
The Pennsylvania State University
The J.Jeffrey and Ann Marie Fox Graduate School

ADVANCING PREDICTIVE MODELING ON ELECTRONIC HEALTH

RECORDS: FROM HANDCRAFTED TO AUTOMATED METHODS

A Dissertation in
Informatics

by
Suhan Cui

© 2025 Suhan Cui

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2025

The dissertation of Suhan Cui was reviewed and approved by the following:

Dongwon Lee
Professor of College of Information Sciences and Technology
Dissertation Advisor
Chair of Committee

Minhao Cheng
Assistant Professor of College of Information Sciences and Technology

Sharon Huang
David Reese Professor of College of Information Sciences and Technology

Qiushi Chen
Assistant Professor of Industrial and Manufacturing Engineering

Prasenjit Mitra
Affiliated Professor of L3S Research Center, Leibniz University Hannover
Special Member

Carleen Maitland
Professor of College of Information Sciences and Technology
Associate Dean for Research and Graduate Affairs

ii

Abstract

Electronic Health Record (EHR) systems are widely adopted across healthcare institutions,
collecting vast amounts of patient data and serving as a foundation for healthcare research.
These systems enable exploratory and predictive analytics, facilitating advancements in
medical applications such as disease diagnosis, treatment recommendations, and patient
monitoring.

In recent years, researchers and clinicians have increasingly leveraged machine learning
(ML) techniques to analyze EHR data. However, developing effective ML models for EHR
data remains a significant challenge, primarily due to the reliance on human experts to
handcraft these models. This process demands expertise in both ML and medical domains
and involves labor-intensive efforts to design and optimize model architectures, which
often results in models tailored to specific datasets or tasks, limiting their generalizability.
Consequently, there is a pressing need for innovative approaches to streamline ML model
development for EHR data, minimizing the reliance on domain expertise and manual
effort while enhancing model performance across different scenarios.

This dissertation focuses on advancing predictive modeling for EHR data, transition-
ing from handcrafted to automated methodologies. In the first part, we propose two
handcrafted frameworks, namely MedPath and MedRetriever, which enhance predictive
models using external medical knowledge sources, including knowledge graphs (KG) and
medical texts. These frameworks improve model performance and interpretability while
reducing reliance on domain-specific expertise. Notably, they can integrate seamlessly
with any existing predictive models, offering improved performance across diverse datasets
and tasks.

In the second part, we introduce automated frameworks designed to address predictive
modeling challenges in multi-modal and multi-task learning for EHR data. These include
AutoMed, AutoFM, and AutoDP, which leverage data-driven approaches to automatically
design model architectures. By eliminating the need for manual intervention, these
methods enhance performance and generalizability across various datasets and tasks.
What is more, these methods further reduce the labor efforts to design the model
architectures compared to handcrafted methods.

Overall, the methodologies presented in this dissertation—both handcrafted and
automated—provide general solutions for EHR modeling, improving model applicability
and performance across diverse scenarios.

iii

Table of Contents

List of Figures viii

List of Tables x

Acknowledgments xiii

Chapter 1
Overview 1

Chapter 2
Augmenting Health Risk Prediction via Medical Knowledge Paths 5
2.1 Introduction . 5
2.2 Literature Review . 8

2.2.1 Health Risk Prediction . 8
2.2.1.1 Basic Attention . 9
2.2.1.2 Using Time Information 9
2.2.1.3 Using External Knowledge 10

2.2.2 Graph Neural Network . 11
2.3 Data & Task . 11

2.3.1 Electronic Health Records . 11
2.3.2 Medical Knowledge Graph . 12
2.3.3 Personalized Graph Extraction 12
2.3.4 Health Risk Prediction Task . 13

2.4 Methodology . 14
2.4.1 EHR Encoder . 14
2.4.2 Graph Encoder . 15

2.4.2.1 Type-Specific Transformation 15
2.4.2.2 Multi-hop Message Passing 16
2.4.2.3 Structured Relational Attention 17

2.4.3 Prediction . 19
2.4.4 Interpretation . 19

2.5 Experiments . 20
2.5.1 Experimental Setup . 20

2.5.1.1 Datasets . 20

iv

2.5.1.2 Baselines . 20
2.5.1.3 Implementation . 20
2.5.1.4 Evaluation Metrics . 21

2.5.2 Experimental Results . 22
2.5.2.1 Performance Comparison 22
2.5.2.2 Significance Test . 23
2.5.2.3 Model Interpretability 23
2.5.2.4 Ablation Study . 24
2.5.2.5 Discussion for k Selection 25
2.5.2.6 Another Two Case Studies 25
2.5.2.7 Performance Comparison with GRAM as the base model 27

2.6 Conclusion . 27

Chapter 3
Augmenting Health Risk Prediction via Medical Texts 30
3.1 Introduction . 30
3.2 Literature Review . 33
3.3 Data & Task . 34

3.3.1 Electronic Health Records . 34
3.3.2 Medical Text Corpus . 34
3.3.3 Health Risk Prediction . 35

3.4 Methodology . 35
3.4.1 EHR Encoder . 36
3.4.2 EHR-Text Retriever . 36
3.4.3 Text Memory . 38
3.4.4 Predictor . 39

3.5 Experiments . 39
3.5.1 Experimental Setup . 40

3.5.1.1 Datasets . 40
3.5.1.2 Baselines . 40
3.5.1.3 Implementation . 40
3.5.1.4 Evaluation Metrics . 41

3.5.2 Performance Evaluation . 41
3.5.3 Ablation Study . 42
3.5.4 Case Studies on Interpretability 45

3.6 Conclusion . 46

Chapter 4
Automated Medical Risk Predictive Modeling on Electronic Health

Records 47
4.1 Introduction . 47
4.2 Literature Review . 49
4.3 Methodology . 50

4.3.1 Data & Task . 50

v

4.3.2 Overview of AutoMed . 50
4.3.3 Embedding Diagnosis and Time Features 51
4.3.4 Encoding Diagnosis Representations 52
4.3.5 Encoding Time Representations 52
4.3.6 Fusing Diagnosis and Time Representations 53
4.3.7 Predicting Health Risks . 53
4.3.8 Optimization . 54
4.3.9 Deriving Discrete Architectures 54
4.3.10 Complexity Analysis . 55

4.4 Experiments . 55
4.4.1 Experimental Setup . 55

4.4.1.1 Datasets . 55
4.4.1.2 Baselines . 56
4.4.1.3 Operations . 56
4.4.1.4 Implementation Details 57

4.4.2 Performance Evaluation . 57
4.4.3 Ablation Study . 59
4.4.4 Demonstration of the Searched Architectures 60
4.4.5 Varying # of Cell Nodes . 61
4.4.6 Additional Results on Dementia Dataset 61

4.4.6.1 Dataset . 61
4.4.6.2 Performance Evaluation 61
4.4.6.3 Ablation Study . 63
4.4.6.4 Searched Architecture 64
4.4.6.5 Varying # of Cell Nodes 65

4.5 Conclusion . 65

Chapter 5
Automated Fusion of Multimodal Electronic Health Records for

Better Medical Predictions 67
5.1 Introduction . 67
5.2 Literature Review . 69

5.2.1 Modeling Multi-modal EHR data 69
5.2.2 Neural Architecture Search . 70

5.3 Methodology . 71
5.3.1 Multimodal EHR Data Embedding 71
5.3.2 Multi-Modal Search Space Design 71

5.3.2.1 Modality Specific Search 72
5.3.2.2 Multimodal Fusion Search 74

5.3.3 Prediction . 75
5.3.4 Optimization . 75

5.3.4.1 Supernet Training . 75
5.3.4.2 Deriving the Optimal Architecture 76

5.4 Experiments . 77

vi

5.4.1 Experimental Setups . 77
5.4.2 Performance Evaluation . 79
5.4.3 Ablation Study on Input Modalities 79
5.4.4 Effect of Feature Selection Penalty 80
5.4.5 Effect of Pruning-based Architecture Selection 81
5.4.6 Architecture Study . 81
5.4.7 Working Procedure of Pruning-based Architecture Selection . . . 82

5.5 Limitation and Future Work . 83
5.6 Conclusion . 84

Chapter 6
Automated Multi-Task Learning for Joint Disease Prediction on

Electronic Health Records 85
6.1 Introduction . 85
6.2 Literature Review . 89

6.2.1 Multi-Task Learning with EHR 89
6.2.2 Multi-Task Grouping . 89
6.2.3 Multi-Task NAS . 90

6.3 Methodology . 90
6.3.1 Preliminaries . 90
6.3.2 Overview . 92
6.3.3 Surrogate Model . 93
6.3.4 Progressive Sampling . 94
6.3.5 Derivation . 96

6.4 Experiments . 97
6.4.1 Set Up . 97
6.4.2 Performance Evaluation . 99
6.4.3 Hyperparameter & Complexity Analysis 101
6.4.4 Ablation Study . 102
6.4.5 Disease Based Grouping . 103
6.4.6 Visualization of the Searched Configurations 104

6.5 Limitation and Future Work . 104
6.6 Conclusion . 105

Chapter 7
Conclusion and Future Directions 107
7.1 Conclusion . 107
7.2 Future Directions . 108

Bibliography 110

vii

List of Figures

1.1 Overview of the Dissertation . 3

2.1 (a) The framework of MedPath, which augments risk prediction models
by learning a PKG embedding extracted from SemMed for prediction.
Disease progress can be reasoned from PKG in (b), which is helpful for
explicit interpretation. 8

2.2 Comparison of AUC values with different k in different MedPath-SA
methods on the heart failure dataset. 26

2.3 Comparison of AUC values with different k in different MedPath-SA
methods on the COPD dataset. 26

2.4 Comparison of AUC values with different k in different MedPath-SA
methods on the kidney disease dataset. 27

3.1 Overview of the proposed MedRetriever. 32

3.2 Comparison of AUCs with different baselines as the EHR encoder backbone. 42

3.3 Comparison of AUCs with different memory sizes in MedRetriever using
RetainEx as the backbone on three datasets. 43

4.1 Overview of the proposed AutoMed in the searching stage, i.e., the supernet. 48

4.2 The searched architectures. The black arrows (→) denote the searched
operation on the edges of DAG. The red arrows (→) mean the selected
computation node by the searchable feature selectors. The blue arrows (→)
represent the input of the fusion cells, which are not searched by AutoMed.
“x_T_0” means T, and “x_D_0” means D. Similarly, “x_D_1” is x(1)

D

learned by Eq. (4.2). 62

viii

4.3 The validation loss curves on four datasets when trying different number
of step nodes. 63

4.4 The searched architectures on Dementia dataset. The black arrows (→)
denote the searched operation on the edges of DAG. The red arrows (→)
mean the selected computation node by the searchable feature selectors.
The blue arrows (→) represent the input of the fusion cells, which are not
searched by AutoMed. 65

4.5 The validation loss curves on the Dementia dataset when trying different
numbers of step nodes. 65

5.1 Overview of the proposed AutoFM. 69

5.2 Searched architecture. The blue arrows represent fixed operations, while
the other black arrows are all searched operations. The interact(·) means
the interaction operation with the corresponding feature. For the steps
nodes [g1, g2, g3], we omit the notations in the figure and fill the node
with the selected fusion operations like (sum+att). 82

5.3 Pruning curve on the ARF 12h task. 83

6.1 Overview of the proposed AutoDP . 92

6.2 Histogram of task gains for AutoDP in terms of Averaged Precision. . . . 101

6.3 Analysis for the number of progressive sampling rounds K1 and the budget
of task groups B under the setting of Task @ 25. 101

6.4 Illustration of the searched configuration under the setting of Task @ 10. 104

6.5 Illustration of the searched configuration under the setting of Task @ 25. 106

ix

List of Tables

2.1 Statistics of the used datasets. 20

2.2 Performance Comparison (with the p-values of significance test) in terms of
AUC. The average AUC scores of our MedPath variants MedPath-TA and
MedPath-SA for each dataset are followed by the percentage improvement
(↑) over Vanilla models. 21

2.3 Performance Comparison (with the p-values of significance test) in terms
of F1 Score. The average F1 scores of our MedPath variants MedPath-
TA and MedPath-SA for each dataset are followed by the percentage
improvement (↑) over Vanilla models. 21

2.4 Case study results of heart failure for showing the explicit interpretability
that MedPath has. 24

2.5 Ablation study results of removing each component in MedPath-SA using
LSTM as the encoder. 25

2.6 Case study results of COPD for showing the explicit interpretability that
MedPath has. 28

2.7 Case study results of kidney disease for showing the explicit interpretability
that MedPath has. 29

2.8 Performance Comparison with GRAM as the base model. 29

3.1 Statistics of the used claim datasets. 40

3.2 Performance comparison in terms of AUC, Precision, Recall and F1 score.
Note that MedRetriever uses RetainEx as the backbone, and we report
the mean and standard deviation values of the results after running three
times. 41

x

3.3 Ablation study results in term of AUC when removing each medical text
processing component of MedRetriever, which uses RetainEx as the EHR
encoder backbone. 42

3.4 Case study of a positive case on the heart failure dataset. 44

3.5 Case study of a positive case on the COPD dataset. 45

4.1 Statistics of the four EHR datasets. 55

4.2 Performance comparison in terms of PR-AUC, F1 score, and Cohen’s
Kappa (mean±std.). The results produced by the best baseline and the
best model in each column are marked by underlined and boldfaced,
respectively. ∗ denotes that the p-value is smaller than 0.01. 58

4.3 Ablation study results in terms of F1 score (%). 59

4.4 Statistics of Dementia dataset. 63

4.5 Performance comparison in terms of PR-AUC, F1 score, and Cohen’s
Kappa on the Dementia dataset. The results produced by the best baseline
and the best performer in each column are marked with underlined and
boldfaced, respectively. 64

4.6 Ablation study results in terms of F1 on the Dementia dataset. 64

5.1 Modality-specific operations. 72

5.2 Fusion operations. 73

5.3 Statistics of the four datasets. 77

5.4 Performance comparison on four tasks. The second-best results are marked
by underline. 79

5.5 Ablation study on input modalities . 80

5.6 Results on different optimization methods. 80

5.7 Results on different discretization methods. 81

xi

6.1 Performance of the single task backbone. 98

6.2 Hyperparameter setting. 99

6.3 Performance comparison in terms of averaged per-task gain over single
task backbone (All results are in the form of percentage values %). . . . 100

6.4 Ablation results in terms of AVP. 102

6.5 Disease Based Grouping. 103

xii

Acknowledgments

I would like to express my deepest gratitude to everyone who has supported me throughout
my PhD journey. This research would not have been possible without the guidance,
encouragement, and contributions of many individuals.

First and foremost, I extend my heartfelt thanks to my advisors, Prof. Dongwon
Lee and Prof. Prasenjit Mitra, for their invaluable insights, patience, and unwavering
support. Their expert guidance and constructive feedback have been instrumental in
shaping this dissertation. I am especially grateful for their support during the challenging
moments of my PhD journey, for which I am deeply thankful.

I am also sincerely grateful to my committee members, Prof. Sharon Huang, Prof.
Minhao Cheng, and Prof. Qiushi Chen, for their time, expertise, and thoughtful sugges-
tions, which have greatly enhanced this dissertation.

Additionally, I would like to express my appreciation to my former advisor, Prof.
Fenglong Ma, whose mentorship inspired me to pursue a PhD and helped shape my
research interests and foundational knowledge.

My heartfelt appreciation goes to my collaborators, whose dedication, insights, and
contributions have significantly enriched this work. Their support and expertise have
been invaluable in refining key aspects of this study.

Finally, I would like to express my deepest appreciation to my family for their
unconditional love, patience, and unwavering belief in me. Their support has been my
greatest source of strength.

This dissertation is partially supported by the National Science Foundation (NSF) under
Grant No. 1951729, 2119331, 2212323, and 2238275, and the National Institutes of
Health (NIH) under Grant No. R01AG077016. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation and the National Institutes
of Health.

xiii

Chapter 1 |
Overview

Electronic Health Records (EHRs) are digital systems designed to store comprehensive
patient health information, including medical history, diagnoses, medications, test results,
and treatment plans. By replacing traditional paper charts, EHRs enhance healthcare
efficiency by providing real-time, secure access to accurate and up-to-date data. They
facilitate better coordination among healthcare providers, reduce medical errors, and
increase patient engagement. In recent years, the widespread adoption of EHR systems
has also enabled researchers and clinicians to conduct data-driven healthcare research,
with applications spanning disease diagnosis, treatment recommendations, drug discovery,
and personalized medicine.

Increasingly, researchers and clinicians are leveraging machine learning (ML) tech-
niques to analyze EHR data, capitalizing on ML’s strong representation learning capa-
bilities. Among these applications, predictive modeling refers to forecast future health
conditions by analyzing patients’ historical EHR data. However, building effective ma-
chine learning models for predictive tasks is highly challenging due to the complex nature
of EHR data. Specifically, the unique challenges for EHR data are summarized as follows:

• Temporal Dynamics: Patient records are longitudinal and irregularly sampled,
complicating the capture of time-based trends and sequential events.

• Heterogeneity of Input Data: EHR combine structured data (e.g., lab results,
medication orders) with unstructured data (e.g., clinical notes), requiring models
that can handle diverse modalities.

• Heterogeneity of Prediction Tasks: Many EHR applications aim to predict
multiple outcomes (e.g., diagnoses, readmission, mortality) simultaneously. This
necessitates models that can share representations effectively across tasks while
managing potential conflicts.

1

• Interpretability: In the healthcare context, it is crucial for models to be inter-
pretable. Clinicians need to understand the rationale behind model predictions to
build trust and ensure that decision-making is transparent and evidence-based.

For addressing the challenges specific to EHR data, most current approaches rely
on human experts to design task- or dataset-specific models for EHR-based predictive
modeling. These approaches, however, has several significant limitations:

• C1: It requires human experts to possess deep expertise in both the medical and
machine learning domains—an intersection of skills that is rare. Most of the current
predictive models are designed by ML experts, so the common limitation is the
lack of medical domain knowledge during modeling EHR data.

• C2: It is challenging for human experts to design the appropriate models for
EHR data. The development process is labor-intensive, demanding substantial
effort to design and optimize model architectures. Also, due to the complex nature
of modeling EHR data, it is extremely challenging to find the suitable model
architectures, so there is a big room for performance improvement over the current
methods.

• C3: Most of the current methods is to handcraft the models on a specific feature
(i.e. diagnosis codes) or task, which will result in models lacking generalizability
to other scenarios. Oftentimes, EHR data may contain diverse types of feature
modalities and prediction tasks that makes handcrafting models less effective and
efficient.

To address these challenges, we propose a series of methodologies aimed at advancing
predictive modeling on EHR data. Our approach focuses on developing more general
and automated solutions that reduce reliance on human expertise and labor efforts while
improving performance across a variety of scenarios. Specifically, for C1, we design
frameworks that can incorporate medical knowledge graphs and texts to augment the
prediction models, which solves the problem of lacking domain knowledge. Then, for C2,
we further propose automated machine learning (AutoML) solutions for designing EHR
models, that can reduce human efforts and improve performances. Moreover, we extend
our AutoML solutions to multi-modal and multi-task scenarios for handling C3.

The overall structure of the dissertation is shown in Figure 1.1. We transition from
handcrafted to automated methods for improving prediction models on EHR data. Next,
we provide the overview for each Chapter.

2

Advancing Predictive Modeling on Electronic Health Records:
From Handcrafted to Automated methods

Ch 2: MedPath Ch 3: MedRetriever

Augmenting prediction models via medical knowledges

Handcrafted

Automated

Ch 4: AutoMed

Ch 5:
AutoFM

Automated methods for multi-modal learning on EHR data

Ch 6: AutoDP
Automated methods for multi-task learning on EHR data

Figure 1.1: Overview of the Dissertation

In Chapter 2 and Chapter 3, we introduce two handcrafted methods—MedPath and
MedRetriever—which utilize external knowledge to address the limitations of insuffi-
cient domain knowledge in modeling EHR data. MedPath leverages medical knowledge
graphs (KG) to improve prediction models, enhancing both their performance and
interpretability. In addition to improving predictive accuracy, MedPath generates human-
readable explanations for prediction results by presenting paths from the KG. Similarly,
MedRetriever employs medical texts to augment existing prediction models, achieving
improved performance. Furthermore, it enhances interpretability by providing natural
language explanations for prediction results.

3

Then, in Chapter 4 and Chapter 5, we move on to the automated methods for multi-
modal learning on EHR data. We propose two frameworks - AutoMed and AutoFM, that
leverage neural architecture search (NAS) methods to automatically design the model
architectures for multi-modal fusion of EHR data. Specifically in AutoMed, we focus on
fusing diagnosis information and time information from EHR data, while in AutoFM, we
propose a more general framework that can handle more EHR modalities. In both works,
we develop automated machine learning framework that utilize data-driven methods to
design the multi-modal architectures, which large reduce the human intervention for
predictive modeling.

Finally, in Chapter 6, we introduce an automated framework for multi-task learning
(MTL) on EHR data. We propose AutoDP, a framework designed to address the challenges
of joint disease prediction using EHR data. This framework not only automates the
design of MTL architectures but also performs automatic task grouping for multiple
prediction tasks, thereby further enhancing automation and generalizability.

Ethical Concerns. Machine learning (ML) on electronic health record (EHR) data raises
significant ethical concerns, particularly regarding patient privacy, data security, and bias.
EHR data used to train ML models is highly sensitive, necessitating the implementation
of robust anonymization techniques to protect individual identities. Moreover, breaches
in data security could expose sensitive health information, resulting in potential misuse
or harm. Bias in EHR data, stemming from historical disparities or incomplete records,
poses a risk of perpetuating or amplifying inequities in healthcare outcomes when used
to train ML models. There is also the danger of over-reliance on algorithms, which may
lead to decisions that lack human empathy and contextual understanding. To address
these challenges, transparency in model design, equitable representation in datasets, and
strict ethical oversight are essential to ensure ML applications in healthcare are both
effective and fair.

The datasets used in this dissertation were acquired following established procedures
and adhering to all ethical requirements. For example, access to the MIMIC-III [1]
and MIMIC-IV [2] datasets was granted only after completing the CITI training 1.
Furthermore, all datasets utilized in this dissertation were properly anonymized and
contained no private patient information. The methodologies and models developed
in this dissertation enhance the interpretability and reliability of ML models, thereby
mitigating concerns related to the "black-box" nature of such systems.

1https://about.citiprogram.org/

4

Chapter 2 |
Augmenting Health Risk Predic-
tion via Medical Knowledge Paths

2.1 Introduction
The wide adoption of EHR systems has enabled researchers and clinicians to conduct
data-driven healthcare research in recent years. It has been used in various applications
such as disease diagnosis, treatment recommendations, drug discovery, and personalized
medicine. Among those applications, health risk prediction is a classical problem in the
medical domain [3]. The goal of it is to predict a patient’s future health condition based
on the historical EHR of the patient. However, the intrinsic nature of EHR data poses
great challenges for the researcher to design effective and accurate predictive models for
this task. Since EHR data is often encoded by medical code systems such as International
Classification of Diseases (ICD) codes 1, it has features that are high-dimensional, sparse,
discrete, temporal and noisy, which largely limits the model’s predictive power in terms
of both performance and interpretability.

In recent years, many researchers and clinicians start to apply deep learning techniques
to solve the challenging task of health risk prediction for its strong representation learning
ability. Therefore, various risk prediction models are proposed to help predict the future
conditions for patients. The problem of health risk prediction is often formulated as a
binary classification task, which means that the goal of prediction is a specific target
disease or condition. Based on the historical EHR data of a patient which is typically
an ordered sequence of medical visits, the goal is to predict whether this patient will
suffer from the target disease or condition in the near future. There are multiple

1https://www.cdc.gov/nchs/icd/icd9.htm

5

lines of work that are proposed. Firstly, most existing works aim to apply recurrent
neural network(RNN) [4–9] and Transformers [10–12] to modeling the EHR data as
sequences and capture the uniques features of EHR. Since the EHR data is sequence
data by nature, RNN and Transformer are naturally very suitable model architectures
for processing EHR data. Although these methods can achieve remarkable performance,
they ignore the importance of incorporating external knowledge to augment health risk
prediction. Medical knowledge is widely presented in medical Knowledge Graphs (KG)
and medical texts, which could be applied to augment the current EHR-based models
for risk prediction. Such valuable information has great potential to improve the current
risk prediction models in terms of both performance and interpretability.

To address this issue, researchers have proposed to incorporate prior medical knowledge
or knowledge graph (KG) on the web to enhance the representation learning of medical
codes, which augments health risk prediction task [13–17]. For example, GRAM [13] learns
the latent embedding of a clinical code (e.g., diagnosis code) as a convex combination of
the embeddings of the code itself and its ancestors on the ontology graph. KAME [14]
is built upon GRAM and tries to use high-level knowledge to further improve the
performance. DG-RNN [15] introduces a dynamic attention mechanism to enhance the
embedding learning of medical codes with a medical KG named KnowLife [18]. Although
these approaches are effective for risk prediction task, they still suffer from the following
issues.

Necessity of Incorporating Personalized Knowledge Graph. All the aforemen-
tioned approaches need to encode the entire ontology or knowledge graph, which contains
a large number of medical codes and corresponding relations. However, the number of
overlapping medical codes between individual patients’ EHR data and the entire KG is
very small. Thus, using the whole KG for individual patient prediction may introduce
noise information and further hurt the performance. Moreover, the leading causes of a
specific target disease for different patients vary a lot, which indicates the necessity of
inferring disease causes for different patients individually. Therefore, it is essential and
reasonable to extract personalized knowledge graph for each patient and harness it with
deep learning models for achieving personalized prediction.

Explicit Reasoning over Disease Progression Paths. Existing approaches aim
to incorporate medical KGs to enhance the representation learning of medical codes
with the help of relations among them and conduct implicit reasoning on the prediction
results. However, there exist explicit disease progression paths in KG from the observed
symptoms (i.e., medical codes) to the target disease, which are ignored by existing studies.

6

In addition, existing approaches often exploit attention weights to identify important
medical codes for the predictions, which can be considered as implicit one-hop paths, i.e.,
from the selected codes to the target disease. However, some one-hop paths may not
be in accord with current medical knowledge, which leads to the untrustworthiness of
existing models of both patients and doctors. Therefore, explicit reasoning and reliable
explanation generation are equally important and challenging for health risk prediction
task.
Our Approach. To address the aforementioned challenges, we propose a model-agnostic
and ready-to-use framework, named MedPath as shown in Figure 2.1(a), which enables any
existing risk prediction models to provide personalized prediction and explicit reasoning.
During the prediction stage, MedPath takes both medical codes in a patient’s EHR data
and the target disease codes as inputs to extract a personalized knowledge graph (PKG)
from a large, complex, and noisy medical knowledge graph for each patient. With the
guidance of the patient representation obtained from EHR data by existing risk prediction
approach, MedPath then conducts explicit reasoning via learning personalized knowledge
representations over the extracted PKG. Finally, MedPath makes predictions based on
both patient representations and personalized knowledge representations. During the
reasoning stage, MedPath finds all possible paths within the extracted graph linking
the nodes of observed symptoms and the target disease, and uses the learned weights of
different paths to explicitly explain the prediction results.
Contributions. Our main contributions are listed as follows:

• We propose a general, model-agnostic and ready-to-use framework MedPath, which
enables any existing risk prediction models to work with both EHR data and person-
alized knowledge graphs simultaneously, for providing personalized prediction and
explicit reasoning.

• We propose a novel graph attention network to calculate weights for different paths
within the extracted personalized knowledge graph, which allows MedPath to provide
explicit, reliable, and trustworthy medical knowledge path-based explanations for the
predictions.

• We conduct experiments on three real-world medical claim datasets to demonstrate the
effectiveness of MedPath framework in improving the risk prediction performance of
eight state-of-the-art risk prediction models. We also use case studies to demonstrate
that MedPath can provide reasonable explanation for risk prediction.

7

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5
250.02 585.9

780.79
244.9
272.4
401.1

585.9 585.9

Visit 6
585.9
244.9

Patient EHR

Prediction

Personalized
Knowledge

Graph (PKG)

Progression Path

⨁

Reasoning

Interpretation

Extracted from
SemMed

Encoded by
Graph Neural Network

Extraction

Concatenation

Multi-hop Message Passing

Base Risk Prediction Model

Patient EHR Representation

PKG Representation

(a) Framework

C0015672

585.9 (Chronic kidney disease)
→ C0022661
780.79 (Fatigue) → C0015672
244.9 (Hypothyroidism) → C0020676
272.4 (Hyperlipidemia) → C0020473
401.1 (Benign essential hypertension)
→C0155583

Map ICD Codes to CUIs

C0155583 C0011065

C0155583

…Causes

Causes Causes

Affects
Predisposes

Part of

Precedes

SemMed

Extraction

Personalized Knowledge Graph

C0020676

C0020473

C0015672

.

.

.

C0020538

C0011065

...

.

.

.

C0023212

C1135191

C0018802

Causes

Causes

Causes

Causes

Causes

.

.

.

Input CUI Internal CUI Target CUI

attn(p1)

attn(p2)

attn(p3)

Disease Progression Paths
for Multi-hop Message Passing

PKG Representation

Graph
Encoder

(b) PKG Processing

Figure 2.1: (a) The framework of MedPath, which augments risk prediction models by
learning a PKG embedding extracted from SemMed for prediction. Disease progress can
be reasoned from PKG in (b), which is helpful for explicit interpretation.

2.2 Literature Review

2.2.1 Health Risk Prediction

Health risk prediction task is a developing area that attracts significant attention due
to its great potential in real-world medical application. Existing risk prediction works
mainly focuses on how to better utilize deep learning techniques, which adopt RNNs
like gated recurrent units (GRUs) [19], long-short-term memory (LSTM) [20], and self
attention-based networks [21]. Built upon the backbone models, some approaches consider

8

to use other information such as visit time information and extra knowledge as well as
advanced attention mechanisms to further improve the prediction performance. Next, we
will survey those state-of-the-art risk prediction models.

2.2.1.1 Basic Attention

Built upon the naive recurrent neural network and Tranformer, attention based enhance-
ments are first proposed to improve the performance of medical risk prediction tasks.
There are three existing work that are built upon RNN models including Retain [4],
Dipole [5] and AdaCare [8]. They all propose different attention mechanisms to further
improve the model’s representation learning ability. Specifically, Retain [4] is the first in-
terpretable model for risk prediction. It learns visit-level weights and feature-level weights
together with two independent RNNs, and then aggregates the features together with the
learned weights, which achieves better results than vanilla RNNs. Then, Dipole [5] tries
to model longitudinal EHR data using bidirectional Gated Recurrent Unit(GRU) which
have a stronger feature extraction ability. In addition, it applies attention mechanisms
over the output sequence of bi-directional GRU and aggregate the features of all time
steps togehter to make prediction. Finally, AdaCare [8] applies multi-scale convolutions
cores to capture the EHR features of different time scales. After the feature extraction
process of convolution cores, the output features are further processed by normal RNNs
to get the comprehensive representation. The work built on Transformers [21] includes
SAnD [10] and LSAN [12]. They combine it with different mechanisms to better capture
the patterns of EHR data. SAnD [10]is the first work that apply Transformer to model
EHR data and it uses dense interpolation to fuse the embeddings of Transformer outputs,
which can better capture the intrinsic patterns of EHR data. Then, LSAN [12] is a
recent Transformer based model that incorporates Convolution Neural Network (CNN)
and advanced hierarchical attention mechanism that can capture both the long term
dependencies and short term correlations of the EHR data.

2.2.1.2 Using Time Information

Besides aforementioned work, some other literature further try to improve the risk
prediction model by incorporating time information into the modeling. With the help of
additional time information, the model is able to better capture the temporal features and
determine the useful signals from the EHR data. Next, we will review the relevant works
that use this kinds of approach. Most work focus on adapting RNN models to better
handle irregular time intervals, such as T-LSTM [22] and Timeline [7]. T-LSTM [22] is

9

the first work proposed in this direction, which assumes that the patient information
may decay as the time gap increases. They propose a novel model to handle irregular
time intervals in longitudinal patient records that can learn a subspace decomposition of
the cell memory which enables time decay to discount the memory content according
to the elapsed time. And Timeline [7] develops a mechanism that learns time decay
factors for every medical code which allows the Timeline to learn that chronic conditions
have a longer lasting impact on future visits than acute conditions. By analyzing the
attention weights and disease progression functions of Timeline, it is possible to interpret
the predictions and understand how risks of future visits change over time. Besides
them, RetainEX [6] is an extend work of Retain, which attends the time information
into the EHR input and process the combined data in reversed order based on the
assumption that more recent visits have more importance during risk prediction. What’s
more, HiTANet [11] is recent Transformer based model that achieves state-of-the-art
performance, which proposes a time-aware attention mechanism built upon Transformer
to enable the model to automatically learn the time varying patterns for each patient.
The advantage of this work is to allow the model to learn the internal features of time
information with little assumptions compared to previous work.

