1-Score are 1.00. A smaller
post-obfuscation accuracy and F1-Score indicates a more successful attack, and
therefore greater obfuscation success.
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Blog Authorship Corpus

Method Obfuscation Success (Lower is Better)
Accuracy↓ F1-Score↓

BERT
Mutant-X 0.9130 0.9180
Avengers 0.9565 0.9528
TextFooler-wordCNN 0.9348 0.9305
TextFooler-wordLSTM 0.9565 0.9531
TextFooler-POS 0.9348 0.9476
BERT-Attack 0.9130 0.8914
ChatGPT 0.9022 0.8908
ALISON 0.8804 (-2.42%) 0.7860 (-11.76%)

DistilBERT
Mutant-X 0.9048 0.9128
Avengers 0.9405 0.9435
TextFooler-wordCNN 0.8810 0.8570
TextFooler-wordLSTM 0.8810 0.8425
TextFooler-POS 0.8810 0.8591
BERT-Attack 0.9048 0.8784
ChatGPT 0.9762 0.9712
ALISON 0.7738 (-12.17%) 0.7189 (-14.67%)

RoBERTa
Mutant-X 0.9895 0.9886
Avengers 1.00 1.00
TextFooler-wordCNN 0.3579 0.3397
TextFooler-wordLSTM 0.3684 0.3394
TextFooler-POS 0.3369 0.3295
BERT-Attack 0.9053 0.8737
ChatGPT 0.5684 0.5939
ALISON 0.3053 (-9.38%) 0.2912 (-11.62%)

Table 4.2: Obfuscation success across various models. Best performance is shown in
boldface. The percentage (%) indicates the performance gain of ALISON compared to
the 2nd best competition if positive (or drop if negative) per each metric.

• Running Time. First, we recorded the running time of each algorithm, as an
obfuscation method that requires a prohibitive amount of resources or computation
time may not be scalable to real world AO scenarios. We split this time measurement
into two phases, the time associated with one-time training of internal classifiers,
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TuringBench

Method
Semantic Preservation (Higher is Better)

METEOR↑ USE Cosine Similarity↑ BERTScore↑
BERT

Mutant-X 0.8381 0.9159 0.9366
Avengers 0.8333 0.9030 0.9320
TextFooler-wordCNN 0.8667 0.9614 0.9386
TextFooler-wordLSTM 0.8813 0.9671 0.9430
TextFooler-POS 0.8650 0.9635 0.9382
BERT-Attack 0.8388 0.8701 0.9526
ChatGPT 0.8373 0.9113 0.9490
ALISON 0.8505 (-3.49%) 0.9682 (0.11%) 0.9583 (0.60%)

DistilBERT
Mutant-X 0.8450 0.9192 0.9406
Avengers 0.8341 0.9048 0.9320
TextFooler-wordCNN 0.8641 0.9609 0.9413
TextFooler-wordLSTM 0.8819 0.9677 0.9447
TextFooler-POS 0.8675 0.9657 0.9391
BERT-Attack 0.8434 0.8737 0.9538
ChatGPT 0.8428 0.9142 0.9494
ALISON 0.8538 (-3.19%) 0.9685 (0.08%) 0.9588 (0.52%)

RoBERTa
Mutant-X 0.8182 0.9062 0.9306
Avengers 0.8157 0.8967 0.9248
TextFooler-wordCNN 0.8621 0.9618 0.9386
TextFooler-wordLSTM 0.8814 0.9686 0.9446
TextFooler-POS 0.8623 0.9624 0.9402
BERT-Attack 0.8279 0.8603 0.9484
ChatGPT 0.8268 0.9057 0.9436
ALISON 0.8554 (-2.95%) 0.9701 (0.15%) 0.9595 (1.17%)

Table 4.3: Obfuscation success across various models. Best performance is shown in
boldface. The percentage (%) indicates the performance gain of ALISON compared to
the 2nd best competition if positive (or drop if negative) per each metric.

and the time associated with the average inference time of the retained samples.

• Semantic Preservation. We also measure metrics of semantic preservation or
semantic similarity between the original and obfuscated texts. Metrics indicating
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Blog Authorship Corpus

Method
Semantic Preservation (Higher is Better)

METEOR↑ USE Cosine Similarity↑ BERTScore↑
BERT

Mutant-X 0.8325 0.8514 0.9237
Avengers 0.8894 0.9028 0.9316
TextFooler-wordCNN 0.8854 0.9472 0.9356
TextFooler-wordLSTM 0.8811 0.9439 0.9382
TextFooler-POS 0.8838 0.9453 0.9321
BERT-Attack 0.9007 0.9221 0.9202
ChatGPT 0.6720 0.8827 0.9368
ALISON 0.8296 (-7.89%) 0.9551 (0.83%) 0.9386 (0.04%)

DistilBERT
Mutant-X 0.8209 0.8497 0.9135
Avengers 0.8826 0.9044 0.9305
TextFooler-wordCNN 0.8839 0.9465 0.9356
TextFooler-wordLSTM 0.8786 0.9427 0.9382
TextFooler-POS 0.8832 0.9442 0.9349
BERT-Attack 0.9026 0.9245 0.9205
ChatGPT 0.6524 0.8820 0.9347
ALISON 0.8431 (-6.59%) 0.9595 (1.37%) 0.9387 (0.05%)

RoBERTa
Mutant-X 0.8285 0.8514 0.9232
Avengers 0.8886 0.9036 0.9305
TextFooler-wordCNN 0.8857 0.9475 0.9354
TextFooler-wordLSTM 0.8782 0.9437 0.9381
TextFooler-POS 0.8823 0.9454 0.9322
BERT-Attack 0.9007 0.9221 0.9202
ChatGPT 0.6720 0.8827 0.9368
ALISON 0.8296 (-7.89%) 0.9551 (0.83%) 0.9386 (0.04%)

Table 4.4: Obfuscation success across various models. Best performance is shown in
boldface. The percentage (%) indicates the performance gain of ALISON compared to
the 2nd best competition if positive (or drop if negative) per each metric.

higher semantic preservation are favorable, as they indicate that there was a lim-
ited degree of information loss and that the perturbations to the text would not
significantly impair a reader’s understanding of the original text. These metrics
include (1) METEOR Score: METEOR score is a standard for measuring the
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similarity between two texts in a natural language setting. It is grounded in the
measure of alignments of word unigrams among texts; (2) USE Cosine Similarity:
The Universal Sentence Encoder (USE) [125] is a text embedding model that is
frequently adopted to accurately capture the semantics of a sentence. We utilize
cosine-similarity to determine the degree of similarity between generated embed-
dings; (3) BERTScore: BERTScore [28] is another metric of semantic similarity
that utilizes BERT’s pretrained contextual embeddings. BERTScore is calculated
by maximizing pairwise embedding similarities for the tokens of an original and its
obfuscated text. All scores lie in [0, 1], and higher scores denote greater semantic
similarity.

• Fluency. Lastly, we measure the perplexity of obfuscated texts to ensure that the
obfuscation process does not diminish the human readability of obfuscated texts.
The perplexity is calculated as the negative log-likelihood of LLaMA2-7B [83] over
obfuscated texts.

Evaluation Metrics - Obfuscation Success

The most intuitive measure of obfuscation success is measuring target model accuracy. To
adapt this definition of F1 score for multinomial classification tasks, we simply calculate
an F1 score for each class, treating the current class label as positive, and all other classes
as negative. We then average the value of all twenty F1 scores, without class weights, to
report an overall F1 score. This calculation gives a more robust measure of the actual
performance of a classifier, with less bias from potentially imbalanced classes. To analyze
the obfuscation success of an obfuscation method, we specifically want to monitor the
reduction in F1 between the original and obfuscated texts.

To analyze obfuscation success, we specifically want to monitor the reduction in
target model accuracy between the original and obfuscated texts. Because we only retain
correctly classified samples for obfuscation, the baseline accuracy and F1 score are 1.00.
A smaller post-obfuscation accuracy and F1 score indicates a more successful attack, and
therefore greater obfuscation success, desirable in a more optimal obfuscation technique.

Evaluation Metrics - Semantic Preservation

We also measure metrics of semantic preservation or semantic similarity between the
original and obfuscated texts. Metrics indicating higher semantic preservation are
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favorable, as they indicate that there was a limited degree of information loss and that
the perturbations to the text would not significantly impair a reader’s understanding of
the original text.

• METEOR Score :Metric for Evaluation of Translation with Explicit ORdering
(METEOR∈[0, 1])2 score is a standard for measuring the similarity between two
texts in a natural language setting. It is grounded in the measure of alignments
of word unigrams among texts. The higher the score, the higher degree is the
semantic similarity between an original and its obfuscated text.

• USE Cosine Similarity∈[0, 1]. The Universal Sentence Encoder (USE) [125] is a
text embedding model that is frequently adopted in NLP literatures to accurately
capture the semantic of a sentence. We use USE with cosine-similarity measure to
calculate the semantic preservation between an original and its obfuscated text.

• BERTScore. BERTScore [28] is another metric of semantic similarity that utilizes
the pretrained contextual embeddings produced by a BERT model. BERTScore
is calculated by maximizing pairwise embedding similarities for the tokens of an
original and its obfuscated text.

We present more details on methods underlying the calculation of these evaluation
measures as follows:

METEOR Score: Given reference and hypothesis texts, METEOR constructs an
alignment, or word matching, between the two texts that first attempts to match each
unigram in the hypothesis with 0 or 1 unigram(s) in the reference. If multiple alignments
are possible, METEOR chooses the alignment with the minimum number of mapping
crossings. A unigram is mapped to another unigram based on exact word equality,
stemming, and synonyms based on WordNet. Once an alignment is created, the matched
content and function words in each alignment are used to calculate unigram precision,
defined as the proportion of unigrams mapped in the generated text over the total number
of unigrams, and recall, or the proportion of unigrams mapped in the generated text over
the total number of unigrams in the reference text. This precision and recall are then
used to calculate the METEOR score, which is based on the harmonic mean of these two
values (similar to the F1 score), and a penalty factor accounting for relative unordering

2https://github.com/salaniz/pycocoevalcap
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between adjacent chunks between the reference and hypothesis texts.

USE Cosine Similarity: The Universal Sentence Encoder (USE) [125] is a text
embedding model that addresses some of the fundamental limitations of previous encoding
models, such as Word2vec [126], which cannot handle text beyond a single word. USE can
accurately capture the semantic and natural language meanings of a sentence, including
context beyond single words. There are two variants of USE, one based on a transformer
encoder, and one based on a deep averaging network. We utilized the transformer encoder
version of USE due to its greater power when compared to the deep averaging network
variant. After extracting the embeddings from the reference and obfuscated texts, we
calculate the similarity between the two texts by calculating the cosine similarity between
the two embeddings. Cosine similarity is defined as follows:

Cosine Similarity = R ·O
∥R∥∥O∥

(4.3)

where R is the reference embedding vector, and O is the obfuscated embedding vector.

BERTScore: BERTScore [28] utilizes the pretrained contextual embeddings produced
by BERT models. Because BERT models can infer the semantic meanings, including
context, of sentences for use in various natural language tasks, it intuitively follows that
the embeddings that BERT models create are powerful for natural language representation.
BERTScore is calculated by maximizing pairwise embedding similarities for the tokens
of two samples.

4.4 Results

4.4.1 Obfuscation Success

The experimental results on both datasets from our main obfuscation experiment are
summarized by Tables 4.1, 4.2, 4.3, and 4.4. In the table, we denote the metric indicating
the most favorable attack in bold (the metric with the lowest magnitude for obfuscation
success metrics, and the metric with the highest magnitude for semantic preservation
metrics) across each adversarial trial. Additionally, for the rows containing results for
ALISON, we show the percentage change of each metric from the method that was the
highest performing, excluding ALISON. Therefore a lower percentage (higher degradation
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of adversarial accuracy / F1-Score) is more desirable for obfuscation success metrics, while
a higher percentage (less semantic degradation) is favorable for semantic preservation
metrics.

On TuringBench, we see that ALISON is consistently the best performer in terms
of attack success. ALISON consistently degrades adversarial accuracy more than other
methods, demonstrating improvement as high as 21.90%. Additionally, F1-Score even
more pronounced degradation, with improvement as high as 23.93%.

On the Blog Authorship Corpus, results shown in Table 4.2 indicate that ALISON is
consistently the best performer in terms of F1-Score and accuracy. In terms of AccuraF1-
Score degradation, we see a consistent improvement when compared to other baseline
methods.

4.4.2 Ablation of Interpretability-Based Replacement

We observe that ALISON outperforms TextFooler-POS in all trials. This demonstrates
the value of ALISON’s sequence replacement schema and interpretability-centric approach
when compared to traditional token-by-token perturbation methods.

4.4.3 Computational Complexity

Running time results are summarized by Table 4.5. The One-Time Training stage
encompasses all operations associated with data feature extraction and one-time training,
while Inference corresponds to per-text running time.

The results indicate that ALISON outperforms all baselines both in terms of one-time
training and obfuscation runtime. ALISON’s total time for both one-time training and
obfuscation of 100 samples indicates at least a 10x speed-up on TuringBench and at least
an 18x speed-up on the Blog Authorship Corpus. ALISON is additionally at least 10x
faster on TuringBench and 20x faster on the Blog Authorship Corpus with respect to
one-time training and at least 10x faster during obfuscation on both datasets.

Fig. 4.4 shows the dependence of average obfuscation running time on the total
length of the text. ALISON demonstrates a lesser running time increase for longer texts
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Method One-Time Training Inference
TuringBench

Mutant-X 4 hrs 3 min
Avengers 6 hrs 5 min
TextFooler-wordCNN 2 hrs 8 sec
TextFooler-wordLSTM 2 hrs 7 sec
BERT-Attack 6 hrs 8 sec
ALISON 12 min 0.8 sec

Blog Authorship Corpus
Mutant-X 8 min 10 min
Avengers 24 min 14 min
TextFooler-wordCNN 2 hrs 11 sec
TextFooler-wordLSTM 2 hrs 9 sec
BERT-Attack 6 hrs 9 sec
ALISON 6 min 1.0 sec

Table 4.5: Statistics of the one-time training runtime and the average inference time per
one sample for all methods.

when compared to other methods.

Figure 4.4: Average time taken per obfuscation by different methods for increasing
average length of articles.
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4.4.4 Semantic Preservation

Across both datasets, as seen in Tables 4.3 and 4.4, ALISON consistently outperforms
in semantic preservation when evaluated with USE cosine similarity, the most robust
measure of semantic preservation we measured, and BERTScore. However, we observe
that ALISON consistently performs the worst in terms of METEOR score on both datasets;
however, we believe that this result can largely be attributed to the inherent flaws of the
METEOR score, as it is generally less correlated with human judgments when compared
to USE cosine similarity, which is a stronger standard for semantic similarity analysis.

4.4.5 Overall Text Quality

Table 4.6 demonstrates that ALISON demonstrates the best perplexity across both
datasets, indicating the highest readability across all AO methods.

Method TuringBench Blog
Mutant-X 65.12 29.55
Avengers 64.51 23.12
TextFooler-wordCNN 57.69 17.96
TextFooler-wordLSTM 52.89 19.28
TextFooler-POS 56.23 18.34
ALISON 20.82 12.11

Table 4.6: Perplexity of post-obfuscation texts measured using LLaMA2-7B (lower is
better).

Author Label Bias

First, we analyze the distribution of author frequencies before and after obfuscation to
identify potential obfuscation bias towards an author or set of authors on both datasets.
To do this, we calculate the normalized entropy of author labels over obfuscated samples.

To do this, we first generate a confusion matrix between the pre-and post-obfuscation
label predictions. Each element Ci,j in the confusion matrix C is the number of occurrences
where text was predicted to have label i pre-obfuscation was predicted to have label j

post-obfuscation. Then we calculate the normalized entropy of author labels along each
row. This is the entropy of the obfuscation process with regard to the author label, for
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Method Obfuscation Success
Accuracy ↓ F1-Score ↓

GPT Output Detector - Base 0.5000 0.3670
GPT Output Detector - Large 0.5682 0.3623
GPTZero 0.6170 0.5323
DetectGPT 0.5729 0.4984

Table 4.7: Obfuscation Success across four machine text detection models.

Method Semantic Preservation
METEOR ↑USE Cosine Similarity ↑ BERTScore ↑

GPT Output Detector - Base 0.6966 0.8754 0.8941
GPT Output Detector - Large 0.6948 0.8734 0.9017
GPTZero 0.6897 0.8717 0.8936
DetectGPT 0.7478 0.9030 0.9134

Table 4.8: Semantic Preservation across four machine text detection models.

each starting label. For n authors, the row-wise entropy of author i is:

Entropyi = −
n∑

i=0

ln(Ci,j) ∗ Ci,j

ln(n) (4.4)

A high entropy value indicates that the uncertainty associated with a variable is high
(difficult to predict the exact outcome or set of outcomes of the variable), while a low
entropy value indicates that the uncertainty associated with a variable is low (a certain
outcome or small set of outcomes is very likely).

Because of the varied attack successes of different methods, we do not consider the raw
entropy values but instead, consider the proportion of the total label entropy each author
contributes. The distribution of these label entropy proportions should be as uniform as
possible so that each author label transforms in an unpredictable way. A non-uniform
entropy distribution across authors indicates that the obfuscation of a small pool of
authors’ texts contributes significantly to the overall attack success. This indicates a
bias during obfuscation in regard to the transformation of author labels, a bias that can
potentially be exploited by the attacked model. If the post-obfuscation prediction label
were predictable based on the pre-obfuscation prediction label, an adversary would be
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Figure 4.5: Distribution of author-wise contributions to label entropy post-obfuscation.

able to gain significant information about the authorship of a text based on the predicted
author post-obfuscation. This bias is further not desirable since the authorship pool may
vary from various obfuscation settings.

We present the individual author entropy contributions over all authors for all methods
in Figure 4.5. It is visually apparent that the distribution of author entropy contributions
is significantly more uniform for ALISON when compared to other methods. This indicates
significantly less predictability and label bias during obfuscation when compared to other
methods. There are very few labels with a small or nonexistent contribution to overall
entropy, which are labels that could be trivially reverse-engineered by the targeted model,
unlike the entropy distributions of other methods. We aim to maximize the entropy of
the obfuscation process with respect to each author label. So, for each author i, we aim
to maximize Entropyi. A low value of Entropyi also indicates that the pre-obfuscation
predicted label i obfuscates predictably into a small set of post-obfuscation predicted
labels. This indicates that the obfuscation method may not be successful without these
labels to obfuscate into.

We see that the distribution of author label entropy is visually significantly more even
for ALISON when compared to other methods. Additionally, ALISON demonstrates a
total row-wise entropy of 3.3981, while Mutant-X demonstrates a total entropy of 0.8259
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Figure 4.6: Normalized Author Label Entropy on Blog for Avengers

Figure 4.7: Normalized Author Label Entropy on Blog for ALISON

and Avengers demonstrates a total entropy of 0.7281. This indicates that ALISON is
drastically less predictable with regards to authorship label obfuscation bias.

Interpretability

Because ALISON relies on explicitly determined criteria for obfuscation, it can explain
obfuscation decisions using quantified token importances. Interpretability is generated
by extracting the POS n-grams in a text and using Integrated Gradients to gener-
ate the importance of each POS n-gram, which is scaled as described previously. Top
POS n-gram features may then be mapped to specific token sequences in the original text.

Parameter Analysis
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Figure 4.8: Effect of varying L on obfuscation success and semantic preservation

Both Mutant-X and Avengers provide a default parameterization that has been tuned
for authorship obfuscation on standard corpora. While this parameterization should
be optimal, we present a sensitivity analysis on two key parameters shared by both
Mutant-X and Avengers to demonstrate the changes in both attack success and semantic
preservation. The first parameter we vary is the top-K value, or the number of top
documents to select, based on the fitness function, for the next iteration of the genetic
algorithm. The default value of this is 5, so we present the results for a topK value of
10. Next, we vary the number of allowed neighbors in the semantic-specific Word2Vec
embedding. The number of allowed neighbors determines the number of sentiment-specific
candidates tested as potential replacements in the obfuscation process. We increase the
number of allowed neighbors from the default value of 5 to 10 and demonstrate the
effects on attack success and semantic preservation. Because these operations drastically
increase the size of the search space Mutant-X and Avengers must explore, increasing
the value of these parameters also increase the running time.

In the following, we explore the effects of varying two key parameters on metrics of
obfuscation using TuringBench. We first explore the effects of varying the value of L.
We record the aforementioned metrics for values of L ranging from 1 to 250. The results
of this experiment are summarized by Fig. 4.8.

This figure indicates that increasing the value of L increases the change rate and de-
creases all other metrics (both metrics of obfuscation success and semantic preservation).
This result is intuitive, as increasing the number of sequences to change will, of course,
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increase the change rate and will therefore be more successful in fooling the adversarial
classifier, and will also cause a greater difference between the original and obfuscated
texts, decreasing semantic preservation.

We also explore the effect of varying the value of c from 1.0 to 1.6. The results of
this experiment are summarized in Fig. 4.9.

Figure 4.9: Effect of varying c on obfuscation success and semantic preservation

From this, we observe that the value of c does not significantly impact metrics
of semantic preservation, as the adversarial METEOR, USE Cosine Similarity, and
BERTScore do not significantly change across values of c. However, metrics of obfusca-
tion success decrease, then increase across c ∈ [1.0, 1.6], where the optimal value of c is
between 1.3 and 1.5. This supports the idea that artificially scaling importance based on
length allows ALISON to choose sequences of optimal length to mask.

Limitations of METEOR Score

While ALISON generally outperforms other baselines, we demonstrate consistent underper-
formance when measuring semantic preservation in terms of METEOR score. We believe
that this behavior is due to the inherent bias of the METEOR score against ALISON’s
style of perturbation. First, we observe that the METEOR score highly depends on
exact spacing. During the process of encoding and decoding associated with obtaining
masked-phrase substitutions, erroneous spaces are introduced into the text. While these
spaces do not impact information loss significantly, they do significantly impact the
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Text Original Obfuscated
1 I got back my first draft of my memo. i had finished my first draft of the

novel .

2 I was getting ready for work and picked
out a black cap sleeved shirt that has
a kind of mock wrap around neckline.

I was getting ready for work and picked
out a white cap sleeved dress that has
a kind of mock wrap around neckline .

3 So if you’re noticing something looks
different, you’re right.

if you ’re noticing something looks dif-
ferent , you ’re right .

4 I slept terribly last night, not sure
how much sleep I got, but it didn’t feel
like much.

last night , not sure how much sleep I
got , but it did n’t feel like much .

5 I know I’ve parodied this song before,
but the syllables fit so well, and there
are no better choices I can think of...

I know I ’ve parodied this song before
, but the syllables fit so perfectly and
there are no better choices I can think
of ...

6 What’s the one memory of your child-
hood that makes you laugh everytime
you look back?

What ’s the one memory of your child-
hood that makes you smile whenever
look back ?

7 I got four bags of free medicine: an-
tibiotics, nasal spray, and pills for my
congestion.

I got four bags of free medicine : antibi-
otics , nasal spray , and two pills .

8 Unless you are Justin Timberlake. Unless you is Justin Timberlake .
9 I took a look at my paycheck last night,

and to my (unpleasant) surprise, they
shorted me 8 hours

I took a look at my paycheck last night
, and to my ( unpleasant ) surprise it
had given me 8 hours .

10 I didn’t have time for breakfast
though, so I wound up eating one of
those ’Lunchables’ at work.

i wanted to go for breakfast though
, so I wound up eating one of those
’Lunchables ’ at work .