2.2.1.3 Using External Knowledge

On the other hand, some studies focus on the incorporation of the external knowledge on
the prediction to improve the interpretation of the model. Beside time information, there
are other types of external information that help the model to better make risk prediction
results, such as ICD hierarchy structure, medical description, medical knowledge graph,
medical text and multi-sourced knowledge. Besides our work that incorporate medical
KGs and medical texts, there are several works that apply ICD hierarchy [13,14], medical
code description [17] and multi-sourced data [23]. Specifically, GRAM [13] is an early
work that first apply ICD hierarchy to improve the risk prediction model with RNN as
the backbone. It utilizes convex combination to obtain the ICD codes’ embedding based
on the hierarchy of ICD codes family trees, which can augment the risk prediction with
the relations among ICD codes. And KAME [14] also apply the ICD hierarchy as the
external knowledge. It design a novel knowledge based attention mechanism to better
exploits the general knowledge contained in the ICD hierarchy, which can further improve
the prediction performance. Then, in [17], the author propose a general framework
for diagnosis prediction via incorporating medical code description, which utilize CNN
models to extract meaningful embedding from the medical description of the ICD codes

10

and then the extracted feature can be fed into any predictive model to enhance the
representation learning. Unite [23] leverages multi-sourced data (public health data,
demographics) to make health risk prediction and provide uncertainty estimations for
the prediction results.

2.2.2 Graph Neural Network

Graph neural network (GNN) is a special kind of neural network used for graph data,
which learns the features of nodes by aggregating information passed from neighboring
ones. The GNN technique is first fueled by the work of Graph Convolutional Network
(GCN) by Kipf et al. [24], which builds up the foundation of how to expand the convolution
operation on graph data. After that, new types of GNN like Graph Attention Network
(GAT) [25] and R-GCN [26] are proposed to propagate neighboring information with
graph attention and efficiently handle multi-relational data, respectively.

However, the message-passing process in GCN and R-GCN is single-hop, which cannot
handle graphs like the knowledge graph in SemMed to capture more complex relations
between nodes. Our work MedPath [27] is motivated by a more up-to-date GNN called
multi-hop graph relation network (MHGRN) [28] that can provide the multi-hop inference
between symptom nodes and target disease nodes. Specifically, the MedPath variant
called MedPath-TA include MHGRN as the graph encoder to learn the embeddings of
personalized graphs through multi-hop messages. In addition, we develop on the idea
of MedPath-TA and provide another variant called MedPath-SA to handle multi-relation
learning in different hops.

2.3 Data & Task
In this section, we will introduce the format of electronic health records (EHR) and
medical knowledge graph data. In addition, we will present how to preprocess those data
as the inputs and then formally define our task.

2.3.1 Electronic Health Records

EHR is a special kind of data that is extensively used in health risk prediction task, which
contains the complete medical history of a patient and provides rich information on their
future status. The EHR X of a specific patient normally consists of records of multiple
visits [x1, x2, · · · , xT] where T is the number of visits, and each visit xt (1 ≤ t ≤ T) is

11

described by several medical (ICD-92) codes where each code represents a symptom, an
abnormal finding, or a treatment.

The goal of this work is to predict the probability of a patient suffering from a given
target disease in the future by analyzing the historical EHR data X. Though this is a
binary classification task, a specific target disease can be denoted by a set of ICD-9 codes
due to its various types. Take the heart failure disease as an example. “428.0” represents
congestive heart failure,3 “428.1” denotes left heart failure,4 and “428.2” means systolic
heart failure.5 For a specific target disease, we let Y denote the set of the target disease
codes. Note that there is no overlapping code between X and Y .

2.3.2 Medical Knowledge Graph

As mentioned before, our method relies on an external knowledge graph for explicit
interpretability. The source of the medical knowledge graph that we use is SemMed [29,
30],6 which is a huge multi-relational medical knowledge graph with more than 150,000
entities and 64 relation types. The knowledge in SemMed is described in the form of
triples, which are extracted from abstract sentences of medical publications on PubMed.7

Each triple consists of three elements: the head entity, the tail entity, and the
relation. The head entity is the subject concept, the tail entity is the object concept,
and the relation describes the relationship between the subject concept and the object
concept. For example, <Hypertensive disease, CAUSES, Left heart failure> is a triple in
SemMed. Hypertensive disease is the head entity, Left heart failure is the tail entity,
and CAUSES is the relation. Such triples not only augment the risk prediction feature
learning but can also be used to explicitly interpret the main reason why the patient will
suffer the target disease in the future.

2.3.3 Personalized Graph Extraction

Intuitively, the leading causes of a specific target disease for different patients vary a lot.
Thus, it is essential to infer such reasons for different patients individually. To achieve
this goal, since we are given a knowledge graph containing giant medical knowledge, we

2https://www.cdc.gov/nchs/icd/icd9.htm
3http://www.icd9data.com/2015/Volume1/390-459/420-429/428/428.0.htm
4http://www.icd9data.com/2015/Volume1/390-459/420-429/428/428.1.htm
5http://www.icd9data.com/2015/Volume1/390-459/420-429/428/428.2.htm
6https://skr3.nlm.nih.gov/SemMed/
7https://pubmed.ncbi.nlm.nih.gov/

12

can extract a personalized knowledge graph G from the whole SemMed based on their
EHR. The process of obtaining G with patient EHR data X and the target disease code
set Y are in the following three steps.

Unification of ICD Codes and SemMed Entities To get the personalized graph,
the first problem we need to consider is that SemMed uses Concept Unique Identifiers
(CUIs) to represent entities,8 while EHR data uses ICD codes. To unify them, we first
map the ICD codes to CUIs using SNOMED CT [31] for convertion. In particular, all
the unique codes in X are mapped to a new CUI set Ex. Also, the target code set Y is
mapped to another CUI set Ey. Note that an ICD code may have multiple corresponding
CUIs. In this case, we map such ICD codes to the first CUIs, which have the highest
matching scores. Besides, there are some ICD codes not having corresponding CUIs, we
then ignore them.

Path Extraction To construct the personalized graph for reasoning the causes of
disease, we need to extract paths between the input CUIs Ex and the target CUIs Ey.
Specifically, given a CUI entity ex ∈ Ex and a target CUI ey ∈ Ey, we use depth-first
search [32] to generate all possible paths with multiple hops that link ex and ey. There
are 64 types of relations in SemMed, but only a few of them are related to disease
progression. Here, we only keep the paths with the following nine relations in the set of
R, namely AFFECTS, AUGMENTS, CAUSES, DIAGNOSES, INTERACTS_WITH,
PART_OF, PRECEDES, PREDISPOSES, and PRODUCES. On the generated paths
from Ex to Ey, there are several internal CUIs on the paths, and the set of the internal
CUI nodes are represented by Ei.

Personalized Graph Using the outputs from the previous two steps, we can finally
obtain the personalized knowledge graph G = {(h, r, t) | h, t ∈ E , r ∈ R} with each triple
(h, r, t) describing a relation r between entity h and entity t, where E = {Ex, Ei, Ey}, and
R is the set of the selected relations.

2.3.4 Health Risk Prediction Task

The proposed method for the risk prediction task is formulated as follows. For each
patient, given the EHR X and the extracted personalized knowledge graph G, we aim to
predict whether the patient would suffer from the target disease in the future. In the
meantime, our method also decodes paths from the knowledge graph G that starts from
an input EHR CUI (i.e., ex ∈ Ex) and end in a target disease CUI (i.e., ey ∈ Ey) to help

8https://www.nlm.nih.gov/research/umls/new_users/online_learning/Meta_005.html

13

explain the possible disease development process.

2.4 Methodology
As Figure 2.1 shows, MedPath is a flexible framework that can be built on any existing
risk prediction model Fe to provide explicit interpretation for the prediction process
via the graph neural network Fg. The first part Fe uses state-of-the-art deep learning
models as the EHR encoder, which takes the EHR data X as the input and encode
X into a representation vector s. Then for the graph encoder Fg, which is a multi-
relational graph neural network, it takes s and the extracted personalized knowledge
graph G as inputs to perform multi-relational reasoning. With these modules working
together, the proposed MedPath framework incorporates external knowledge G to augment
risk prediction representation s for final prediction. Moreover, we can have explicit
interpretability from G on the relations between symptoms X and target diseases Y
when we need to explain how MedPath makes prediction. The aforementioned process in
pseudocode is shown in Algorithm 1.

Algorithm 1: MedPath for Health Risk Prediction
1 Inputs: EHR input X, Personalized Knowledge Graph G
2 Output: Predicted label y′, medical paths {p1, ..., pk∗}
3 Encode EHR into feature s by Eq. (2.1)
4 Update node embeddings in in G by Eq. (2.2), (2.4), (2.5) and (2.6) and obtain

[h′
1, · · · , h′

n]
5 Output predicted label y′ by following Section 2.4.3 given s and [h′

1, · · · , h′
n]

6 Output medical paths by following Section 2.4.4

2.4.1 EHR Encoder

As mentioned before, MedPath is a general framework which can use any existing risk
prediction model as its EHR encoder to represent the data X. A number of existing
methods [4–7,11,22,33,34] do not exploit external knowledge for risk prediction. However,
they are still good at learning a comprehensive representation of X since they adopt
effective and state-of-the-art deep learning techniques like recurrent neural networks and
attention mechanisms. Considering that these representations are good for the training
of graph encoder Fg and the final prediction, we simply remove the final classification

14

layer of any given risk prediction model and use it as the EHR encoder Fe. So we have

s = Fe(X), (2.1)

where s ∈ Rds is the representation vector learned from EHR encoder, and ds is the
dimension size of s. Feature s contains the abstract information of EHR extracted by
advanced deep learning models, and it can aid the training of graph encoder later on.

2.4.2 Graph Encoder

Using the personalized graph G extracted for the EHR X in Section 2.3.3, we introduce
the graph encoder module Fg to synthesize the graph knowledge G into a comprehensive
vector g. Suppose that the personalized graph G has n entities (nodes), the embedding
of each entity hj ∈ Rdh (1 ≤ j ≤ n) is initialized by pre-training triples in G with
the TranE [35] algorithm. We will conduct type-specific transformation and multi-hop
message passing to embed the correlation with other entities to learn a final entity
embedding h′

j for each entity ej. Eventually, we get the graph representation g by
performing the attentive pooling over all the target disease entity features {h′

j|ej ∈ Ey}.

2.4.2.1 Type-Specific Transformation

There are three types of entities in the personalized knowledge graph G: input CUIs Ex,
target CUIs Ey, and internal CUIs Ei. To learn a good personalized graph embedding, it is
helpful to distinguish the types of different entities and embed the node type information
into the node embeddings. Therefore, we apply type-specific transformation on the
initialized node embeddings to embed the node type information,

vj = Uthj + bt, (2.2)

where hj ∈ Rdh is the pretrained node embedding of node j, vj ∈ Rdx is the transformed
feature with type-specific information, and Ut ∈ Rdx×dh , bt ∈ Rdx . There are different
sets of {Ut, bt} for input CUIs Ex, target CUIs Ey, and internal CUIs Ei, which are
{Ux, bx}, {Uy, by} and {Ui, bi} respectively, and only one of them is used in Eq. (2.2)
according the type of hj.

15

2.4.2.2 Multi-hop Message Passing

In addition to the node type information, another important information that a node
embedding should include is the correlation between the node itself and its neighboring
entities. To incorporate this information, the first step is to find out the message passing
paths that connect input CUI entities Ex and target CUI entities Ey. For computational
efficiency, we define a hyper-parameter K, which denotes the maximum number of hops
in a message passing path from Ex to Ey. The set of valid K-hop paths is defined as:

Pk = {(es, r1, · · · , rk, ed)|(es, r1, e1), · · · ,

(ek−1, rk, ed) ∈ G}, (1 ≤ k ≤ K)
(2.3)

where es is the source node, ed is the destination node, and rj(1 ≤ j ≤ k) is the j-th
relation in the path that connects entities ej−1 and ej. Note that es and ed can be any
entities in E , which are not limited to es ∈ Ex and ed ∈ Ey. Thus, the set Pk contains all
paths from an arbitrary node in input CUIs Ex to an arbitrary node in target CUIs Ey

with hops equal to k.
Given the path set Pk, which tracks all possible diseases development progress, we

now need to use this information to update the embedding of each node ej in graph G.
For different relation rl, we use a transformation matrix Wt

rl
∈ Rdx×dx (1 ≤ t ≤ K) to

denote how this relation passes the information from source node es to ed. The value of
Wt

rl
depends on the distance t from es to ed in any given path p = (es, r1, · · · , rk, ed) ∈ Pk

that passes through ed. Note that the number of hops k in some path p is smaller than K,
we need to introduce padding matrices W k+1

0 , ..., W K
0 ∈ Rdx×dx to maintain the matrix

multiplication scale as K for parallel training. Thus, for all paths with k hops in Pk that
pass through node ed, the total updated information they have for ed is embedded as
follows

zk
d =

∑
p∈Pk

attn(p) ·W K
0 · · ·W k+1

0 W k
rk
· · ·W 1

r1vs, (1 ≤ k ≤ K), (2.4)

where vs ∈ Rds is the embedding of source node es in path p = (es, r1, · · · , rk, ed).
Note that we introduce a structured relational attention mechanism attn(·), which
automatically generates a constant to distinguish the contribution of different path p.
The introduction of relational attention mechanism is useful in flexibly selecting important
paths of disease development, which is helpful for the prediction interpretation and will
be detailed in Section 2.4.2.3.

In Eq. (2.4), we define separate transformations for different positions and different

16

relations and also pay attention to the lengths of different paths, which allows us to
better learn the correlation between node ej and others. Now we need to aggregate all zk

j

with different k to get the final embedding h′
j for each node ej in G. Remember that we

have learned an EHR representation s from the EHR encoder, so we use s to guide the
aggregation process with a weighted sum calculated by the bilinear attention mechanism,

zj =
K∑

k=1
Softmax(bilinear(s, zk

j)) · zk
j , (2.5)

where zj ∈ Rdx . Softmax(·) is used to normalize the attention score corresponding to
each zk

j calculated by function bilinear(·), and function bilinear(s, zk
j) = s⊤Bzk

j ∈ R
where B ∈ Rds×dx is a learnable matrix.

Now we have learned a feature zj containing the information between the node ej

and the rest entities in the personalized graph G. The final step we need to take is using
zj to update the node embedding hj,

h′
j = σ(T · hj + T′ · zj), (2.6)

where h′
j ∈ Rdh , T ∈ Rdh×dh and T′ ∈ Rdh×dx are learnable transformation matrix, and

σ is an activation function.

2.4.2.3 Structured Relational Attention

Before moving onto how to use h′
j for the final prediction, we want to discuss the design

of attn(·) function in Eq. (2.4). Recall that function attn(·) is used to calculate the
contribution of different paths p = (es, r1, · · · , rk, ed) with the same hop number k. Thus,
function attn(·) is useful in finding out important relations between input CUIs Ex and
target CUIs Ey and interpreting the prediction process.

MedPath is flexible in the choice of function attn(·), and we provide two different
choices of attn(·) in this paper, i.e. transition matrix-based attention and relational self-
attention. These two variants of MedPath are referred as MedPath-TA and MedPath-SA,
respectively. The transition matrix-based attention is introduced in [28], which computes
the attention weights by a probabilistic graphical model. Although transition matrix-
based attention is effective and efficient for distinguishing the importance of different
paths, this approach has an assumption that the probability of transition between two
relations is fixed. However, in healthcare, different patients usually have different disease
development progression, and thus, the transition probability should be dynamically

17

adjusted. To achieve this goal, we propose a new relational self-attention to dynamically
model more complex correlation between different relations in different paths, which
further helps improve the information flow of multi-hop message passing in MedPath.

Transition Matrix-based Attention. Transition matrix-based attention regards
the attention score attn(p) of path p = (es, r1, · · · , rk, ed) as the probability of the path
p conditioned on s:

attn(p) = probability(p|s), (2.7)

which is modeled by a probabilistic graphical model such as conditional random field [36]:

probability(p|s)

∝ exp
(

µ(ϕ(es), s) +
k∑

t=1
δ(rt, s) +

k−1∑
t=1

τ(rt, rt+1) + ν(ϕ(ed), s)
)

≜ β(r1, · · · , rk, ed)︸ ︷︷ ︸
Relation Type Attention

· γ(ϕ(es), ϕ(ed), s)︸ ︷︷ ︸
Node Type Attention

,

(2.8)

where function ϕ(·) outputs the node type of the input node. In implementation, functions
µ(·), ν(·) and δ(·) are learned by two-layer multilayer perceptrons (MLPs) and τ(·) by a
transition matrix ∈ Rm×m, where m is the number of relations.

Relational Self-Attention. From Eq. (2.8), we can see that the probability is
defined as the product of relation type attention β(·) and node type attention γ(·).
Function β(·) models the importance of a k-hop relation, while function γ(·) models the
importance of messages from source CUIs to destination CUIs based on s. Motivated by
this idea, we propose an improved attn(·) by incorporating self-attention mechanism [21].

For modeling the differences among different patients, instead of using a fixed relation
transition matrix τ(·) as Eq. (2.8) does, we consider dynamically generating an m× k

score matrix for every relation type at each hop conditioned on s. First, the model takes
the EHR representation s as the input and performs hop-specific transformation for
the j-th hop by aj = Mjs, where Mj ∈ Rm×ds and aj ∈ Rm. We pack all aj together
and have a matrix A = [a1, · · · , ak] ∈ Rm×k. We use the self-attention to capture
relation-type correlations among different hops within a path,

SelfAttention(A) = Softmax(AqA⊤
k√

d
)Av, (2.9)

where matrices Aq = MqA, Ak = MkA, and Av = MvA are the query, key and value
matrices transformed from A respectively, where Mq, Mk, Mv ∈ Rd×m, and d is the

18

number of transformed features.
The output of SelfAttention(A) is then mapped back to the original space Rm by a

linear transformation Ml ∈ Rm×d and passed to softmax activation function to generate
attention scores for all possible k-hop relations:

β(r1, · · · , rk, s) = Softmax(Ml · SelfAttention(A)). (2.10)

For node type attention γ(ϕ(es), ϕ(ed), s), functions γ(·) and ϕ(·) are both modeled
by two-layer MLPs, and node type attention function ϕ(·) is different for the source node
and the destination node. Given β(r1, · · · , rk, s) and γ(ϕ(es), ϕ(ed), s), we can multiply
them together and finally have the attention score attn(p) by taking the normalization
of the multiplication score.

2.4.3 Prediction

Following previous sections, we now have the comprehensive EHR representation s by
EHR encoder Fe and the updated personalized knowledge graph with node embeddings
[h′

1, · · · , h′
n] obtained by multi-hop message passing. For the final prediction, we firstly

apply attentive pooling [37] over all the target CUI entity features to obtain graph
embeddings g. Then we concatenate g and s to compute the final output by FC(s⊕ g),
where FC is the fully connected layer for classification, and ⊕ is the concatenation
operation. The whole model is trained jointly end-to-end by minimizing the cross-entropy
loss between FC(s⊕ g) and the ground truth label.

2.4.4 Interpretation

One of the benefits of the proposed MedPath is that we can decode all k-hop paths
(1 ≤ k ≤ K) and select the path with high attention scores during feed-forward process
for model interpretation. From the attentive pooling layer, we can identify the target
CUI entity ey with the highest attention score. Then, using Eq. (2.5), we can get the
optimal k∗ with the highest attention scores. Among all k∗-hop paths, the most possible
way that the patient will get the target disease is the path p with the maximum attn(p).

19

2.5 Experiments
In this section, we will first provide the details of our experimental settings and then
discuss the results of comparison experiments and ablation studies. Finally, case studies
are included to demonstrate how MedPath interprets the prediction results from the
attention weights and personalized knowledge graph.

2.5.1 Experimental Setup

2.5.1.1 Datasets

Our experiments are conducted on three EHR datasets collected from real-world claim
data. The statistics of these datasets are shown in Table 2.1. The target disease in
these datasets is heart failure, chronic obstructive pulmonary disease (COPD), and
kidney disease, respectively. Patients of these diseases normally experience a chronic and
progressive condition for a long period.

2.5.1.2 Baselines

We consider the following baseline models, including LSTM [20], Dipole [5], [4], SAnD [38],
RetainEx [6], Timeline [22], LSAN [12], and HiTANet [11], which also can be used as
base models of the proposed MedPath-TA and MedPath-SA approaches.

2.5.1.3 Implementation

MedPath is implemented by PyTorch framework on an NVIDIA Tesla P100 GPU and
Intel Xeon E5-2680 CPUs. The parameters are trained by Adam optimizer with the
learning rate of 10−4 and the mini-batch size is 64. The hidden state numbers in LSTM

Table 2.1: Statistics of the used datasets.

Dataset Heart Failure COPD Kidney Disease

Positive Cases 3,080 7,314 7,810
Negative Cases 9,240 21,942 8,430

Average Visits per Patient 30.39 38.74 39.09
Average Codes per Visit 4.24 3.50 4.40

Unique ICD-9 Codes 8,692 10,053 8,802

20

Table 2.2: Performance Comparison (with the p-values of significance test) in terms of
AUC. The average AUC scores of our MedPath variants MedPath-TA and MedPath-SA
for each dataset are followed by the percentage improvement (↑) over Vanilla models.

Dataset Heart Failure COPD Kidney Disease
Method Vanilla MedPath-TA MedPath-SA Vanilla MedPath-TA MedPath-SA Vanilla MedPath-TA MedPath-SA
LSTM 0.708 0.716 (1e-10) 0.739 (6e-10) 0.693 0.703 (4e-9) 0.707 (7e-9) 0.739 0.762 (4e-10) 0.774 (1e-10)
Dipole 0.687 0.744 (2e-8) 0.751 (2e-8) 0.704 0.714 (2e-10) 0.728 (1e-10) 0.755 0.765 (3e-7) 0.768 (2e-7)
Retain 0.689 0.733 (2e-8) 0.735 (5e-8) 0.699 0.723 (6e-10) 0.730 (6e-10) 0.732 0.766 (1e-7) 0.764 (3e-7)
SAnD 0.686 0.733 (1e-7) 0.745 (1e-7) 0.692 0.736 (7e-10) 0.737 (9e-11) 0.748 0.769 (2e-7) 0.790 (5e-8)
RetainEx 0.688 0.738 (6e-9) 0.751 (2e-9) 0.707 0.746 (2e-9) 0.743 (2e-9) 0.728 0.772 (2e-8) 0.786 (3e-9)
Timeline 0.705 0.735 (3e-9) 0.729 (2e-8) 0.698 0.713 (4e-9) 0.704 (1e-9) 0.756 0.761 (6e-9) 0.769 (7e-9)
LSAN 0.738 0.729 (9e-8) 0.745 (1e-7) 0.723 0.728 (4e-6) 0.720 (2e-6) 0.766 0.765 (9e-7) 0.782 (5e-8)
HiTANet 0.750 0.785 (4e-8) 0.785 (3e-8) 0.752 0.787 (7e-11) 0.799 (1e-10) 0.792 0.800 (8e-8) 0.810 (4e-7)
Average 0.706 0.739 (↑4.7%) 0.748 (↑5.9%) 0.709 0.731 (↑3.1%) 0.734 (↑3.5%) 0.752 0.770 (↑2.4%) 0.780 (↑3.7%)

Table 2.3: Performance Comparison (with the p-values of significance test) in terms of
F1 Score. The average F1 scores of our MedPath variants MedPath-TA and MedPath-SA
for each dataset are followed by the percentage improvement (↑) over Vanilla models.

Dataset Heart Failure COPD Kidney Disease
Method Vanilla MedPath-TA MedPath-SA Vanilla MedPath-TA MedPath-SA Vanilla MedPath-TA MedPath-SA
LSTM 0.561 0.582 (2e-10) 0.611 (1e-9) 0.548 0.554 (7e-9) 0.550 (1e-8) 0.616 0.646 (3e-9) 0.661 (3e-9)
Dipole 0.542 0.625 (6e-8) 0.631 (8e-8) 0.562 0.560 (1e-9) 0.584 (5e-10) 0.656 0.657 (1e-6) 0.645 (1e-6)
Retain 0.549 0.613 (4e-8) 0.612 (1e-7) 0.555 0.570 (2e-9) 0.575 (1e-9) 0.614 0.654 (4e-7) 0.654 (6e-7)
SAnD 0.544 0.605 (2e-7) 0.609 (3e-7) 0.539 0.568 (1e-9) 0.590 (3e-10) 0.636 0.633 (9e-7) 0.670 (3e-7)
RetainEx 0.546 0.625 (4e-9) 0.640 (2e-9) 0.570 0.613 (1e-9) 0.612 (1e-9) 0.612 0.665 (4e-8) 0.682 (2e-8)
Timeline 0.574 0.614 (5e-9) 0.609 (1e-8) 0.550 0.570 (6e-9) 0.555 (2e-9) 0.648 0.647 (1e-8) 0.657 (3e-9)
LSAN 0.623 0.607 (2e-7) 0.626 (1e-7) 0.574 0.586 (1e-5) 0.573 (4e-6) 0.661 0.651 (4e-6) 0.668 (1e-6)
HiTANet 0.647 0.678 (1e-7) 0.668 (1e-7) 0.637 0.670 (8e-10) 0.670 (4e-10) 0.702 0.687 (5e-7) 0.688 (8e-7)
Average 0.574 0.619 (↑7.8%) 0.626 (↑9.1%) 0.567 0.586 (↑3.4%) 0.589 (↑3.9%) 0.643 0.655 (↑1.9%) 0.666 (↑3.6%)

and GRU are both 256, while they are 128 in the rest methods. As for the graph encoder,
the embedding size of each CUI code is 100 and the layer number is 1.

2.5.1.4 Evaluation Metrics

The evaluation metrics in our task include F1 score and area under the receiver operating
characteristic curve (AUC). AUC is the probability that a model ranks a randomly
chosen positive case higher than a randomly chosen negative case. As for F1 score, it
is the harmonic mean of precision and recall. Precision penalizes false positives while
recall penalizes false negatives. Thus, F1 score is a better evaluation for it takes these
two aspects into consideration. The higher these scores are, the better performance risk
prediction frameworks have.

21

2.5.2 Experimental Results

2.5.2.1 Performance Comparison

The comparison results are shown in Tables 2.2 and Table 2.3. For each baseline method,
we first test the vanilla model and get the AUC and F1 scores. Then we build on
the vanilla model and add a graph neural network layer to obtain the performance of
MedPath-TA and MedPath-SA using either k = 2 or 3, where k is the length of knowledge
path.

Firstly, we can observe the effectiveness of using personalized knowledge by comparing
the AUC and F1 scores between the vanilla models and the MedPath variants. Take
MedPath-TA as an example. By comparing the results of vanilla models and MedPath-TA
from Table 2.2, we can see that in almost all the settings, MedPath-TA achieves higher
AUCs. While from Table 2.3 in 75% settings, MedPath-TA has higher F1 scores. Notably,
the largest improvement in AUC takes place in Dipole, SAnD and RetainEX on the heart
failure, COPD and kidney disease datasets, respectively. The largest improvement in F1
scores is taken place in Dipole, RetainEx and RetainEx for heart failure, COPD and kidney
disease, respectively. Existing base models emphasize interpreting prediction through
attention weights, so MedPath is especially good at coping with existing interpretable
frameworks. We also take the average of AUC and F1 score over all base methods for
different datasets. The average AUC increment that MedPath-TA has over the vanilla
model is 0.033, 0.022 and 0.018 in heart failure, COPD and kidney disease, respectively.
The average F1 score increment is 0.045, 0.019 and 0.012 in heart failure, COPD and
kidney disease, respectively.

After determining the effectiveness of graph encoder, the next step is finding out
how a better structural relational attention design in graph neural network layer can
improve the performance of MedPath. In Section 2.4.2.3, we have discussed two types of
structural relational attentions, i.e. transition matrix-based attention (TA) and relational
self-attention (SA), and we distinguish these two MedPath varients by MedPath-TA and
MedPath-SA, respectively. Specifically speaking, MedPath-SA can achieve higher AUCs
than MedPath-TA in 79.2% settings in Table 2.2, and it can achieve higher F1 scores
than MedPath-TA in two-thirds separate settings in Table 2.3. Among them, the highest
improvement in AUC is achieved in the case of LSTM, HiTANet and SAnD for heart
failure, COPD and kidney disease, respectively. The highest F1 score improvement is
achieved in the case of LSTM, LSTM and SAnD for heart failure, COPD and kidney
disease, respectively. These models cover a broad range of risk prediction models,

22

including RNN-based, attention-based and time aware-based ones. In addition, MedPath-
SA achieves higher average AUC and F1 scores on all three datasets. These results show
that the use of relational self-attention contributes to better risk prediction performance
in various types of risk prediction, and the designed relational self-attention is a better
choice than the transition matrix-based attention.

To sum up, the improvement is brought by the personalized knowledge graph feature
encoded by the graph neural network module. The new feature embeds the professional
medical knowledge in SemMed, which makes the reasoning of the neural networks closer to
the reasoning of physicians in real life. With the guidance of the personalized knowledge
graph, our model could identify important ICD codes more easily in the records which
have plausible relations with the target diseases and help improve the performance.

2.5.2.2 Significance Test

We also conduct significance test to compare the differences between all the results
obtained by vanilla models and MedPath variants. To achieve this goal, we use the
Bootstrap method to randomly choose 1,000 testing data and then calculate the values
of AUC and F1 five times. The hypothesis is that the AUC or F1 means of baseline
approaches are the same as those of the proposed MedPath variants. Student’s T-test is
used with significance level α as 1% to calculate the p-values. From the p-values listed in
Tables 2.2 and 2.3, we reject the null hypothesis and accept the alternative hypothesis,
i.e., true means are totally different. These results confirm that MedPath is significantly
better than vanilla baselines.

2.5.2.3 Model Interpretability

In addition to performance improvement, the other reason that we incorporate medical
paths is to provide explicit explanations to interpret the prediction results and highlight
the influential relationship between different symptoms that will eventually lead to the
target disease. In this part, we verify our claim by giving a case study on how to interpret
the risk prediction with MedPath as shown in Table 2.4. The target disease in this case
study is heart failure, and the first row shows the EHR data of the patient, which consist
of 6 visits in total. Each visit is described with several diagnosis codes. For the ease
of illustration, we only show the 2-hop paths in the personalized knowledge graph. In
Table 2.4, we select three 2-hop paths with the highest attention weights and one 2-hop
path with the lowest attention weight learned by MedPath-SA with LSTM. Here we can
see how MedPath explicitly illustrates the correlation between the EHRs and the target

23

Table 2.4: Case study results of heart failure for showing the explicit interpretability
that MedPath has.

EHR Data

Visit 1: 250.02 (Diabetes mellitus);
Visit 2: 585.9 (Chronic kidney disease) and 780.79 (Fatigue);
Visit 3: 244.9 (Hypothyroidism), 272.4 (Hyperlipidemia), and 401.1 (Benign essential hypertension);
Visit 4: 585.9 (Chronic kidney disease);
Visit 5: 585.9 (Chronic kidney disease);
Visit 6: 585.9 (Chronic kidney disease) and 244.9 (Hypothyroidism)

1st Highest Attention
Weighted Path

Weight: 0.0189 Hypothyroidism CAUSES−−−−−→
E1

Hypertensive disease CAUSES−−−−−→
E2

Left heart failure

Evidence E1 Animal studies suggest that hypertension leads to cardiac tissue hypothyroidism a condition that
can by itself lead to heart failure.

Evidence E2 Left ventricular failure in some SA/OHS patients may be the result of hypertensive cardiac disease.

2nd Highest Attention
Weighted Path

Weight: 0.0178 Hyperlipidemia CAUSES−−−−−→
E3

Hypertensive disease CAUSES−−−−−→
E4

Left heart failure

Evidence E3
A literature search indicates that Anglo-Saxon countries report alarming hyperplastic changes
particularly in the liver blood clots hyperlipidemia leading to high blood pressure porphyria atypical
leiomyomas and cervical hyperplasia.