Table 4.9: Sample sentences from the Blog Authorship Corpus pre- and post- obfuscation

METEOR score. Without any phrase substitutions, the spacing changes made by BERT
and the reconstruction process degrade the METEOR score to 0.93 on TuringBench
and 0.90 on the Blog Authorship Corpus. However, the USE Cosine Similarity and
BERTScore are minimally affected, maintaining values of around 0.99. An example of a
text exhibiting near-perfect semantic preservation (as measured qualitatively, by USE
Cosine Similarity, and by BERTScore) but with a low METEOR score is the following:

• Original: That is what it is. Cold and dreary. A Soda without fizz. Boogers.
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• Obfuscated: i know what it is .Cold and dreary .A Soda without fizz .Boogers.

While the USE Cosine Similarity is 0.9409 and BERTScore is 0.9616, the METEOR
score is 0.5152. The patterns exhibited in this example, leading to a low METEOR score,
are repeated throughout many examples in our obfuscation method.

However, other baselines do not exhibit these patterns, with semantic preservation
scores generally agreeing more. This is because single-word substitutions often leave
spacing patterns and the relative ordering of words generally unchanged. The following,
a sample taken from Avengers, illustrates this:

• Original: Went to an information session for people who might be interested in
helping to teach the First Year Lawyering program next year... it’s an organization
called the Board of Student Advisors. The meeting wasn’t funny enough to give
me anything funny to write.

• Obfuscated: Went to an info meeting for children who might become interested in
helping to teach the First Year Lawyering initiative next month... it’s An watchdog
called the Board of Student Advisors. The press wasn’t funny enough to get me
nothing humorous to publish.

This sample demonstrates a METEOR score of 0.7673, a USE Cosine Similarity of
0.8117, and a BERTScore of 0.9452.

4.4.6 Efficiency: Time Complexity

We also aim to provide time complexity-related factors to explain the expensive running
time associated with Mutant-X and Avengers. First, genetic algorithms are inherently
chaotic, utilizing a large population of individuals to optimize a fitness function. Main-
taining this population and performing the operations required to mutate and progress is
expensive. This sacrifices computational time for a more complete search to converge to a
better optimum for the fitness function. ALISON addresses this issue by greedily replacing
POS n-grams instead of performing a more complete search for faster obfuscation. The
fitness function Mutant-X and Avengers aim to optimize is also complex, incorporating
both METEOR score and obfuscation success. Additionally, Mutant-X and Avengers
perform single-word substitutions, which take a greater number of changes to perform
successful obfuscation. We reduce the complexity by replacing entire word sequences at
a time.
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4.4.7 Qualitative Analysis

We analyze the types of changes made by sampling some of the sentences pre- and
post-obfuscation on TuringBench and the Blog Authorship Corpus. Table 4.9 shows
a sample of ten sentences from ten distinct texts in the corpus. Changed tokens are
denoted in boldface. The changes generally follow a few distinct patterns:

• Synonym Substitutions: Often, a word in the original text is replaced by a synonym
in the obfuscated texts. For example, memo ⇐⇒ novel, perfectly ⇐⇒ well,
smile ⇐⇒ laugh, etc. These most likely result from a short POS-tag sequence
being identified as important, leading to the BERT model being able to relatively
accurately determine the meaning of the masked words from context, leading to
little information loss.

• Contextually Acceptable Substitutions: These substitutions involve the substitution
of a word or phrase with a semantically unequivalent phrase that seems plausibly
correct in context. For example, white ⇐⇒ black, shirt ⇐⇒ dress, shorted ⇐⇒
given, etc. These most likely arise from a phrase being masked that cannot be
reliably determined from the surrounding context. This leads to the BERT model
making an incorrect inference regarding the semantic meaning of the masked
phrase. While this increases the degree of information loss between the original and
obfuscated texts, it does not significantly affect the readability of the obfuscated
text.

• Deletions: Sometimes, nonessential words and phrases are completely deleted after
reconstruction with BERT. These deletions often occur in introductory phrases
that contribute little semantic meaning. Although rarely happen, these deletions
may slightly contribute to information loss or decrease readability.

• Equivalent Substitutions Resulting in Solecism: Sometimes, words or short phrases
will be replaced by nearly identical substitutes semantically and functionally that
result in a solecism. This results in no information loss, however, the solecism
may result in decreased readability. These substitutions may indicate inherent
limitations of BERT for Masked Language Modeling, or inherent grammatical
errors in the data BERT was trained on. Additionally, the uncapitalized "i" is also
common.
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Obfuscating ChatGPT Texts: A Use Case

Powerful language models, including GPT-3 [127] and GPT-4 [128], have demonstrated
impressive ability to comprehend and synthesize language across contexts. The impressive
performance of ChatGPT [128], a conversational language model, has led to its ubiqui-
tous use in the workplace and classroom. Though ChatGPT can assist humans with
everyday tasks, its potentially dishonest applications (e.g. construing ChatGPT’s output
as human-written text in academic settings) make the identification of ChatGPT-written
texts an important problem with extensive commercial and academic study [78,129–131].
The commercial value of ChatGPT detection further motivates an AO technique that is
computationally efficient.

Problem Formulation. The real-world task of discriminating between ChatGPT and
human-written texts is an increasingly relevant AA task that motivates the study of
the corresponding AO task. We select four well-known machine-text generators, each
demonstrating > 95% discrimination accuracy, to study under adversarial perturbation:
GPTZero [129], DetectGPT [78], and both the Base and Large GPT Output detectors
[130] released by OpenAI.

Methodology. We used news article headlines from TuringBench to query the OpenAI
Completions API. A single request was made for each unique headline, which consisted of
a fixed generation prompt prepended to the headline. The corresponding human-written
texts in the TuringBench corpus provided negative examples to introduce into the corpus,
generating a set of evenly distributed negative and positive examples. The experimental
setup described previously was then repeated.

Main Obfuscation Trial Result. Table 4.7 shows metrics of Obfuscation Success and
Table 4.8 shows Semantic Preservation against adversarial classifiers. ALISON demon-
strates degradation of adversarial accuracy to at most 0.617 and adversarial F1-Score to
at most 0.5323. In addition, ALISON consistently maintains a high degree of semantic
similarity between original and obfuscation texts, maintaining at least 0.8717 USE Cosine
Similarity and 0.8936 BERTScore. ChatGPT text detectors become negligibly useful at
such adversarial performance, as the adversarial accuracy is close to the trivial accuracy
of 0.50 in the binary classification setting.
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Entropy Result. We observe an entropy of 0.56 associated with the human class and
an entropy of 0.44 associated with the ChatGPT class. Because the distribution of
authorship label entropy is not significantly skewed toward any class, ALISON does not
demonstrate a significant degree of bias during the obfuscation process in transferring
attributions from any specific class.

4.5 Discussion
We present a new authorship obfuscation technique, ALISON, based on the replacement
of revealing stylistic sequences. ALISON greedily replaces text sequences matching POS
n-grams identified to be important by interpreting a lightweight neural network trained
to perform authorship attribution using mixed n-grams. We use ALISON to attack three
SOTA transformer-based attribution classifiers and demonstrate an improvement in
obfuscation success and semantic preservation when compared to seven diverse baselines.
We demonstrate that ALISON’s intuitive and simple but effective nature demonstrates a
drastic improvement in computational complexity compared to baseline methods.

While authorship obfuscation enables freedom of speech for various previously de-
scribed individuals including whistleblowers and journalists, it also potentially permits
malicious groups to stay hidden. We acknowledge such ethical concerns but stress the
need to study and design systems that can protect and enhance the freedom of speech of
the public.
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Chapter 5 |
Collaborative Generation: Collab-
Story a multi-LLM story bench-
mark

The rise of unifying frameworks that enable seamless interoperability of Large Language
Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility.
Despite this, there have not been efforts to explore such collaborative writing. We take
the next step beyond human-LLM collaboration to explore this multi-LLM scenario
by generating the first exclusively LLM-generated collaborative stories dataset called
CollabStory. We focus on single-author (N = 1) to multi-author (up to N = 5) scenarios,
where multiple LLMs co-author stories. We generate over 32k stories using open-
source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks
[132] that have set the standard for human-human multi-author writing tasks and
analysis. We extend their authorship-related tasks for multi-LLM settings and present
baselines for LLM-LLM collaboration. We find that current baselines are not able
to handle this emerging scenario. Thus, CollabStory is a resource that could help
propel an understanding as well as the development of techniques to discern the use
of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-
LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism
detection, credit assignment, maintaining academic integrity in educational settings, and
addressing copyright infringement concerns. We make our dataset and code available at
https://github.com/saranya-venkatraman/multi_llm_story_writing.
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Write a story about
wizards on a plane...

Part 1
GEMMA

LLAMA

OLMO

MISTRAL

Part 2

Part 3

Part 4

Part 5

ORCA

Figure 5.1: CollabStory contains over 32k creative stories written collaboratively by up
to 5 LLMs. Each story segment is generated by a single author, that then passes the
narrative baton to the next, completing the storyline part by part in a sequential manner.

5.1 Introduction
Generative Large Language Models (LLMs) are being used more widely and becoming
ubiquitous in real-world scenarios. There is particular interest in understanding the
use of such LLMs in various writing tasks as writing assistants or collaborators in
machine-in-the-loop settings [2–9]. So far though, this has only been explored in the
case where a human is present. However given the rise of unifying frameworks that
bring together and make LLMs from different sources interoperable, such as vLLM1,
LangChain2, and HuggingFace3, the prospect of LLMs seamlessly collaborating and even
handing off tasks to one another without external routing algorithms is on the horizon.
This is particularly immediately possible with open-source models that are already being
used by over 100K users per month (according to the number of downloads reported
by HuggingFace). Despite the ease of interoperability of such LLMs, so far, automated
writing assistants have been used only in collaboration with human authors or with a
single LLM. Therefore, this study explores collaborative creative story-writing scenarios

1https://docs.vllm.ai/en/stable/
2https://www.langchain.com/langchain
3https://huggingface.co/
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involving multiple LLMs, i.e. LLM-LLM collaboration.

Dataset # Stories # Authors Avg # Words M-M Collaboration Available
STORIUM [133] 5,743 30,119 ~19k tokens H-H ✗ ✓

CoAuthor [8] 830 58 418 H-M ✗ ✓

StoryWars [134] 40,135 9,494 367 H-H ✗ ✗

CollabStory [Ours] 32,503 5 725 M-M ✓ ✓

Table 5.1: Comparison of CollabStory with other existing collaborative creative story
datasets. Here, “M-M” →“Machine-Machine” ,“H-H” →“Human-Human”, where “H”
→ “Human” and “M” → Machine. Ours is the largest dataset to present multi-LLM or
machine-machine collaborative generation.

Collaborative creative story writing entails multiple authors contributing separate
segments to form a coherent storyline (see Figure 5.1 for our dataset schema). Although
individual LLMs excel at generating story plots, collaborative writing presents unique
hurdles. Models must seamlessly continue the existing storylines generated so far by
other models, even if they do not align perfectly with their own language distribution.
The rise of multi-agent Artificial Intelligence (AI) underscores the potential for combining
the expertise of agents specialized in various tasks. While previous mixture-of-experts
scenarios focused on agents proficient in task-oriented settings [135–139], the emergence of
LLMs conversing for continuous generative tasks in open domains is noteworthy. Imagine
the possibilities when multiple LLMs collaborate; one LLM can generate compelling
stories, but what if we put them together?

In this study, we attempt to address this question through a collaborative creative
story-writing scenario involving multiple open-source LLMs. This is a crucial setting to
study in the context of writing tasks since LLM-LLM collaboration could potentially
overwhelm ongoing challenges related to plagiarism detection, credit assignment, main-
taining academic integrity in educational settings, and addressing copyright infringement
concerns.

We focus on single-author (N = 1) to multi-author (up to N = 5) scenarios, where
multiple LLMs co-author creative stories. This exploration is novel, as previous studies
have primarily focused on human-LLM collaboration. Towards this goal, we gener-
ate the first multi-LLM collaborative story dataset called CollabStory using
open-source LLMs. We select 5 frequently used LLMs (with number of downloads
on HuggingFace for May 2024 provided in parenthesis): Meta’s Llama (> 540k down-
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loads, [140]), Mistral.ai’s Mistral (> 1000k downloads, [141]), Google’s Gemma (> 180k

downloads, [142]), AllenAI’s Olmo (> 26k downloads, [143]) and Microsoft’s Orca (> 22k

downloads, [144]) to replicate a scenario in which commonly used LLMs from different
organizations are being used in conjunction towards a single task. We demonstrate how
one such dataset can be developed and the considerations involved in building an iterative
Multi-LLM story-writer. We take inspiration from the PAN tasks [132] that have set
the standard for multi-author writing tasks and analysis for human-human collaboration
for over 15 years. We replicate their task settings and present baselines of different
authorship-related tasks such as authorship verification and attribution for LLM-LLM
collaboration and demonstrate that current baselines are challenged by this emerging
scenario. CollabStory is the first resource that could help propel an understanding as well
as the development of new techniques to discern the use of multiple LLMs in text.

Our work is motivated by the implications of Multi-LLM settings for different stake-
holders (LLM developers, end-users) and considerations (such as credit assignment,
legality of usage) arising in the generative AI landscape. As one example, a malicious
actor might assemble texts from different LLMs together in one document to evade
current detectors and successfully spread misinformation. Our discussion will further
elaborate on the tasks our dataset enables and why it is crucial to develop methods to
tackle the incoming challenges of machine-machine collaboration.

5.2 Related Work
LLMs as Collaborative Writers. LLMs are being increasingly used as writing
assistants or to paraphrase, edit or enhance human-written written texts in machine-
in-the-loop settings [3, 5,6, 9]. GhostWriter [2] and Wordcraft [7] are tools that enable
users to co-write stories using instructions [7]. [4] use “writing modes” as a control
signal to better align the machine during co-writing with humans. CoAuthor positions
GPT3.5 as a writing collaborator for over 50 human participants to co-write creative
and argumentative stories [8]. Related Datasets Despite such emerging tools, only
a handful have developed datasets that can be leveraged to understand collaborative
story writing. One such resource is the STORIUM dataset [133] that contains over
5k creative stories written and obtained from human-human collaboration. In terms
of human-machine co-writing, CoAuthor [8] and CoPoet [31] remain one of the few
publically available datasets of human-machine collaborative creative story and poem
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# Number
of Authors

# Words per Author /
# Total Words

# Author Order # Prompts per # Stories

1 900 / 900 4 1800 7200
2 450 / 900 12 600 7200
3 300 / 900 15 480 7200
4 225 / 900 15 480 7200
5 180 / 900 15 480 7200

Authors HuggingFace distribution of LLMs used
Gemma google/gemma-1.1-7b-it8

Llama meta-llama/Llama-2-13b-chat-hf9

Mistral mistralai/Mistral-7B-Instruct-v0.210

Orca microsoft/Orca-2-13b11

Olmo allenai/OLMo-7B-Instruct12

Table 5.2: Summary of Data Collection Statistics

writing, respectively. Beyond creative writing, [145] developed the first machine-human
academic essay dataset as a means to study boundary detection for academic settings. A
comparison of CollabStory with existing datasets is provided in Table 5.1.

5.3 Methodology

5.3.1 CollabStory: Dataset Creation

We generate a dataset of creative stories using five open-source instruction-tuned LLMs:
Llama2 [140], Olmo [143], Gemma [142], Mistral [141] and Orca [144] (model details are
provided in Table 5.2). The main focus of our data generation is to simulate a scenario
where LLMs from different sources (organizations) collaboratively work on a storyline,
handing off control of the story from one LLM to the next. The stories in our dataset
vary in the number of authors/LLMs involved, from being written entirely by a single
LLM to written collaboratively by between 2 to up to all 5 LLMs. In this document, we
refer to each of the LLMs as “authors". For cases where we refer to the human author,
we specifically mention “human” author/writer. We generate our dataset by prompting
various LLMs using creative writing prompts from an existing dataset called the Writing

8https://huggingface.co/google/gemma-1.1-7b-it
9https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

10https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
11https://huggingface.co/microsoft/Orca-2-13b
12https://huggingface.co/allenai/OLMo-7B-Instruct
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Prompts (WP) Dataset. The Writing Prompts Dataset was collected by [146] using
Reddit’s r/WritingPrompts/ forum that contains premises or prompts for stories. The
WP dataset consists of a cleaned subset of story prompts and corresponding human-
written stories using filtration criteria such as removal of stories that are bot-generated,
less than 30 words long, contain profanity, general announcements, and so on. We used
the test split4 of this dataset as the source of prompts for LLM generated stories. We also
filter out prompts that do not have at least one corresponding human-written story that
is at least 800 words long. We do this to ensure that the prompt itself does not preclude
longer storylines. We chose 800 words as a criteria as a means to include stories that are
slightly longer than the average of the dataset. The average length (number of words) of
articles in the test set is 675.75 words. Out of 15138 total prompt-story pairs, this left us
with 4623 data points. For each prompt, we divide the total goal article length (800-900
words) by the number of authors (N) to calculate the length of each part or story
chunk to be written by each author, such that the writing load is distributed roughly
uniformly amongst the LLM authors. We also generate different permutations of LLM
authorship order such that every author can contribute to random parts of the story and
we ensure that our dataset does not have any spurious correlations between LLM/author
and story sections such as the beginning, or ending. For each value of the numbers of
authors i.e. N ∈ {1, 2, 3, 4, 5}, we generate all possible permutations of author orders.
For example, for N = 3, two examples of author order permutations could be:

Olmo→Mistral→ Llama

Gemma→ Llama→Mistral

From all such possible permutations, we sample the minimum of either total possible
orders or 15 as the number of author orders. For each author order, we then generate
stories using each of the prompts from a unique set of prompts per N. Our goal number
of stories for each N was set to 7200 stories. A summary of the words written by each
author, author order permutations, and prompts per author, as well as the pool of 5
authors and their corresponding model checkpoints used for generating all story parts is
shown in Table 5.2.

4https://www.kaggle.com/code/ratthachat/writingprompts-combine-one-line-data-for-gpt2/
input?select=writingPrompts
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5.3.2 LLM prompting

For each value of N , we used different prompts to generate story parts sequentially,
as detailed in Table 5.3. Utilizing the vLLM library5, we accessed and generated text
from various LLMs. Initially, we conducted a pilot study to refine our prompts by
generating and reviewing 100 articles. For the "Beginning" prompt, the first LLM used
only the original r/WritingPrompts/ input. For subsequent parts, we found that longer
input prompts reduced story length, so we used Falcon.ai summarizer6 to condense the
story so far into under 80 words, allowing LLMs to generate longer sequences. We also
included the last sentence of the story so far for smooth continuity. Prompts for different
sections only varied in their instructions to “begin”, “continue”, or “conclude” the story.
Additionally, we added an instruction to prevent LLMs from generating extraneous
instructions.

Prompt Templates
Beginning Prompt

You are a creative story writer. Write a story
that starts with the prompt {starting prompt} in
around {n} words. Do not add any instructions.
Start the story as follows:

Middle Prompt

Write {n} words to continue this storyline:
{summary of story so far}. Continue from this
sentence: {last sentence from previous part}

Ending Prompt

Write {n} words to conclude this storyline:
{summary of story so far}. Do not add any
instructions. Continue from this sentence: {last
sentence from previous part}

Table 5.3: Prompt templates for different parts of the story. {n} here denotes the number
of target words for each author.

For for all N ≥ 2, we provided the summary of the story so far as an input in the
5https://docs.vllm.ai/en/stable/
6https://huggingface.co/Falconsai
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prompt. To make sure that our story parts had smooth continuity, we also used the
last sentences of the story so far as input. This made sure that the generating LLM
has access to the last sentence in addition to the overall storyline to continue the story
as seamlessly as possible. This second input is denoted as “last sentence from previous
part” in Table 5.3. Other than this, our prompt for the three types of story sections only
differed in the instruction of writing either the “beginning”, “continue”, or “conclude”
the storyline so far. We also had to add an instruction to stop the LLMs from generating
any additional instructions as from our pilot study, we found that some LLMs (Orca and
Llama) would often first generate a rephrasing or more detailed version of our instruction
before generating the actual story content.

5.3.3 Dataset Cleaning

For each prompt, we gave each LLM 20 maximum attempts to re-generate that particular
story part if it fell 15 or more words shorter than the goal length in the previous iteration.
Despite this, we had instances of very short story parts that would have made the average
article length too short or led to a very skewed representation of one LLM v/s the rest.
Thus, we discarded such stories. Additionally, we were able to notice two formatting
peculiarities for Gemma and LLama. Particularly, Gemma’s story parts often began with
a short title for the section it was to generate surrounded by “###” for example “###
The return of the Jedi ###”. Llama on the other hand was appending a “The end”
whenever it was its turn to write the ending part of a story. We removed all cases of these
two substrings using regular expressions search and deletion as a means to unify the flow
of the story across all LLMs and to make sure particular LLMs weren’t identifiable only
due to such formatting details. We also removed all extra spaces from the stories and
any repetitions of the instructions in rare cases.

Examples of story parts written by Gemma followed by other authors

We inspected 100 randomly sampled stories and inspected the parts written by Gemma
in search of visibly discernible features or peculiarities that might have explained the
ease of its detection as compared to other LLMs. To the naked eye, this text seemed
to be similar to all the other parts of the story since we subjected all the story parts to
the same filtration process. We suspect that other factors might be in play here such as
the author order or tone differences, and leave this exploration to future attempts (see
Tables 5.12, 5.13 and 5.14 for examples of story samples).
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Collaborative Story Example: Story parts written by different au-
thors

Part 1

Years ago, in the depths of a dark and desolate forest, I made a promise to
a witch. Desperate for her help to save my beloved firstborn son, I agreed to
offer her my firstborn in return for her healing magic. The old crone’s cackling
laughter still echoed in my ears as I made that fateful vow. But time passed,
and my wife bore us three more children. With each birth, I was filled with
relief and gratitude, knowing that our family had been spared the tragedy
that had once threatened to tear us apart. Yet no matter how hard I tried, I
couldn’t bring myself to fulfill my promise to the witch. Now, years have passed,
and the witch has grown tired of waiting. Her messages, delivered by raven
messenger, are becoming more and more urgent. The ground beneath my feet
seems to shake with her anger, and I can’t help but fear for the consequences
of my broken vow. Desperate for a solution, I turn to the only person who
might be able to help me. But will she be able to save me from the wrath of
the vengeful witch?

Part 2

Her pale, ethereal face held a cruel smile, her voice like the rustling of dry leaves
in a desolate forest. "Your son’s life hangs in the balance, dear one," she hissed,
her voice dripping with malice. "Yet, you have failed to fulfill your part of the
bargain." Panic surged through me as I realized the witch was right. I had
never presented her with a child. The burden of my desperation had become a
heavier chain, tethering me to an unspoken debt. Desperation fueled the flames
of my fear, as I knew that if I failed, not only would my son succumb to his fate,
but the wrath of the vengeful witch would descend upon me. Time seemed to
warp, stretching into an agonizing eternity as I considered my options. Could I
find a way to appease her, to escape the consequences of my foolish decision?
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Part 3

I paced back and forth in my chambers, my mind racing with thoughts of the
witch and the debt I owed her. I had been so desperate to save my son that I
had agreed to give her my firstborn child in exchange for her healing magic.
Now, years had passed, and the witch had grown tired of waiting. She had
come to me, demanding that I fulfill my end of the bargain. I knew that I
could not give her my son. He was all I had left of my beloved husband, and
I would rather die than lose him. But I also knew that I could not defy the
witch. She had the power to take my life and the lives of my children with just
a wave of her hand. I spent hours pacing, trying to think of a way to appease
her. But no matter what I did, I could not come up with a solution. I was
trapped, and I knew it. The witch had me in her grasp, and she would not
let me go. Finally, in desperation, I decided to seek out the help of a wise old
woman who lived in the village.