Evidence E4 Left ventricular failure in some SA/OHS patients may be the result of hypertensive cardiac disease.

3rd Highest Attention
Weighted Path

Weight: 0.0150 Fatigue CAUSES−−−−−→
E5

Cessation of life CAUSES−−−−−→
E6

Left heart failure

Evidence E5
In light of the magnitude of this sleep debt it is not surprising that fatigue is a factor in 57% of
accidents leading to the death of a truck driver and in 10% of fatal car accidents and results in costs
of up to 56 billion dollars per year.

Evidence E6 Though rare death due to myocardial stunning and LV power failure can occur during ICD insertion.

One of the Lowest
Attention Weighted Path

Weight: 0.0000 Heart failure CAUSES−−−−−→
E7

Hypertensive disease CAUSES−−−−−→
E8

Left heart failure

Evidence E7
These findings suggest that the ATF3 activator tBHQ may have therapeutic potential for the
treatment of pressure-overload heart failure induced by chronic hypertension or other pressure
overload mechanisms.

Evidence E8 Left ventricular failure in some SA/OHS patients may be the result of hypertensive cardiac disease.

disease. Take ICD-9 code “244.9” (hypothyroidism) as an example, which has the largest
attention weight. As the second row shows, the relation between hypothyroidism and
heart failure disease is that it causes hypertensive disease and that can further lead to
left heart failure. If we want to have supportive medical findings on how hypothyroidism
can lead to hypertensive disease and how hypertensive disease can finally lead to left
heart failure, we can see Evidence E1 and Evidence E2 in Table 2.4. They are the
abstract sentences extracted by SemMed from reliable medical publications. Let us move
to the third path, which is from fatigue to left heart failure and is not highly related
to the target disease. Thus, the weight of this path is much lower than those of the
top two paths. As for the path with the lowest attention weight, we can see that the
source entity and the destination entity are all heart failure, which does not provide any
useful information on the relation between the EHR example and target disease. Thus,
it is correct for MedPath to give it a zero weight. This case study can clearly show the
reasonableness of the proposed MedPath with reliable explanations on prediction results.

2.5.2.4 Ablation Study

Now we investigate our framework design by the ablation study. We break down our
MedPath layer into type-specific transformation (Eq. (2.2)), node-type attention (i.e., γ(·)

24

Table 2.5: Ablation study results of removing each component in MedPath-SA using
LSTM as the encoder.

Dataset Heart Failure COPD Kidney
Methods AUC AUC AUC

MedPath-SA (k = 3) 0.739 0.707 0.774
- type specific transformation 0.707 0.701 0.759
- node type attention 0.714 0.704 0.746
- relational self attention 0.724 0.701 0.755

function in Eq. (2.8)), and relational self-attention components to see how they influence
the model performance. Without loss of generalization, we use LSTM as the base model
of MedPath-SA for analysis in this part. After removing each component individually,
from Table 2.5 we can see that the model performance in AUC decrease for at least 1.5%,
0.3% and 1.5% in heart failure, COPD and kidney disease, respectively. These results
conclude our ablation study and show that each component is essential for the design of
MedPath.

2.5.2.5 Discussion for k Selection

As shown in Figure 2.2, Figure 2.3 and Figure 2.4, for each base model with relational
self-attention, we increase k from 1 to 5 and compare the AUC scores in all test datasets.
These figures shows that among 24 different testing settings, we can obtain the best
AUCs when we choose k to be either 2 or 3 in 16 (two-thirds) cases. In addition to
better AUC performance, selecting a relatively smaller k also provide straightforward
interpretation for risk prediction. Therefore, we recommend tuning k to be 2 or 3.

2.5.2.6 Another Two Case Studies

Here we provide two more examples to verify the explicit interpretability that MedPath
has. For the ease of analysis, we only extract the 2-hop medical progression paths. We
first analyze the positive COPD case as shown in Table 2.6. In this case, the patient
has 6 visits, and each visit is described by at least 3 ICD-9 codes. As shown in the
second part of Table 2.6, MedPath finds out three disease progression paths that are most
likely lead to the COPD disease. The path having the highest attention weights starts
from the symptom of gastroesophageal reflux disease (“530.81”) in the first visit, which
will affect the aspiration action of the patient and finally lead to the bronchitis disease.
Another two possible paths also end with the bronchitis disease, a common condition of

25

1 2 3 4 5
 k

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

LSTM
Vanilla

(a) LSTM

1 2 3 4 5
 k

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

Dipole
Vanilla

(b) Dipole

1 2 3 4 5
 k

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

Retain
Vanilla

(c) Retain

1 2 3 4 5
 k

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

SAnD
Vanilla

(d) SAnD

1 2 3 4 5
 k

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

RetainEX
Vanilla

(e) RetainEX

1 2 3 4 5
 k

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

Timeline
Vanilla

(f) Timeline

1 2 3 4 5
 k

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

LSAN
Vanilla

(g) LSAN

1 2 3 4 5
 k

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

HiTANet
Vanilla

(h) HiTANet

Figure 2.2: Comparison of AUC values with different k in different MedPath-SA methods
on the heart failure dataset.

1 2 3 4 5
 k

0.7

0.72

0.74

0.76

0.78

0.8

AU
C

LSTM
Vanilla

(a) LSTM

1 2 3 4 5
 k

0.7

0.72

0.74

0.76

0.78

0.8

AU
C

Dipole
Vanilla

(b) Dipole

1 2 3 4 5
 k

0.7

0.72

0.74

0.76

0.78

0.8

AU
C

Retain
Vanilla

(c) Retain

1 2 3 4 5
 k

0.7

0.72

0.74

0.76

0.78

0.8

AU
C

SAnD
Vanilla

(d) SAnD

1 2 3 4 5
 k

0.7

0.72

0.74

0.76

0.78

0.8

AU
C

RetainEX
Vanilla

(e) RetainEX

1 2 3 4 5
 k

0.7

0.72

0.74

0.76

0.78

0.8

AU
C

Timeline
Vanilla

(f) Timeline

1 2 3 4 5
 k

0.7

0.72

0.74

0.76

0.78

0.8

AU
C

LSAN
Vanilla

(g) LSAN

1 2 3 4 5
 k

0.7

0.72

0.74

0.76

0.78

0.8

AU
C

HiTANet
Vanilla

(h) HiTANet

Figure 2.3: Comparison of AUC values with different k in different MedPath-SA methods
on the COPD dataset.

the COPD disease. One of them starts from the coronary arteriosclerosis (“414.00” in
Visit 2, 5 and 6) that reduces blood flow in the heart and affects inflammation, while
the other starts from the symptom of fatigue (“780.79” in Visit 5) which affects the
Ammonia inside the body. The case study example of kidney disease is shown in Table
2.7. The patient in the case study has 8 visit records. The first thing we should note
is that the symptom of hyperlipidemia (“272.4”) is recorded in 5 visits, and the path
starting from hyperlipidemia is assigned with the highest weight by MedPath. The path

26

1 2 3 4 5
 k

0.74

0.76

0.78

0.8

AU
C

LSTM
Vanilla

(a) LSTM

1 2 3 4 5
 k

0.74

0.76

0.78

0.8

AU
C

Dipole
Vanilla

(b) Dipole

1 2 3 4 5
 k

0.74

0.76

0.78

0.8

AU
C

Retain
Vanilla

(c) Retain

1 2 3 4 5
 k

0.74

0.76

0.78

0.8

AU
C

SAnD
Vanilla

(d) SAnD

1 2 3 4 5
 k

0.74

0.76

0.78

0.8

AU
C

RetainEX
Vanilla

(e) RetainEX

1 2 3 4 5
 k

0.74

0.76

0.78

0.8

AU
C

Timeline
Vanilla

(f) Timeline

1 2 3 4 5
 k

0.74

0.76

0.78

0.8

AU
C

LSAN
Vanilla

(g) LSAN

1 2 3 4 5
 k

0.74

0.76

0.78

0.8

AU
C

HiTANet
Vanilla

(h) HiTANet

Figure 2.4: Comparison of AUC values with different k in different MedPath-SA methods
on the kidney disease dataset.

with the second highest attention weight starts from rotator cuff syndrome (“726.1” in
Visit 1) which causes the atrophic symptom and eventually the kidney failure, and we
can have similar analysis on the path with the third highest attention weights. From the
weight assignment results, we can see that MedPath can assign high weights to symptoms
that occur repeatedly if they are correlated to the target disease, as evidenced by the
hyperlipidemia symptom.

2.5.2.7 Performance Comparison with GRAM as the base model

In additional to the base models in Table 2.2, we also use GRAM as the baseline. From
Table 2.8, we can see that in terms of AUC and F1 score, using MedPath framework can
help us achieve improvement in 2 out 3 datasets. These results show that MedPath is
model-agnostic and can also bring improvements to models using knowledge graph.

2.6 Conclusion
In this paper, we introduce a new general framework, called MedPath, to enable existing
health risk prediction methods to incorporate personalized information and provide
explicit interpretation for predictions. To find out the correlations between symptoms
and target diseases, MedPath first extracts a personalized knowledge graph (PKG) for
each patient from the SemMed web which contains a giant medical knowledge graph.

27

Table 2.6: Case study results of COPD for showing the explicit interpretability that
MedPath has.

EHR Data

Visit 1: 719.41 (Shoulder joint pain), 530.81 (Gastroesophageal reflux disease) and 272.4 (Hyperlipidemia);
Visit 2: 708.0 (Allergic urticaria), 272.4 (Hyperlipidemia) and 414.00 (Coronary Arteriosclerosis);
Visit 3: 413.9 (Angina Pectoris), 272.4 (Hyperlipidemia), 786.50 (Chest Pain) and 425.4 (Cardiomyopathies);
Visit 4: 426.3 (Left bundle branch block), 401.9 (Essential Hypertension) and 413.9 (Angina Pectoris);
Visit 5: 786.50 (Chest Pain), 414.00 (Coronary Arteriosclerosis) and 780.79 (Fatigue);
Visit 6: 300.00 (Anxiety state), 414.00 (Coronary Arteriosclerosis) and 272.4 (Hyperlipidemia)

1st Highest Attention
Weighted Path

Weight: 0.0153 Gastroesophageal reflux disease AF F ECT S−−−−−−→
E1

Aspiration-action CAUSES−−−−−→
E2

Bronchitis
Evidence E1 Gastroesophageal reflux, gastroparesis and achalasia are all associated with aspiration.

Evidence E2 The absence of LLM in 29 control infants suggest that the aspiration may be one cause
of recurrent bronchitis in infants.

2nd Highest Attention
Weighted Path

Weight: 0.0118 Coronary Arteriosclerosis AF F ECT S−−−−−−→
E3

Inflammation CAUSES−−−−−→
E4

Bronchitis

Evidence E3
Epicardial fat (EF) is a visceral fat deposit, located between the heart and the pericardium,
which shares many of the pathophysiological properties of other visceral fat deposits, It also
potentially causes local inflammation and likely has direct effects on coronary atherosclerosis.

Evidence E4
It is speculated that an initial respiratory insult such as viral infection disrupts normal surface
morphology and ciliary function, which leads to chronic self-perpetuating inflammation with
the formation of bacterial biofilms, leading to PBB.

3rd Highest Attention
Weighted Path

Weight: 0.0118 Fatigue AF F ECT S−−−−−−→
E5

Ammonia CAUSES−−−−−→
E6

Bronchitis

Evidence E5
Serum levels of urea nitrogen (SUN), triglyceride fatty acids (TG), lactate dehydrogenase (LDH),
lactic acid (LA), ammonia and hepatic glycogen (HG) were also examined for potential
mechanisms underlying the anti-fatigue effect of RPL extracts.

Evidence E6
Acute lung injuries caused due to inhalation of toxic irritant gases such as ammonia, chlorine,
hot smoke and burning plastic fumes predominantly affect the airways, causing tracheitis,
bronchitis, and other inflammatory responses.

One of the Lowest
Attention Weighted Path

Weight: 0.0000 Agonists P ART _OF−−−−−−→
E7

Patients AF F ECT S−−−−−−→
E8

Bronchitis
Evidence E7 Treatment strategy for elderly diabetic patient with insulin or GLP-1 receptor agonist.

Evidence E8 However, in half of the patients (15 cases) the cause was obscure although it was associated
with sinusitis, bronchitis or bronchiectasis (Young\\’s syndrome).

After that, MedPath finds out all possible disease progression paths from the PKG and
uses them to learn a personalized embedding to augment the base risk prediction models
for the final prediction. Since the graph neural network encoder for PKG assigns attention
weights on disease progression paths instead of independent medical codes, MedPath is
able to provide reliable explicit explanations in the testing phrase by showing paths in
PKG with high attention weights. Experimental results show that our model is able to
improve the performance of existing models in terms of both F1 score and AUC. More
importantly, in case studies, we confirm that MedPath can provide explicit explanations
for its prediction through paths in PKG. In the future, we would like to work on how to
allow risk prediction models to infer new emerging links between conditions.

28

Table 2.7: Case study results of kidney disease for showing the explicit interpretability
that MedPath has.

EHR Data

Visit 1: 272.4 (Hyperlipidemia), 726.1 (Rotator cuff syndrome) and 401.1 (Benign essential hypertension);
Visit 2: 401.1 (Benign essential hypertension), 272.4 (Hyperlipidemia) and 794.31 (EEG abnormal);
Visit 3: 715.00 (Generalized osteoarthritis), 272.4 (Hyperlipidemia);
Visit 4: 401.1 (Benign essential hypertension), 272.4 (Hyperlipidemia);
Visit 5: 784.0 (Headache);
Visit 6: 401.1 (Benign essential hypertension), 272.4 (Hyperlipidemia);
Visit 7: 719.7 (Difficulty walking), 734 (Flat foot);
Visit 8: 734 (Flat foot)

1st Highest Attention
Weighted Path

Weight: 0.0152 Hyperlipidemia CAUSES−−−−−→
E1

Hypertensive disease AF F ECT S−−−−−−→
E2

Kidney Failure

Evidence E1
A literature search indicates that Anglo-Saxon countries report alarming hyperplastic
changes, particularly in the liver, blood clots, hyperlipidemia leading to high blood
pressure, porphyria, atypical leiomyomas and cervical hyperplasia.

Evidence E2 Various factors may play a role in the pathogenesis of hypertension in chronic renal
failure.

2nd Highest Attention
Weighted Path

Weight: 0.0133 Rotator cuff syndrome CAUSES−−−−−→
E3

Atrophic CAUSES−−−−−→
E4

Kidney Failure

Evidence E3 The RCT made by transecting the supraspinatus (SSP) tendon resulted in atrophy
of the SSP muscle.

Evidence E4 Tubular atrophy in the pathogenesis of chronic kidney disease progression.

3rd Highest Attention
Weighted Path

Weight: 0.0119 Headache CAUSES−−−−−→
E5

Magnetic Resonance Imaging DIAGNOSES−−−−−−−−→
E6

Kidney failure
Evidence E5 Visual failure poor growth or headache led to MRI diagnosis of CP.
Evidence E6 These findings indicate that DTI MRI may be able to evaluate RF in CKD by DN.

One of the Lowest
Attention Weighted Path

Weight: 0.0000 Renal disease AF F ECT S−−−−−−→
E7

Homeostasis AF F ECT S−−−−−−→
E8

Kidney Failure

Evidence E7 Renal sympathetic nerve activity has an important role in renal disease-associated
hypertension and in the modulation of fluid homeostasis.

Evidence E8 Calcium phosphorus and magnesium homeostasis is altered in chronic kidney
disease (CKD).

Table 2.8: Performance Comparison with GRAM as the base model.

Dataset Heart Failure COPD Kidney Disease
Metric Vanilla MedPath-TA MedPath-SA Vanilla MedPath-TA MedPath-SA Vanilla MedPath-TA MedPath-SA
AUC 0.748 0.751 0.749 0.722 0.741 0.744 0.780 0.775 0.778
F1 Score 0.628 0.639 0.632 0.582 0.602 0.600 0.677 0.659 0.666

29

Chapter 3 |
Augmenting Health Risk Predic-
tion via Medical Texts

3.1 Introduction
Electronic health records (EHR) data have become increasingly available due to the wide
adoption of EHR systems. As a result, the data mining community has been working on
designing predictive models to predict patients’ future health risks by extracting patterns
from their EHR data, which is referred to as health risk prediction [4–6]. Commonly
used EHR data such as health insurance claims for this task are encoded by International
Classification of Diseases (ICD) codes,1 and the challenges of learning from EHR data lie
in their temporal, discrete, and sparse nature because patients usually have several visits
but their symptoms are recorded with a small amount of codes.

To resolve the challenges, two main lines of strategies are generally adopted in existing
methods. The first strategy focuses on utilizing temporal deep learning models to capture
the complex temporal patterns inherent in the EHR data [4–7, 10–12]. The second
strategy is to further augment the embedding learning and model interpretation with
external knowledge. For instance, GRAM [13], KAME [14] and DG-RNN [15] use the
medical knowledge graph as the external knowledge, while PRIME [16] incorporates
prior medical knowledge to improve health risk prediction. Although existing works have
demonstrated good performance, they still suffer from the following limitations.

Limitations of exiting works. The existing works fail to provide reliable interpretation
that can be easily understood by patients. For existing models [4, 11,12] using the first
strategy, they usually use abstract attention weights to provide implicit interpretation for

1https://www.cdc.gov/nchs/icd/icd9.htm

30

the predictions, which are hard to understand and unreliable without explaining the logic.
For the second strategy, the interpretation obtained from knowledge graph is hard for
patients without professional training to understand. In addition, the relation knowledge
between medical entities of used medical knowledge graphs such as KnowLife [18] and
SemMed [29,30] are represented by CUIs (Concept Unique Identifiers) instead of ICD
codes. Although SNOMED-CT [31] provides mapping from ICD codes to CUIs, only
about 70% ICD codes can be mapped to CUI codes, which inevitably loses diagnosis
information during transformation. Besides, the used hierarchical ICD ontology cannot
capture the relations between codes belonging to different categories. Thus, this issue
raises a question: Is there unused external knowledge that can improve the interpretability
and performance of health risk prediction models?

Rethinking health risk prediction. Our answer to this question is to use the
unstructured medical text collected from authoritative online sources such as Mayo
Clinic2 and WebMD,3 which provide a large number of informative descriptions related
to different symptoms and can be easily understood by humans. The rationale for using
medical text for interpretation is that each ICD code is not only a discrete symbol but it
also represents a symptom or abnormal finding associated with a short description by
human language. For example, “250.0” refers to diabetes mellitus without mention of
complication. Therefore, medical text is an organic source for interpretable health risk
prediction. However, to utilize it in health risk prediction, we need to solve the following
challenges.
• Retrieving unstructured medical text. Due to the limited length, the short descrip-

tions cannot explicitly demonstrate the relations with the target disease. Although as
mentioned above we can find the relations from the unstructured medical text which
contains richer and more understandable information, they are noisy and not directly
associated with every ICD code. Therefore, the first challenge is how to retrieve useful
information that connects input ICD codes and the target disease.
• Exploiting the informative target disease documents. Compared to general classifi-

cation tasks, the target disease stood by the label in the health risk prediction task is a
specific disease or condition whose unique characteristics can be described by human
languages. For example, the target disease “heart failure” is described by a combination
of certain symptoms, causes, risk factors, and so on.4 Hence, modeling the inference

2https://www.mayoclinic.org/
3https://www.webmd.com/
4https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/sy

c-20373142

31

direction from the target disease to the input data can help the model improve the
interpretation comprehensibility. For instance, with the knowledge of risk factors we
can discover whether there are any ICD code worth noting. This motivation leads to a
new challenge of how to explicitly equip the predictive models with the target disease
documents.

Visit 1 Visit t
250.02 … 244.9; 272.4; 401.1

Patient EHR

EHR Encoder

EHR Embedding 𝐞𝒕
Medical Text Pool 𝑷

Heart failure signs and symptoms may
include: Shortness of breath (dyspnea);
Fatigue and weakness; Swelling
(edema) in your legs, ankles and feet;
Rapid or irregular heartbeat

Text
Memory

…

Update

Prediction and Interpretation

Query
q𝒕

Heart failure. To pump blood against
the higher pressure in your vessels, the
heart has to work harder. This causes
the walls of the heart‘s pumping
chamber to thicken …

Refined Segment Pool 𝑷2

EHR-Text Retriever

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Predictor

String
Similarity

Target Guidance Pool Γ

Return
Candidate Segment Pool 𝑷1

Sem
an

tic

Rele
va

nce

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Concatenation𝐞!

Fused Memory Feature m

Figure 3.1: Overview of the proposed MedRetriever.

The proposed approach. To solve the aforementioned challenges, as shown in Figure 3.1
we propose an effective and general framework named MedRetriever, which utilizes
a new form of external knowledge, i.e., unstructured medical text, in a target-driven
manner. MedRetriever includes four modules: EHR Encoder, EHR-Text Retriever, Text
Memory, and Predictor. Firstly, MedRetriever is a framework that is flexible in the
choice of EHR Encoder. That is, most health risk prediction models can be used as
the backbone for learning EHR embeddings. Next, EHR-Text Retriever completes the
retrieval in two stages. In the first stage, it obtains a candidate segment pool based on
string similarity scores between the ICD code descriptions and the medical text corpus.
Given the embedding of each visit and target disease documents, in the second stage we
use them to generate a query aggregated with generalized and personalized information
to retrieve relevant text segments from the candidate segment pool. During this process,
Text Memory stores and dynamically updates the top text segments relevant to both the
symptoms of patients and the target disease. Finally, the comprehensive EHR embedding
and the memorized texts are aggregated together to conduct the final prediction and
interpretation. A salient benefit of using the proposed method is to provide reliable

32

interpretation for decision-making using natural language, which are highly readable and
understandable by patients.

Contributions. To be specific, our contributions are as follows:

• To the best of our knowledge, we are the first to exploit the unstructured medical
text as the external knowledge with the emphasize on the target disease documents to
improve the EHR embedding and model interpretability for the health risk prediction
task, which is made publicly available.

• We design a novel general framework named MedRetriever to process medical text
for health risk prediction, which is flexible in the choice of EHR embedding backbone
with high expandability.

• We propose a new retrieval and memory mechanism to keep the most relevant text
segments during the iteration process. The retrieval process uses both generalized
and personalized information to obtain relevant medical texts by the query features
aggregated with EHR embeddings and target disease documents in self-attention, and
the saved texts in the memory can be used for generating understandable interpretation.

• The experimental results show that compared to the state-of-the-art approaches,
MedRetriever achieves the best performance measured by AUC, recall and F1 score
in most cases on three health insurance claims datasets. Besides, case studies further
show the understandable interpretation of model prediction.

3.2 Literature Review
In the healthcare data mining domain, using memory mechanism can help models increase
their capacities in memorizing medical knowledge and historical patient data. In [39], the
authors propose a model named DMNC, which is a memory augmented neural network
for the medication combination recommendation task on EHR data. In [40], the authors
use a memory component to fuse multi-model graphs as a memory bank for medication
recommendation. The drawback of these existing works is that their memories memorize
abstract feature vectors instead of human readable text. On the contrary, our method
MedRetriever [41] chooses to store the retrieved medical texts as well as their features
for improving the prediction performance and interpretability. With the help of text
memory, MedRetriever can dynamically find out the relevant medical text segments and
use it to provide understandable interpretation.

33

3.3 Data & Task
The risk prediction task is to predict the future status of patients based on their historical
electronic health records (EHRs). In this paper, we propose to utilize unstructured
medical text as the external knowledge. We now formally define our input data and the
task as follows.

3.3.1 Electronic Health Records

The EHRs of all patients are encoded by a high dimensional ICD-9 dictionary denoted
as C = {c1, · · · , cN}, where N represents the number of unique ICD codes in C. Math-
ematically, let V = [v1, v2, · · · , vT] denote the EHR data of a specific patient , where
vt (1 ≤ t ≤ T) represents the diagnoses of visit t, and T is the total number of visits.
Each individual visit vt contains a subset of ICD codes Ct ⊆ C, where |Ct| = nt is the
number of ICD codes in t-th visit. vt can be represented by a binary vector {0, 1}N ,
where the i-th position is 1 when the corresponding diagnosis code appears in the t-th
visit, and 0 otherwise.

3.3.2 Medical Text Corpus

As previously showed in the example ICD-9 code “250.0”, for each code ci ∈ C it has a
short description sentence for what symptom or abnormal finding it represents. However,
the description is too abstract for humans, not to mention computers, to infer the disease
progression and provide interpretation between the symptoms and target diseases for
patients. To alleviate this limitation, we collect and introduce authoritative medical
text as another input for constructing interpretable health risk prediction framework.
Specifically, we crawl the medical texts from Mayo Clinic and WebMD because they
provide organized professional descriptions for more than 1,000 diseases or conditions,
which include symptoms, causes, risk factors, and complications. To facilitate the text
processing by deep neural networks, we further divide each crawled document Di into
segments [D(i,1), D(i,2), · · · , D(i,τi)] according to their corresponding sections in Di, where
segment D(i,j)(1 ≤ j ≤ τi) is the j-th segment of Di and τi is the total number of segments
in Di.

With the crawled medical text corpus, we select the segments related to the target
disease as the set of target guidance pool Γ = {γ1, · · · , γk}, where k is the total
number of target disease segments. The rest h collected documents form the medical

34

text pool P = {D1, D2, · · · , Dh}. We distinguish these two text sets in order to make
our model target-driven, which can explicitly model the decision-making of human
doctors and provide informative interpretation, and Γ and P constitutes the medical text
corpus.

3.3.3 Health Risk Prediction

Now given the input EHR V of a patient and the medical text corpus Γ and P , the risk
prediction task is to design a function f that can accurately predict the status of patient
with respect to the target disease. The ground truth y is set to 1 when the patient will
suffer from the target disease, and to 0 otherwise. The prediction result given by f is

ŷ = f(V, Γ,P). (3.1)

The aim of function f is to provide an accurate prediction such that ŷ is as close as
y. In addition, we reframe the problem as a target-driven one by asking f to employ the
correlation between V, Γ, and P for prediction and interpretation.

3.4 Methodology
As shown in Figure 3.1, MedRetriever, the proposed solution to Eq. (3.1), will process
the input EHR and medical text corpus through the following modules. First, an EHR
encoder will learn EHR embedding et for the EHR from v1 to vt, then an EHR-Text
retriever will first retrieve a subset of segments P1 from P by using the ICD-9 code
descriptions in the t-th visit, and learn a query qt based on the target guidance pool
Γ and the EHR embedding et via self-attention. The query qt will be used to retrieve
µ segments with the highest relevance scores (denoted as P2) from P1. Next, a text
memory module is designed to store top κ relevant medical texts for interpretation,
which will be updated with the newly retrieved P2 in each time step. After finishing
the iteration process above, in the final time step predictor makes prediction and
interpretation based on the comprehensive EHR embedding and text memory. Below
are the detailed mechanism of each module.

35

3.4.1 EHR Encoder

MedRetriever is a general framework that can be built on various existing EHR encoding
approaches. We notice that a majority of existing health risk prediction studies require
either recurrent neural networks (RNNs) or Transformer [21] to embed the EHRs, which
can output features step by step during the process of learning a comprehensive feature.
Thus, in this paper, the EHR encoder backbones include RNN-based models [4–7, 13, 20]
and Transformer-based models [10–12].

Let fb denote the EHR encoder backbone, which is used to learn an embedding from
visit v1 to visit vt in each time step. That is, in time step t, the backbone fb will take
all the previous visits [v1, · · · , vt] as the input to learn the embedding et,

et = fb([v1, · · · , vt]), (3.2)

where et ∈ Rd1 , and d1 is the dimension of output embedding. The embedding et will
later be used to retrieve unstructured medical text segments and update the text memory.

3.4.2 EHR-Text Retriever

The EHR-Text retriever is a key module in our model, which aims to retrieve target
disease-related segments to improve both performance and model interpretability. The
retrieval process includes two steps, i.e., preliminary retrieval and refined retrieval, which
are described as follows.

Preliminary retrieval by string similarity. Recall that each ICD-9 code ci in visit
vt = [c1, c2, · · · , cnt] has a short description sentence denoted as ri. Since the short
description sentence of each ICD-9 code is the equivalent description in human language,
we should make use of the description sentence of each input ICD-9 code to condense
the retrieval space and search for potential relevant segments for interpretation in P by
conducting a preliminary retrieval. In addition, because the sentence is relatively short,
we can simply use the string similarity to filter out some irrelevant document segments
in P .

To specific, for each code ci, we use the Levenshtein distance [42] to measure the
similarity between ri and each segment in the medical text pool P = {D1, · · · , Dh} =
{[D(1,1), D(1,2), · · · , D(1,τ1)], · · · , [D(h,1), D(h,2), · · · , D(h,τh)]}. If the token set ratio between
ri and a certain segment s ∈ P is greater than a threshold ϵ, then s is regarded as being
related to ri and put into the candidate segment pool P1. In other words, for each time

36

step t, we will only keep the document segments that are related to vt in the candidate
segment pool P1 based on the string similarity. Suppose there are l segments in total in
P1, then we have P1 = {s1, · · · , sl}, which is the output of the preliminary retrieval.

Refined retrieval by semantic relevance. In the next step, we need to further
find out top semantically relevant segments measured in the embedding space, which is
necessary because it can organically integrate retrieval with the end-to-end training of
deep neural networks. In this step, we first need to generate a query qt from the EHR
embedding et and the target guidance pool Γ. After that, we use the query to retrieve
semantically relevant segments from the candidate segment pool P1 in the embedding
space.

• Query generation. A good query for retrieving the medical text pool should have
both generalized information from the target disease and personalized information from
the EHR of patient. Therefore, given that we already have EHR embedding et, to generate
a query the first thing that we are required to do is to obtain an embedding for each
segment of the target guidance pool Γ = {γ1, · · · , γk}. To solve this problem, we employ
a language model called PubMedBERT [43] pre-trained on biomedical publications in the
PubMed database and a two-layer multilayer perceptrons denoted as MLP1 for finetuning
in our datasets to learn an embedding for each segment.5 Denoting PubMedBERT as fs,
we get the embedding for segment γi (1 ≤ i ≤ k) by

xi = MLP1(fs(γi)), (3.3)

where xi ∈ Rd2 and d2 is the dimension of embedding in both layers of MLP1. Thus, we
can get a set of embeddings for Γ as X = [x1, · · · , xk].

After getting the embeddings for the target disease-related segments, we need to
generate a query aggregated with both generalized and personalized information. Toward
this end, we use self-attention [21] mechanism to aggregate the EHR embedding vt with
the target disease semantics X = [x1, · · · , xk] as follows:

qt = WO · softmax(UQUT
K√

d3
) ·UV , (3.4)

where qt ∈ Rd1 denotes the generated query, UQ = WQet, UK = WKX and UV = WV X
are the query, key and value matrix, respectively, and the transformation matrices
WQ ∈ Rd3×d1 , WK ∈ Rd3×d2 , WV ∈ Rd3×d2 , and WO ∈ Rd1×d3 .

5https://pubmed.ncbi.nlm.nih.gov/

37

In Eq. (3.4), the self-attention-based mechanism we design for generating query em-
beddings can help merge generalized information from X and the personalized embedding
et, which contributes to expanding the application of self-attention.

• Segment retrieval. Now we have a new feature qt aggregating the visit embedding
with the target disease semantics, the next thing to do is to retrieve semantically relevant
segments from the candidate segment pool P1. Similar to Eq. (3.3), we can get the
embedding gi for each segment si ∈ P1 by gi = MLP1(fs(si)). After that, we can get
the top µ relevant segments from P1 ranked by the relevance scores between qt and each
gi, and the relevance score is calculated from a two-layer multilayer perceptrons MLP2,

relevance score = MLP2(concate(qt, gi)), (3.5)

where concate refers to the concatenation operation, and the first layer of MLP2 maps
a (d1 + d2)-dimensional vector to a d4-dimensional vector, and the final layer of MLP2

maps a d4-dimensional vector to a real value as the relevance score.
After ranking the segments in the descending order of the relevance scores calculated

by Eq. (3.5), we take the top µ segments P2 = {s(1), · · · , s(µ)} from the pool P1 as the
refined retrieval result, which will then be used to update the text memory.