Part 4

A few days ago, I came to her, my heart heavy with grief and my soul wounded.
She, in turn, looked at me with a kind and gentle expression. Then, with a wave
of her hand, she began her spell. I watched as the darkness in my heart began
to fade, and my love for my children grew stronger than ever. She whispered
words of power and love, and the bond between my wife and I was restored.
From that day forward, we were a family once more, united by the magic of
the wise old woman.
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Part 5

The wise old woman had always been a renowned healer in our village. Her
knowledge of herbs and potions was unmatched, and many came to her seeking
relief from various ailments. I was one of those who sought her help when my
firstborn son fell gravely ill. His fever raged, and his tiny body was wracked
with pain. Desperate for her help to save my beloved firstborn son, I agreed
to give her my firstborn in exchange for her healing magic. I returned to my
wife, heartbroken and ashamed, to tell her of the bargain I had made. But
time passed, and my wife bore us three more children. With each birth, I was
filled with relief and gratitude, knowing that our family had been spared the
tragedy of losing a child. The wise old woman had honored her part of the
bargain, and my son grew strong and healthy under her care. He became a
skilled healer in his own right, following in the footsteps of the wise old woman
who had saved his life.

Table 5.4: Example of a 5-part LLM story from CollabStory dataset for the prompt:
“Years ago, you promised your firstborn to a witch. Since then, despite your best efforts,
you can’t seem to give him away. The witch is starting to get pretty mad.”

5.3.4 Post-processing and filtering

Though we used instruction-tuned LLMs, they do not follow instructions perfectly.
Though our goal number of words per story was 800-900 words, we used the upper limit
to calculate the number of words each LLM should generate. From our pilot study,
we found that most LLMs were undershooting their target number of words in the
instruction. We also filtered out all stories in which at least one part was under 50
words long. We also removed all extra spaces from the stories and any repetitions of the
instructions in rare cases. We also filtered for some additional types of noises detailed in
Section 5.3.3. After this filtration, we were left with the following number of stories per
N ∈ [1, 5] : 7164, 7070, 6093, 6955, 5221 for a total of 32, 503 stories. An example of one
such story from our dataset can be read in detail in Table 5.4.
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N=1 (H) N=1 (M) N=2 N=3 N=4 N=5
# Words

1352.26
±425.11

725.03
±288.32

1090.67
±207.43

1154.44
±112.24

1091.99
±85.67

995.42
±74.20

# Sentences
84.23
±34.85

41.90
±61.94

60.49
±14.49

64.38
±11.57

59.29
±11.24

53.86
±9.41

# Words (AVG) per sentence
17.82
±28.18

18.27
±3.92

18.42
±2.85

18.30
±2.45

18.81
±2.47

18.88
±2.51

Vocabulary richness
0.34 ±0.05 0.40 ±0.09 0.36

±0.05*̂
0.36
±0.03*̂

0.37
±0.03*̂

0.39 ±0.03

% of stopwords
31.26
±4.76

37.00
±4.77

37.77
±3.11

37.39
±2.67

37.71
±2.39

37.41
±2.39

Readability
80.28
±33.26

75.16
±9.83

75.34
±8.13

75.25
±7.80

74.37
±8.00

74.80
±8.14

Entropy
38.49
±12.25

26.03
±13.10

38.42
±7.93

40.30
±4.75

37.97
±4.07

34.69
±3.58

Coherence
0.38 ±0.05 0.46 ±0.06 0.46 ±0.06 0.46 ±0.04 0.46 ±0.04 0.46 ±0.04

Table 5.5: Comparison of descriptive features for articles with number of authors N ∈
[1, 5], as compared with human-written single-author stories for the same prompts.
Here, “H” → “Human”; “M”→ Machine. * represents statistical significance (p<0.01)
compared to human-written stories.

5.4 Dataset Analysis
We compare the LLM-generated single and multi-authored texts with the single-authored
human written stories to study the relative quality of LLM generated stories as the
number of authors present increases. To do this, we report the average and standard
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Author K=1 K=2 K=3 K=4 K=5
# Words

Gemma 172.97
±16.47

157.17
±36.22

124.51
±46.13

129.76
±47.16

133.75
±46.90

Llama 172.51
±19.91

170.88
±13.28

173.35
±15.29

174.76
±16.18

172.23
±19.33

Mistral 177.25
±12.61

182.24
±12.88

178.09
±22.71

178.82
±19.47

178.15
±22.69

Olmo 168.01
±8.69

197.91
±18.93

194.89
±23.64

192.64
±26.60

191.41
±30.28

Orca 174.45
±22.20

175.61
±10.42

178.11
±15.62

178.01
±14.37

177.89
±16.57

Lexical Diversity
Gemma 0.67 ±0.04 0.67 ±0.05 0.70 ±0.07 0.69 ±0.07 0.68 ±0.06
Llama 0.60 ±0.05 0.61 ±0.05 0.59 ±0.05 0.58 ±0.05 0.58 ±0.06
mistral 0.64 ±0.04 0.62 ±0.04 0.61 ±0.05 0.61 ±0.04 0.61 ±0.05
Olmo 0.62 ±0.05 0.57 ±0.06 0.58 ±0.06 0.58 ±0.06 0.57 ±0.07
Orca 0.62 ±0.05 0.62 ±0.04 0.61 ±0.04 0.61 ±0.05 0.60 ±0.05

Readability
Gemma 75.95

±8.53
77.13
±9.70

75.13
±12.29

74.11
±11.81

73.28
±12.96

Llama 83.11
±8.35

82.61
±8.50

82.75
±9.00

80.88
±10.10

80.13
±9.19

Mistral 81.04
±8.58

83.99
±8.40

81.59
±10.07

82.02
±9.09

79.91
±9.44

Olmo 80.78
±9.01

83.31
±9.87

81.41
±9.81

80.55
±10.73

80.45
±10.20

Orca 83.08
±8.54

82.51
±8.45

80.86
±9.65

79.95
±9.97

79.51
±9.80

Coherence
Gemma 0.49 ±0.07 0.47 ±0.08 0.47 ±0.08 0.47 ±0.08 0.48 ±0.08
Llama 0.44 ±0.08 0.47 ±0.08 0.47 ±0.08 0.47 ±0.08 0.49 ±0.08
mistral 0.46 ±0.07 0.44 ±0.07 0.45 ±0.07 0.45 ±0.07 0.46 ±0.07
Olmo 0.47 ±0.08 0.43 ±0.07 0.45 ±0.08 0.45 ±0.08 0.45 ±0.08
Orca 0.44 ±0.07 0.45 ±0.08 0.45 ±0.08 0.46 ±0.08 0.47 ±0.07

Table 5.6: Descriptive Statistics or Features for stories generated by different authors for
different parts of the stories. Here, “K” represents the part of the story written, i.e. K=1
corresponds to the first part of the story, K=2 referees to the second part, and so on.
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Figure 5.2: N on the X-axis denotes the number of authors, and N=1(H) and N=1(M)
correspond to the human-written and machine-generated single-authored texts, respec-
tively. All other texts (N >=2) are multi-LLM generated. Y-axis shows the values of the
measure shown in each subplot as mentioned in the headings. For all measures, we show
the average and standard deviation for N going from 1 to 5. For all measures except
vocabulary richness (3rd column, 1st row), increasing the number of authors (N) does
not lead to statistically significant deviations from the human text distribution.

deviation of different measures such as the average number of (i) words, (ii) sentences,
(iii) vocabulary richness, (iv) percentage of stopwords, (v) readability scores, (vi)
entropy, and (vii) coherence scores using the TextDescriptives Library7 for different
numbers of authors (N) in Figure 5.2. We measure (vii) creativity using OCSAI (Open
Creativity Scoring with Artificial Intelligence) [?] that provides text creativity scores
using an LLM (GPT-4) fine-tuned on human annotations of creativity. From Figure 5.2,
we see that across most measures, there isn’t a significant deviation or decline as the
number of authors is increased, i.e. collaboration or introducing multiple LLMs in the
generation setting does not disturb the quality of the stories generated. In fact, the only
statistically significant difference between LLM-coauthored and human-written stories
in vocabulary richness measured by type-token-ratio (TTR) for N ∈ [2, 3, 4]. For all
other measures, our dataset’s machine-generated stories follow similar distributions to
human-written stories. Automated measures of readability and coherence utilized the
human-generated stories as the reference text, and even for these measures, we see that
collaboratively generated text scores do not deviate from the reference score distribution.
This analysis indicates that LLMs are able to collaboratively generate stories without
any significant changes in quality through sequential prompting.

We report the average and standard deviation of number of words, sentences, vocabu-
7https://github.com/HLasse/TextDescriptives
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Negative
Sample Source

Correct
Wins

Neither
Wins

Incorrect
Wins

Different Story 75% 25% 0%

Same Story 35% 55.33% 9.67%

Table 5.7: Continutity evaluation of pairs of story parts using GPT-4o using different
negative sample sources (either from within the same story or not). This table presents
the percentage of story parts for which either only the correct part was evaluated as
having continuity, or the negative sample (incorrect) or both.

lary richness, readability scores, and coherence scores using TextDescriptives Library8

for all parts of the story, as well as for different numbers of authors (N) in Table 5.5.
There is a statistically significant difference between LLM-coauthored and human-written
stories in vocabulary richness measured by type-token-ratio (TTR) for N ∈ [2, 3, 4]. For
all other measures, our dataset’s machine-generated stories follow similar distributions
to human-written stories. We thus ensure the quality of our dataset using automated
measures of readability and coherence by using human-generated stories as the reference
text. Detailed statistics for each LLM as well as each part of the story are provided in
Table 5.6.

5.4.1 Story Continuity

An important aspect of collaborative storywriting is the notion of continuity. Particularly,
we wanted to measure if the different story parts generated sequentially by different LLM
authors followed a logical and cohesive plot. To evaluate this, we used a prompt-based
evaluation using GPT-4o [82] to discern if two consecutive story parts continue a story
well or not. To do this, we develop two types of pairs of story parts: one pair containing
the "Correct" or the positive sample which points to the actual next part in the story,
or "Incorrect" which is the negative sample that is either a random story part drawn
from a different story or from the same one (but not the true next one, any other part).
In other words, for the negative samples taken from within the same story, we ensure
to not use the correct consecutive part as a negative sample. An example of this setup
is illustrated in Figure 5.3, where given a story part, there is an actual continuation
("Correct") and a random negative sample ("Incorrect") story part drawn from either

8https://github.com/HLasse/TextDescriptives
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Lisa was born to a small village on the outskirts of a vast 
forest. All her life, she was a regular village girl, happily 
tending to the family’s crops and tending to any animal that 
came her way. The locals were fond of her, and she of them. On 
her eleventh birthday, she received a mysterious gift from the 
village elder. It was a small, silver orb, engraved with 
intricate runes. The orb seemed almost sentient, and as she 
looked upon its surface, a sense of calm washed over her like 
a gentle breeze. The days that followed were uneventful. Lisa 
went about her usual duties, always making sure her crops grew 
strong and healthy. She rescued animals in distress and cared 
for any sick or injured creatures she found. Life in the 
village was peaceful and serene. Lisa never questioned why she 
was different. She trusted her instincts and believed in the 
good in everyone. The villagers liked her for her pure heart, 
and her kindness was well-known throughout the land.

The officer stepped forward cautiously, his boots echoing through 
the otherwise silent corridor. He reached the end, where a single 
door stood slightly ajar, revealing a flickering light within. 
Drawing his weapon, he prepared for the unknown dangers that lay 
beyond. As he pushed the door open wider, he was greeted by a 
sight that chilled his blood. A room full of masked figures, 
their eyes glowing with a malevolent light, danced and swayed to 
an eerie tune. The officer's heart raced, and he knew that he had 
stumbled upon a dangerous cult gathering. He tried to retreat, 
but it was too late. The masked figures noticed him, and with a 
sinister cackle, they advanced towards him. The officer fired his 
weapon, hoping to scare them off, but his bullets seemed to have 
no effect. They closed in on him, their faces twisted into 
grotesque grins, and the officer knew that he was in grave 
danger. As the masked figures closed in on him, the officer felt 
a surge of determination. He would not go down without a fight.

Yet, as the days turned to years, Lisa couldn't shake off an 
inexplicable feeling of restlessness. She spent long hours by the 
forest, watching the trees sway in the wind, and the sunlight 
filtering through their leaves. On her eleventh birthday, she 
received a mysterious gift from the village elder - a beautifully 
crafted wooden box with intricate carvings of flowers and 
animals. The box was locked, but the key was inside. Lisa opened 
it to find an old map of the forest, marked with symbols she had 
never seen before. Her heart raced as she stared at the map. She 
knew this was no ordinary gift. The village elder pulled her 
aside and revealed the truth - Lisa was the chosen one, destined 
to protect the forest from an ancient evil that had been sleeping 
for centuries. Lisa was taken aback, but she knew deep down that 
this was the reason for her restlessness. She spent the next few 
weeks learning about the forest and the magic that resided within 
it.

Actual Continuation 

Random Negative Sample

Story Part

Figure 5.3: To evaluate the continuity of story parts, we sample two potential continua-
tions to a story part, one correct and one incorrect. In this figure, we see an example of
a story part on the left and two candidates to be evaluated for continuity. In green are
some terms highlighted to show continuity in topics, characters, and plot lines, and in
red are highlighted sections of the text that suggest discontinuity. In this example, our
evaluation method deemed both these candidates as unfit continuations. For the correct
or actual continuation, this was due to a plot repetition, while the negative sample is
discontinuous due to a topic shift.

the same story or a different one. We then use the following prompt structure to obtain
continuity evaluations for both candidate next parts and then compare if the actual
continuation was the one with a better continuation evaluation. We provide GPT-4o
a pair of texts at a time (out of a total of 600 pairs) and ask it the following question:
“Does Part 2 serve as a good continuation of Part 1 in terms of logical flow, coherence,
and consistency? Please respond with Yes or No.” GPT-4o generated the binary "yes/no"
responses and an explanation. We then compare the percentage of story parts for which
either the correct answer got a "Yes" and the incorrect one got a "No" response (Correct
Wins), if both candidate continuations were evaluated the same (Neither Wins), or if the
Incorrect answer got a "Yes" and the Correct one got a "No". We present the results in
Table 5.7. We see that when the negative story parts are sampled from different stories
than the one that the first part belongs to, then there are 0 cases for which the incorrect
part wins. This is an expected result, as story parts that belong to different stories would
have different topics, plot lines, characters, and so on. Hence, detecting this discontinuity
should not be hard, as is the case. An example of a case where Neither Wins and both
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candidate story parts get an evaluation as being discontinuous is provided in Figure
5.3. As illustrated by this example, it is crucial to note that our prompt encourages the
model to evaluate the logical or common-sense flow of the stories. Hence, topic overlap
alone was insufficient to mark two parts as continuous. In the harder setting, when the
negative sample is also a story part from within the same story, we see that there is a
marked increase in both the Neither Wins and Incorrect Wins scenarios (see Table 5.7)
where Incorrect Wins goes from 0 to 9.67% and Neither Wins has an over 30% increase.
This is expected since many of the story parts were not the next immediate part but a
few sequences apart. They all follow the same story and share some logical flow despite
the distance in their occurrences in the story. For example, the fourth part of story
might get a positive continuity evaluation, just as the second, third, and fifth would if
compared with the first part of the story. Over 85% of Neither Wins story pairs had a
continuous evaluation for both candidates (142 out of 166). Thus, out-of-the-box LLMs
are able to follow plot lines and logic even when continuing each others’ partially written
parts at any point in the story.

5.5 Authorship Analysis: Extending PAN tasks for multi-
LLM scenario
Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection, known
as PAN tasks [132], have presented a persistent challenge, establishing benchmarks for
analyzing multi-authored text among humans for more than 15 years. We extend the
most common and repeated authorship-related tasks from the PAN multi-human-author
task suite to the multi-LLM scenario. We then fine-tune and report performance using
the following 5 baseline methods: Multinomial Naive Bayes (MNB) [147], Support
Vector Machine (SVM) [148], BERT [103], ALBERT [149], and RoBERTa [65].

5.5.1 Task 1: Is a story written by multiple authors or not?

We randomly sample articles from the single-LLM authored stories i.e. N = 1 as the
negative class v/s articles from the multi-authored settings where N ∈ [2, 3, 4, 5] as the
positive class. We sample from the single-LLM stories to keep the class distribution
equal, based on the number of articles for each N . From Table 5.8, we see that for
all methods, the performance at N = 5 is higher than for N = 2, gradually increasing
with the value of N . Stories that have a higher number of authors are more distinct
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Task 1: Multi-author or not
Method N=2 N=3 N=4 N=5
MNB 0.83 0.86 0.86 0.87
SVM 0.78 0.8 0.83 0.82
BERT 0.85 0.85 0.83 0.87
ALBERT 0.83 0.89 0.9 0.92
RoBERTa 0.88 0.92 0.9 0.93
AVG 0.83 0.86 0.86 0.88

Table 5.8: Performance is shown as F1-scores. AVG denotes average F1-score for each
N . For each N ≥ 2 we evaluate the classifiers on their ability to distinguish the stories
from those written with N = 1. Best performing method is in bold and second highest
underlined for each N.

from single-authored ones. We conjecture that introducing more authors in the article
might lead to more variations in the text, making stories with N = 5 authors most easily
distinguishable from stories without any such variations i.e. N = 1.

5.5.2 Task 2: How many authors have written a story?

The second task is to predict the number of authors involved in generating a story. For the
CollabStory dataset, this means that class labels ∈ [1, 5]. From Table 5.9 we see that the
task of predicting exactly how many authors have co-written a story is easiest for N = 1
in conjunction with findings from Task 1 that showed that multi-authored text can be
more easily distinguished from single-authored text. Thus, here too it seems to be easiest
to separate the single-authored texts from N ≥ 2. However, for multi-authored stories,
only BERT and RoBERTa perform better than other baselines (>0.72 F1), especially for
N ∈ [4, 5]. Overall, the performance across this task is low.

5.5.3 Task 3: Authorship Verification

This is a pair-wise sentence classification task where the goal is to predict if two adjacent
sentences are written by the same author or not. For this task, we used all the sentences
at LLM-LLM boundaries, that is the last sentence of part i and the first sentence of part
i + 1. The negative class data samples were sampled as random pairs of consecutive
sentences within each story part.
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Task 2: Predict Number of Authors (N)
Method N=1 N=2 N=3 N=4 N=5
MNB 0.72 0.50 0.49 0.48 0.51
SVM 0.68 0.43 0.52 0.40 0.54
BERT 0.79 0.70 0.64 0.75 0.81
ALBERT 0.70 0.57 0.55 0.53 0.65
RoBERTa 0.76 0.68 0.63 0.72 0.74
AVG 0.73 0.58 0.57 0.58 0.65

Table 5.9: All scores are F1-scores. AVG denotes average F1-score for each N . This task
is particularly challenging with only the single-authored stories (N = 1) being correctly
classified. For all multi-authored texts, BERT and RoBERTa perform better than others.
Best performing method is in bold and second highest underlined for each N.

Task 3: Authorship Verification
Method N=2 N=3 N=4 N=5
MNB 0.65 0.64 0.60 0.63
SVM 0.63 0.62 0.62 0.63
BERT 0.73 0.73 0.73 0.71
ALBERT 0.92 0.89 0.89 0.89
RoBERTa 0.91 0.91 0.90 0.89
AVG 0.76 0.75 0.74 0.75

Table 5.10: All scores are F1-scores and AVG denotes average F-1 scores for each N
for the task of detecting authorship boundaries between sentence pairs. We see that
generally, performance is slightly higher for N = 2 across all classifiers. Best performing
method is in bold and second highest underlined for each N.

From Table 5.10, we see that transformers-based fine-tuned methods perform well
at this task. We also note that detecting sentence authorship boundaries seems to be
slightly easier for the 2-author case than for N ≥ 3.

5.5.4 Task 4: Authorship Attribution

Authorship Attribution involves predicting exactly who the author of a text article
is. In the case of multi-LLM text, we design this task such that each data sample is
homogeneous or each part is written by a single author and the classifier’s task is to
identify its author. From Table 5.11, we see that most of the authors seem hard to
identify irrespective of the value of N , except for Gemma. We were expecting attribution
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N=1
Method Orca Olmo Llama Mistral Gemma AVG
MNB - 0.70 0.71 0.64 0.99 0.76
SVM - 0.61 0.68 0.58 0.97 0.71
BERT - 0.70 0.71 0.64 0.99 0.76
ALBERT - 0.78 0.73 0.70 0.99 0.80
RoBERTa - 0.73 0.70 0.68 0.99 0.78

N=2
Method Orca Olmo Llama Mistral Gemma AVG
MNB 0.49 0.51 0.52 0.51 0.92 0.62
SVM 0.51 0.55 0.54 0.59 0.79 0.62
BERT 0.54 0.54 0.63 0.58 0.95 0.68
ALBERT 0.56 0.58 0.63 0.59 0.96 0.69
RoBERTa 0.49 0.62 0.60 0.56 0.94 0.68

N=3
Method Orca Olmo Lama Mistral Gemma AVG
MNB - 0.60 0.67 0.63 0.94 0.71
SVM - 0.57 0.65 0.57 0.82 0.65
BERT - 0.58 0.69 0.67 0.95 0.72
ALBERT - 0.64 0.71 0.68 0.95 0.75
RoBERTa - 0.71 0.71 0.67 0.96 0.76

N=4
Method Orca Olmo Llama Mistral Gemma AVG
MNB - 0.58 0.65 0.63 0.91 0.69
SVM - 0.58 0.67 0.59 0.80 0.66
BERT - 0.59 0.70 0.68 0.93 0.73
ALBERT - 0.66 0.73 0.70 0.93 0.75
RoBERTa - 0.66 0.68 0.64 0.93 0.73

N=5
Method Orca Olmo Llama Mistral Gemma AVG
MNB 0.54 0.54 0.56 0.53 0.86 0.61
SVM 0.56 0.61 0.60 0.54 0.79 0.62
BERT 0.60 0.57 0.62 0.54 0.93 0.65
ALBERT 0.58 0.55 0.65 0.62 0.92 0.66
RoBERTa 0.56 0.69 0.61 0.58 0.92 0.67

Table 5.11: F1-scores for identifying the author of story parts across articles written by
different numbers of authors. The 5 columns show each of the labels or authors. AVG
denotes average F1-scores across all authors. Best performing method is in bold and
second highest underlined. 107



to be easier the fewer the number of authors since the length of the parts contributed by
each author would be longer. But there does not seem to be any such correlation in our
dataset i.e. length contributed by each author does not correlate with their detection.
To further explore why Gemma was easily identifiable, we manually inspected a random
sample of 100 articles for discernible features or peculiarities in story parts written by
Gemma v/s all other authors. We provide examples of story parts generated by Gemma
and other LLMs in the Tables 5.12, 5.13 and 5.14). We found that the text generated by
Gemma is not noticeably different from that of other authors. We leave a deeper analysis
of potential factors, such as training data-induced biases, story part, or author order for
future work.