3.4.3 Text Memory

During the retrieval process of medical text, we maintain a text memory called TEMem
which can memorize up to µ + κ text segments to record the highly relevant segments
from P2. Suppose after (t−1) iterations, TEMem stores κ retrieved segment embeddings,
where TEMem = [m(1,t−1), · · · , m(κ,t−1)]. Now we update TEMem in the t-th iteration
with P2 as follows. By filling the embeddings of µ text in P2 into the text memory, we
have TEMem = [g(1), · · · , g(µ), m(1,t−1), · · · , m(κ,t−1)], which contains the candidates for
updating the text memory in the t-th iteration.

Similar to the calculation in Eq. (3.5), we use another multilayer perceptrons denoted
MLP3 to get the relevance scores between the query qt and all the segment vectors stored
in TEMem. After getting the relevance scores for µ + κ embeddings in TEMem, we only
keep the top κ embeddings with the highest relevance scores in the memory and get the
updated text memory

TEMem = [m(1,t), · · · , m(κ,t)], (3.6)

which saves the the most relevant medical text segments after t iterations given the newly

38

retrieved P2.
Note that there may be repeated ICD-9 codes appearing in different visits, and some

text segments may be retrieved multiple times. In our implementation we will keep the
repeated segments because it indicates that they are important for the interpretation
when they are always stored in the memory.

3.4.4 Predictor

After iterating over T visits, the final outputs we have are the comprehensive visit feature
eT and the text memory TEMem = [m(1,T), · · · , m(κ,T)]. To get the feature for the final
prediction, we firstly fuse the embeddings stored in TEMem into a single feature m by
max pooling operation over each feature dimension as follows:

m = maxpooling([m(1,T), · · · , m(κ,T)]), (3.7)

where m ∈ Rd2 . With the comprehensive feature eT and the fused memory feature m, we
make the final prediction by concatenation, linear transformation and softmax activation:

ŷ = softmax(w⊤
p · concate(eT , m) + b), (3.8)

where wp ∈ Rd1+d2 and b ∈ R are the learnable parameters of linear transformation.
In addition, we also record the indices of the corresponding features saved in the

text memory in each time step. After making the prediction, MedRetriever outputs
the memorized medical text segments to explain what external knowledge is used for
decision-making. Hence, our method is more interpretable than previous ones because
its decision can be expressed by natural language.

3.5 Experiments
In this section, we will show the experimental results including performance comparison,
ablation study and case studies to evaluate the performance and interpretability of
MedRetriever against the state-of-the-art baselines.

39

3.5.1 Experimental Setup

3.5.1.1 Datasets

Our experiments are conducted on three EHR datasets collected from real-world health
insurance claim data by a health information technology company, whose target disease
is Heart Failure, Chronic Obstructive Pulmonary Disease (COPD), and Kidney Disease,
respectively. Patients of these diseases normally experience a chronic and progressive
condition for a long period. The statistics of these datasets are shown in Table 3.1.

Table 3.1: Statistics of the used claim datasets.

Dataset Heart Failure COPD Kidney Disease

Positive Cases 3,080 7,314 2,810
Negative Cases 9,240 21,942 8,430
Average Visits per Patient 38.74 30.39 39.09
Average Codes per Visit 4.24 3.50 4.40
Unique ICD-9 Codes 8,692 10,053 8,802

In addition, the collected medical text corpus including Γ and P contains 1,148
diseases or conditions with 17,691 segments, which leads to 15.4 segments for each disease
or condition on average. For each segment, the average number of words is 41.4.

3.5.1.2 Baselines

We consider four types of state-of-the-art health risk prediction models as baselines,
which can also be used as the EHR encoder of MedRetriever: (1) plain RNN including
LSTM [20] which is a commonly used baseline; (2) temporal DNN-based models
which are built on RNN or Transformer and employ attention mechanisms to aggregate
visit embeddings, including Dipole [5], Retain [4], SAnD [10], and LSAN [12]; (3) time-
aware models which consider the importance of time information associated with
visits, including RetainEx [6], Timeline [7], and HiTANet [11]; and (4) knowledge
graph-based model including GRAM [13] which takes the ICD ontology as the external
knowledge to improve the ICD code embedding learning.

3.5.1.3 Implementation

We implement MedRetriever by the PyTorch framework on an NVIDIA Tesla V100
GPU. The parameters are trained by Adam optimizer with the learning rate of 10−4 and
weight decay of 10−3, and the mini-batch size is set to 64. The numbers of hidden state

40

of baselines are all 256. In MedRetriever, all the feature sizes from d1 to d4 are also 256,
the size of P2 is µ = 15, and the memory size κ = 20. Besides, we use different ways to
extract visit representations et based on the characteristics of each backbone in ablation
study. For backbones using RNNs or Transformer for feature learning, we can simply
extract the output of RNNs and Transformer in each time step as et for retrieval and
prediction. As for Retain and RetainEx which only apply RNNs to generate attention
weights assigned to the input embedding matrix, we use the weighted embedding matrix
as visit representations. Moreover, we randomly partition the datasets into training set,
validation set, and test test in the ratio of 0.75:0.10:0.15. We select the best model based
on the performance on the validation set, and we run the algorithms three times and
report both the mean and standard deviation of metrics for performance evaluation.

3.5.1.4 Evaluation Metrics

To fairly compare MedRetriever with baselines, we use AUC (area under the receiver
operating characteristics), precision, recall, and F1 score as the evaluation metrics, which
are the most commonly used ones for evaluating health risk prediction models.

Table 3.2: Performance comparison in terms of AUC, Precision, Recall and F1 score.
Note that MedRetriever uses RetainEx as the backbone, and we report the mean and
standard deviation values of the results after running three times.

Dataset Heart Failure COPD Kidney Disease
Metrics AUC (↑) Precision (↑) Recall (↑) F1 (↑) AUC (↑) Precision (↑) Recall (↑) F1 (↑) AUC (↑) Precision (↑) Recall (↑) F1 (↑)
LSTM 0.708 0.640 0.510 0.561 0.693 0.680 0.461 0.548 0.739 0.680 0.572 0.616
Dipole 0.687 0.713 0.445 0.542 0.704 0.687 0.477 0.562 0.755 0.771 0.571 0.656
Retain 0.689 0.655 0.474 0.549 0.699 0.696 0.463 0.555 0.732 0.706 0.544 0.614
SAnD 0.686 0.661 0.466 0.544 0.692 0.653 0.462 0.539 0.748 0.690 0.592 0.636
LSAN 0.738 0.621 0.626 0.623 0.723 0.661 0.500 0.574 0.766 0.651 0.672 0.661

RetainEx 0.688 0.730 0.438 0.546 0.707 0.728 0.470 0.570 0.728 0.745 0.520 0.612
Timeline 0.705 0.661 0.510 0.574 0.698 0.654 0.478 0.550 0.756 0.697 0.607 0.648
HiTANet 0.750 0.724 0.587 0.647 0.752 0.707 0.583 0.637 0.792 0.743 0.668 0.702
GRAM 0.748 0.570 0.698 0.628 0.722 0.603 0.562 0.582 0.780 0.681 0.672 0.677

MedRetriever 0.773 0.595 0.746 0.660 0.777 0.576 0.725 0.645 0.802 0.636 0.763 0.688
(std) (7e-3) (4e-2) (3e-2) (1e-2) (6e-3) (2e-2) (3e-2) (2e-3) (7e-3) (5e-2) (4e-2) (1e-2)

3.5.2 Performance Evaluation

In Table 3.2 we show the experimental results of all approaches on three test datasets in
terms of four evaluation metrics. For MedRetriever, the results are obtained by using
RetainEx as the EHR encoder backbone. We can observe that MedRetriever performs
stably and outstandingly, achieving the state-of-the-art performance measured by most
evaluation metrics on three datasets.

41

(a) Heart Failure (b) COPD (c) Kidney Disease

Figure 3.2: Comparison of AUCs with different baselines as the EHR encoder backbone.

Table 3.3: Ablation study results in term of AUC when removing each medical text
processing component of MedRetriever, which uses RetainEx as the EHR encoder
backbone.

Dataset Heart Failure COPD Kidney Disease
MedRetriever 0.773 0.777 0.802
without Target Guidance 0.762 0.751 0.784
without Refined Retrieval 0.769 0.775 0.797
without Text Memory 0.766 0.773 0.796

In particular, the AUC and recall of MedRetriever are always the highest, and
the values of recall increase 4.8%, 14.2%, and 9.1% compared to the second best ones,
respectively. We note that MedRetriever sacrifices some precision for high recall, which
is beneficial for the health risk prediction task. This is because the target diseases are
usually life-threatening to the patients, and in the healthcare domain we wish machine
learning models not to have too many false negative cases, which is penalized in the recall
metric. As for F1 score which is the harmonic mean of precision and recall, MedRetriever
achieves the highest on the Heart Failure and COPD datasets and the second highest
on Kidney Disease dataset. Therefore, based on the analysis of four evaluation metrics,
MedRetriever surpasses the current state-of-the-art methods with respect to health risk
prediction performance.

3.5.3 Ablation Study

We further conduct the following ablation studies to examine the design of MedRetriever.
Firstly, to show that MedRetriever is a flexible framework that can benefit most EHR
encoder backbones by retrieving and memorizing the medical text corpus, we compare
the performance with nine vanilla baseline models in terms of AUC score as shown in

42

(a) Heart Failure (b) COPD (c) Kidney Disease

Figure 3.3: Comparison of AUCs with different memory sizes in MedRetriever using
RetainEx as the backbone on three datasets.

Figure 3.2. For almost every baseline MedRetriever can bring performance gain on all
three datasets, even for a complex model such as GRAM which is an RNN-based model
utilizing the knowledge graph. Specifically, RNN-based models, including LSTM, Dipole,
Retain, RetainEx, and Timeline, could get larger improvement with medical text than
Transformer-based models such as SAnD, LSAN, and HiTANet. Besides, we can observe
that RNN-based models can achieve higher improvement, which is mainly because their
fashion of processing EHR data step-by-step fits well with the step-by-step querying
process from Γ. Particularly, with RetainEx as the backbone, MedRetriever obtains a
margin of 8.5%, 7.0%, and 7.4% in terms of AUC over the vanilla RetainEx model on the
Heart Failure, COPD, and Kidney Disease datasets, respectively, which is the reason that
we select it as the backbone for MedRetriever. Such significant improvements prove that
medical text corpus can work well with existing baselines and increase their prediction
performance.

After examining the effectiveness of medical text corpus and deciding to use RetainEx
as the backbone, we then conduct an ablation study to validate the effectiveness of the
designed components for medical text processing, which include using target guidance pool
for query generation, refined retrieval, and text memory. By removing each component
individually from the original framework, we obtain the results as shown in Table 3.3.
We can observe that the model performance drops in all the datasets, which confirms
that these component is essential for medical text processing: firstly, after excluding Γ as
target guidance and directly using EHR embedding obtained by Eq. (3.2) as the query in
Eq. (3.4), we observe that the performance decreases by 1.1%, 2.6%, and 1.8% in terms
of AUC on the three test datasets, respectively. Thus, it is essential to incorporate the
target guidance. Secondly, after removing the refined retrieval stage and directly using
the outputs from the preliminary retrieval to update the memory, the AUC still drops

43

by 0.4%, 0.2%, 0.5% compared with MedRetriever on the three datasets, respectively,
which proves the necessity of refined retrieval. Thirdly, as for the last scenario where
we only use the EHR embedding eT output in the last visit T to retrieve relevant texts
without dynamically update, the model performance decreases by around 0.7% on three
datasets. Thus, the dynamical update capacity of text memory is useful for processing
medical text. We also further vary the value of κ of the text memory from 5 to 25 to
investigate the influence of memory size. As shown in Figure 3.3, we observe that setting
κ = 20 can help achieve best performance in test datasets.

Table 3.4: Case study of a positive case on the heart failure dataset.

EHR

Visit 1: Diabetes mellitus (250.00), Atrial fibrillation (427.31), Vaginitis and vulvovaginitis (616.10), Benign essential hypertension (401.1)
Visit 2: Senile osteoporosis (733.01)
Visit 3: Benign essential hypertension (401.1), Diabetes mellitus (250.00), Atrial fibrillation (427.31)
Visit 4: Atrial fibrillation (427.31)
Visit 5: Coronary atherosclerosis of native coronary artery (414.01), Atrial flutter (427.32), Diseases of tricuspid valve (397.0)

Visit 1 Target Guidance

1. Other diseases. Chronic diseases — such as diabetes, HIV, hyperthyroidism, hypothyroidism, or a buildup of iron (hemochromatosis) or
protein (amyloidosis) — also may contribute to heart failure. (Weight: 0.02384)
2. Coronary artery disease. Narrowed arteries may limit your heart’s supply of oxygen-rich blood, resulting in weakened heart muscle.
(Weight: 0.02381)
3. Diabetes. Having diabetes increases your risk of high blood pressure and coronary artery disease. (Weight: 0.02379)

Text Memory

1. Age. The older you are, the greater your risk of developing atrial fibrillation. (Weight: 0.0701)
2. Inactivity. The less active you are, the greater your risk. Physical activity helps you control your weight, uses up glucose as energy and
makes your cells more sensitive to insulin. (Weight: 0.0698)
3. Weight. Being overweight before pregnancy increases your risk of diabetes. (Weight: 0.0686)

Visit 2 Target Guidance

1. Diabetes. Having diabetes increases your risk of high blood pressure and coronary artery disease. (Weight: 0.02383)
2. But heart failure can occur even with a normal ejection fraction. This happens if the heart muscle becomes stiff from conditions such as
high blood pressure. (Weight: 0.02380)
3. Congenital heart defects. Some people who develop heart failure were born with structural heart defects. (Weight: 0.02380)

Text Memory

1. Race. You’re at greatest risk of osteoporosis if you’re white or of Asian descent. (Weight: 0.0537)
2. Age. The older you get, the greater your risk of osteoporosis. (Weight: 0.0521)
3. Inactivity. The less active you are, the greater your risk. Physical activity helps you control your weight, uses up glucose as energy and
makes your cells more sensitive to insulin. (Weight: 0.0519)

Visit 3 Target Guidance
1. High blood pressure. Your heart works harder than it has to if your blood pressure is high. (Weight: 0.02389)
2. Valvular heart disease. People with valvular heart disease have a higher risk of heart failure. (Weight: 0.02384)
3. Heart rhythm problems. Heart rhythm problems (arrhythmias) can be a potential complication of heart failure. (Weight: 0.02381)

Text Memory

1. Cardiovascular disease. Diabetes dramatically increases the risk of various cardiovascular problems, including coronary artery disease with
chest pain (angina), heart attack, stroke and narrowing of arteries (atherosclerosis). If you have diabetes, you’re more likely to have heart
disease or stroke. (Weight: 0.0526)
2. Age. The older you get, the greater your risk of osteoporosis. (Weight: 0.0525)
3. Other chronic conditions. People with certain chronic conditions such as thyroid problems, sleep apnea, metabolic syndrome, diabetes,
chronic kidney disease or lung disease have an increased risk of atrial fibrillation. (Weight: 0.0514)

Visit 4 Target Guidance

1. Irregular heartbeats. These abnormal rhythms, especially if they are very frequent and fast, can weaken the heart muscle and cause heart
failure. (Weight: 0.02385)
2. Diabetes. Having diabetes increases your risk of high blood pressure and coronary artery disease. (Weight: 0.02384)
3. Valvular heart disease. People with valvular heart disease have a higher risk of heart failure. (Weight: 0.02383)

Text Memory

1. Cardiovascular disease. Diabetes dramatically increases the risk of various cardiovascular problems, including coronary artery disease with
chest pain (angina), heart attack, stroke and narrowing of arteries (atherosclerosis). If you have diabetes, you’re more likely to have heart
disease or stroke. (appears twice) (Weight: 0.0526)
3. Heart failure. Atrial fibrillation, especially if not controlled, may weaken the heart and lead to heart failure — a condition in which your
heart can’t circulate enough blood to meet your body’s needs. (Weight: 0.0524)

Visit 5 Target Guidance

1. Irregular heartbeats. These abnormal rhythms, especially if they are very frequent and fast, can weaken the heart muscle and cause heart
failure. (Weight: 0.02382)
2. Diabetes. Having diabetes increases your risk of high blood pressure and coronary artery disease. (Weight: 0.02380)
3. Coronary artery disease. Narrowed arteries may limit your heart’s supply of oxygen-rich blood, resulting in weakened heart muscle.
(Weight: 0.02380)

Text Memory

1. Heart failure. Atrial fibrillation, especially if not controlled, may weaken the heart and lead to heart failure — a condition in which your
heart can’t circulate enough blood to meet your body’s needs. (appears twice) (Weight: 0.0519)
2. Heart disease. Anyone with heart disease — such as heart valve problems, congenital heart disease, congestive heart failure, coronary
artery disease, or a history of heart attack or heart surgery — has an increased risk of atrial fibrillation. (Weight: 0.0516)

44

Table 3.5: Case study of a positive case on the COPD dataset.

EHR

Visit 1: Esophageal reflux (530.81), Acute conjunctivitis (372.00), Asthma (493.90)
Visit 2: Conjunctivitis (372.30)
Visit 3: Other mucopurulent conjunctivitis (372.03)
Visit 4: Lumbago (724.2), Unspecified contraceptive management (V25.9)
Visit 5: Lumbago (724.2), Asthma (493.90), Nausea with vomiting (787.01)

Target Guidance

1. Asthma, a chronic inflammatory airway disease, may be a risk factor for developing COPD. The combination of asthma and smoking
increases the risk of COPD even more. (Weight: 0.034482)
2. Exposure to tobacco smoke. The most significant risk factor for COPD is long-term cigarette smoking. The more years you smoke and
the more packs you smoke, the greater your risk. Pipe smokers, cigar smokers and marijuana smokers also may be at risk, as well as
people exposed to large amounts of secondhand smoke. (Weight: 0.034479)

Text Memory (Visit 1-4)

1. Proper treatment makes a big difference in preventing both short-term and long-term complications caused by asthma. (Weight: 0.05109)
2. Exposure to various irritants and substances that trigger allergies (allergens) can trigger signs and symptoms of asthma, including:
Respiratory infections such as the common cold, Physical activity, Air pollutants and irritants such as smoke, Strong emotions and
stress, Gastroesophageal reflux disease (GERD) and etc. (Weight: 0.05107)
3. Signs that your asthma is probably worsening include: Asthma signs and symptoms that are more frequent and bothersome, Increasing
difficulty breathing, The need to use a quick-relief inhaler more often and etc. (Weight: 0.05106)
4. Asthma complications include: Signs and symptoms that interfere with sleep, work and other activities, Sick days from work or school
during asthma flare-ups, A permanent narrowing of the tubes that carry air to and from your lungs (bronchial tubes), which affects how
well you can breathe. (Weight: 0.05105)
5. Conditions that can increase your risk of GERD include: Obesity, Pregnancy, Connective tissue disorders, such as scleroderma and etc
(Weight: 0.05104)

Text Memory (Visit 5)

1. Exposure to various irritants and substances that trigger allergies (allergens) can trigger signs and symptoms of asthma, including:
Respiratory infections such as the common cold, Physical activity, Air pollutants and irritants such as smoke, Strong emotions and
stress, Gastroesophageal reflux disease (GERD) and etc. (appears twice) (Weight: 0.05015)
3. Asthma complications include: Signs and symptoms that interfere with sleep, work and other activities, Sick days from work or school
during asthma flare-ups, A permanent narrowing of the tubes that carry air to and from your lungs (bronchial tubes), which affects how
well you can breathe. (Weight: 0.05012)
4. Asthma signs and symptoms include: Shortness of breath, Chest tightness or pain, Wheezing when exhaling, which is a common sign
of asthma in children, Trouble sleeping caused by shortness of breath, coughing or wheezing, Coughing or wheezing attacks that are
worsened by a respiratory virus, such as a cold or the flu. (Weight: 0.05012)
5. A number of factors are thought to increase your chances of developing asthma. They include: Being a smoker, Exposure to secondhand
smoke, Exposure to exhaust fumes or other types of pollution and etc. (Weight: 0.05011)

3.5.4 Case Studies on Interpretability

Now in this section we use case studies on the Heart Failure and COPD datasets to
show the good interpretability of MedRetriever. The first example is about a positive
Heart Failure case, which is shown in Table 3.4. In this example, we show three target
guidance segments selected from Γ with highest self-attention weights and three medical
text segments selected from P stored in the text memory at each visit with highest
relevance scores. Since the most prominent symptoms are diabetes mellitus (250.00) and
atrial fibrillation (427.31) which appear multiple times across different visits, the most
relevant target guidance segments are the ones stating that they are two key risk factors
of heart failure, and the saved texts in the text memory are explaining the supporting
evidence they use to make the prediction based on these two symptoms. Additionally,
the relevant target guidance segments and memorized medical texts can be dynamically
updated due to the condition change of the patient.

As for another case study on a positive COPD case with five visits shown in Table 3.5,
due to space limit we present two target guidance segments with the highest attention
weights and five medical text segments with the highest relevance scores for the first
four visits and the last visit, respectively. Due to the symptom of asthma (493.90)
of the patient, MedRetriever attaches the highest importance to the target disease

45

segment stating asthma is a risk factor for developing COPD. Since ICD codes in the
following three visits does not have much relevance with the target guidance segments,
MedRetriever mainly stores segments related to asthma in the text memory. Besides,
one memorized segment is related to the gastroesophageal reflux disease due to the
symptom of esophageal reflux (530.81). In addition, in the final time step, the originally
most relevant segment is saved twice in the text memory for the symptom of asthma
(493.90) is observed again in the fifth visit.

From these two case studies, we can observe that the text memory can be dynamically
updated corresponding to the patient condition. Most importantly, patients can easily
understand the relation between their symptoms and the target disease by referring to
the target guidance segments, and they can read more about the explanations of their
symptoms by referring to the text memory. Compared to knowledge graph, medical text
does not required readers to have received much training. Hence, MedRetriever is able
to provide more understandable interpretation for prediction.

3.6 Conclusion
Health risk prediction is an important task in the medical domain. Existing approaches
either model longitudinal EHR data with deep temporal models or incorporate external
information such as medical knowledge graph to enhance the diagnosis code embedding.
However, ignoring the human language descriptions of diagnosis codes limits the model
performance and interpretation. To solve this issue, we propose a novel framework named
MedRetriever, which introduces the unstructured medical text as external knowledge
and employs it in a target-driven manner. In particular, MedRetriever first learns the
EHR embedding for each visit by utilizing existing EHR embedding models. After that,
within each visit it conducts the preliminary retrieval according to the string similarity
between diagnosis code descriptions and collected medical texts, and then retrieves
relevant medical text segments by a query aggregating the EHR embedding and target
guidance pool. Meanwhile, a text memory dynamically update the memorized relevant
segments, and it is used with the comprehensive EHR embedding for final prediction and
interpretation. Experiments results demonstrate that MedRetriever improves health
risk prediction performance compared with existing baselines, and case studies further
show that utilizing medical text can achieve understandable interpretation.

46

Chapter 4 |
Automated Medical Risk Pre-
dictive Modeling on Electronic
Health Records

4.1 Introduction
Medical risk prediction is a representative task in healthcare, which aims at building
actionable predictive models to forecast the future health conditions or outcomes of pa-
tients based on their historical electronic health records (EHR) [3, 44]. EHR data consist
of a time-ordered sequence of visits, and each visit contains several clinical codes such as
International Classification of Diseases (ICD) codes. To model such sequential character-
istics of EHR data, most of existing approaches usually apply recurrent neural networks
(RNN) [19,20] and Transformer [21] as the backbone and equip advanced techniques such
as attention mechanisms with them to improve the prediction performance [4,5,8–10,12].

Besides, EHR data have temporal characteristics since each visit is associated with
a timestamp, which is the key factor in modeling disease progression. Existing work
that models the time information in the risk prediction task can be categorized into
two groups. One follows the information decay assumption and uses monotonically
non-increasing functions to model irregular time intervals between two consecutive visits,
such as T-LSTM [22]. The other such as HiTANet [11] treats visits as words in a sentence
and time stamps as words’ positions and employs Transformer to model the EHR data.
These approaches are powerful and effective to enhance the prediction performance, but
designing such time-aware models requires substantial efforts of human experts. Although
some automated machine learning-based frameworks are proposed in the medical domain

47

𝐓

𝐱!
(#)

𝐱!
(%)

CatFC

Time Encoding

Diagnosis Encoding

Fusion

𝛂&

Prediction

[𝐭𝟏 , ⋯ , 𝐭𝐍]

[𝐝𝟏 , ⋯ , 𝐝𝐍]

Time
Embedding

Diagnosis
Embedding

*𝐱!

𝐃

𝐱)
(#)

𝐱)
(%)

*𝐱)

𝐅

𝐱&
(#)

𝐱&
(%)

𝐇
Operations

Operations

Operations

Selector

Selector

𝛂!

𝛂)

𝛂*!

𝛂*"

Figure 4.1: Overview of the proposed AutoMed in the searching stage, i.e., the supernet.

recently such as AutoPrognosis [45] and Clairvoyance [46], they mainly focus on configur-
ing machine learning pipelines, instead of automatically designing network architectures.
Therefore, it is an urgent need to develop new models to automatically model sequential
yet temporal EHR data simultaneously with minimal human interventions.

Neural architecture search (NAS) [47–53] is a promising solution for addressing
this concern that uses data-driven methods to discover the optimal architectures for
various tasks, including but not limited to, computer vision [54–58] and natural language
processing [59,60]. However, it is difficult to directly apply existing frameworks to our
task. The reasons are as follows: First, as we previously mentioned, EHR data are
complex, which not only have sequential visits but also time stamps associated with
visits. However, most existing NAS-based frameworks only consider to deal with one type
of feature such as text or image. Second, even though there are several models focusing
on dealing with multimodal data such as MMnas [61], MMIF [62] and BM-NAS [63],
they mainly search the feature fusion strategies and ignore the importance of aligning
the inconsistency among different types of data using automatically searchable strategies.
Thus, determining how to design an effective and reasonable automated risk prediction
model on EHR data is still an open challenge in the medical domain.

To tackle the aforementioned challenges, in this paper, we propose a new automated
medical risk prediction model, named AutoMed, which can automatically search an
optimal network architecture on time-ordered EHR data as shown in Figure 4.1. AutoMed
consists of five modules: (1) The embedding module that maps discrete medical codes
with each visit and the associated timestamp to dense embeddings D and T, respectively.

48

(2) The time encoding module contains a directed acyclic graph (DAG), i.e., a cell, and a
searchable feature selector. The cell can automatically search for the optimal operation
between a pair of computation nodes of DAG, and the feature selector can output the
representative representation x̂T , which is taken as the input of the fusion module. (3)
The diagnosis encoding module has the same structure as the time encoding module, and
its output x̂D is also the input of the fusion module. (4) The fusion module also contains a
cell to search the optimal architecture for fusing two types of features simultaneously and
learning the final EHR representation H as the input of the risk prediction module. (5)
The prediction module is designed to make the search stage learning more stable, which
consists of an RNN layer with attention mechanisms. We use the bi-level optimization
technique as DARTS [49] to jointly optimize three cells and two feature selectors and
further obtain the optimal model architecture.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to design an NAS-based model to solve
the health risk prediction problem in the medical domain, which largely reduces the
human interventions of model design.

• The proposed AutoMed tailors a novel search space to model sequential yet temporal
EHR data. Correspondingly, two separate modules are used to search the optimal
architectures for discrete medical codes within each visit and the associate time
information. Moreover, a fusion cell is designed to search the optimal fusion strategy.
These designs make AutoMed learn better representation and further improve the
prediction performance.

• Experimental results on three real-world claims data show that AutoMed achieves
significant improvement over all state-of-the-art baselines, and ablation study further
shows the effectiveness of all the designed modules.

4.2 Literature Review
Existing health risk prediction models are mainly to model the sequential characteristics
of EHR data using RNN [19, 20] and Transformer [21] as the backbones. Then they
are equipped with different types of attention mechanisms [4, 5, 10] or incorporating
external knowledge such as ICD hierarchy [13, 14, 17], medical text [?], and medical
knowledge graphs [15,16,27,64], to further improve the prediction performance. There are
several approaches are proposed to model the time information, such as T-LSTM [22],

49

RetainEX [6], Timeline [7]. They mainly design the model architecture based on human
prior assumptions about the effect of time information, which limits the models’ learning
ability. Thus, there is an urgent need of the automatic model design for health risk
prediction.

Neural architecture search (NAS) [53] is a general approach for automatically dis-
covering the optimal model architecture for deep neural networks, which is a bi-level
optimization problem in essence that aims to optimize both the network parameters and
the model architecture simultaneously. Some work aims to directly solve the searching
problem with huge computing cost, such as using reinforcement learning [47] or evolu-
tionary search [57]. To improve the searching efficiency of NAS methods from different
perspectives, weight sharing [48], sequential model-based optimization [50], and Bayesian
optimization [52] are used. More recently, differentiable architecture search (DARTS) [49]
is proposed and achieves remarkable improvement in terms of searching efficiency, which
introduces a continuous relaxation to the discrete model architecture and designs a
unified gradient optimization framework for both the network weights and architecture.
In this paper, we utilize the differentiable methods as the search algorithm and design a
unified searching space for learning heterogeneous EHR features and the fusion strategy
at the same time.

4.3 Methodology

4.3.1 Data & Task

The EHR data of each patient consists of multiple time-ordered visits V =
[(v1, t1), (v2, t2), · · · , (vN , tN)], where N is the total number of visits. At each visit,
a set of diagnosis codes is recorded, which is represented as a binary vector vn ∈ {0, 1}M ,
where M represents the total number of unique codes in the dataset. vm

n = 1 denotes
that the m-th code appears in the i-th visit; otherwise, vm

n = 0. In addition, a timestamp
in terms of date tn is recorded at each visit. The task of health risk prediction is to
predict whether the patient will suffer from the target disease or condition in the future
according to the historical EHR data V .

4.3.2 Overview of AutoMed

To investigate the optimal way of integrating the heterogeneous features of EHR data,
we propose AutoMed as shown in Figure 4.1, which contains five modules: the embedding

50

module, the time encoding module, the diagnosis encoding module, the fusion module,
and the prediction module. The embedding module aims to map the input diagnosis
vn and time tn features into dense vector representations dn and tn, respectively. Then
we use three modules to automatically fuse dn and tn following the idea of the neural
architecture search (NAS) [53] to learn the optimal architectures of these three modules
in a unified way. Specifically, in each module, we design a searchable cell, which shares
the same search space but uses different network weights. The time and diagnosis
encoding modules take D = [d1, · · · , dN] and T = [t1, · · · , tN] as the inputs and
automatically learn a representation for the computational node in each cell, respectively.
Then a searchable feature selector is developed to select optimal representations outputted
by computational nodes. The selected features from the time and diagnosis encoding
modules are then considered as the inputs of the fusion module to generate the final
visit-level EHR representations, which contains a searchable cell followed by a linear
combination layer (CatFC in Figure 5.1). Finally, the EHR representations are used as
the inputs of the prediction module to make risk predictions. Next, we introduce the
details of each module.

4.3.3 Embedding Diagnosis and Time Features

Diagnosis Embedding Given the binary input visit vector vn, we apply a linear
function to transform it into a latent representation dn ∈ Rd, i.e., dn = Wdvn + bd,

where Wd ∈ Rd×M and bd ∈ Rd is the weight matrix and bias vector, respectively. Since
there are N visits in each patient’s EHR data, the diagnosis features of a patient will
become a sequence of representations D = [d1, d2, · · · , dN].
Time Embedding Following [11], we embed the time information using the time interval
∆tn between the current time tn and the last recorded time tN , i.e., ∆tn = tN − tn, as
follows:

tn = Wtrn + bt, rn = 1− tanh((Wr
∆tn

180 + br)
2
), (4.1)

where Wr ∈ Ra, Wt ∈ Rd×a, br ∈ Ra, and bt ∈ Rd are all network parameters. Similarly,
the time features of the patient will be represented by a sequence of representations
T = [t1, t2, · · · , tN]. The network parameters in the embedding module are WE =
[Wd, bd, Wr, Wt, br, bt].