5.6 Conclusion
We present CollabStory, the first exclusively LLM-LLM or machine-machine collaborative
story dataset, and demonstrate the tasks it enables. We find that LLMs are able to
collectively generate creative stories at par with human-written stories via sequential
prompting. Using this dataset, we demonstrate which multi-LLM authorship tasks are
most challenging. Recent developments have significantly advanced LLM-assisted writing,
sparking widespread discussions about the nature of authorship. Beyond using LLMs
for paraphrasing, editing, and enhancing text, there exists an extreme scenario where
text is generated entirely by multiple LLMs. Our work addresses this extreme case,
raising several nuanced authorship concerns: Who should be considered the true creative
source in such a situation? Should all LLMs involved be credited? Or should the human
developers designing the prompts be acknowledged as the primary authors? Moreover,
should the LLM that contributed the most—whether in terms of word count, narrative
depth, or plot twists—be granted greater ownership? We will soon need “Catch As Catch
Can” methods to not only find all points where authorship changes within an article
but also simultaneously attribute each independent segment to the specific LLM author.
As more and more LLMs are becoming easier to access, malicious actors could combine
texts from different LLMs to evade automated and in-built misinformation flaggers, or
students might circumvent credibility checks by having different LLMs write different
sections of an academic article. Thus, CollabStory has been developed as a resource with
long-form stories written by multiple LLMs to support the development and expansion
of tasks and methods that can help address incoming challenges brought by LLM-LLM
interactions.
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Gemma Not Gemma
The chase has begun, and adrenaline
floods his veins. The blinding head-
lights pierce through the night, illu-
minating the frantic dance of tires
on asphalt. The adrenaline-fueled
chase weaves through the labyrinth of
city streets, sirens screaming like tor-
mented spirits. The driver, hands white
on the wheel, desperately maneuvers,
adrenaline masking the fear gnawing at
his conscience. Every corner, every al-
leyway, feels like a potential trap, each
sudden movement a potential assault.
The police officer, unwavering in his pur-
suit, his seasoned instincts guiding him
through the chaos. He maneuvers his
cruiser with precision, anticipating the
driver’s next move. His heart pounds in
his chest, adrenaline battling with the
growing sense of urgency. He knows the
city like the back of his hand, weaving
through traffic, his eyes glued to the
fleeing vehicle. As the chase intensifies,
the driver’s desperation escalates. He
risks collisions, weaving through pedes-
trians, pushing the limits of his vehicle’s
performance. The officer remains calm,
focused, his training taking over. He
knows he must bring this chase to an
end, but he also understands the risks
involved.

Swallowing his fear, he decides to take
the next exit and lead his pursuers
through the winding, narrow streets of
the old town. The streets are alive with
the sound of market vendors calling out
their wares, children laughing, and the
faint sounds of a distant band playing
music. The narrow, cobblestone alleys
are lined with ancient buildings, each
one more beautiful than the last. He
knows that this labyrinth of streets will
give him an advantage, but it also in-
creases the risk of colliding with a pedes-
trian or another car. Despite the danger,
he continues to navigate the maze of
alleys, turning sharply at each intersec-
tion. He can hear the revving of engines
and the screeching of tires behind him,
but he refuses to look back. He knows
that every twist and turn could be his
last, but he is determined to outsmart
his pursuers and escape. As he rounds
the final corner, he sees the safety of
the forest beyond the old town walls.
He grits his teeth, puts the pedal to the
metal, and bursts through the gates,
leaving the chaos of the chase behind
him.

Table 5.12: Example 1: As can be seen from these two consecutive story parts, the text
written by Gemma is not necessarily different from that of other authors (in the second
column). Thus, from our manual inspection, we were unable to attribute any noticeable
features to the higher authorship attribution performance for Gemma.
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Gemma Not Gemma
Emily stood frozen, her heart pounding
in her chest. A sense of awe washed over
her as she approached the base of the
tree and noticed a faint glow emanat-
ing from beneath the ground. Curiosity
overwhelmed her, and she cautiously
lowered a hand into the soft earth. As
her fingers brushed against something
cold and smooth, a surge of energy
flowed through her body. A deep voice
rumbled in her mind, "You have awak-
ened. The spirit of the wolf within you
has been awakened." The earth trem-
bled beneath her feet, and a swirling
mist began to envelop Emily. She felt
her bones shifting, her muscles growing
taut. Her reflection in the nearby pond
transformed from a girl to a magnificent
silver wolf. She barked, a primal call
echoing through the woods. The glow
from beneath the oak tree intensified,
and a majestic wolf spirit emerged, its
eyes glowing with wisdom and power.
The spirit guided Emily through the
forest, teaching her the secrets of her
newfound lineage. She learned of the an-
cient bond between wolves and humans,
the importance of loyalty and bravery.

As she embraced her new identity, she
found herself a part of an intricate web
of relationships. Her new pack, made
up of both humans and wolves, ac-
cepted her with open arms. Together,
they faced challenges, both natural and
supernatural. Emily’s courage and
quick thinking saved the pack on more
than one occasion. Her transformation
brought her closer to her true self, and
she no longer felt lost or alone. The
bonds of loyalty and friendship grew
stronger as they worked together to pro-
tect their territory. Emily felt a deep
sense of belonging, and she knew that
she had found her place in the world.
The woods, once a place of solitude, had
become her home, a place of love and
acceptance. Emily’s life as a wolf shifter
was not without its difficulties, but she
faced each challenge with the same brav-
ery and determination that had always
defined her. She had found her true
identity, and nothing would ever shake
her sense of belonging or her commit-
ment to her pack. As the sun set over
the glade, Emily looked up at the stars,
her heart filled with gratitude and love.

Table 5.13: Example 2: As can be seen from these two consecutive story parts, the text
written by Gemma is not necessarily different from that of other authors (in the second
column). Thus, from our manual inspection, we were unable to attribute any noticeable
features to the higher authorship attribution performance for Gemma.

5.7 Discussion
Recent developments have significantly advanced LLM-assisted writing, sparking widespread
discussions about the nature of authorship. Beyond using LLMs for paraphrasing, editing,
and enhancing text, there exists an extreme scenario where text is generated entirely by
multiple LLMs. Our work addresses this extreme case, raising several nuanced authorship
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Gemma Not Gemma
In the unspoken words hanging be-
tween us, Sarah and I understand that
the journey to healing will be arduous.
There will be moments of doubt, days
when the weight feels unbearable, when
the waves of sadness threaten to pull
us under. But we are not in this to-
gether. We are stronger than our indi-
vidual struggles. Together, we will learn
to navigate the storms, to embrace the
sunshine, to rediscover who we are be-
yond the baggage we once carried.

Sarah’s smile brightens my day, and
I know that this new chapter in our
lives is going to be filled with adven-
ture, growth, and most importantly,
love. We’ll stumble, we’ll trip, but we’ll
always have each other to pick us back
up and move forward, stronger than be-
fore. I take Sarah’s hand and squeeze it
tightly.

Her words seemed to hang in the air like
acrid smoke, but I knew better. The
voice, the chilling certainty in its de-
livery, had belonged to something far
more sinister. I glanced at the others,
their faces pale, their eyes wide with
disbelief. "There’s no way this is real,"
one whispered, her voice trembling. But
the undeniable presence of death in our
living room told us otherwise. The fig-
ure shifted, its skeletal hands brushing
the floor with an unholy whisper. "Your
time has come," it hissed, its voice like
nails on a chalkboard. Panic surged
through me, my limbs frozen in terror.
The others stumbled around, scram-
bling for escape, but their movements
were clumsy, their screams muted by
fear. In that moment, I realized that
the only way out was through the front
door, directly into the path of the crea-
ture that had come for me. With a
surge of adrenaline, I broke free from
the group, sprinting towards the exit.

As I reached the door, it swung open
to reveal Tia, the figure from my night-
mares, standing there. But instead of
fear, I felt relief. She had a warm smile
on her face, and her eyes were full of
compassion. "You have been chosen to
bear the mark of the guardian," she ex-
plained, holding out the hourglass. "I
have protected this town for generations,
and now it’s your turn to carry on the
tradition." I hesitated for a moment, but
then I accepted the hourglass with a
sense of pride and purpose. Together,
Tia and I faced the darkness that lurked
outside, ready to protect our town and
its people from the evil that sought to
harm them. From that day on, I be-
came the guardian of my town, using
the powers granted to me by Tia to keep
the peace and protect those around me.
The people of the town were grateful,
and I knew that I had found a new pur-
pose in life.

Table 5.14: Example 3: As can be seen from these two consecutive story parts, the text
written by Gemma is not necessarily different from that of other authors (in the second
column). Thus, from our manual inspection, we were unable to attribute any noticeable
features to the higher authorship attribution performance for Gemma.
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PAN Task equiv-
alent

Task Description: Multi-
LLM scenario

Real-world Implications

Predict multi-
author or not

To determine if a text in-
cludes content from multiple
LLMs or not

Credit Assignment and In-
tellectual Property (IP) reg-
ulation

Predict number
of authors

To predict the number of
LLMs involved in writing an
article

Keeping track of LLM-LLM
agent interactions in grow-
ing open-source market

Author Verifica-
tion

To detect when authorship
switches between LLMs

To detect perjury, misinfor-
mation injection, falsifying
editing in news articles, and
text obfuscation

Authorship At-
tribution

Predicting who wrote each
text segment?

Plagiarism detection

Style Change De-
tection and Attri-
bution

Finding all positions in
the text where authorship
changes and who wrote each
segment

Classroom settings: Aca-
demic Integrity, detecting
use of multiple open-source
and free-to-use LLMs to sur-
pass detection methods

Table 5.15: Real-world implications of the tasks involved in understanding LLM-LLM
collaboration for writing tasks

concerns: Who should be considered the true creative source in such a situation? Should
all LLMs involved be credited? Or should the human developers designing the prompts
be acknowledged as the primary authors? Moreover, should the LLM that contributed
the most—whether in terms of word count, narrative depth, or plot twists—be granted
greater ownership? There have been recent works addressing this question of ownership.
For example, [150] and [151] found that humans felt a sense of higher ownership when
they wrote longer prompts and when the AI assistant-generated text length was shorter,
respectively. The question of authorship when text is repeatedly paraphrased using
LLMs has also been deeply considered by [152], who find that the notion of authorship is
task-dependent and cannot be generalized.

These questions have profound implications for various stakeholders in the burgeoning
socio-technical system of generative AI. Our research introduces authorship-related tasks
using CollabStory, which can help address these concerns by accurately discerning the
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usage of multiple LLMs in texts. Our extension of PAN-inspired authorship tasks is
closely linked to real-world implications, as follows:

Task 1: Predict multi-author or not

In the rapidly expanding and fiercely competitive market for LLMs, the ownership of
content and the ability to prove the origins of creative work are becoming increasingly
crucial. As the market evolves, closed-source LLMs are implementing stricter regulations
and demanding credit assignment under various distribution licensing norms. In this
context, the capacity to demonstrate that a text incorporates generated output from
multiple LLMs is essential. This capability can effectively prevent any single stakeholder
or developer from erroneously claiming exclusive rights to the content, thereby bolstering
the defense against wrongful intellectual property (IP) claims.

Task 2: Predict number of authors

Predicting the exact number of LLMs involved in the writing process can help keep
track of the frequency and extent to which LLMs are used collaboratively, as more and
more models enter the open-source market. This is essential to understand whether such
usage improves task performance or introduces inefficiencies beyond a certain threshold.
Understanding the optimal number of LLMs or the degree to which LLMs can leverage
each other’s strengths in writing tasks is vital. It ensures effective collaboration without
unnecessary complexity, maximizing the benefits of combined model capabilities while
avoiding overkill and collaboration for its own sake.

Task 3: Author Verification

With LLMs increasingly paraphrasing and editing each other’s texts, it becomes crucial
to identify which spans were generated by different LLMs. Consider a scenario where a
news article is paraphrased by one LLM and subsequently edited by another, with the
latter introducing fallacies or misinformation. In such cases, discerning the contributions
of each LLM is essential for identifying malicious LLM agents or the infiltration of critical
content, such as media and news articles. This capability has significant applications,
including detecting perjury and combating the adversarial obfuscation of text, thus
maintaining the integrity and reliability of information.
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Task 4: Authorship Attribution

Identifying the exact LLMs responsible for authoring a text is crucial for detecting
and addressing plagiarism. This is particularly important in academic settings, where
students might use closed-source LLMs without complying with content ownership and
usage declaration regulations. This is possible also in cases where content from one LLM
is being posed as that from another to claim higher ability or quality. An example of
such a situation might be in a bid to motivate financial investors hoping to monetize and
utilize LLMs for specific domains (such as medical applications, educational tools, and
creative content generation).

In this work, we present CollabStory, the first exclusively LLM-LLM or machine-
machine collaborative story dataset, and demonstrate the tasks it enables. We elaborate
on why multi-LLM authorship tasks are crucial to study by discussing their real-world
implications (summarized in Table 5.15). We will soon need “Catch As Catch Can”
methods to not only find all points where authorship changes within an article (style
change detection) but also simultaneously attribute each independent segment to the
specific LLM author (attribution). As more and more LLMs are becoming easier to
access, malicious actors could combine texts from different LLMs to evade automated
and in-built misinformation flaggers, or students might circumvent credibility checks by
having different LLMs write different sections of an academic article. Thus, CollabStory
was developed as a resource with long-form stories written by multiple LLMs to support
the development and expansion of tasks and methods that can help address incoming
challenges brought by LLM-LLM interactions.

This work demonstrates one way of collecting a collaborative multi-LLM dataset.
However, several variants are possible. Of course, as the LLM space is ever evolving,
newer LLMs (e.g. Llama 3) became available as we were already collecting this dataset.
Another aspect is that our dataset was collected in a uniform manner such that all LLMs
contributed somewhat equal portions of text to a story. The next step would be to train
a routing algorithm or a randomizer that could generate non-uniform collaborative texts.
Our current analysis is unable to account for this setting and we leave this for future
work. Additionally, the iterative generation process is resource-intensive and not easily
scalable. We also acknowledge that LLM tasks beyond story writing are essential for a
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deeper understanding of how LLMs collaborate in open-ended generation tasks.

Using LLMs for creative story writing could relay some of the biases and harmful
stereotypes present in the LLMs original training data since all our LLMs are trained
on data from the internet. This is an important consideration before or during the
dissemination of any such generated texts or stories. Transparency of the source of
generated articles is important to avoid deception or wrongful content attribution. With
creative writing tasks, it is also important to address any impact on creative professionals
and guidelines to ensure that LLMs help enhance rather than undermine human creativity.
We study LLM story-writing as a means to better prepare for a future of LLM-generated
creative texts that might be misused in classroom settings, to manipulate public opinion
on social media forums, and also to protect human writers against plagiarism amongst
many other potential non-ethical usages.
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Chapter 6 |
Conclusion

Authorship is of growing importance and becoming a more and more urgent topic of
interest as newer LLMs surpass previous abilities and quality of text generation in
every iteration. In this thesis, we delve into the nuances of authorship-related research
questions that can help inform methods to tackle some of the challenges of detection and
obfuscation as well as resource-development to support future work to address emerging
LLM- or agent-like collaborative scenarios. The key findings of our work are as follows:

6.1 Human and machine-generated texts have differences
in surprisal distributions
When we compared the human and machine-written texts using their surprisal distri-
butions i.e. UID scores, we found that under most decoding settings, machine text
is far more uniform than human-generated texts (Chapter 2). Contrary to our initial
expectations, we also found that non-uniformity in machine-generated responses is a
more desirable characteristic than uniformity. Despite the lack of correlation between
UID scores and surprisal with human judgments overall, we observed that UID scores
become relevant when controlled for surprisal, indicating that uniformity might not be
the optimal goal for regularizing decoding algorithms [96]. This implies that focusing on
non-uniform information density could address the “likelihood trap” problem, wherein
models produce lower quality text when sampling from the extremes of their likelihood
space [68]. Therefore, we propose that decoding algorithms should be adjusted to mimic
the information density patterns found in human-generated texts to improve response
quality across various likelihood ranges.
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6.2 Surprisal as a means to detect machine-generated
text
To tackle the challenge of detecting machine-generated text, we introduced GPT-who, a
statistical-based detector inspired by the Uniform Information Density (UID) principle.
This principle posits that humans distribute information or surprisal evenly in language.
Our detector leverages UID-based features, including the variance of surprisals and
uniformity metrics derived from the surprisal sequences generated by a standard language
model. In Chapter 3, we demonstrate that these features prove highly effective in distin-
guishing machine-generated text from human-generated text by capturing the subtleties
in information distribution. This approach offers valuable insights for enhancing text
authenticity assessments.

Our analysis shows that human-written text generally exhibits more non-uniformity
compared to machine-generated text, which tends to distribute information more smoothly.
This observation aligns with the operationalization of UID based on our current methods,
though it does not directly support or refute the UID hypothesis rooted in psycholinguistic
studies. The unexpected findings may arise from using GPT-2’s probability distribution,
which might not accurately represent human probability distributions. Thus, while our
operationalization shows machines as more uniform, it does not necessarily contradict
UID theory but highlights the complexity of measuring uniformity in texts.

This finding underscores the utility of UID-based features in distinguishing be-
tween texts produced by humans and various language models. GPT-who is this a
psycholinguistically-inspired, domain-agnostic text detector that (1) outperforms sta-
tistical approaches across four large-scale benchmark datasets from over 35 LLMs and
multiple domains, (2) generalizes better to out-of-distribution datasets compared to state-
of-the-art detectors, (3) is computationally efficient, avoiding the need for fine-tuning
or training additional language models and, (4) provides interpretability through its
psycholinguistically motivated UID-based feature space [153].

Although our detector may not surpass fine-tuned transformer models in performance,
it offers nearly comparable results at lower computational costs and is one of the few
statistical-based detectors capable of operating effectively in multi-author settings. This
demonstrates the potential of psycholinguistically grounded approaches in addressing
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challenges posed by advanced automated text generators.

While we demonstrate the effectiveness of UID-based approaches to evaluate and
detect machine-generated texts, the application of UID-based methods to broader issues
such as misinformation and plagiarism remains unexplored, and we anticipate that this
feature space could also provide much insights for such tasks in future studies.

Furthermore, the inherent limitations of AI-based text detectors, including the risk
of false positives, highlight the need for human oversight in real-world applications.
Ethical considerations, particularly in academic settings, are crucial to balance auto-
mated detection with maintaining academic integrity. We advocate for the responsible
development and implementation of such systems to ensure fairness, equity, and respect
for individual expression, promoting a more balanced integration of automated text
detection technologies.

6.3 Syntactic patterns can help obfuscate authorship
We presented ALISON in Chapter 4, an innovative technique for authorship obfuscation
that focuses on the replacement of revealing stylistic sequences. Utilizing a greedy algo-
rithm, ALISON replaces text sequences that match POS n-grams identified as significant
through a lightweight neural network trained to perform authorship attribution with
mixed n-grams. We apply ALISON to three state-of-the-art transformer-based attribution
classifiers and showcase its effectiveness by achieving superior obfuscation success and
semantic preservation compared to seven diverse baseline methods. The simplicity and
effectiveness of ALISON also result in a marked improvement in computational complexity
over existing methods [154].

While authorship obfuscation techniques like ALISON offer crucial benefits by safe-
guarding the freedom of speech for individuals such as whistleblowers and journalists,
they also raise ethical concerns regarding their potential misuse by malicious groups
seeking to conceal their identities. We recognize these ethical implications and emphasize
the importance of continued research and system design to balance the protection of
free speech with mitigating risks associated with malicious applications. Our work
highlights the need for robust, ethically sound solutions that enhance public discourse
while addressing the challenges posed by the potential misuse of obfuscation technologies.
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6.4 Collaborative writing through LLM prompting
Recent advancements in LLM-assisted writing have prompted significant discussions
regarding authorship, particularly in extreme scenarios where multiple LLMs collabo-
ratively generate text. This raises complex questions about the true source of creative
work: Should all LLMs involved be credited, or should the human developers who de-
signed the prompts be acknowledged? Additionally, should the LLM that contributed the
most—whether by word count, narrative depth, or plot twists—receive greater ownership?
Previous studies, such as [150] and [151], have explored related questions, revealing that
human ownership perception varies with prompt length and AI-generated text length.
Similarly, [152] found that authorship is task-dependent and cannot be generalized.

Our work introduces a novel approach to addressing these authorship concerns through
CollabStory, which facilitates the study of multi-LLM authorship tasks (Chapter 5). This
is the first exclusively LLM-LLM collaborative story dataset that used simple sequential
prompting to get up to 5 different LLMs to collaboratively write creative stories. This
dataset is designed to support the development of methods that address challenges arising
from multi-LLM interactions [155]. As the landscape of LLMs continues to evolve, it is
crucial to develop methods to track and attribute text contributions accurately, especially
as newer models and collaborative approaches emerge. We present several critical tasks
that highlight the importance of understanding and managing authorship in the evolving
landscape of generative AI.

Our current dataset includes uniformly contributed text segments from multiple LLMs,
but future work should explore non-uniform collaborative texts and address scalability
issues. Furthermore, the iterative generation process employed is resource-intensive,
highlighting the need for more efficient methods. While our focus is on story writing,
extending these techniques to other creative and open-ended tasks is essential for a
comprehensive understanding of LLM collaboration.

Lastly, the use of LLMs for creative writing raises concerns about potential biases
and harmful stereotypes inherent in training data. Ensuring transparency and ethical
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considerations in the dissemination of generated texts is crucial to avoid deception
and protect human creativity. This thesis aims to prepare for future challenges posed
by LLM-generated texts and to safeguard against unethical uses, ensuring that LLMs
enhance rather than undermine human creativity and integrity in various applications.

6.5 Open Challenges
The following are some open challenges that require future efforts to improve machine-
generated text evaluation, authorship analysis, attribution, obfuscation, and text genera-
tion at large:

6.5.1 Datasets that showcase LLM abilities

As LLMs become better at tasks and expand to newer tasks (e.g., code generation,
reasoning, and qualitative evaluation of texts), it is crucial to develop datasets that are
representative of their varied behaviors with diverse examples of LLM-generated responses
across task types. Current benchmarks, including those introduced in this dissertation,
provide data for only one type of generation task (for example, dialog response and
creative story generation). There is a need for comprehensive and aggregated datasets
that include different tasks to help the research community understand and evaluate
LLMs better and holistically, and to keep track of their growing impact temporally as
newer tasks emerge.

6.5.2 Evaluation Measures and Human Alignment

Evaluation measures also need to keep up with the sophistication of LLM outputs. For
example, better metrics must help evaluate the common-sense rationale, truthfulness,
and biases of generated texts. Moreover, as LLMs generate longer-form texts and work
collaboratively, we also need to develop better metrics for assessing the continuity, flow
and cohesiveness of such emerging collaborative texts. There also needs to be continued
work to measure the human perception of generated texts as a means to evaluate and
better align LLM generation to human preferences.
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6.5.3 Detection and Obfuscation of multi-lingual texts

Most LLMs are now multilingual, and a vast body of literature on multilingual and
multimodal texts (such as image-text caption pairs) is also emerging [156–158]. Despite
this, most methods for detection and obfuscation are still limited to the mono-lingual
setting, with skewed efforts focused on English language texts. Thus, current authorship
attribution and obfuscation methods need to be adapted to handle this scenario and be
able to assess the veracity of the sources of data extending to multiple languages and
modalities.

6.5.4 Need for interpretable methods

There is a need for interpretable methods that can help support humans in understanding
and detecting if a text is not truly written by an author claiming it (i.e., if a text has been
obfuscated or wrongfully claimed), in assisting them in detecting deepfake texts, and as
a means to warn the more extensive online audience of potentially harmful or ill-meaning
authors in online forums. Such methods should also be integrated and deployed on
online forums where deepfake texts are commonly found, especially in digital spaces that
concern critical domains such as political discourse, news media, and scientific knowledge
dissemination.

6.6 Ethical Considerations
This dissertation includes materials and examples of texts generated by large language
models (LLMs). While these models produce coherent and contextually relevant outputs,
their generated content may not always be factually accurate or truthful. As such, it
is crucial to evaluate the information presented critically, cross-check it against reliable
sources, and verify its authenticity before considering broader dissemination. The inherent
limitations of LLMs, including potential biases, inaccuracies, and the risk of generating
misleading information, should be considered during analysis to ensure responsible usage
and interpretation. In addition, all the methods and datasets developed as part of this
dissertation were limited to the English language, and the findings cannot be generalized
to other languages.
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