51

4.3.4 Encoding Diagnosis Representations

Cell Design Given the input diagnosis features D, we aim to find an optimal neural
architecture to encode them. In particular, following DARTS [49], we adopt the general
DAG (directed acyclic graph) setting that a cell contains an ordered sequence of C

computation nodes1, where each node x(i)
D is a latent representation, and each directed

edge (i, j) is associated with some operation o
(i,j)
D that draw from an operation set O

to transform x(i)
D . During the search stage, each node is computed based on all of its

predecessors, i.e.,

x(j)
D =

∑
i<j

o
(i,j)
D (x(i)

D) =
∑
i<j

∑
o∈O

exp(α(i,j)
Do)∑

o′∈O exp(α(i,j)
Do′)

o(x(i)
D), (4.2)

where x(0)
D = D and all of x’s have the same shape as D. The operations O include 1-D

convolution, multi-head self attention, recurrent layer, feed-forward layer, identity, and
zero. The details of these operations are introduced in Section 4.4.1.3. α

(i,j)
Do denotes the

weight of the operation o on edge (i, j) in the diagnosis encoding module.
Searchable Feature Selector. Existing methods generate the output of the

diagnosis encoding module by averaging or concatenating [x(0)
D , x(1)

D , · · · , x(C)
D] learned by

Eq. (4.2) [48,49]. Such mandatory operations require to use all the node outputs, and
the averaged or concatenated output may not be the most representative one. To avoid
this issue and increase the capability of AutoMed, we design a searchable feature selector.
Let α

(k)
SD

denotes the architecture weight of the k-th computation node in the cell. In the
search stage, we define the mixed selection on C nodes as follows:

x̂D =
C∑

k=0

exp(α(k)
SD

)∑C
k′=0 exp(α(k′)

SD
)
x(k)

D , (4.3)

where x̂D is the output of the diagnosis encoding module. In this module, we need to
optimize the model architecture parameters, including the operation weights αD on all
edges and the selection weights αSD

on all computation nodes. We need to optimize the
operation parameter set WOD

.

4.3.5 Encoding Time Representations

We apply the same cell and feature selector design introduced in the previous subsection
to encode time representations. Taking T as the input of the time encoding module, we

1To reduce the computational complexity, we set C = 2 in this paper, i.e., three computation nodes
with IDs 0, 1, and 2 in the DAG.

52

first obtain a list of computation node features {x(k)
T }, k ∈ {0, · · · , C} using Eq. (4.2)

with operation weight parameters αT . Then we generate the module output x̂T via
Eq. (4.3) with node selection parameters αST

. The operation parameters to be optimized
in this module are denoted as WOT

.

4.3.6 Fusing Diagnosis and Time Representations

After obtaining the selected features x̂D = [x̂D
1 , · · · , x̂D

N] and x̂T = [x̂T
1 , · · · , x̂T

N], we
first concatenate them together and then apply a linear transformation to map the
concatenation into a single feature, i.e.,

fn = Wcconcat(x̂D
n , x̂T

n) + bc, (4.4)

where Wc ∈ Rd×2d, bc ∈ Rd are network parameters of the linear transformation layer.
Then the obtained features F = [f1, · · · , fN] are taken as the input of the fusion cell,
which has the same design as the cells in the diagnosis and time encoding modules.

Similarly, we can obtain a list of node features as well, i.e., {x(k)
F }, k ∈ {0, · · · , C}

using Eq. (4.2), when taking F as the input and using αF as the operation weights.
However, different from the previously two encoding modules, we do not apply a feature
selector here since we need to get the comprehensive representation for the whole EHR
data. Thus, we combine all the node features into a single representation:

hn =
C∑

k=0
wkx(k)

F n, (4.5)

where wk ∈ R is the network weight parameter of the k-th computation node and
wf = [w0, · · · , wC]⊤. The output of the fusion module is H = [h1, h2, · · · , hN]. In this
module, we need to optimize the model architecture parameters αF and the network
parameters WF = [Wc, bc, wf , WOF

], where WOF
is the operation parameter set used

in the fusion cell.

4.3.7 Predicting Health Risks

To make the search stages more stable, we add a fixed RNN layer (GRU [65]) to transform
the features and aggregate them over the sequence dimension through the attention
mechanism and then pass the aggregated EHR representation through the final classifier

53

as follows:
[h′

1, · · · , h′
N] = RNN([h1, · · · , hN]),

[β1, · · · , βN] = softmax(w⊤
h h′

1 + bh, · · · , w⊤
h h′

N + bh),

ŷ = softmax(Wyu + by) = softmax(Wy

N∑
n=1

βnh′
n + by),

(4.6)

where wh ∈ Rd, bh ∈ R, Wy ∈ R2×d, and by ∈ R2 are all network parameters, β’s are the
aggregation weights for all N time steps, and ŷ ∈ R2 is the final output distribution. The
network parameters of the prediction module are WP = [wh, bh, Wy, by, Wrnn], where
Wrnn is the parameter set of the RNN layer.

4.3.8 Optimization

Let α denote the collection of architecture weights, which includes αT for the time cell,
αD for the diagnosis cell, αF for the fusion cell, αST

for the time feature selector, and
αSD

for the diagnosis feature selector. Let W denote the network weights, which contains
WE for the embedding module, WF for the fusion module, WP for the prediction module,
and WO = [WOD

, WOT
, WOF

] for the operation parameters used in the three cells. We
use the bi-level optimization technique as DARTS [49] to optimize the model architecture
α and the network weights W simultaneously:

min
α
Lval(W∗(α), α)

s.t. W∗(α) = argminWLtrain(W, α)
(4.7)

where Lval and Ltrain mean the validation loss and training loss, respectively.

4.3.9 Deriving Discrete Architectures

Using the learned architecture parameters α = [αD, αT , αF , αSD
, αST

], we are able
to derive the discrete model architectures based on the optimal α for each module.
For each searched cell, based on the obtained α(i,j) for each edge in the DAG, we can
choose the optimal operation, which is o′(i,j) = argmaxo∈O {α(i,j)

o }. Then we compute
the node feature via x(j) = ∑

i<j o′(i,j)(x(i)). Also, for the feature selection in the
diagnosis and time cells, we choose the node features by x′

D = argmaxk∈{0,··· ,C} {α
(k)
SD
}

and x′
T = argmaxk∈{0,··· ,C} {α

(k)
ST
}. Eventually, we can derive the final model architecture

and train the model from scratch for evaluation.

54

Table 4.1: Statistics of the four EHR datasets.

Dataset COPD Amnesia Kidney HF
Positive Cases 7,314 2,982 2,810 3,080
Negative Cases 21,942 8,946 8,430 9,240
Avg. Visits/Patient 30.39 39.00 39.09 38.74
Avg. Codes/Visit 3.50 4.70 4.40 4.24
Unique Codes 10,053 9,032 8,802 8,692

4.3.10 Complexity Analysis

In this section, we conduct the complexity analysis for the proposed AutoMed. Based on
the used search space, we can analyze the number of possible architectures that AutoMed
is able to search. For each designed cell, there are total ∏C

k=1 |O|k possible DAGs without
considering graph isomorphism. Then, for all three cells, we will have

(∏C
k=1 |O|k

)3

possible architectures. In addition, our proposed feature selector offers C2 combinations.
Thus, the final complexity of the search space will become C2

(∏C
k=1 |O|k

)3
, which is

sufficiently large to search for optimal model architectures for risk prediction task.

4.4 Experiments

4.4.1 Experimental Setup

4.4.1.1 Datasets

In our experiments, we conduct retrospective analysis on four common chronic and
progressive health conditions, which are Chronic Obstructive Pulmonary Disease (COPD),
Amnesia, Kidney Disease, and Heart Failure (HF). With the guidance of clinicians, we
extract the corresponding EHR data, which includes positive cases and negative/control
cases, from a real-world claims database. When extracting positive cases, we identify
the first disease diagnosis date and then only keep the EHR data within six months
before that date. For each positive case, we extract at most three control cases based
on gender, race, age group, and underlying diseases. We keep the whole EHR data for
negative/control cases. In our experiments, we only the last 50 visits as the input data.
The statistics of the datasets are shown in Table 4.1.

We randomly partition the datasets into the training set, validation set, and testing set
with the ratio of 0.75 : 0.10 : 0.15. The best model is selected based on the performance on

55

the validation set. We report the average results of five runs for performance evaluation.

4.4.1.2 Baselines

We select traditional and state-of-the-art risk prediction models as our baselines, which are
divided into two categories: (1) Without using time information: LSTM [20], Dipole [5],
Retain [4], SAnD [10], AdaCare [8], LSAN [12]. (2) Using time information: RetainEx [6],
Timeline [7], T-LSTM [22], HiTANet [11].

4.4.1.3 Operations

In this paper, we use the following six operations when searching the network architectures:
1-D Convolution (conv), Multi-head Self Attention (attention), Recurrent Layer (rnn),
Feed-Forward Layer (ffn), Identity and Zero.

• 1-D Convolution (conv). We use the convolution layer as a candidate operation that
performs 1-D convolution with respect to the sequence dimension of the input tensor.
In addition, we utilize the SAME padding method to maintain the output size. This
operation can capture the interaction patterns of local features among neighboring
time steps.

• Multi-head Self Attention (attention). Multi-head self-attention layer is a major
component in Transformer [21] that is particularly suitable for sequence modeling.
Thus, we incorporate it into the candidate operation set. Different from the convolution
operation, self-attention could capture the long-term dependencies of the sequence
effectively.

• Recurrent Layer (rnn). Recurrent neural network (RNN) is also a powerful ar-
chitecture for processing sequence data. LSTM [20] and GRU [19] are known to
be more advantageous than the vanilla RNN for capturing long-term dependencies
of sequences; while GRU is usually several times faster than LSTM without loss of
precision. Therefore, we leverage the GRU layer as the recurrent layer operation.

• Feed-Forward Layer (ffn). We also define feed-forward operation that applies
independently to each time step of the input. Specifically, we apply two linear
transformations with a ReLU activation in between, which can increase the model
representation power if necessary.

56

• Identity & Zero. Except for previous operations, we also include Identity and
Zero operations into the candidate set, which allows the model for discovering skip
connections and discarding certain features if necessary.

4.4.1.4 Implementation Details

During the searching stage, we set different optimization configurations for the architecture
weights α and network weights W. For both of them, we apply Adam optimizer [66].
For W, we use the learning rate of 10−4 and weight decay of 10−4, while for α, we use
the learning rate of 10−5 and weight decay of 10−4. We tune the learning rate and weight
decay from a candidate set of {10−6, 10−5, 10−4, 10−3, 10−2}. Through grid search method,
we obtain the most suitable values and use them in the experiments. After searching,
we train the model from scratch with the derived architecture, and we also apply the
Adam optimizer with learning rate of 10−4 and weight decay of 10−4, which is tuned in
the same way as aforementioned. Besides, the hidden dimension size d of all the node
features within our framework is set to 256, and the dimension of the intermediate time
encoding a is set to 64. The setting of these dimensions maintains the same during both
searching and training stages. We implement the baselines on the same platform with
the proposed model and apply the same optimization settings as training the searched
architecture. We use the standard cross-entropy loss for all baselines. The numbers of
hidden dimensions of baselines are all 256 no matter for RNN or Transformer based
models. We use PR-AUC (area under the precision-recall curve), F1 score, and Cohen’s
Kappa as the evaluation metrics considering the imbalanced data property in our datasets
shown in Table 4.1.

4.4.2 Performance Evaluation

Table 4.2 shows the overall performance of the proposed AutoMed and baselines on four
datasets. We report the average values of five runs and the corresponding standard
deviations (std.). We also conduct significance testing (t-test) to justify whether the
proposed AutoMed is significantly better than the best baseline model.

From Table 4.2, we can observe that the baselines incorporating time information
usually perform better than those without considering the importance of time information.
Especially, time-aware LSTM (T-LSTM) [22] that uses an information decay function
to model the time information in the LSTM cell achieves the best PR-AUC score on
the COPD dataset among all the baselines. HiTANet [11] takes the time information as

57

Table 4.2: Performance comparison in terms of PR-AUC, F1 score, and Cohen’s Kappa
(mean±std.). The results produced by the best baseline and the best model in each
column are marked by underlined and boldfaced, respectively. ∗ denotes that the
p-value is smaller than 0.01.

Dataset COPD Amnesia
Metrics PR-AUC (%) F1 (%) Kappa (%) PR-AUC (%) F1 (%) Kappa (%)

Without
Time

LSTM [20] 55.34 ± 3.05 55.96 ± 0.97 41.78 ± 1.13 55.36 ± 3.35 61.14 ± 0.50 48.38 ± 1.39
Dipole [5] 58.70 ± 1.19 56.18 ± 1.29 42.18 ± 1.44 58.04 ± 1.77 60.16 ± 2.84 46.46 ± 3.39
Retain [4] 53.56 ± 0.69 50.96 ± 0.65 37.46 ± 0.80 56.04 ± 3.20 55.06 ± 1.52 43.48 ± 1.88
SAnD [10] 51.70 ± 2.27 52.12 ± 2.36 37.66 ± 2.36 52.50 ± 4.98 56.38 ± 2.81 41.68 ± 2.70
Adacare [8] 60.50 ± 1.61 55.08 ± 0.36 42.34 ± 0.85 59.68 ± 2.10 60.68 ± 1.21 47.84 ± 2.87
LSAN [12] 63.84 ± 1.75 54.98 ± 0.98 43.52 ± 0.88 68.16 ± 1.52 64.12 ± 1.64 52.88 ± 1.87

With
Time

RetainEx [6] 60.52 ± 0.61 54.04 ± 2.69 43.44 ± 2.55 63.44 ± 1.92 58.92 ± 4.00 49.06 ± 4.27
Timeline [7] 54.86 ± 1.85 49.02 ± 0.85 36.40 ± 1.10 56.46 ± 2.52 58.24 ± 2.04 45.52 ± 2.48
T-LSTM [22] 68.62 ± 0.80 62.92 ± 0.61 51.55 ± 1.06 63.19 ± 2.14 62.91 ± 0.83 51.08 ± 1.62
HiTANet [11] 68.46 ± 0.44 61.86 ± 0.80 49.80 ± 0.57 70.80 ± 0.96 64.06 ± 1.87 53.28 ± 2.18
AutoMed 71.57*± 2.48 65.08*± 2.13 54.34*± 1.86 73.13*± 2.58 68.91*± 1.73 58.42*± 2.60

Dataset Kidney Heart Failure
Metrics PR-AUC (%) F1 (%) Kappa (%) PR-AUC (%) F1 (%) Kappa (%)

Without
Time

LSTM [20] 61.96 ± 2.49 63.69 ± 1.18 50.36 ± 1.78 54.98 ± 1.97 59.58 ± 0.99 43.92 ± 0.74
Dipole [5] 64.88 ± 3.35 64.65 ± 1.74 51.60 ± 2.22 56.80 ± 2.12 58.84 ± 1.32 43.02 ± 1.16
Retain [4] 61.72 ± 2.76 57.15 ± 2.40 44.61 ± 2.83 53.90 ± 1.45 49.96 ± 2.69 34.88 ± 2.73
SAnD [10] 57.69 ± 3.21 60.36 ± 1.06 45.75 ± 1.10 53.74 ± 3.41 55.38 ± 1.05 39.42 ± 1.88
Adacare [8] 71.29 ± 2.46 65.01 ± 1.49 52.89 ± 2.29 60.74 ± 4.41 57.46 ± 3.28 42.98 ± 3.95
LSAN [12] 72.31 ± 0.63 64.44 ± 1.43 52.48 ± 1.87 68.24 ± 1.47 60.10 ± 1.13 46.38 ± 1.02

With
Time

RetainEx [6] 69.15 ± 1.48 61.61 ± 1.48 50.61 ± 1.65 62.46 ± 1.09 54.06 ± 2.61 41.08 ± 2.82
Timeline [7] 63.89 ± 3.12 59.87 ± 1.18 46.71 ± 1.12 60.18 ± 3.12 57.08 ± 2.44 42.10 ± 3.27
T-LSTM [22] 68.90 ± 3.29 66.16 ± 0.61 54.26 ± 0.73 64.66 ± 4.02 62.40 ± 2.33 48.89 ± 2.86
HiTANet [11] 75.65 ± 0.44 68.01 ± 0.74 56.72 ± 0.81 67.56 ± 2.01 61.92 ± 1.49 47.92 ± 1.46
AutoMed 76.63*± 1.83 70.41*± 1.26 59.13*± 2.23 67.07*± 1.99 66.64*± 1.36 53.10*± 1.81

word positions in Transformer and achieves the best performance on all three datasets.
These two kinds of approaches are representative in the health risk prediction task when
modeling time information.

Although existing approaches can improve the prediction performance by modeling
time information via human prior knowledge, they all entangle the time features with
diagnosis features during the model architecture design. Since two different features have
inconsistent patterns and scales, it is extremely difficult for human-designed architecture
to fuse them together appropriately. Thus, our proposed AutoMed uses disentangled cells
to process each type of features independently and designs a fusion cell to automatically
search the feature fusion strategy, which can solve the feature inconsistency problem
better. In such a way, the proposed AutoMed significantly outperforms all the baselines
in terms of PR-AUC, F1, and Cohen’s Kappa.

58

4.4.3 Ablation Study

The benefit of the proposed AutoMed is to automatically discover optimal network
architectures via the three designed cells. Next, an ablation study is conducted to
investigate the performance change when we add the cells one by one. Besides, for
both the diagnosis and time encoding modules, we use a searchable feature selector to
automatically learn the representative module outputs. To validate the efficiency of the
proposed feature selector, we also conduct an ablation study. Specifically, we design the
following four settings:

• Fusion Only: In this setting, we do not use the diagnosis and time modules and only
use the fusion module. We achieve this by replacing x̂T and x̂D in Eq. (4.4) with T
and D obtained in the embedding module.

• Fusion+Time: We use two searchable cells in this setting, i.e., the fusion and time
cells. Towards this end, we replace x̂D with D in Eq. (4.4). In the time encoding
module, we use the searchable feature selector.

• Fusion+Diagnosis: Similar to the above ablation setting, we replace x̂T with T
in Eq. (4.4). In the diagnosis encoding module, we also use the searchable feature
selector.

• W.O. Selectors: This setting means that AutoMed removes the feature selector for
the diagnosis and time encoding modules (i.e., without using Eq. (4.3)) and uses
the average computation node representations as the outputs of these modules, i.e.,
x̂D = 1

C

∑C
k=0 x(k)

D and x̂T = 1
C

∑C
k=0 x(k)

T .

Table 4.3: Ablation study results in terms of F1 score (%).

Dataset COPD Amnesia Kidney HF
AutoMed 65.08 68.91 70.41 66.64

Fusion Only 62.32 64.75 69.42 62.76
Fusion+Time 62.81 68.79 69.02 63.64
Fusion+Diagnosis 61.90 63.95 69.31 64.75
W.O. Selectors 65.90 66.00 69.35 64.57

We present the ablation study results in Table 4.3 in terms of F1 score (%). Note
that the results of the other two metrics have similar patterns as those of F1 scores. We

59

can observe that removing any of the cells will lead to performance drop to some degree,
which can validate that it is necessary to design three cells to jointly learn the optimal
model architecture for risk prediction. Additionally, the contribution of each cell varies
on different datasets.

Compared to Fusion Only, AutoMed designs separate cells for each type of feature,
which enables the search algorithm to find the best model architecture for each one of
them. Thus, AutoMed can largely improve the model learning ability on heterogeneous
EHR data. Another noteworthy thing is that it would lead to performance drop compared
to single-cell search when adding the diagnosis cell. This indicates that simply searching
for one type of feature might lead to the inconsistency of time and diagnosis features,
which affects the learning of the fusion cell. Therefore, it is optimal to design both time
and diagnosis cells and combine them with the fusion cell to learn the overall model
architecture simultaneously.

When we use the average representations of nodes in each cell as the output of the
encoding modules (i.e., W.O. Selectors), we can find that on the COPD dataset, the
F1 score sightly increases. For other three datasets, the performance of W.O. Selectors
is worse than that of AutoMed. These results demonstrate that using the designed
searchable feature selector does not harm the model performance, and in turn, it can
boost the performance in most cases.

4.4.4 Demonstration of the Searched Architectures

Figure 4.2 shows the searched architectures on the four datasets by the proposed AutoMed
from a certain run. Due to the randomness, different runs may obtain different searched
architectures, but in our experiments, we observe that they usually have similar archi-
tectures. From these searched architectures, we can derive several insights for the risk
prediction model design as follows:

• Time Cell. Convolution operations are often selected for the time cell, which
indicates that neighboring visits’ time features are typically crucial in the design of
model architectures since simply analyzing the time information for a single step
does not capture the disease progression through time.

• Diagnosis Cell. For diagnosis features, AutoMed might choose different feature
processing methods such as the feed-forward layer, attention, or convolution opera-
tions based on the unique patterns of each dataset. This indicates that for diagnosis
features, there is no one optimal operation for all the datasets, which leads to the

60

issue that we need to specify architectures for different datasets. However, this
issue can be avoided by the proposed AutoMed.

• Fusion Cell. After combining two types of features together, the fusion cell typically
chooses RNN models for processing the fused features, which indicates that the
RNN model is an optimal choice of comprehensively analyzing the heterogeneous
features for risk prediction task.

4.4.5 Varying # of Cell Nodes

In this subsection, we conduct experiments to validate whether the number of step nodes
within each cell affects the effectiveness of different model capacities. Towards this end,
we run experiments under different configurations of C’s and report the validation error
curves of the supernet during the search stage. Since we have a unified setting for all
three designed cells, the change of C affects all cells.

Figure 4.3 shows the results. We can observe when C is equal to 1, the validation loss
typically can not reach the lowest value during the searching stage since it has too limited
model capacity to fit the EHR data well. When C increases to 4 or 5, the searching loss
curve will become less stable which may lead to poor performance since too large model
capacity might overfit the data. Therefore, we recommend the selection of C to be 2 or 3
on these datasets.

4.4.6 Additional Results on Dementia Dataset

In this section, we present the results of the fifth EHR dataset, which is Dementia. We
use the same setting for this dataset as other four datasets shown in the paper and
conduct all of the evaluation methods on this dataset, including performance evaluation
in Table 4.5, ablation study in Table 4.6, analyzing the searched architecture in Figure
4.4, and varying number of cell nodes in Figure 4.5.

4.4.6.1 Dataset

The statistics of Dementia dataset are shown in Table 4.4.

4.4.6.2 Performance Evaluation

As shown in Table 4.5, the performance of AutoMed on Dementia is still higher than all
of the baselines for most metrics, which shows that the proposed AutoMed achieves stable

61

Time Cell Fusion Cell

Diagnosis Cell

x_T_0
x_T_1

conv
x_T_2

conv

conv CatFC

x_D_0

x_D_1
zero x_D_2

zero
zero

x_F_0 x_F_1attention x_F_2
attention

ffn

(a) COPD

Time Cell
Fusion Cell

Diagnosis Cell

x_T_0
x_T_1

conv
x_T_2

attention

conv
CatFC

x_D_0

x_D_1attention
x_D_2identity

identity

x_F_0
x_F_1

zero x_F_2

rnn

zero

(b) Amnesia

Diagnosis Cell

Time Cell Fusion Cell

x_T_0
x_T_1

conv
x_T_2

conv

conv CatFC

x_D_0

x_D_1
identity x_D_2

zero

zero

x_F_0 x_F_1conv x_F_2

rnn

zero

(c) Kidney

Time Cell
Fusion Cell

Diagnosis Cell

x_T_0
x_T_1

conv
x_T_2

conv

conv
CatFC

x_D_0

x_D_1ffn
x_D_2identity

identity

x_F_0
x_F_1

attention x_F_2

rnn

identity

(d) Heart Failure

Figure 4.2: The searched architectures. The black arrows (→) denote the searched
operation on the edges of DAG. The red arrows (→) mean the selected computation
node by the searchable feature selectors. The blue arrows (→) represent the input of
the fusion cells, which are not searched by AutoMed. “x_T_0” means T, and “x_D_0”
means D. Similarly, “x_D_1” is x(1)

D learned by Eq. (4.2).

improvements over the state-of-art risk prediction models.

62

0 200 400 600 800 1000
Steps

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Va
l l

os
s

C = 1
C = 2
C = 3
C = 4
C = 5

(a) COPD

0 100 200 300 400 500
Steps

0.38

0.40

0.42

0.44

0.46

0.48

Va
l l

os
s

C = 1
C = 2
C = 3
C = 4
C = 5

(b) Amnesia

0 100 200 300 400 500 600 700
Steps

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Va
l l

os
s

C = 1
C = 2
C = 3
C = 4
C = 5

(c) Kidney Disease

0 200 400 600 800
Steps

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Va
l l

os
s

C = 1
C = 2
C = 3
C = 4
C = 5

(d) Heart Failure

Figure 4.3: The validation loss curves on four datasets when trying different number of
step nodes.

Table 4.4: Statistics of Dementia dataset.

Dataset Dementia
Positive Cases 2,385
Negative Cases 7,155
Avg. Visits/Patient 41.05
Avg. Codes/Visit 4.71
Unique Codes 7,813

4.4.6.3 Ablation Study

As shown in Table 4.6, the ablation study results on the Dementia dataset also show
that removing any of the modules from the original AutoMed will lead to performance
decrease to some degree. This again verifies that all of the components designed for
AutoMed are necessary.

63

Table 4.5: Performance comparison in terms of PR-AUC, F1 score, and Cohen’s Kappa on
the Dementia dataset. The results produced by the best baseline and the best performer
in each column are marked with underlined and boldfaced, respectively.

Dataset Dementia
Metrics PR-AUC F1 Kappa

LSTM 56.76 ± 3.25 56.46 ± 1.47 42.98 ± 1.58
Dipole 56.80 ± 3.92 56.07 ± 2.25 42.34 ± 3.31
Retain 60.64 ± 1.74 52.79 ± 1.73 41.36 ± 1.94
SAnD 51.38 ± 3.18 50.47 ± 3.03 33.42 ± 4.34
Adacare 61.81 ± 1.50 57.81 ± 2.12 44.72 ± 3.20
LSAN 64.86 ± 1.01 57.35 ± 2.52 44.90 ± 2.23
RetainEx 61.94 ± 1.18 54.29 ± 0.44 42.58 ± 0.54
Timeline 59.01 ± 0.85 55.24 ± 1.65 40.99 ± 1.61
TLSTM 56.82 ± 5.62 56.00 ± 1.82 41.67 ± 2.72
HiTANet 59.64 ± 1.85 55.75 ± 0.94 42.04 ± 0.87
AutoMed 61.35*± 1.91 58.98*± 2.83 45.53*± 2.39

Table 4.6: Ablation study results in terms of F1 on the Dementia dataset.

Dataset Dementia
AutoMed 58.98

Fusion Only 58.73
Fusion + Time 58.46
Fusion + Diagnosis 57.14
W.O. Selectors 57.67

4.4.6.4 Searched Architecture

We demonstrate the searched architecture on the Dementia dataset in Figure 4.4. Similarly,
AutoMed searches for convolution operations to process time features. Differently from
the searched architectures shown in Figure 4.2, the convolution operation is chosen to
process diagnosis features, and attention combined with feed forward layer is chosen
to handle the fused features, which is determined by the unique characteristics of the
Dementia dataset.

64

Diagnosis Cell

Time Cell
Fusion Cell

x_T_0
x_T_1

conv
x_T_2

conv

conv
CatFC

x_D_0

x_D_1conv
x_D_2conv

attention

x_F_0
x_F_1

ffn x_F_2

attention

attention

Figure 4.4: The searched architectures on Dementia dataset. The black arrows (→)
denote the searched operation on the edges of DAG. The red arrows (→) mean the
selected computation node by the searchable feature selectors. The blue arrows (→)
represent the input of the fusion cells, which are not searched by AutoMed.

0 100 200 300 400 500
Steps

0.46

0.48

0.50

0.52

0.54

Va
l l

os
s

C = 1
C = 2
C = 3
C = 4
C = 5

Figure 4.5: The validation loss curves on the Dementia dataset when trying different
numbers of step nodes.

4.4.6.5 Varying # of Cell Nodes

The results of varying number of cell nodes for the Dementia dataset are shown in Figure
4.5. We can observe that the larger number of nodes is typically better for the Dementia
dataset. However, the proposed AutoMed using C = 2 still achieves better performance
on this dataset as shown in Table 4.5.

4.5 Conclusion
In this paper, we propose a novel automated risk predictive modeling approach, named
AutoMed, which is able to automatically search the optimal model architecture for dealing
with the sequential and temporal EHR data with minimal human interventions. The
designed model consists of five modules, and they tightly work together to optimize

65

not only model architecture parameters and generate the optimal network architecture.
Experiments on three real-world medical datasets show that the proposed AutoMed
achieves state-of-the-art performance compared with baselines. Moreover, the ablation
study demonstrates the effectiveness of the designed modules, and the case study of
presenting searched architectures offers some important insights, which are helpful for the
future model design. Our future work will explore how to incorporate medical knowledge
graphs into automated risk predictive modeling design.

66

Chapter 5 |
Automated Fusion of Multimodal
Electronic Health Records for Bet-
ter Medical Predictions

5.1 Introduction
Electronic Health Record (EHR) systems have been extensively adopted in numerous
hospitals and healthcare institutions, resulting in the generation of vast amounts of
patient EHR data on a daily basis. This data holds significant potential for various
predictive tasks, including but not limited to diagnosis prediction [5, 67], medical recom-
mendation [40], health risk prediction [4, 16], and hospital readmission [68]. However,
the heterogeneous and multimodal nature of EHR data poses significant challenges in
the design of effective deep predictive models.

Most existing studies [69–72] primarily focus on the design of hand-crafted model
architectures for integrating multimodal EHR data. However, this approach necessitates
considerable domain expertise, which may introduce the potential for human bias. To
address these concerns, recent research [73, 74] has proposed the utilization of neural
architecture search (NAS) techniques [53] to automatically search for suitable architectures
for modeling multimodal EHR data, thereby eliminate the need for human intervention.
Although these methods demonstrate improved performance compared to hand-crafted
approaches, they still encounter certain issues:

C1 – Diversifying the Search Space Current approaches [73, 74] typically em-
ploy a uniform search space across all modalities when conducting neural architecture
search (NAS). However, EHR data encompasses diverse modalities, including tabular

67

demographics, discrete medical codes, continuous monitoring data from ICU stays, and
unstructured clinical notes. A uniform search space fails to adequately capture the
heterogeneity of these modalities. Furthermore, existing methods primarily utilize simple
operations like concatenation and addition within the fusion search space, which may not
effectively capture the complex interactions among different EHR modalities. Therefore,
it is crucial to explore more suitable search spaces for multimodal feature encoding and
fusion that can better accommodate the diverse nature of EHR modalities.

C2 – Customizing the Search Optimization Existing approaches utilize either
evolutionary NAS [57] or differentiable architecture search (DARTS) [49] to find the
optimal architecture within the defined search space. Although DARTS represents a
significant efficiency improvement compared to evolutionary NAS, it often encounters
issues of robustness [75] and may struggle to identify suitable architectures. Given
the complexity of the search space in our specific task, directly applying DARTS may
result in poor performance for the searched architectures. Consequently, a customized
search algorithm is necessary to discover meaningful architectures for effectively fusing
multimodal EHR data.

C3 – Deriving the Optimal Architecture DARTS-based methods, such as
AutoMed [74], determine the final architecture by selecting operations based on the
magnitudes of architecture weights obtained from the trained supernet. However, it
has been observed that the operation with the highest architectural weight on the
supernet does not necessarily correspond to its actual contribution to the generalization
performance [76]. This arbitrary discretization approach can result in a significant drop
in performance, a concern that becomes more pronounced when modeling multimodal
EHR data due to the complexity of the search space. Thus, the development of a new
discretization technique tailored to our specific task is necessary to derive an optimal
architecture.

Our Approach To overcome the aforementioned challenges, we propose a novel
neural architecture search (NAS) framework called AutoFM for Automatically Fusing
Multi-modal EHR data. AutoFM addresses C1 by introducing a new two-stage search
space. The first stage, called modality-specific search, focuses on designing specialized
encoding modules for each input modality, incorporating feature encoding and feature
interaction operations to explore potential early fusion strategies. The second stage,
known as multi-modal fusion search, focuses on creating late fusion architectures. This
involves a feature selector component to determine the selected modalities and a searchable
fusion component to identify the optimal fusion operation.

68

Patient
Demographic

Clinical
Notes

Continuous
Events

Discrete
Events

Prune

Layer 1

Layer 1

Layer 1

Layer 1

. . .
Layer K. . .

. . .
Layer K

Layer K. . .
. . .

Layer K

. . .

. . .

Modality Specific Search
(Sec 3.2.1)

. . .

Multi-modal Fusion Search
(Sec 3.2.2)

Prediction
(Sec 3.3)

D
er

iv
ed

A

rc
hi

te
ct

ur
e

Su
pe

rn
et

Bi-level Optimization

Optimization
(Sec 3.4)

(Sec 3.4.1)

(Sec 3.4.2)

Figure 5.1: Overview of the proposed AutoFM.

To tackle C2, we introduce a customized loss term within the original bi-level
optimization formulation of DARTS. This customized loss promotes diversity within
the feature selector, guiding the search algorithm toward discovering more meaningful
architectures. To address C3, we devise a novel pruning-based algorithm to select the
optimal architectures after training the supernet. This algorithm effectively preserves
the performance of the derived architecture during the discretization process. We
extensively evaluate our proposed method on real-world multi-modal EHR data, showing
its superiority over existing state-of-the-art models. Through these experiments, we
demonstrate the effectiveness and advantages of our approach.

5.2 Literature Review

5.2.1 Modeling Multi-modal EHR data

Recently, clinicians and researchers have begun to leverage multi-modal EHR data to
improve the performance of predictive modeling for healthcare.

For example, Raim [69] and DCMN [70] use both continuous patient monitoring data,
such as electrocardiograms, and discrete clinical events to better forecast the length of
ICU stays and mortality. MNN [71] improves diagnosis prediction by combining medical
codes and clinical notes through a multi-modal attentional neural network. [72] combines
clinical notes with patient monitoring data to conduct risk prediction of acute respiratory
failure (ARF) and diagnosis prediction. And [77] further improves the mortality and

69

phenotype prediction performance by modeling the irregularity of clinical events and
clinical notes during ICU stays. However, all of the existing works focus on designing
hand-crafted neural networks to model the multi-modal EHR data. Therefore, they are
limited to predefined input modalities and prediction tasks. Compared to the hand-
crafted models, MUFASA [73] applies the evolutionary architecture search method to
search for the multi-modal network for diagnosis prediction. However, it comes with high
computational cost and have constraints on input features and fusion strategies.

Our work [78] distinguishes itself by introducing a comprehensive search space en-
compassing modality-specific architectures and diverse multi-modal fusion strategies.
Besides, we propose a new optimization loss on top of the more efficient DARTS [49]
algorithm, enabling the discovery of more reasonable and advantageous architectures for
multi-modal EHR data.

5.2.2 Neural Architecture Search

Neural architecture search (NAS) [53] automates the process of finding optimal deep
neural network architectures. Different approaches such as reinforcement learning [47] and
evolutionary search [57] have been used, but they require significant computational costs.
To improve efficiency, more advanced techniques have been employed, such as weight
sharing [48], sequential model-based optimization [50], and Bayesian optimization [52]. A
recent approach called differentiable architecture search (DARTS) [49] has emerged, which
achieves high search efficiency by using a continuous relaxation of the discrete architecture.
However, DARTS has faced challenges regarding robustness and generalization. For
instance, [75] observes that DARTS often fails to select meaningful operations and
degenerates to networks filled with parameter-free operations, which leads to poor
performance. Also, [76] shows that selecting the optimal architectures based on the
magnitude of architecture weights in DARTS is not reasonable since it does not necessarily
correlate to the final performance, which leads to a performance drop when discretizing
the supernet. Our work [78] addresses the limitations of DARTS when applied to
multi-modal EHR data. It introduces an additional penalty during supernet training to
encourage the selection of more meaningful architectures. Additionally, a new pruning-
based architecture selection method is proposed to maintain the supernet’s performance
during discretization.

70

5.3 Methodology
As depicted in Figure 5.1, our proposed AutoFM framework takes multiple heterogeneous
EHR data as input. To effectively handle this diverse data, we introduce a novel
multimodal search space that enables the automatic search for optimal architectures for
modality representation and fusion strategies. This search space allows our framework to
discover the most suitable approaches for representing each modality and effectively fuse
them together for improved predictive modeling.

5.3.1 Multimodal EHR Data Embedding

Our model takes four modalities as the input, including two types of sequential data – (1)
continuous events M = [m1, · · · , mT] ∈ Rd1×T and (2) discrete events E = [e1, · · · , eT] ∈
Rd2×T and two types of static data – (3) patient demographics p ∈ Rd3 and (4) the
corresponding clinical note n ∈ Rd4 , where T is the number of time slots and n is the
output of [CLS] from the pre-trained language model - ClinicalBERT [68]. The details
of data processing can be found in Section 5.4.1.

We first map these features into the same latent space by a fully connected layer:

Rm = W⊤
m[m1, · · · , mT] + bm, (5.1)

Re = W⊤
e [e1, · · · , eT] + be, (5.2)

sp = W⊤
p p + bp, (5.3)

sn = W⊤
n n + bn, (5.4)

where Wm ∈ Rd1×de , We ∈ Rd2×de , Wp ∈ Rd3×de , Wn ∈ Rd4×de , be ∈ Rde , bm ∈ Rde ,
bp ∈ Rde , and bn ∈ Rde are learnable parameters.

5.3.2 Multi-Modal Search Space Design

Our approach incorporates two stages of searchable modules: (1) modality-specific
search and (2) multimodal fusion search. In the first stage, we focus on designing
modality-specific search spaces tailored to each individual modality. These search spaces
take into account not only the encoding of the current feature within a modality but
also the potential early interactions between different modalities. This allows for the
exploration of various encoding strategies and fusion techniques at the modality level.

71

Table 5.1: Modality-specific operations.

Feature Operation Operation Description

Static
(Ost)

Identity This is a default operation that does not transform the input feature.

Linear Layer Apply linear transformation with ReLU activation, where
W1 ∈ Rde×de and b1 ∈ Rde : o(x) = ReLU(W1x + b1)

Static-Static
Feature Interaction

Apply concatenation and feed-forward layer to model the interaction
between the current feature and the other static feature, where
W2 ∈ R2de×de , b2 ∈ Rde and x′ is the input feature of the other
static modality sp or sn: o(x) = W2[x; x′] + b2

Static-Sequential
Feature Interaction

Apply the attention mechanism to model the interaction with the
current feature as the query and the other features as the keys.
Since we have two sequence features, we then have two interaction
operations: o(x) = Softmax

(
(Wqx)⊤·(Wkx′)√

de

)
· (Wvx′), x′ ∈ {Rm, Re},

where Wq, Wk, Wv ∈ Rde×de .

Sequential
(Osq)

Identity This is a default operation that does not transform the input feature.

Recurrent Layer
Apply Recurrent Neural Network(RNN) to process the input feature,
which is able to capture the temporal patterns. In our model, we use
Gated Recurrent Unit (GRU) [19] as the basic operation.

Self-Attention Layer Apply self-attention mechanism [21] to model the long-term
dependencies of the sequence feature.

1-D Convolution
Apply 1-D convolution operation to process the feature and capture
the local correlations. We use the padding and strides that can
maintain the same shape as the input tensor.

Feed-forward Layer Apply a linear layer to all positions of the sequence feature.

Sequential-Sequential
Feature Interaction

Apply cross-modal attention mechanism to model the interaction
between two sequence features. The current feature will serve as
the queries, and the other feature will serve as the keys.
The formulation is the same as Static-Sequential Feature Interaction
except that the queries become sequential features this time.

Moving to the second stage, our approach encompasses a search space specifically
designed for late fusion architectures. This search space consists of two crucial modules:
the feature selector and the searchable fusion module. The feature selector component
determines which modalities should be selected and incorporated into the fusion process.
The searchable fusion module then identifies the optimal fusion operation to be applied.
By jointly optimizing the feature selection and fusion operation within this search space,
we enable the framework to automatically discover effective strategies for multi-modal
feature fusion.

In the following sections, we will provide more detailed explanations of each stage,
highlighting their respective contributions and functionalities.

5.3.2.1 Modality Specific Search

To facilitate the search process using differentiable methods, we assume that the architec-
ture for each modality type consists of a network comprising K sequentially connected

72

Table 5.2: Fusion operations.

Operation Operation Description

Sum This operation sums all the input features together to fuse them:
o(uc) = u(c)

1 + u(c)
2 + · · ·+ u(c)

4+c−1

MLP
This operation applies a multi-layer perceptron to the sum of all
input features, where W3 ∈ Rde×de and b3 ∈ Rde :
o(uc) = ReLU(W3u′(c) + b3), and u′(c) = u(c)

1 + u(c)
2 + · · ·+ u(c)

4+c−1

Attentive
Sum

This operation first uses linear projection to generate weights for
all features and then applies a weighted sum to aggregate all
features, where Wϕ ∈ Rde and bϕ ∈ R:
o(uc) = ∑4+c−1

i=1 ϕiu(c)
i , [ϕ1, · · · , ϕ4+c−1] = Softmax(l1, · · · , l4+c−1),

and li = Wϕu(c)
i + bϕ, i = 1, · · · , 4 + c− 1

layers, as illustrated in Figure 5.1. Consequently, our objective is to search for the optimal
operation for each layer k. To make the search space compatible with differentiable
search methods, we define a mixed operation at each layer. This mixed operation is
a weighted sum of all operations within a predefined set O. The formulation can be
expressed as follows:

xk =
∑
o∈O

exp(α(k)
o)∑

o′∈O exp(α(k)
o′)

o(xk−1),

k = 1, · · · , K,

(5.5)

where xk represents the feature of layer k. x0 can be any of the input features
[Rm, Re, sp, sn]. α’s are architecture parameters that measure the weights for candidate
operations, and we have four groups of α’s in total for different modalities.

Next, we list the candidate operation sets for each modality in Table 5.1. As we have
two types of input modalities, we design two distinct modality-specific search spaces
to cater to their specific characteristics. For both types of features, in addition to
the feature encoding operations, we also incorporate interaction operations. These
interaction operations handle the interactions between the current modality and other
modalities, both within the same category and across different categories. By including
these interaction operations, our method is capable of exploring how to effectively process
all the input features and discover fine-grained early fusion operations among different
modalities. This allows for comprehensive modeling and integration of the various
modalities present in the EHR data.

73

5.3.2.2 Multimodal Fusion Search

Once we obtain the output features for all modalities from the first stage, we apply a
fixed max pooling operation to the encodings of sequence features over the sequence
length dimension. This step ensures that we have encodings of the same shape for all
modalities, denoted as [z1, z2, z3, z4] ∈ Rde . Next, we will discuss how to effectively fuse
these features using searchable modules.

Our fusion module follows a directed acyclic graph (DAG) design. Given the input
features [z1, · · · , z4], we add one computation node at each step, and the newly added
nodes can connect to all previous nodes and features, as shown in Figure 5.1.

Assuming we have a total of C nodes, at node c, we have the following features as
inputs: [z1, · · · , z4, g1, · · · , gc−1], where the g’s represent the output features for the
corresponding nodes. Our goal is to search for two operations: (1) selecting the previous
features that should be taken as inputs to the current node, and (2) determining the fusion
operation for the selected inputs. To accomplish these steps, we design two searchable
modules: the feature selector and the searchable fusion module. These modules enable us
to dynamically and adaptively determine the most relevant features and fusion operations
at each node of the fusion module.

Feature Selector To handle the feature selection at each node c, we define an
operation set Oa that consists of only two operations: Identity and Zero. These
operations determine whether to select the corresponding feature or not. Similar to
Eq. (5.5), we apply the mixed operation over Oa to each input feature for node c. As a
result, at node c, we obtain a list of (4+c−1) features, denoted as uc = [u(c)

1 , · · · , u(c)
4+c−1],

where the values of these features can be either 0 or the original values. This process
allows us to dynamically select relevant features based on the search algorithm’s decisions
at each node.

Searchable Fusion To determine the fusion operation for the selected features at
each node c, we define a candidate set Ob that contains different fusion strategies, as
listed in Table 5.2. These fusion strategies represent different ways of combining the
selected features. Similar to the feature selection step, we apply mixed operations over
Ob at each node to determine the fusion operation. This process allows us to explore
and search for the optimal fusion strategy that effectively combines the selected features.

74

5.3.3 Prediction

To obtain a comprehensive representation of the entire EHR data, we linearly combine all
the node features from the multi-modal fusion module [g1, · · · , gC], i.e., h = ∑C

c=1 wcgc,
where wc ∈ R is the learned weight.

For the binary classification problem, we use sigmoid as the activation function to
calculate the prediction probability as follows:

ŷ = sigmoid(Wyh + by). (5.6)

For the multi-label classification problem, we use softmax to generate the probability
score for all classes as follow:

ŷ = softmax(Wyh + by), (5.7)

where ŷ ∈ RP and P is the number of classes.

5.3.4 Optimization

5.3.4.1 Supernet Training

We use the bi-level optimization technique as DARTS [49] to optimize the model archi-
tecture weights and all other learnable parameters simultaneously:

min
α
Lval(W∗(α, β, γ), α, β, γ) + λ · Penalty(β)

s.t. W∗(α, β, γ) = argminWLtrain(W, α, β, γ)
(5.8)

where α, β, and γ are the architecture weights involved in the modality-specific search,
feature selector, and searchable fusion, respectively. W denotes all other learnable
parameters in the network, and Lval and Ltrain mean the validation loss and training
loss.

Additionally, we add one more penalty term Penalty(β) to the architecture weights
of the feature selector β in order to make the feature selector select diverse modalities
at different step nodes. We achieve that by maximizing the cross entropy of any two

75

different steps of β:

Penalty(β) = −
C∑

c1=1

C∑
c2=1

CrossEntropy(β[c1][: 4], β[c2][: 4])
(5.9)

Note that we only take the first four values of β at each step, which indicates the
selection of input modalities [z1, · · · , z4]. In this way, the penalty term will lead the
feature selector to select different combinations of input modalities for fusion at different
steps. However, the selection of the following computation nodes [g1, · · · , gC] will not be
affected, which enables the model to search for more complex fusion strategies without
any constraints.

Algorithm 2: Pruning Supernet
Input: A pretrained supernet S, Set of mixed operations E from S
Output: Set of selected operations {o∗

e}e∈E , Pruned supernet S ′

1 while True do
2 randomly select a mixed operation e ∈ E ;
3 for all operation o on e do
4 evaluate the validation performance of S when o is removed (S\o);
5 end
6 remove the worst operation for e: o′

e ← arg maxo Evaluate(S\o);
7 re-normalize architecture weights on e for remaining operations;
8 finetune the remaining supernet S ′ for a few steps;
9 if ∀e ∈ E , |{o|o ∈ e}| = 1 then

10 break;
11 end
12 end

5.3.4.2 Deriving the Optimal Architecture

After training the supernet, we introduce a novel method for deriving the final architecture
by gradually pruning operations. We adopt the concept of perturbation-based architecture
selection [76], which evaluates the importance of each operation by removing it from the
supernet and analyzing the resulting performance changes. In contrast to the original
approach that directly selects the optimal operation for each edge, our method removes
only one operation per iteration during discretization. This incremental strategy enables
the derivation of architectures that can retain multiple operations per edge, ultimately
facilitating the formation of more advanced architectures.

76

Table 5.3: Statistics of the four datasets.

Task ARF Shock Mortality Diagnoses
data samples 9,393 12,289 7,440 7,440
Dimension of p 96 97 96 96
Dimension of E 680 739 1,001 1,001
Dimension of M 4,452 5,056 6,726 6,726
Recorded hours T 12 12 48 48

We introduce the process of pruning in Algorithm 2. Specifically, we denote the
trained supernet as S and the set of all mixed operations as E . The goal is to prune
the supernet until only one operation o∗

e is left for each mixed operation e ∈ E . In order
to achieve that without too much performance drop from the supernet, we propose to
gradually prune unimportant operations from the supernet, where the importance of
each operation is determined by its contribution to the validation performance.

For each iteration, we first sample a mixed operation from the supernet and then
prune the worst operation from it if removing the operation brings the best validation
performance. Then, we will fine-tune the remaining architecture until it converges again.
The pruning will stop when all mixed operations from the supernet only have one optimal
operation remaining. In this way, we can observe how the performance drops during
the whole process, and select the relatively better architecture before it drops too much.
Therefore, we can get the final architecture with nearly the same performance as the
trained supernet without training from scratch.

5.4 Experiments

5.4.1 Experimental Setups

Data Processing. Following FIDDLE [79], we extract data from the MIMIC-III
dataset [1] and specifically focus on the 17,710 patients (23,620 ICU visits) recorded from
2008 to 2012. We extract the structured features within 48/12 hours using FIDDLE.
These features are randomly divided into the training, validation, and testing sets in a
7:1.5:1.5 ratio. The unstructured texts within 48/12 hours are obtained by consolidating
the latest notes of each category into one document and aligning them with the other
structured features. The data statistics can be found in Table 5.3.

Prediction Tasks. We aim to address four prediction tasks: (1) Acute Respiratory

77

Failure at 12 hours (ARF 12h), (2) Shock at 12 hours (Shock 12h), (3) Mortality at 48
hours (Mortality 48h), and (4) Diagnoses at 48 hours (Diagnoses 48h). The first three
tasks involve binary classification, aiming to predict whether patients will experience
these severe conditions during their ICU stays based on the initial 12/48 hours of data.
The last task focuses on predicting diagnosis codes upon hospital discharge based on
the initial 48 hours of data, constituting a multi-label classification problem. After
extracting the top three digits of ICD-9 codes1, we have 1,025 disease labels for predictions.

Baselines. We include both handcrafted and automated models as our baselines.
Handcrafted models: we include vanilla LSTM [20] and CNN [80] models as baselines.
Following the settings in [72], we combine LSTM, CNN, Transformer [21], and Star-
Transformer [81] with ClinicalBERT using Multimodal Adaptation Gate (MAG) [82],
resulting in eight baseline models as shown in Table 6.3. Automated models: we also
apply MUFASA [73] to our prediction tasks as a NAS baseline for multi-modal EHR
data.

Implementation. During the supernet training stage, we employ the Adam opti-
mizer [66] with a learning rate of 1e− 4 for the network parameter W and 1e− 5 for
the architecture parameters α, β, and γ. The loss function is cross entropy. The batch
size for all tasks is set to 64, and the hidden dimension de is set to 256. To balance
the bi-level optimization, the penalty term weight λ is set to 0.1. In the first stage, the
number of layers K is set to 2, while in the second stage, the number of step nodes C

is set to 3. The entire supernet training takes less than one hour on an NVIDIA A100
GPU, demonstrating the efficiency of the search algorithm. During the pruning of the
trained supernet, we utilize the same settings, except for the fine-tuning phase, where we
use a learning rate of 2e− 6.

Evaluation Metrics. Following [72], for three binary classification tasks, we use
AUROC (Area Under the Receiver Operating Characteristic curve) and AUPR (Area
Under the Precision-Recall curve) to evaluate the performance. For the diagnosis
prediction task, we use Top-K Recall (R@K) instead and separately set K to be 10,
20, or 30. For all methods, we run the experiments for five times and report the mean
values for a fair comparison.

1https://www.cdc.gov/nchs/icd/icd9.htm

78

5.4.2 Performance Evaluation

The results of the four tasks are presented in Table 5.4, where it can be observed that
our method achieves the best performance across all metrics compared to the baseline
approaches. These results demonstrate the superiority of our proposed method over
existing state-of-the-art baselines.

For the three binary classification tasks aiming to predict emergent conditions within
a short time window, real-time time-series data, such as vital signs, play a crucial role
in achieving high performance. This importance of real-time data is further confirmed
by our ablation study in Section 5.4.3. However, existing approaches fail to adequately
distinguish the significance of such modalities and treat all modalities equally in the
input, leading to subpar performance.

In the case of the multi-label diagnosis prediction task, where the model is required to
predict from a vast set of 1,025 disease groups, the task complexity is higher compared to
the other tasks. Consequently, models employing advanced fusion techniques outperform
those using simple fusion methods. Notably, MUFASA performs significantly worse than
other baselines in this task. This can be attributed to the large label space, which makes
it challenging for MUFASA to converge to a favorable local optimum.

Table 5.4: Performance comparison on four tasks. The second-best results are marked by
underline.

Tasks ARF 12h Shock 12h Mortality 48h Diagnoses 48h
Metrics AUROC AUPR AUROC AUPR AUROC AUPR R@10 R@20 R@30
LSTM 0.7377 0.3268 0.7364 0.2940 0.8827 0.5427 0.1516 0.1932 0.2224
CNN 0.7348 0.3214 0.7356 0.2775 0.8876 0.5479 0.1670 0.2501 0.2990
LstmBert 0.7310 0.3086 0.7403 0.2852 0.8755 0.5362 0.2299 0.3320 0.3994
BertLstm 0.7441 0.3200 0.7391 0.2912 0.8811 0.5409 0.2170 0.3298 0.4086
CnnBert 0.7201 0.2925 0.7348 0.2891 0.8853 0.5447 0.2206 0.3110 0.3693
BertCnn 0.7389 0.3292 0.7268 0.2776 0.8777 0.5450 0.2250 0.3346 0.4072
EncoderBert 0.7350 0.3117 0.7377 0.2857 0.8800 0.5296 0.1985 0.2459 0.2825
BertEncoder 0.6893 0.2633 0.7164 0.2818 0.8663 0.5183 0.2198 0.3366 0.4108
StarBert 0.7238 0.3194 0.7110 0.2869 0.8729 0.4878 0.2265 0.3305 0.3996
BertStar 0.6824 0.2641 0.7044 0.2825 0.8644 0.4724 0.2215 0.3173 0.4026
MUFASA 0.7362 0.3088 0.7295 0.2735 0.8812 0.5436 0.0903 0.1156 0.1296
AutoFM 0.7565 0.3593 0.7463 0.3039 0.8900 0.5514 0.3338 0.4780 0.5658

5.4.3 Ablation Study on Input Modalities

In this ablation study, our objective is to assess the importance of each modality in the
final prediction by systematically removing them from the model input alternatively.

79

Table 5.5: Ablation study on input modalities

Task ARF Shock Mortality Diagnoses
Metrics AUPR AUPR AUPR R@10
AutoFM 0.3593 0.3039 0.5514 0.3338
- Demographic 0.3376 0.2822 0.5553 0.3310
- Continuous Events 0.2966 0.2310 0.4010 0.3074
- Discrete Events 0.3551 0.3027 0.5336 0.3294
- Clinical Notes 0.3362 0.2773 0.5501 0.3265

Table 5.6: Results on different optimization methods.

Tasks ARF Shock Mortality Diagnoses
Metrics AUPR AUPR AUPR R@10
Supernet 0.3565 0.3053 0.5549 0.3251
Supernet⊖ 0.3445 0.3027 0.5473 0.3257
AutoFM 0.3593 0.3039 0.5514 0.3338
AutoFM⊖ 0.3410 0.3031 0.5471 0.3316

The experimental results are presented in Table 5.5. It can be observed that removing
any modality leads to a drop in performance, highlighting the significance of considering
multimodal EHR data as input for the model. Notably, the time series modality predom-
inantly encompasses vital signs information, which is a strong indicator of emergency
conditions occurring during ICU stays and aids in accurate diagnoses. Consequently,
removing continuous event features from the input leads to the largest performance drop
compared to the original framework.

5.4.4 Effect of Feature Selection Penalty

We introduce a new loss term in the optimization process to guide the selection of optimal
modalities in the fusion stage. To assess the effectiveness of this designed penalty term
(Eq.(5.9)), we conducted a study, and the results are presented in Table 5.6.

“Supernet” refers to the learned supernet using our proposed AutoFM with Eq. (5.8),
while “Supernet⊖” indicates the supernet without the penalty term defined in Eq. (5.9).
We observe that the inclusion of the penalty term improves the performance of the
supernet across all three binary classification tasks. For the diagnoses prediction task,
comparable performance is still achieved even without the penalty term. These results
confirm the term’s ability to ensure the diversity of feature selection in the multi-modal
fusion process.

80

Table 5.7: Results on different discretization methods.

Tasks ARF Shock Mortality Diagnoses
Metrics AUPR AUPR AUPR R@10
DARTS 0.3124 0.2891 0.5536 0.3332
DARTS-PT 0.3433 0.2986 0.5444 0.3268
AutoFM 0.3593 0.3039 0.5514 0.3338

We also compare the derived model from Supernet⊖, denoted as “AutoFM⊖”,
which still employs the proposed pruning-based architecture discretization outlined in
Algorithm 2. Notably, without the designed penalty, the derived model AutoFM⊖

exhibits inferior performance compared to our proposed AutoFM. This comparison further
demonstrates the necessity and effectiveness of the penalty term in the optimization
process.

5.4.5 Effect of Pruning-based Architecture Selection

In Section 5.3.4.2, we present a pruning-based discretization method to derive the optimal
architecture. To evaluate the effectiveness of this approach, we derive two models from
the same supernet trained using Eq. (5.8), employing the approaches used in DARTS [49]
and DARTS-PT [76]. The results are shown in Table 5.7. The performance of the
derived models using our pruning-based approach is significantly better compared to
the models derived using DARTS and DARTS-PT. This indicates that our method
effectively captures the optimal architecture from the supernet and achieves superior
performance. These results provide strong evidence supporting the effectiveness of our
proposed discretization method.

5.4.6 Architecture Study

Figure 5.2 provides an example of the searched architecture for the ARF task. It
demonstrates the effectiveness of our approach in capturing the interactions between
different modalities during the modality-specific search stage. Furthermore, in the second
stage of multi-modal fusion, our method is able to explore different combinations of input
modalities [z1, · · · , z4] at different steps. This is achieved through the penalty imposed
by the additional loss term, which encourages diversity in the feature selection process.
As a result, our fusion module can effectively determine the optimal fusion strategy,
leading to improved performance in capturing the underlying patterns and relationships

81

Modality Specfic Search

Multimodal Fusion
M

R_m

E
R_e

p
s_p

n

s_n

layer 1

interact(M)

interact(E)

interact(n)

layer 11D conv
SelfAttention

interact(E)

layer 1

Identity

FFN
interact(M)

layer 1
interact(M)

interact(p)

layer 2
interact(M)

interact(n)

z_3

layer 2

interact(E)

z_1

layer 2

SelfAttention

RNN

interact(M)

z_2

layer 2

interact(E)

interact(p)

z_4

sum+att
att+mlp

att h

Figure 5.2: Searched architecture. The blue arrows represent fixed operations, while the
other black arrows are all searched operations. The interact(·) means the interaction
operation with the corresponding feature. For the steps nodes [g1, g2, g3], we omit the
notations in the figure and fill the node with the selected fusion operations like (sum+att).

within the multi-modal EHR data.

5.4.7 Working Procedure of Pruning-based Architecture Selection

In this study, we investigate the process of pruning-based architecture selection and
visualize the performance changes throughout the pruning procedure. We present the
validation and test performance in terms of AUPR on the ARF 12h task, as shown in
Figure 5.3.

Upon observation, we note a slight improvement in performance on both validation
and test sets during the initial 20 steps. This improvement is potentially due to the
removal of supernet operations that have a negative impact on performance, thereby
increasing the AUPR to some extent. Subsequently, there are two noticeable performance
drops at around steps 20 and 40. These drops indicate that when a significant number of
operations are removed from the supernet, resulting in significant changes in the model
architecture, the fine-tuning process is unable to effectively recover the performance.

Based on this observation, we can make the decision to halt the pruning process
before reaching step 20. By doing so, we obtain the final architecture that demonstrates

82

Figure 5.3: Pruning curve on the ARF 12h task.

either the same or even better performance than the original supernet.

5.5 Limitation and Future Work
The current proposed model relies on a pre-trained language model to generate embeddings
for clinical notes, making it impractical to directly search for the best token-level
architecture for encoding clinical notes and modeling interactions with other modalities.
Additionally, the current model only considers a limited number of modalities from
electronic health record (EHR) data. However, there are various other types of medical
data, including diagnosis codes, procedure codes, drug codes, and medical images, that
have the potential to contribute valuable information. In our future work, we aim to
address these limitations by incorporating additional modalities and designing more
powerful models. This expansion will allow us to capture a broader range of information
from diverse medical data sources, enabling more comprehensive and accurate predictions.
By exploring the integration of different modalities and developing advanced models, we
strive to enhance the capabilities and performance of our framework in handling a wider
array of medical data types for improved predictive modeling in healthcare.

Moreover, the current framework requires searching a specific architecture for every
new task we have, limiting the efficiency when dealing with multiple datasets or tasks.
So, the future direction is to develop transferrable AutoML solutions for EHR data that
can leverages the information from previous tasks or datasets to facilitate the searching
of new tasks.

83

5.6 Conclusion
In this paper, we introduced AutoFM, a novel Neural Architecture Search (NAS) framework
designed for automatically fusing multi-modal EHR data. Our experimental results
demonstrated the superior performance of our method compared to existing state-of-the-
art baselines across various tasks.

84

Chapter 6 |
Automated Multi-Task Learning
for Joint Disease Prediction on
Electronic Health Records

6.1 Introduction
In the era of big data and digital healthcare, the voluminous Electronic Health Records
(EHR) have emerged as a treasure trove of valuable information that can revolutionize
patient care, medical research, and clinical decision-making. As a result, the data mining
community has been working on designing machine learning models to predict patients’
future health conditions by extracting patterns from their EHR data, such as mortality
prediction [8], diagnosis prediction [5, 67] and hospital readmission [68].

Although most of the existing machine learning based prediction models are designed
to be single-task, i.e. predicting the risk of a single target disease, some of the existing
works [83–87] proposed to design multi-task learning (MTL) models to jointly predict for
multiple targets. The motivation behind this lies in the fact that two or more diseases
might be related to each other in terms of sharing common comorbidities, symptoms,
risk factors, etc. Consequently, training on related diseases simultaneously can offer
additional insights and potentially enhance prediction performance. While multi-task
learning offers potential advantages, the existing MTL frameworks for EHR data still
suffer from the following limitations.
Limitations of the existing MTL frameworks for EHR data. To design an
effective MTL framework, two fundamental challenges need to be addressed:

(1) How can we determine which tasks should be trained together? The task grouping

85

problem [88] involves finding groups of tasks to train jointly. Multi-task learning only
provides advantages when the tasks are synergistic, i.e., training on the tasks together
makes the model learn general knowledge that helps in performing the tasks better
in the test set and prevents overfitting. Thus, given a large set of related tasks in a
domain, we may need to group the tasks (allowing tasks to belong to multiple groups)
together to create groups of tasks on each of which we will train a model. However,
existing works usually rely on human expert discretion to select multiple tasks upfront
and create a shared model for those tasks [83–87]. Hence, none of them has addressed
the general problem of task grouping for EHR data. Moreover, due to the complexity
of disease correlations, grouping synergistic tasks together is extremely challenging for
human experts. It not only demands substantial effort (trying out every possible task
combination) but also introduces the risk of task interference (putting disparate diseases
together), potentially leading to performance degradation. Therefore, how to design the
appropriate task grouping for MTL on EHR data presents a critical challenge.

(2) How can we design model architectures for MTL? Existing works [83–87] typically
rely on hand-crafted architectures for multi-task learning, which consist of a shared EHR
encoder followed by several task-specific classifiers. However, due to the large number of
possible operations as well as network topologies, manually tuning an optimal architecture
for MTL is impossible. Furthermore, the optimal architectures for different task groups
might also be distinct. Thus, things can even get worse when the number of tasks grows
and different task combinations are involved for joint tuning. Therefore, we need a more
efficient and effective approach to design the optimal MTL architectures for EHR data.
Automating the MTL framework design for EHR data. To address the afore-
mentioned challenges, we look to Automated Machine Learning (AutoML) [89]. Since
AutoML relies on data-driven approaches to automate the design of machine learning
algorithms, it has the potential to improve the design of an MTL framework for EHR
data and reduce human interventions. Several attempts have been explored in other
domains, e.g., computer vision, to improve the design of task grouping [88,90,91] and
MTL architectures [92–96]. However, the exploration of AutoML in healthcare domain
remains relatively limited [97]. To the best of our knowledge, there are no existing work
that automates the finding of groups of tasks for MTL towards designing an optimal
framework for classification tasks using EHR data, which is a notable gap in the field.
Joint optimization over task grouping and architecture search. Morever, cur-
rently there exists no end-to-end optimization framework for automating MTL, even in
other domains. Current approaches independently address the problems of task grouping

86

and architecture design. First, a line of work [88,90,91] solves the task grouping problems
by learning the task correlations. They operate under the underlying assumption that
MTL architectures are the same across different task groups, which might not be practical
nor optimal. Second, researchers also apply Neural Architecture Search (NAS) [53] to
automatically design MTL architectures for a predefined set of tasks [92–96, 98]. No
existing work has integrated these two approaches to address both problems simultane-
ously. However, combining them naively could lead to sub-optimal results, as sequential
optimization might result in inaccurate estimations for both aspects. Therefore, we need
a more generalized AutoML framework for the joint optimization of both task grouping
and architecture search.
Overview of the proposed approach. Therefore, in this paper, we show that an
integrated approach for multi-task grouping and neural architecture search provides
significant improvements. First, we extend existing single-task models like Retain [4],
Adacare [94] to MTL in an EHR setting. Second, we apply DARTS [49], an NAS method
used in MTL settings in different domains to the EHR domain. We use one shared model
for predicting multiple tasks. These adaptations improve over the single-task setting.
Second, we explore the impact of automated task grouping in the EHR setting by grouping
tasks and finding an optimal NAS model for each task group. This further improves the
performance. Finally, we propose an integrated framework an Automated multi-task
learning framework, AutoDP, for joint Disease Prediction on electronic health records,
which aims at jointly searching for the optimal task grouping and the corresponding
neural architectures that maximize the multi-task performance gain. We show that this
third method provides the maximal performance gain.

Specifically, in AutoDP, we employ a surrogate model-based optimization approach [99]
for efficient search. First, we define the joint search space of task combinations and
architectures that includes all possible configurations for MTL. We want to find optimal
solutions from this search space. To achieve that, the first question is how we can evaluate
the performance of each configuration. Performing the ground truth evaluation for every
configuration is infeasible, since it requires an entire multi-task learning procedure for each
pair of architecture and task combination. Therefore, instead of exhaustively evaluating
all the configurations, we build a surrogate model to predict the multi-task gains for
any given configurations from the search space. In this way, we only need to evaluate
the ground truth gains for a subset of samples from the search space, and use them
to train the surrogate model for estimating the rest ones. The intuition is that there
exists an underlying mapping from each configuration to the expected multi-task gains;

87

thus it can be learned by a neural network. The remaining question is how we can
effectively train the surrogate model using as few samples as possible. To this end, we
further propose a progressive sampling strategy to guide the surrogate model training
for improving sample efficiency. That is we train the surrogate model through multiple
iterations. At every iteration, we select some points from the search space and update
the surrogate model accordingly. The selection is conditioned on the current surrogate
model and involves both exploitation and exploration. That is, we iteratively select the
points that bring higher performance gains and also come from unexplored areas, which
makes the training samples represent the whole search space. Eventually, after we obtain
the trained surrogate model, we further use it to derive the final optimal task grouping
and architectures. Because of the huge search space, it is not practical to use brute-force
search. Hence, we develop a greedy search method to find the near-optimal solution.

In summary, our contributions are as follows:

• We are the first to propose an automated approach for multi-task learning on
electronic health records AutoDP, which largely improves the design of task grouping
and model architectures by reducing human interventions. Specifically, this work
is the first to automate the design for the optimal task grouping and model
architectures for MTL on EHR data.

• We are the first to propose a surrogate model based optimization framework that
jointly searches for the optimal task grouping and corresponding model architectures
with high efficiency in any domain.

• We propose a progressive sampling strategy to construct the training set for the
surrogate model, which improves sample efficiency by reducing the required number
of ground truth evaluations during searching. Importantly, we balance exploitation
and exploration so that the sampled configurations can represent the whole search
space and are highly accurate.

• We propose a greedy search algorithm to derive the final MTL configuration using
the trained surrogate model and find a near-optimal solution from the huge search
space efficiently.

• Experimental results on real world EHR data - MIMIC IV [2] demonstrate that
AutoDP improves classification performance significantly over existing hand-crafted
and automated methods under feasible computational costs.

88

6.2 Literature Review

6.2.1 Multi-Task Learning with EHR

To enhance prediction performance while forecasting patients’ health conditions based on
their historical data [100], existing studies employ multi-task learning to simultaneously
predict multiple related target diseases or conditions, resulting in improved performance
compared to single-task training. For example, Wang, et al. [85] investigated the
advantages of joint disease prediction using traditional machine learning models. More
recently, researchers have applied recurrent neural network (RNN) based models to
conduct multi-task learning on EHR data [83, 84, 101], which is able to predict tasks like
mortality, length of stay, ICD-91 diagnoses and etc. Additionally, Zhao, et al. [86] also
utilized a transformer based method for multi-task clinical risk prediction on multi-modal
EHR data. However, all these studies manually select the set of tasks for joint training
without task grouping and utilize a hand-crafted MTL model architecture, which largely
limits their performance.

6.2.2 Multi-Task Grouping

Due to the limitation of manually selected task groups, some of the work focus on
obtaining the optimal task grouping through searching. Specifically, Standley, et al. [88]
is the first work that systematically analyze the task correlations. For improving the
efficiency, they use pair-wise MTL gains to estimate the high-order MTL gains, and
obtain the pair-wise gains by training one model for each task pair. Based on the
estimated gains, they derive the optimal task grouping using brute-force search. Fifty, et
al. [90] further improves the efficiency by training one model to derive all the pair-wise
gains. They derive the task affinity based on the gradient information during training.
Furthermore, Song, et al. [91] propose a more general method that employs a meta model
to learn the task correlations and estimates the high-order MTL gains more effectively.
These works normally assume that the model architecture is the same across different
task groups. But in practice, we can maximize performance gains by applying different
model architectures with respect to each task group. Thus, we need a more general
framework that considers the model architectures during task grouping.

1https://www.cdc.gov/nchs/icd/icd9.htm

89

6.2.3 Multi-Task NAS

Neural Architecture Search (NAS) [53] stands as a prominent research area in AutoML,
focusing on the exploration of optimal deep network architectures through a data-driven
approach. Although the main stream of NAS focuses on the setting of single task
learning, some researchers also try to employ NAS in multi-task learning applications,
predominantly for searching computer vision MTL architectures. Notably, studies done
by Ahn, et al. [92] and Bragman, et al. [93] employ reinforcement learning and variational
inference, respectively, to determine whether each filter in convolutions should be shared
across tasks. Furthermore, other recent works [94–96,98] leverage differentiable search
algorithms [49], to determine the optimal sharing patterns across multiple network layers
for diverse tasks. Despite the demonstrated advancements, a common limitation is
their reliance on human experts to pre-define a set of tasks for joint training. This
constraint poses challenges in practical scenarios where task grouping is not readily
available, thereby limiting their broader applicability. What is more, their frameworks
often search for better MTL architectures on top of one or several backbone architectures
such as ResNet [102]. However, such backbone architectures might not be available for
EHR applications in medical domain. Therefore, a new multi-task NAS framework is
needed for EHR data.

In the NAS domain, surrogate model-based optimization (SMBO) has been introduced
to efficiently search for the optimal architecture within a given search space [50,103,104].
This approach addresses the practical challenges of NAS, where optimization problems
lack analytic objective functions, and evaluating a candidate solution can take hours or
even days. SMBO overcomes these limitations by employing a predictive model (the
surrogate model) to approximate the objective function, enabling informed decision-
making during the search process. Beyond solving the NAS problem, our work extends the
problem setting to joint optimization of task grouping and search space while introducing
a novel SMBO framework tailored for this joint optimization.

6.3 Methodology

6.3.1 Preliminaries

Problem definition. Assume we have the input EHR data for multiple patients where
each patient is represented as X ∈ RL×de , where L is the time sequence length and
de is the hidden dimension of the input features. We have N prediction tasks using

90

the EHR data, denoted as T = {T1, T2, · · · , TN}. We seek to maximize the overall
MTL performance gain for all these prediction tasks compared to single task training.
First, we define MTL gain. Conduct a single task training on each task independently
using a specific backbone model (such as RNN), and obtain the single-task performance
for all tasks in terms of a predefined metric (such as average precision), denoted as
{s1, s2, · · · , sN}. Then, the MTL gain is defined as:

gi = (mi − si)
si

, i = 1, · · · , N, (6.1)

where mi is the multi-task performance for Ti. Therefore, our objective is to maximize
the overall gain for all tasks: G = 1

N

∑N
i=1 gi.

To achieve that, our proposed method solves two searching problems at the same
time using AutoML. First, we search for a list of task combinations that defines which
tasks should be trained together. Second, we determine the optimal model architecture
for each task combination. We aim at finding the optimal configuration for both, such
that the highest overall gain G is attained.

Task grouping search space. For N tasks, there are 2N − 1 task combinations,
C = {C1, C2, · · · , C2N −1}, where every C is a subset of T . Given a budget B, we aim at
searching for maximally B task combinations from C to determine which tasks should be
trained together. The task combinations should cover all N tasks so that we are able
to obtain {m1, m2, · · · , mN}. If one task Tn appears in multiple task combinations, we
simply choose the highest performance for it as mn.

Architecture search space. For every task combination, we also need to search for
an MTL architecture to model the EHR data. We adopt the hard sharing mechanism as
in most existing works [83, 101], which consists of a shared encoder for extracting the
latent representation of the input EHR and multiple task specific classifiers to generate
the output for every task.

Specifically, we enable the search for the optimal shared encoder. For the search
space of the encoder, we adopt the setting of directed acyclic graph (DAG) [49]. The
architecture is represented as a DAG that consists of P ordered computation nodes,
and each node is a latent feature that has connections to all previous nodes. For each
connection (also called edge), we can choose one operation from a predefined set of
candidate operations O for feature transformation. Let E0 = X, the formulation of node
p is defined as follows:

Ep =
p−1∑
i=0

o(i,p)(Ei), o(i,p) ∈ O, (6.2)

91

𝐸0

𝐸1

𝐸3

𝐸2

Task 𝑇1

Task 𝑇5

Task 𝑇3

Sec 3.1: MTL Procedure
Searchable operation

Sec 3.3: Surrogate 𝑭(⋅)Sec 3.5: Derivation

M
LP

SelfAttention

GNN

𝐶∗

𝐴∗

𝑧

ℎ𝑃

ො𝑔1

ො𝑔3

ො𝑔5

𝐴∗

𝐶∗

Initialize population: 𝒫
Repeat 𝐾2 iterations:
 Mutate 𝐶, 𝐴 → (𝐶′, 𝐴′);
 Estimate (𝐶, 𝐴) and (𝐶′, 𝐴′);
 Update 𝒫;

Greedy Search

Sec 3.4:
Progressive Sampling

𝑋

MIMIC-IV Tasks

Heat Failure;
COPD;
Shock;
⋯ ⋯

EHR Time series

{𝑇1, 𝑇2, ⋯ , 𝑇5}EHR

Data Extraction

TrainTest

Final Results

𝑋

Model 1

Model 2

𝑇1
𝑇3
𝑇5

𝑇2
𝑇4
𝑇5

Repeat 𝐾1 iterations:
 For each task 𝑇𝑛:
 Select task combinations 𝒞𝑇𝓃;
 Sample from Γ 𝒞𝑇𝓃 → 𝐶∗;
 Select Architectures መ𝒜𝐶∗

;
 Sample from መ𝒜𝐶∗

→ 𝐴∗;
 Update Θ and 𝒟;

Progressive Selection

Task combination 𝐶0 = {𝑇1, ⋯ , 𝑇𝑁};
Sample 𝑄0 architectures;
Conduct 𝑄0 MTL procedures;
Initialize 𝛩 and 𝒟;

Warm Start

ො𝑔 𝐶∗, 𝐴∗
× 𝐾1

Figure 6.1: Overview of the proposed AutoDP

where node features Ei ∈ RL×de ’s all have the same dimension as X, and o(i,p) is the
operation that transform Ei to Ep. Essentially, sampling one architecture from the search
space is equivalent to sampling one operation for every edge in the DAG. In this way, we
can get the set of all possible architectures denoted as A.

Finally, to predict, we take the last node representation EP as the encoded feature
for the input EHR, and use task-specific classifiers to output final predictions, which are
all fixed fully connected network layers.

MTL procedure. To evaluate a specific sample from the joint search space C×A, we
need to conduct an MTL experiment to obtain the multi-task performances. Specifically,
given an architecture A ∈ A and a task combination C ∈ C, we train the model A to
predict for all tasks in C and get the multi-task performances for those tasks. Then,
we can compute their gains by Eq.(6.1). In this way, we are able to evaluate how much
gains that this sample (C, A) could achieve.

6.3.2 Overview

We propose a surrogate model based AutoML framework to search for the optimal task
grouping and corresponding architectures simultaneously. To achieve that, we need to
first evaluate the MTL gains for all the samples in the joint search space C ×A, and then
select the best B samples (pairs of task combinations and architectures) that maximize G.
However, it is not practical to obtain the ground-truth gains for every sample, since the
whole search space is normally very huge and every MTL procedure is also considerably
expensive. Therefore, we build a neural network (called surrogate model) to learn the
mapping from a pair of task combination and architecture to the multi-task gains:

g(C,A) = F (C, A), C ∈ C, A ∈ A, (6.3)

92

where g(C,A) ∈ R|C| is the per-task gains for task combination C ∈ C if using A as the
model, and F (·) is the surrogate model. In this way, we only need to evaluate the ground
truth gains for a small subset of samples from the search space, and use them to train
the surrogate model for estimating all other unseen samples. The assumption is that the
multi-task gains are essentially determined by the configuration of the task combination
and the architecture, so there exists an underlying mapping that could be learned by a
neural network. We set universal hyperparameters and optimization settings for all MTL
procedures, hence the influence of other factors can be ignored.

Specifically, we introduce the model architecture of the surrogate model in Section
6.3.3. Then, we outline the training procedure of the surrogate model in Section 6.3.4,
where we propose an active learning strategy to collect training samples. Eventually, we
use greedy search to derive the final configuration of task grouping and architectures
by utilizing the trained surrogate model, as discussed in Section 6.3.5. The framework
overview is shown in Figure 6.1.

6.3.3 Surrogate Model

For learning the mapping from an input configuration to the multi-task gains, the
surrogate model is required to encode both architectures and task combinations. Also,
the model needs to output multi-task gains. Therefore, we design a new surrogate model
that consists of two encoders that respectively transform the input architecture and task
combination into latent representations. Then, two representations are fused together to
predict the multi-task gains.

Architecture Encoding. For encoding a given architecture A, we apply a graph
encoder [105] that is specifically designed for modeling DAGs, which is suitable for
encoding the architectures in our search space. It can sequentially update the hidden
states for the P computation nodes in preceding order by aggregating information from
all predecessors. For node p, we have:

hp = Aggregate(W0 · h0, W1 · h1, · · · , Wp−1 · hp−1), (6.4)

where h0 ∈ Rds is the input node representation which contains trainable parameters,
and W ∈ Rds×ds ’s are learnable transition matrices constructed for each operation in
O. For every operation in the architecture, we also apply the corresponding W in our
graph encoder. For aggregating all incoming representations, we apply average pooling
to obtain the node representation hp. Finally, we use the node representation for the last

93

node hP as the overall encoding for the input architecture.
Task Combination Encoding. For encoding a given task combination C, we use

the self attention mechanism [21] to model the high order interactions among the selected
tasks in C. Specifically, we randomly initialize the embedding for all N tasks, and for
task combination C, we have:

z = Pool(SelfAttention(u1, u2, · · · , u|C|)), (6.5)

where u ∈ Rds ’s are corresponding embeddings for the selected tasks and z ∈ Rds is the
final representation for task combination C. Additionally, we also use average pooling on
top of the self attention layers to obatin z.

Prediction. Eventually, we apply a two layer MLP to fuse both architecture encoding
hP and task combination encoding z, and output the predicted gains for all selected
tasks ĝ(C,A) ∈ R|C|. We use the mean absolute error to supervise the surrogate model as
follows:

L(ĝ(C,A), g(C,A)) = ||ĝ(C,A) − g(C,A)||1, (6.6)

where g(C,A) ∈ R|C| is the ground truth gains generated by conducting an MTL procedure
for (C, A).

6.3.4 Progressive Sampling

In order to efficiently train the surrogate model defined in previous section, we develop a
progressive sampling method to collect training samples. Start with an empty training
set and a random initialized surrogate model, we progressively sample more points from
the search space C ×A, and then use them to train the surrogate model. Specifically, we
include two stages for the surrogate model training:

Warm start. Firstly, we warmup the surrogate model by selecting a small number
of samples from the search space. Specifically, we use the task combination that contains
all N tasks C0 = {T1, · · · , Tn} and randomly sample Q0 architectures from A. Then we
conduct Q0 MTL procedures to evaluate their gains by training on C0. In this way, we
collect Q0 training samples as the initial training set denoted as D. We further train the
surrogate model on D, and denote the model parameters as Θ.

Progressive selection. Then, we progressively select more points and train the
surrogate model as introduced in Algorithm 3. Totally, we conduct K1 rounds of sampling.
For each round, we iterate through all N tasks. With respect to one task Tn, we build

94

Algorithm 3: Progressive Selection
Input: Training set D, surrogate model parameter Θ, Q1, Q2, K1; Q1 > Q2.
Output: Updated D and Θ

1 for k = 1, 2, · · · , K1 do
2 for n = 1, 2, · · · , N do
3 Collect all task combinations that contains Tn:

CTn = {Cj|∀Cj ∈ C, Tn ∈ Cj};
4 for ∀Cj ∈ CTn do
5 Randomly sample Q1 architectures from A, denote the set as ACj ;
6 Forward the surrogate model to collect gains for Tn with every

architecture in ACj : G = {g[Tn]|∀A ∈ ACj , g = F (Cj, A)};
7 Select the top Q2 architectures from ACj with highest gains in G,

denoted as ÂCj ;
8 Calculate the mean over top Q2 gains from G, denoted as µCj ;
9 Calculate the variance over top Q2 gains from G, denoted as σCj ;

10 end
11 Compute the acquisition values over CTn as:

Γ(CTn) = {µCj + λ · σCj ,∀Cj ∈ CTn};
12 Sample a task combination C∗ from CTn that has highest value in Γ(CTn),

and randomly sample an architecture A∗ from ÂC∗ ;
13 Conduct an MTL procedure on (C∗, A∗), and collect the ground truth

labels g(C∗,A∗);
14 Add (C∗, A∗, g(C∗,A∗)) to D;
15 end
16 Update Θ by training the surrogate model on D;
17 end

the acquisition function Γ over the set of task combinations that contains Tn based on
the predicted gains for Tn. Then, we select one task combination C∗ that have highest
value. We apply Upper Confidence Bound [106] as the acquisition function that considers
both exploration and exploitation by explicitly estimating the mean and variance of
predicted gains (line 11 marked by blue). Besides that, we would also like to see the
effect of exploration vs exploitation. so we try out different settings of Γ. Specifically,
we propose three variants of AutoDP, namely AutoDPµ+σ, AutoDPµ and AutoDPσ, which
corresponds to the original setting, including only µ or only σ in Γ. In this way, we can
compare the results with pure exploration and pure exploitation during sampling, and
find out the optimal strategy for AutoDP. Moreover, we also select one architecture A∗

with high predicted gain for Tn when combined with C∗. The selection of C∗ and A∗ is
interdependent, and the details are introduced in Algorithm 3. In this way, we collect

95

one sample (C∗, A∗) to update the training set D with respect to each Tn. At the end
of each round, we also update the surrogate model parameters Θ with the updated D.
After K1 rounds, we are able to obtain a well trained surrogate model for estimating the
whole search space.

Algorithm 4: Greedy Search
Input: Trained surrogate model F (·), B, K2.
Output: Searched population P .

1 Randomly sample B pairs from C × A to initialize P ;
2 for v = 1, 2, · · · , K2 do
3 Randomly select one pair (C, A) from P ;
4 Mutate (C, A) to (C ′, A′) by changing one task in C or one operation in A,

and obtain a new population P ′;
5 Estimate P ′ and P using F (·);
6 Choose the better one: P ← Select(P ′,P) ;
7 end

6.3.5 Derivation

We derive the final results using the trained surrogate model. Due to the huge search
space, it is still not practical to use brute force search to get the global optimum.
Therefore, we propose to apply a greedy method to search for near-optimal solutions.
We introduce the detailed procedure in Algorithm 4. The high level idea is that we first
randomly initialize the configuration, and then gradually improve its multi-task gain by
random mutation and greedy selection.

Specifically, given the budget B, we aim at searching for B samples from the search
space C × A such that the overall gain G is maximized. We first randomly initialize
the population P that contains B pairs of task combinations and architectures. Then,
at every iteration, we randomly mutate one pair (C, A) from the population and see
whether the overall multi-task gain will increase. If so, we update P accordingly. After
K2 iterations, we can obtain a near-optimal solution. In practice, we also apply multiple
initial populations to avoid getting stuck on local optima. Although we only get an
approximate solution, our method can already achieve significant improvements over
baselines as shown in Section 6.4.2.

96

6.4 Experiments

6.4.1 Set Up

Dataset & Tasks. We adopt MIMIC - IV dataset [2] for our experiments, which is a
publicly available database sourced from the electronic health record of the Beth Israel
Deaconess Medical Center. Specifically, we extract the clinical time series data for the
56,908 ICU stays from the database as our input EHR data, with an average sequence
length of 72.9. With respect to each ICU stay, we also extract 25 prediction tasks
(listed in Table 6.1), including chronic, mixed, and acute care conditions. Each condition
is associated with a binary label indicating whether the patient has the corresponding
condition during the ICU stay.

To prepare our dataset, we adopt the data pre-processing pipeline outlined in Haru-
tyunyan, et al. [101]. Given that the original implementation2 is designed for MIMIC-
III [1], we make specific modifications to tailor it for MIMIC-IV. The 25 labels are defined
using the Clinical Classifications Software (CCS) for ICD-9 code3. Consequently, we first
map the ICD-10 codes4 in the MIMIC-IV database to ICD-9 codes before generating
the labels. After processing, we have the feature dimension de as 76. We partition the
dataset as train, validation and test sets with a ratio of 0.7 : 0.15 : 0.15.

Implementation We implement the framework using the PyTorch framework and
run it on an NVIDIA A100 GPU. Given the dataset we have, we first train a vanilla
LSTM for every task independently, and report the backbone performance in Table 6.1,
which can be further used to compute multi-task gains. For the proposed method, we
run three settings of experiments: Task @ 5, Task @ 10 and Task @ 25, which refers
to using the first 5 tasks, 10 tasks and 25 tasks respectively. For different settings, we use
specific hyperparameters as shown in Table 6.2. Besides that, we define the candidate
operation set O as {Identity, Zero, FFN, RNN , Attention}, which includes widely used
operations for processing EHR time series. Among them, Identity means maintaining
the output identical to the input. Zero means setting all the values of the input feature
to 0. Attention and FFN represents one self-attention layer and one feed-forward layer
respectively, which are the same as in Transformer [21]. RNN is one recurrent layer,
and we adopt LSTM [20] in our framework. For all the MTL procedures and baseline
training, we apply the batch size of 64 and learning rate of 3e − 4. For training the

2https://github.com/YerevaNN/mimic3-benchmarks
3https://www.cdc.gov/nchs/icd/icd9.htm
4https://www.cms.gov/medicare/coding-billing/icd-10-codes/2018-icd-10-cm-gem

97

Table 6.1: Performance of the single task backbone.

Task ROC AVP
Acute and unspecified renal failure 0.7827 0.5647
Acute cerebrovascular disease 0.9079 0.4578
Acute myocardial infarction 0.7226 0.1761
Cardiac dysrhythmias 0.6948 0.5168
Chronic kidney disease 0.7296 0.4383
Chronic obstructive pulmonary disease and bronchiectasis 0.6791 0.2689
Complications of surgical procedures or medical care 0.7229 0.4045
Conduction disorders 0.6712 0.1880
Congestive heart failure; nonhypertensive 0.7601 0.5129
Coronary atherosclerosis and other heart disease 0.7351 0.5589
Diabetes mellitus with complications 0.8844 0.5559
Diabetes mellitus without complication 0.7484 0.3355
Disorders of lipid metabolism 0.6730 0.5816
Essential hypertension 0.6298 0.5258
Fluid and electrolyte disorders 0.7396 0.6129
Gastrointestinal hemorrhage 0.7076 0.1281
Hypertension with complications and secondary hypertension 0.7141 0.4243
Other liver diseases 0.6849 0.2303
Other lower respiratory disease 0.6371 0.1417
Other upper respiratory disease 0.7602 0.2228
Pleurisy; pneumothorax; pulmonary collapse 0.7051 0.1417
Pneumonia 0.8171 0.3786
Respiratory failure; insufficiency; arrest (adult) 0.8651 0.5497
Septicemia (except in labor) 0.8291 0.4866
Shock 0.8792 0.5574

surrogate model, we use the batch size of 5 and learning rate of 5e− 5. During searching,
we compute all multi-task gains on the validation set for guiding the surrogate model
training. After we obtain the optimal configuration, we train the searched models and
report their multi-task gains on the test set.

Baselines. To compare the proposed method with existing work, we choose several
state-of-art-baselines, including both hand-crafted and automated methods. Specifically,
as described below, we include several human-designed EHR encoders to compare with
the searched architecture we defined in Eq. (6.2). Also, we include one NAS method
and one multi-task grouping method as the automated baselines. More importantly,
we combine the multi-task grouping method with the NAS method and hand-crafted
encoders to show the superiority of our joint optimization method.

98

Table 6.2: Hyperparameter setting.

Parameters Task @ 5 Task @ 10 Task @ 25
of tasks N 5 10 25

Dimension of F (·) ds 64 64 64
of nodes P 2 2 3

Progressive sampling

Q0 10 10 20
Q1 50 100 100
Q2 10 20 20
λ 0.5 0.5 0.5

K1 20 30 25

Greedy search K2 1000 1000 1000
B 3 5 10

Runtime GPU Hours ∼ 20 ∼ 75 ∼ 200

• EHR encoders: We choose four models that are widely utilized for analyzing EHR
time series, including LSTM [20], Transformer [21], Retain [4] and Adacare [8].

• NAS: We choose DARTS [49] as the NAS baseline, which is a differentiable search
method for efficient architecture search. We apply it to our search space A to find
better EHR encoders. Several state-of-the-art works in other domains have also used
it to find MTL architectures [94–96,98].

• Multi-task grouping: MTG-Net [91] is the current state-of-the-art multi-task grouping
algorithm, which uses a meta learning approach to learn the high-order relationships
among different tasks. We refer to this method as MTG in latter sections.

Evaluation Metric. We use two widely used metrics for binary classification
to evaluate our method and baselines: ROC (Area Under the Receiver Operating
Characteristic curve) and AVP (Averaged Precision). During surrogate model training,
we use AVP as the metric to compute multi-task gains as in Eq. (6.1), since it is a more
suitable choice for considering the class imbalance.

6.4.2 Performance Evaluation

We show our results in Table 6.3. Each experiment is run five times and the average of
the runs are reported. We run three settings: Task @ 5, Task @ 10 and Task @ 25,
which refers to using the first 5 tasks, 10 tasks and 25 tasks respectively. Since grouping
all 25 tasks takes a long time to run, we include two small settings that only have the
first 5 or 10 tasks in Table 6.1 for grouping. Our results demonstrate our hypotheses:

99

(a) applying Retain, Adacare, and DARTS improves over the single-task setting, (b)
applying different NAS models for each group further improves the performance, and
finally, (c) AutoDP provides the best results in terms of averaged per-task gain for ROC
and AVP, a significant improvement over existing MTL frameworks for EHR data.

Table 6.3: Performance comparison in terms of averaged per-task gain over single task
backbone (All results are in the form of percentage values %).

Settings Included Tasks Tasks @ 5 Tasks @ 10 Tasks @ 25

Metric ROC AVP ROC AVP ROC AVP

One model for
all tasks

LSTM +0.09 +0.18 +1.06 +3.22 +1.83 +7.46
Transformer +0.97 +4.82 +1.41 +4.14 +1.75 +7.45
Retain +0.46 +1.80 +0.66 +0.75 +1.41 +5.88
Adacare +1.03 +5.21 +1.32 +4.05 +1.68 +6.94
DARTS +1.28 +5.01 +2.01 +6.87 +1.87 +7.71

Task Grouping
+

One model for
each group

MTG+LSTM +0.51 +2.10 +0.65 +1.87 +1.74 +7.40
MTG+Transformer +0.91 +3.64 +1.20 +3.95 +1.79 +9.15
MTG+Retain +0.55 +3.11 +1.51 +5.20 +1.54 +8.87
MTG+Adacare +1.25 +5.78 +1.44 +4.63 +1.75 +7.84
MTG+DARTS +1.47 +6.41 +2.02 +6.65 +2.41 +11.76

Variants of
AutoDP

AutoDPµ +1.49 +7.12 +2.08 +7.53 +2.68 +12.70
AutoDPσ +1.95 +7.68 +2.49 +8.45 +2.62 +13.37
AutoDPµ+σ +1.69 +7.74 +2.55 +8.81 +2.80 +13.43
(std) ± 0.08 ± 0.25 ± 0.13 ± 0.29 ± 0.12 ± 0.33
(p-value) 0.045 0.029 0.036 0.045 0.027 0.032

First, without considering task grouping, we train one shared model to predict for
all tasks in three settings and compute the multi-task gains for them. Results show
that this setting only provides minimal improvement over single task training. Note
that the automated method (DARTS) performs better than other hand-crafted methods.
We also see that sequential optimization over task grouping and architecture search
(MTG+DARTS) performs better than MTG + other hand-crafted encoders.

Moreover, we see that the three variants of AutoDP performed better than the other
methods. Among them, AutoDPµ+σ performs the best, which means the balance of
exploration and exploitation is the most effective strategy for training the surrogate
model. For the last method, we also report the standard deviations and p-values of
statistical tests (compared to MTG+DARTS), which justifies that the improvement is
significant. The runtime is approximately as the same for MTG+DARTS and AutoDP
and thus this is a fair comparison. Please refer to Table 6.2 for the GPU hours.

Beside the overall performance gain, we also look at the distribution of performance

100

gains for each individual task as shown in Figure 6.2. We can observe that the proposed
method does not have the issue of negative transfer, since all tasks have a positive gain.
Also, for some of the tasks, it can achieve over 20% improvement, which further shows
the effectiveness of AutoDP.

0% 10% 20%
Gains

0

1

2

Fr
eq

ue
nc

y

Task @ 5

0% 10% 20%
Gains

0

1

2

3

Fr
eq

ue
nc

y

Task @ 10

0% 10% 20%
Gains

0

2

4

6

8

Fr
eq

ue
nc

y

Task @ 25

Figure 6.2: Histogram of task gains for AutoDP in terms of Averaged Precision.

6.4.3 Hyperparameter & Complexity Analysis

We analyze the effect of two vital hyperparameters of our method: K1 and B, since
they are the crucial parameters that largely define the complexity of our method during
searching and inference respectively. We choose the setting of Task @ 25 for a compre-
hensive analysis of all tasks. We try out different values and report the corresponding
performance gain (AVP) in Figure 6.3.

First, K1 determines the number of training samples collected during searching. Given
that each sample invokes an MTL procedure, it constitutes the major portion of the

0 10 20 30
K1

11%

12%

13%

Av
er

ag
ed

 p
er

-t
as

k
ga

in

0 10 20
B

Figure 6.3: Analysis for the number of progressive sampling rounds K1 and the budget
of task groups B under the setting of Task @ 25.

101

Table 6.4: Ablation results in terms of AVP.

Settings Task @ 5 Task @ 10 Task @ 25

AutoDP +7.74 +8.81 +13.43

Random sampling +6.75 +7.04 +11.30
Random search +6.89 +7.15 +12.04
Disease grouping +6.29 +6.99 +8.61

search cost. Therefore, our goal is to find an optimal value for K1, striking a balance
between cost-effectiveness and achieving commendable performance. We notice that the
performance change plateaus after K1 reaches 25. That is, the surrogate model effectively
learns the distribution of the search space after consuming 25 × 25 training samples
during active selection (25 samples per round). Consequently, we can empirically decide
to halt the iteration at this point.

Second, B determines the number of task groups for the final configuration, which
indicates the number of MTL models required for achieving the expected performance
gain after searching. We also observe similar phenomenon that the performance becomes
stable after B reaches 12. We could also choose the optimal value for B accordingly.

6.4.4 Ablation Study

We further analyze the effect of several components within AutoDP, including progressive
sampling (Section 6.3.4), greedy search (Section 6.3.5), and task grouping as a whole. We
replace these components with naive or human intuition-inspired baselines and report the
performances in Table 6.4. Removing any of the components from the original framework
leads to noticeable performance decreases, demonstrating the effectiveness of the designed
components.

Specifically, we replace progressive sampling and greedy search with purely random
methods, referred to as Random Sampling and Random Search. In all three settings,
performance generally decreases, highlighting the contributions of these components of
AutoDP.

Additionally, we use disease-based grouping (Section6.4.5) to first assign tasks into
different groups based on their medical relevance and then employ DARTS to search
for the model architecture for each group. This allows us to analyze the effectiveness
of automated task grouping. By comparing disease-based grouping with the searched
configurations (Section 6.4.6), we observe that AutoDP does not strictly follow medical

102

Table 6.5: Disease Based Grouping.

Groups Diseases

Cardiovascular Diseases

Acute cerebrovascular disease
Acute myocardial infarction

Cardiac dysrhythmias
Congestive heart failure; nonhypertensive

Coronary atherosclerosis and other heart disease
Essential hypertension

Respiratory Diseases

Chronic obstructive pulmonary disease and bronchiectasis
Other lower respiratory disease
Other upper respiratory disease

Pleurisy; pneumothorax; pulmonary collapse
Pneumonia (except that caused by tuberculosis or sexually transmitted disease)

Respiratory failure; insufficiency; arrest (adult)

Kidney Diseases Acute and unspecified renal failure
Chronic kidney disease

Metabolic Diseases

Diabetes mellitus with complications
Diabetes mellitus without complication

Disorders of lipid metabolism
Fluid and electrolyte disorders

Gastrointestinal Diseases Gastrointestinal hemorrhage
Infections Septicemia (except in labor)
Surgical/Medical Complications Complications of surgical procedures or medical care

Neurological/Cardiac Conditions Conduction disorders
Shock

Liver Diseases Other liver diseases

classifications for task grouping but achieves significant performance improvements over
disease-based grouping. This indicates the necessity of using an automated search
algorithm to find the optimal task grouping, which surpasses human intuition.

6.4.5 Disease Based Grouping

To show the effectiveness of automated task grouping, we conduct experiments using a
predefined task grouping based on disease categories. We asked GPT-4 [107] to classify
the 25 prediction tasks into different groups based on their medical meaning. The result
is shown in Table 6.5. Using this grouping, we further apply DARTS to each group
and report the multi-task gains as shown in Table 6.4. Compared to AutoDP, there is a
notable performance drop for the disease based grouping. This means human intuition
dose not provide the optimal task grouping, which underscores the necessity of employing
search algorithm to automatically discover better task grouping for MTL.

103

Figure 6.4: Illustration of the searched configuration under the setting of Task @ 10.

6.4.6 Visualization of the Searched Configurations

Here, we show two example of the final configuration for setting Task @ 10 in Figure
6.4 and for Task @ 25 in Figure 6.5. The proposed AutoDP identifies 5 and 10 different
task groups respectively and also searches for the corresponding architectures. We can
observe that some of the tasks tend to be trained independently, while others are grouped
together for joint training. This supports our claim that fine-grained task grouping is
necessary to bring the optimal performance gain. Also, the optimal architecture is also
different for each task group, which further justifies the necessity of joint optimization
over task grouping and architecture search.

6.5 Limitation and Future Work
There are some valuable future directions based on the current version of AutoDP.

First, from the application perspective, if we aim at deploying AutoDP to real-world
healthcare systems, it would be advantageous to apply it to more complex problem
settings. For example, the incorporation of diverse clinical data sources beyond EHR
such as claims, drugs, medical images and texts will significantly enhance the practical
utility of AutoDP.

Additionally, considering the dynamic nature of healthcare environments with con-
tinuously updated input data and evolving tasks, adapting the surrogate model to
accommodate new data and tasks would be imperative.

Moreover, addressing privacy concerns within healthcare systems is a promising
direction. Therefore, extending AutoDP with data processing pipelines for automatic

104

feature engineering could offer enhanced privacy safeguards and further improve its
applicability in sensitive healthcare contexts.

Finally, we assume all the tasks have the same input EHR data in our problem
setting, which might not always be the case in practical scenarios. Chances are that, for
some diseases, there are large and well-annotated data, while for the others, there are
limited data available. How we should extend the current framework to handle more
heterogeneous diseases/tasks remains a challenge.

6.6 Conclusion
In this paper, we propose AutoDP, an automated multi-task learning framework for joint
disease prediction on EHR data. Compared to existing work, our method largely improves
the design of task grouping and model architectures by reducing human interventions.
Experimental results on real-world EHR data demonstrate that the proposed framework
achieves significant improvement over existing state-of-the-art methods, while maintaining
a feasible search cost.

105

Figure 6.5: Illustration of the searched configuration under the setting of Task @ 25.

106

Chapter 7 |
Conclusion and Future Directions

7.1 Conclusion
In this dissertation, we explored the challenges and opportunities associated with predic-
tive modeling on EHR data and proposed innovative methodologies to address them. By
transitioning from handcrafted approaches to automated frameworks, we sought to reduce
reliance on human expertise, improve model performance, and enhance generalizability
across diverse predictive tasks.

The handcrafted methods, MedPath and MedRetriever, demonstrated the potential
of integrating external medical knowledge to address domain-specific limitations. These
methods not only improved predictive accuracy but also enhanced interpretability,
offering human-readable explanations through knowledge graphs and natural language
processing techniques. These contributions underscored the importance of leveraging
domain knowledge to create more robust and interpretable models.

• MedPath: In this work, we proposed an model-agnostic framework that leverages
medical knowledge graphs (KG) to improve existing prediction models, enhancing
both their performance and interpretability.

• MedRetriever: In this work, we proposed an retrieval-based text augmentation
framework that can improve any existing prediction models on EHR data using
medical texts.

Furthermore, we introduced automated frameworks that leveraged neural architecture
search to address the complexities of multi-modal EHR data and multi-task learning.
AutoMed and AutoFM showcased the power of automation in designing model architectures
for multi-modal data fusion, significantly reducing the need for manual intervention while

107

achieving superior predictive performance. Similarly, AutoDP addressed the challenges of
multi-task learning by automating both architecture design and task grouping, paving
the way for more scalable and generalizable predictive solutions.

• AutoMed: In this work, we developed an automated machine learning framework
that focus on the design of multi-modal architectures for predictive modeling on
EHR data. We focus on fusing time features and diagnosis features in this work.

• AutoFM: Following AutoMed, we further proposes a more general framework that
can automated the design of multi-modal architectures, which can incorporate more
modalities, including patient demographic, clinical notes, and ICU monitoring data.

• AutoDP: In this work, we proposed an automated multi-task learning framework
for joint disease prediction on EHR data. Our framework can jointly perform task
grouping and architecture search that maximizes the overall multi-task gains.

Collectively, these contributions represent a significant step forward in advancing
machine learning methodologies for EHR data analysis. By addressing the limitations of
traditional approaches and proposing automated solutions, this work lays the foundation
for future research that bridges the gap between machine learning and healthcare. As
the field continues to evolve, the methodologies presented here can serve as a blueprint
for developing scalable, interpretable, and high-performing models that drive progress in
personalized medicine, disease prediction, and healthcare delivery.

7.2 Future Directions
Despite the success of the current AutoML methodologies for predictive modeling on EHR
data, they still suffer from the following limitations. First, there is the trade-off between
effectiveness and efficiency. AutoML systems often incur high computational costs to
achieve effective solutions, significantly limiting their practicality in real-world scenarios.
Second, the interpretability of AutoML systems remains a challenge. It is often difficult
to provide clear reasoning behind why the solutions generated perform well—or fail to
do so. Finally, current AutoML methods face limitations in adapting to new tasks.
In practice, multiple target diseases may need to be predicted, but these targets are
not always available from the beginning. Current methods like AutoDP are typically
designed to handle a predefined set of target diseases, which restricts their adaptability
to emerging tasks.

108

To address the challenges above, Large Language Models (LLMs) can be a promising
solution [108]. With their strong reasoning capabilities, LLMs can act as powerful
optimization tools through their textual interfaces and have demonstrated their potential
in a variety of reasoning tasks [109]. Additionally, LLMs have been successfully applied
in the AutoML domain, including tasks such as neural architecture search [110] and
hyperparameter optimization [111]. Hence, we have the potential to enhance the current
AutoML system to solve the aforementioned challenges. By harnessing the reasoning
capabilities and rich prior knowledge embedded in LLMs through pretraining, it enhances
both the effectiveness and efficiency of the AutoML system. Furthermore, the textual
interfaces of LLMs enable the frame- work to deliver human-understandable explanations
for its solutions, thereby improving interpretability. Also, the LLM based optimization
framework can be designed to be flexible at handling evolving tasks through textual
interfaces.

109

Bibliography

[1] Johnson, A. E., T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng,
M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi, and R. G. Mark
(2016) “MIMIC-III, a freely accessible critical care database,” Scientific data, 3(1),
pp. 1–9.

[2] Johnson, A., L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, and
R. Mark (2020) “Mimic-iv,” PhysioNet. Available online at: https://physionet.
org/content/mimiciv/1.0/(accessed August 23, 2021).

[3] Ma, F., M. Ye, J. Luo, C. Xiao, and J. Sun (2021) “Advances in Mining Het-
erogeneous Healthcare Data,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pp. 4050–4051.

[4] Choi, E., M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart
(2016) “Retain: An interpretable predictive model for healthcare using reverse time
attention mechanism,” in Advances in Neural Information Processing Systems, pp.
3504–3512.

[5] Ma, F., R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao (2017) “Dipole:
Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural
networks,” in Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 1903–1911.

[6] Kwon, B. C., M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon, J. Sun,
and J. Choo (2018) “Retainvis: Visual analytics with interpretable and interactive
recurrent neural networks on electronic medical records,” IEEE transactions on
visualization and computer graphics, 25(1), pp. 299–309.

[7] Bai, T., S. Zhang, B. L. Egleston, and S. Vucetic (2018) “Interpretable
representation learning for healthcare via capturing disease progression through
time,” in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 43–51.

[8] Ma, L., J. Gao, Y. Wang, C. Zhang, J. Wang, W. Ruan, W. Tang, X. Gao,
and X. Ma (2020) “AdaCare: Explainable Clinical Health Status Representation
Learning via Scale-Adaptive Feature Extraction and Recalibration,” in AAAI.

110

[9] Ma, F., Y. Wang, J. Gao, H. Xiao, and J. Zhou (2020) “Rare Disease Predic-
tion by Generating Quality-Assured Electronic Health Records,” in Proceedings of
the 2020 SIAM International Conference on Data Mining, SIAM, pp. 514–522.

[10] Song, H., D. Rajan, J. Thiagarajan, and A. Spanias (2018) “Attend and
diagnose: Clinical time series analysis using attention models,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32.

[11] Luo, J., M. Ye, C. Xiao, and F. Ma (2020) “HiTANet: Hierarchical Time-
Aware Attention Networks for Risk Prediction on Electronic Health Records,” in
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 647–656.

[12] Ye, M., J. Luo, C. Xiao, and F. Ma (2020) “LSAN: Modeling Long-term
Dependencies and Short-term Correlations with Hierarchical Attention for Risk
Prediction,” in Proceedings of the 29th ACM International Conference on Informa-
tion and Knowledge Management.

[13] Choi, E., M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun (2017)
“GRAM: graph-based attention model for healthcare representation learning,” in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, pp. 787–795.

[14] Ma, F., Q. You, H. Xiao, R. Chitta, J. Zhou, and J. Gao (2018) “Kame:
Knowledge-based attention model for diagnosis prediction in healthcare,” in Pro-
ceedings of the 27th ACM International Conference on Information and Knowledge
Management, ACM, pp. 743–752.

[15] Yin, C., R. Zhao, B. Qian, X. Lv, and P. Zhang (2019) “Domain Knowledge
guided deep learning with electronic health records,” in 2019 IEEE International
Conference on Data Mining (ICDM), IEEE, pp. 738–747.

[16] Ma, F., J. Gao, Q. Suo, Q. You, J. Zhou, and A. Zhang (2018) “Risk
prediction on electronic health records with prior medical knowledge,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1910–1919.

[17] Ma, F., Y. Wang, H. Xiao, Y. Yuan, R. Chitta, J. Zhou, and J. Gao
(2018) “A general framework for diagnosis prediction via incorporating medical
code descriptions,” in 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), IEEE, pp. 1070–1075.

[18] Ernst, P., A. Siu, and G. Weikum (2015) “Knowlife: a versatile approach for
constructing a large knowledge graph for biomedical sciences,” BMC bioinformatics,
16(1), p. 157.

111

[19] Chung, J., C. Gulcehre, K. Cho, and Y. Bengio (2014) “Empirical evalu-
ation of gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555.

[20] Hochreiter, S. and J. Schmidhuber (1997) “Long short-term memory,” Neural
computation, 9(8), pp. 1735–1780.

[21] Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin (2017) “Attention is all you need,” in
Advances in neural information processing systems, pp. 5998–6008.

[22] Baytas, I. M., C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou (2017)
“Patient subtyping via time-aware lstm networks,” in Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pp.
65–74.

[23] Chen, C., J. Liang, F. Ma, L. Glass, J. Sun, and C. Xiao (2021) “Unite:
Uncertainty-based health risk prediction leveraging multi-sourced data,” in Pro-
ceedings of the Web Conference 2021, pp. 217–226.

[24] Kipf, T. N. and M. Welling (2016) “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907.

[25] Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio (2017) “Graph attention networks,” arXiv preprint arXiv:1710.10903.

[26] Schlichtkrull, M., T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling (2018) “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference, Springer, pp. 593–607.

[27] Ye, M., S. Cui, Y. Wang, J. Luo, C. Xiao, and F. Ma (2021) “MedPath:
Augmenting Health Risk Prediction via Medical Knowledge Paths,” Proceedings of
the Web Conference 2021.

[28] Feng, Y., X. Chen, B. Y. Lin, P. Wang, J. Yan, and X. Ren (2020) “Scalable
Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering,” arXiv
preprint arXiv:2005.00646.

[29] Kilicoglu, H., M. Fiszman, A. Rodriguez, D. Shin, A. Ripple, and T. C.
Rindflesch (2008) “Semantic MEDLINE: a web application for managing the
results of PubMed Searches,” in Proceedings of the third international symposium
for semantic mining in biomedicine, vol. 2008, pp. 69–76.

[30] Rindflesch, T. C., H. Kilicoglu, M. Fiszman, G. Rosemblat, and D. Shin
(2011) “Semantic MEDLINE: An advanced information management application
for biomedicine,” Information Services & Use, 31(1-2), pp. 15–21.

112

[31] Donnelly, K. (2006) “SNOMED-CT: The advanced terminology and coding
system for eHealth,” Studies in health technology and informatics, 121, p. 279.

[32] Sedgewick, R. (2001) Algorithms in c, part 5: graph algorithms, Pearson Educa-
tion.

[33] Cheng, Y., F. Wang, P. Zhang, and J. Hu (2016) “Risk prediction with
electronic health records: A deep learning approach,” in Proceedings of the 2016
SIAM International Conference on Data Mining, SIAM, pp. 432–440.

[34] Pham, T., T. Tran, D. Phung, and S. Venkatesh (2016) “Deepcare: A deep
dynamic memory model for predictive medicine,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Springer, pp. 30–41.

[35] Bordes, A., N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko
(2013) “Translating embeddings for modeling multi-relational data,” in Advances
in neural information processing systems, pp. 2787–2795.

[36] Lafferty, J. D., A. McCallum, and F. C. N. Pereira (2001) “Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data,”
in Proceedings of the Eighteenth International Conference on Machine Learning,
ICML ’01, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 282–
289.
URL http://dl.acm.org/citation.cfm?id=645530.655813

[37] Santos, C. d., M. Tan, B. Xiang, and B. Zhou (2016) “Attentive pooling
networks,” arXiv preprint arXiv:1602.03609.

[38] Song, H., D. Rajan, J. J. Thiagarajan, and A. Spanias (2017) “Attend
and diagnose: Clinical time series analysis using attention models,” arXiv preprint
arXiv:1711.03905.

[39] Le, H., T. Tran, and S. Venkatesh (2018) “Dual memory neural computer
for asynchronous two-view sequential learning,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1637–1645.

[40] Shang, J., C. Xiao, T. Ma, H. Li, and J. Sun (2019) “Gamenet: Graph
augmented memory networks for recommending medication combination,” in pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1126–1133.

[41] Ye, M., S. Cui, Y. Wang, J. Luo, C. Xiao, and F. Ma (2021) “Medretriever:
Target-driven interpretable health risk prediction via retrieving unstructured medi-
cal text,” in Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pp. 2414–2423.

[42] Levenshtein, V. I. (1966) “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, pp. 707–710.

113

[43] Gu, Y., R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann,
J. Gao, and H. Poon (2020) “Domain-specific language model pretraining for
biomedical natural language processing,” arXiv preprint arXiv:2007.15779.

[44] Miotto, R., F. Wang, S. Wang, X. Jiang, and J. T. Dudley (2018) “Deep
learning for healthcare: review, opportunities and challenges,” Briefings in bioin-
formatics, 19(6), pp. 1236–1246.

[45] Alaa, A. and M. Schaar (2018) “Autoprognosis: Automated clinical prognostic
modeling via bayesian optimization with structured kernel learning,” in ICML,
PMLR, pp. 139–148.

[46] Jarrett, D., J. Yoon, I. Bica, Z. Qian, A. Ercole, and M. van der
Schaar (2020) “Clairvoyance: A pipeline toolkit for medical time series,” in
International Conference on Learning Representations.

[47] Zoph, B. and Q. V. Le (2016) “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578.

[48] Pham, H., M. Guan, B. Zoph, Q. Le, and J. Dean (2018) “Efficient neural
architecture search via parameters sharing,” in International conference on machine
learning, PMLR, pp. 4095–4104.

[49] Liu, H., K. Simonyan, and Y. Yang (2019) “DARTS: Differentiable Architecture
Search,” in International Conference on Learning Representations.

[50] Liu, C., B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy (2018) “Progressive neural architecture
search,” in Proceedings of the European conference on computer vision (ECCV),
pp. 19–34.

[51] Hutter, F., H. H. Hoos, and K. Leyton-Brown (2011) “Sequential model-
based optimization for general algorithm configuration,” in International conference
on learning and intelligent optimization, Springer, pp. 507–523.

[52] Kandasamy, K., W. Neiswanger, J. Schneider, B. Poczos, and E. P.
Xing (2018) “Neural architecture search with bayesian optimisation and optimal
transport,” Advances in neural information processing systems, 31.

[53] Elsken, T., J. H. Metzen, and F. Hutter (2019) “Neural architecture search:
A survey,” The Journal of Machine Learning Research, 20(1), pp. 1997–2017.

[54] Suganuma, M., M. Ozay, and T. Okatani (2018) “Exploiting the potential of
standard convolutional autoencoders for image restoration by evolutionary search,”
in ICML, PMLR, pp. 4771–4780.

114

[55] Chen, L.-C., M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff,
H. Adam, and J. Shlens (2018) “Searching for efficient multi-scale architectures
for dense image prediction,” NeurIPS, 31.

[56] Liu, C., L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and
L. Fei-Fei (2019) “Auto-deeplab: Hierarchical neural architecture search for
semantic image segmentation,” in CVPR, pp. 82–92.

[57] Real, E., A. Aggarwal, Y. Huang, and Q. V. Le (2019) “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai conference on
artificial intelligence, vol. 33, pp. 4780–4789.

[58] Zoph, B., V. Vasudevan, J. Shlens, and Q. V. Le (2018) “Learning transferable
architectures for scalable image recognition,” in CVPR, pp. 8697–8710.

[59] Klyuchnikov, N., I. Trofimov, E. Artemova, M. Salnikov, M. Fedorov,
and E. Burnaev (2020) “NAS-Bench-NLP: neural architecture search benchmark
for natural language processing,” arXiv preprint arXiv:2006.07116.

[60] Wang, Y., Y. Yang, Y. Chen, J. Bai, C. Zhang, G. Su, X. Kou, Y. Tong,
M. Yang, and L. Zhou (2020) “Textnas: A neural architecture search space
tailored for text representation,” in AAAI, vol. 34, pp. 9242–9249.

[61] Yu, Z., Y. Cui, J. Yu, M. Wang, D. Tao, and Q. Tian (2020) “Deep multi-
modal neural architecture search,” in Proceedings of the 28th ACM International
Conference on Multimedia, pp. 3743–3752.

[62] Peng, Y., L. Bi, M. Fulham, D. Feng, and J. Kim (2020) “Multi-modality
information fusion for radiomics-based neural architecture search,” in Medical Image
Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International
Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23, Springer,
pp. 763–771.

[63] Yin, Y., S. Huang, X. Zhang, and D. Dou (2022) “BM-NAS: Bilevel Multimodal
Neural Architecture Search,” in AAAI.

[64] Choi, E., C. Xiao, W. F. Stewart, and J. Sun (2018) “MiME: multilevel
medical embedding of electronic health records for predictive healthcare,” in Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 4552–4562.

[65] Cho, K., B. Van Merriënboer, D. Bahdanau, and Y. Bengio (2014) “On
the properties of neural machine translation: Encoder-decoder approaches,” arXiv
preprint arXiv:1409.1259.

[66] Kingma, D. P. and J. Ba (2014) “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980.

115

[67] Choi, E., M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun (2016)
“Doctor ai: Predicting clinical events via recurrent neural networks,” in Machine
learning for healthcare conference, PMLR, pp. 301–318.

[68] Huang, K., J. Altosaar, and R. Ranganath (2019) “Clinicalbert:
Modeling clinical notes and predicting hospital readmission,” arXiv preprint
arXiv:1904.05342.

[69] Xu, Y., S. Biswal, S. R. Deshpande, K. O. Maher, and J. Sun (2018) “Raim:
Recurrent attentive and intensive model of multimodal patient monitoring data,”
in Proceedings of the 24th ACM SIGKDD international conference on Knowledge
Discovery & Data Mining, pp. 2565–2573.

[70] Feng, Y., Z. Xu, L. Gan, N. Chen, B. Yu, T. Chen, and F. Wang (2019)
“Dcmn: Double core memory network for patient outcome prediction with multi-
modal data,” in 2019 IEEE International Conference on Data Mining (ICDM),
IEEE, pp. 200–209.

[71] Qiao, Z., X. Wu, S. Ge, and W. Fan (2019) “Mnn: multimodal attentional
neural networks for diagnosis prediction,” Extraction, 1, p. A1.

[72] Yang, B. and L. Wu (2021) “How to Leverage Multimodal EHR Data for Better
Medical Predictions?” arXiv preprint arXiv:2110.15763.

[73] Xu, Z., D. R. So, and A. M. Dai (2021) “Mufasa: Multimodal fusion architecture
search for electronic health records,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, pp. 10532–10540.

[74] Cui, S., J. Wang, X. Gui, T. Wang, and F. Ma (2022) “AUTOMED: Automated
Medical Risk Predictive Modeling on Electronic Health Records,” in 2022 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, pp.
948–953.

[75] Zela, A., T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter
(2019) “Understanding and robustifying differentiable architecture search,” arXiv
preprint arXiv:1909.09656.

[76] Wang, R., M. Cheng, X. Chen, X. Tang, and C.-J. Hsieh (2021) “Rethinking
architecture selection in differentiable nas,” arXiv preprint arXiv:2108.04392.

[77] Zhang, X., S. Li, Z. Chen, X. Yan, and L. Petzold (2022) “Improving
Medical Predictions by Irregular Multimodal Electronic Health Records Modeling,”
arXiv preprint arXiv:2210.12156.

[78] Cui, S., J. Wang, Y. Zhong, H. Liu, T. Wang, and F. Ma (2024) “Automated
fusion of multimodal electronic health records for better medical predictions,” in
Proceedings of the 2024 SIAM International Conference on Data Mining (SDM),
SIAM, pp. 361–369.

116

[79] Tang, S., P. Davarmanesh, Y. Song, D. Koutra, M. W. Sjoding, and
J. Wiens (2020) “Democratizing EHR analyses with FIDDLE: a flexible data-
driven preprocessing pipeline for structured clinical data,” Journal of the American
Medical Informatics Association, 27(12), pp. 1921–1934.

[80] Gu, J., Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai, et al. (2018) “Recent advances in convolutional
neural networks,” Pattern recognition, 77, pp. 354–377.

[81] Guo, Q., X. Qiu, P. Liu, Y. Shao, X. Xue, and Z. Zhang (2019) “Star-
Transformer,” in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Association for Computational Linguistics,
Minneapolis, Minnesota, pp. 1315–1325.
URL https://aclanthology.org/N19-1133

[82] Rahman, W., M. K. Hasan, S. Lee, A. Zadeh, C. Mao, L.-P. Morency,
and E. Hoque (2020) “Integrating multimodal information in large pretrained
transformers,” in Proceedings of the conference. Association for Computational
Linguistics. Meeting, vol. 2020, NIH Public Access, p. 2359.

[83] Suo, Q., F. Ma, G. Canino, J. Gao, A. Zhang, P. Veltri, and G. Agostino
(2017) “A multi-task framework for monitoring health conditions via attention-
based recurrent neural networks,” in AMIA annual symposium proceedings, vol.
2017, American Medical Informatics Association, p. 1665.

[84] Razavian, N., J. Marcus, and D. Sontag (2016) “Multi-task prediction of
disease onsets from longitudinal laboratory tests,” in Machine learning for healthcare
conference, PMLR, pp. 73–100.

[85] Wang, X., F. Wang, J. Hu, and R. Sorrentino (2014) “Exploring joint disease
risk prediction,” in AMIA Annual Symposium Proceedings, vol. 2014, American
Medical Informatics Association, p. 1180.

[86] Zhao, X., X. Wang, F. Yu, J. Shang, and S. Peng (2022) “UniMed: Multi-
modal Multitask Learning for Medical Predictions,” in 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), IEEE, pp. 1399–1404.

[87] Xu, E., S. Zhao, J. Mei, E. Xia, Y. Yu, and S. Huang (2019) “Multiple
MACE risk prediction using multi-task recurrent neural network with attention,”
in 2019 IEEE International Conference on Healthcare Informatics (ICHI), IEEE,
pp. 1–2.

[88] Standley, T., A. Zamir, D. Chen, L. Guibas, J. Malik, and S. Savarese
(2020) “Which tasks should be learned together in multi-task learning?” in Inter-
national Conference on Machine Learning, PMLR, pp. 9120–9132.

117

[89] He, X., K. Zhao, and X. Chu (2021) “AutoML: A survey of the state-of-the-art,”
Knowledge-Based Systems, 212, p. 106622.

[90] Fifty, C., E. Amid, Z. Zhao, T. Yu, R. Anil, and C. Finn (2021) “Efficiently
identifying task groupings for multi-task learning,” Advances in Neural Information
Processing Systems, 34, pp. 27503–27516.

[91] Song, X., S. Zheng, W. Cao, J. Yu, and J. Bian (2022) “Efficient and effective
multi-task grouping via meta learning on task combinations,” Advances in Neural
Information Processing Systems, 35, pp. 37647–37659.

[92] Ahn, C., E. Kim, and S. Oh (2019) “Deep elastic networks with model selection
for multi-task learning,” in Proceedings of the IEEE/CVF international conference
on computer vision, pp. 6529–6538.

[93] Bragman, F. J., R. Tanno, S. Ourselin, D. C. Alexander, and J. Car-
doso (2019) “Stochastic filter groups for multi-task cnns: Learning specialist and
generalist convolution kernels,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1385–1394.

[94] Sun, X., R. Panda, R. Feris, and K. Saenko (2020) “Adashare: Learning what
to share for efficient deep multi-task learning,” Advances in Neural Information
Processing Systems, 33, pp. 8728–8740.

[95] Guo, P., C.-Y. Lee, and D. Ulbricht (2020) “Learning to branch for multi-task
learning,” in International conference on machine learning, PMLR, pp. 3854–3863.

[96] Gao, Y., H. Bai, Z. Jie, J. Ma, K. Jia, and W. Liu (2020) “Mtl-nas: Task-
agnostic neural architecture search towards general-purpose multi-task learning,”
in Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition, pp. 11543–11552.

[97] Waring, J., C. Lindvall, and R. Umeton (2020) “Automated machine learn-
ing: Review of the state-of-the-art and opportunities for healthcare,” Artificial
Intelligence in Medicine, 104, p. 101822.

[98] Zhang, L., X. Liu, and H. Guan (2022) “Automtl: A programming framework
for automating efficient multi-task learning,” Advances in Neural Information
Processing Systems, 35, pp. 34216–34228.

[99] Liu, S., H. Zhang, and Y. Jin (2022) “A survey on surrogate-assisted efficient
neural architecture search,” arXiv preprint arXiv:2206.01520.

[100] Xiao, C., E. Choi, and J. Sun (2018) “Opportunities and challenges in developing
deep learning models using electronic health records data: a systematic review,”
Journal of the American Medical Informatics Association, 25(10), pp. 1419–1428.

118

[101] Harutyunyan, H., H. Khachatrian, D. C. Kale, G. Ver Steeg, and
A. Galstyan (2019) “Multitask learning and benchmarking with clinical time
series data,” Scientific data, 6(1), p. 96.

[102] He, K., X. Zhang, S. Ren, and J. Sun (2016) “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–778.

[103] Lu, Z., K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti (2020)
“Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture
search,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part I 16, Springer, pp. 35–51.

[104] Luo, R., F. Tian, T. Qin, E. Chen, and T.-Y. Liu (2018) “Neural architecture
optimization,” Advances in neural information processing systems, 31.

[105] Zhang, M., S. Jiang, Z. Cui, R. Garnett, and Y. Chen (2019) “D-vae: A vari-
ational autoencoder for directed acyclic graphs,” Advances in Neural Information
Processing Systems, 32.

[106] Auer, P., N. Cesa-Bianchi, and P. Fischer (2002) “Finite-time analysis of
the multiarmed bandit problem,” Machine learning, 47(2-3), pp. 235–256.

[107] Achiam, J., S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. (2023)
“Gpt-4 technical report,” arXiv preprint arXiv:2303.08774.

[108] Xu, J., J. Li, Z. Liu, N. A. V. Suryanarayanan, G. Zhou, J. Guo, H. Iba,
and K. Tei (2024) “Large language models synergize with automated machine
learning,” arXiv preprint arXiv:2405.03727.

[109] Wang, L., C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen,
J. Tang, X. Chen, Y. Lin, et al. (2024) “A survey on large language model
based autonomous agents,” Frontiers of Computer Science, 18(6), p. 186345.

[110] Chen, A., D. Dohan, and D. So (2024) “EvoPrompting: language models for
code-level neural architecture search,” Advances in Neural Information Processing
Systems, 36.

[111] Liu, T., N. Astorga, N. Seedat, and M. van der Schaar (2024) “Large lan-
guage models to enhance bayesian optimization,” arXiv preprint arXiv:2402.03921.

119

Vita
Suhan Cui

Education
The Pennsylvania State University 2021.08 - 2025.05
Ph.D. in Informatics, Advisor: Prof. Dongwon Lee
Northeastern University, China 2017.08 - 2021.06
B.Eng. in Software Engineering

Selected Publications
1. Suhan Cui and Prasenjit Mitra, "Automated Multi-Task Learning for Joint

Disease Prediction on Electronic Health Records", Advances in Neural Information
Processing Systems (NeurIPS 2024)

2. Suhan Cui, Jiaqi Wang, Yuan Zhong, Han Liu, Ting Wang and Fenglong Ma,
"Automated Fusion of Multimodal Electronic Health Records for Better Medical
Predictions", SIAM International Conference on Data Mining (SDM 2024)

3. Muchao Ye*, Suhan Cui*, Yaqing Wang, Junyu Luo, Cao Xiao and Fenglong Ma,
"MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths",
2021 World Wide Web Conference (WWW 2021).

4. Muchao Ye*, Suhan Cui*, Yaqing Wang, Junyu Luo, Cao Xiao and Fenglong Ma,
"MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured
Medical Text", 30th ACM International Conference on Information and Knowledge
Management (CIKM 2021).

5. Suhan Cui, Junyu Luo, Muchao Ye, Jiaqi Wang, Ting Wang and Fenglong Ma,
"MedSkim: Denoised Health Risk Prediction via Skimming Medical Claims Data",
22nd IEEE International Conference on Data Mining (ICDM 2022).

6. Suhan Cui, Jiaqi Wang, Xinning Gui, Ting Wang and Fenglong Ma, "AUTOMED:
Automated Medical Risk Predictive Modeling on Electronic Health Records", 2022
IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2022)

7. Suhan Cui, Guanhao Wei, Li Zhou, Emily Zhao, Ting Wang and Fenglong Ma,
"Predicting Line of Therapy Transition via Similar Patient Augmentation", Journal
of Biomedical Informatics, 2023

