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Abstract
In education, machine learning (ML), especially deep learning (DL) in recent years,
has been extensively used to improve both teaching and learning. Despite the rapid
advancement of ML and its application in education, a few challenges remain to
be addressed. In this thesis, in particular, we focus on two such challenges: (i)
data scarcity and (ii) knowledge generalization. First, given the privacy concerns
of students or students’ behavior differences, it is common to have missing data in
the education domain, which challenges the application of ML methods. Second,
due to varying data distributions across education platforms and applications, ML
methods often struggle to generalize well over unseen data sets. Therefore, this the-
sis proposes effective data augmentation methods to combat the challenge (i) and
investigate transfer learning techniques to solve the challenge (ii). More specifically
for the challenge (i), we provide simple to complex solutions to augment data by:
(a) optimizing statistical time lag selection to reduce matrix sparsity and improve
original model performance by 32% in classification tasks and 12% in regression
tasks; and (b) developing deep generative models (i.e., LSTM-[L]VAEs) to gener-
ate missing data to improve original model performance by 50%. For the challenge
(ii), we employ transfer learning to improve model generalization and enable knowl-
edge transfer from other domains to the education domain in three approaches:
(1) a comparison approach; (2) a TAPT (Task Adapted Pre-train) approach; (3)
a DAPT (Domain Adapted Pre-train) approach. Approach (1) first demonstrates
the effectiveness of the transfer learning and then compares the transferability
saliency between different models (i.e., LSTM vs. AdaRNN vs. Transformer) and
transfer learning methods (i.e., feature-based vs. instance-based). It discovers that
the Transformer model is 3-4 times more effective than other model structures and
feature-based method is up to 5 times superior to its counterpart in transferability.
Furthermore, Approach (2) leverages the shared semantic and lexical extractions
from the pre-trained general language model and forms a TAPT BERT model to
adapt to the particular education tasks. It surpasses the original general language
model by 2%. Finally, Approach (3) further trains on the general language model
but adapts to a large mathematical corpus to form a DAPT model. It is demon-
strated to improve prior state-of-the-art models and BASE BERT by up to 22%
and 8%, respectively.
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Chapter 1 |
Introduction

1.1 Background
In today’s age, the increasing adoption of AI technologies in education is drasti-
cally transforming the way we teach and learn. More and more AI technologies are
developed and implemented to improve the teaching effectiveness, to reduce the
cost of administrative processes, to enable personalized learning and etc. Many
of these AI solutions utilize machine learning (ML) including deep learning (DL)
techniques to conduct either supervised or unsupervised learning for various prob-
lems and have achieved the state-of-the-art (SOTA) performance. While these
methods are important and effective, there appear two major issues that challenge
the development of AI technologies in education domain: (i) data scarcity; (ii)
knowledge generalization.

In education domain, often times, it is either difficult to collect more data or
simply not possible to acquire missing data. Take student surveys for example,
their response rates are notoriously low due to the fact that surveys are not man-
dated in their nature and hence limited data is collected. Another example about
in-feasibility of obtaining data is that many students’ learning records could not be
tracked due to regular sick leaves and even so under Covid pandemics. With the
limited or unreliable data, models built from it tends to overfit, a modelling error
that occurs when a model tries to fit all the data points available in the training
data set [2]. This poses great risks on the performance of deep learning models,
which then is inclined to learn extensively the pattern from the limited data set
and is not able to generalize well on unseen data sets. A common solution from the
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data space is data augmentation [3], a method used to artificially generate data
from the available dataset [2].

As we already notice that data scarcity can lead to poor model generalization,
this thesis extends the generalization challenge to be a knowledge generalization
problem in the education domain. By knowledge, we mean the learnings (common
features) from trained models rather than the education knowledge that students
need to learn. knowledge generalization can appear in two scenarios: (a) we gener-
alize knowledge/learnings from a source model that is trained on a limited data set
to an unseen data set; (b) we generalize knowledge/learnings from a larger/more
general domain to a special or focused target domain/task. Scenario (b) is often
seen in the case where some features can be shared from other domains to the
education domain but has not been or yet difficult to be done. For example, edu-
cation domain texts share certain characteristics with the general language texts
and hence a NLP model trained on general language can be leveraged to predict
tasks in the education domain. Traditionally, (a) is considered as model general-
ization whereas (b) is considered as knowledge transfer or often heard as transfer
learning. Transfer learning defined by Pan et al. is an approach that aims to help
improve the learning of a target predictive function using the features learned in
a source domain or task [4]. Therefore, empirically, transfer learning is suitable to
be used for both Scenario (a) and Scenario (b) and knowledge generalization can
be considered as the goal of the transfer learning approach.

With that, this thesis presents effective data augmentation methods to tackle
the data scarcity issue and validate multiple transfer learning methods to improve
the knowledge generalization challenge in the education domain. This chapter
will summarize the proposed technical contributions of the thesis in the following
sections.

1.2 Data Augmentation
There are various ways of conducting data augmentation but can be generally
summarized into two groups: online and offline data augmentation. In online
augmentation, data is augmented at training time so that there is no need to store
the augmented data [5]. In offline augmentation, data is augmented in the pre-
processing phrase and stored on the disk [6]. This thesis focuses on the offline
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augmentation. In the category of offline augmentation, depending on the type of
data sets, methodologies varies to a great extent. This thesis mainly works with
numerical (especially time series) data generation, thus, we introduce two relevant
approaches and elaborate on them as follows.
Approach I: For numerical data such as time series data in the education domai,
it typically contains time-varying variables such as question difficulty, attempts
for the question, assessment duration and time-invariant variables such as gender,
grade level (see in Figure 1.1). A simple way to increase the data volume is create
time lags to duplicate the data and meanwhile considering the auto-correlation
effect from the previous time lags. In practice, if a student has L time steps in
his learning history, full lags (L-1 steps) will be created to augment data (see in
Figure 1.2). Although effective in the sense it can create hundreds of copies of
its own data when the data set has hundreds of time steps, it introduces non-
negligible matrix sparsity in the training. Matrix sparsity is referred to a sparse
matrix with lots of zeros caused by the missing data when fed into time series deep
learning models such as RNN-based models (e.g., LSTM, GRU) and attention-
based sequence to sequence models (e.g., Transformer) which normally require
3D matrix input. To minimize the sparsity, Chapter 2 hypothesizes time lags
that passes a certain threshold might not influence the current results anymore
and hence attempts an embarrassingly simple yet very efficacious optimization
approach by looping through all the time lags to identify the best time lag via the
validation of classic Knowledge Tracing models such as DKT [7], NPA [8]. We are
able to boost the original model performance by up to 32% in classification task
and up to 12% in regression tasks after pruning the time lags.
Approach II: Although the method introduced in Chapter 2 produces superior
improvement, it could be computationally costy, especially when the time lags
are in hundreds. Therefore, in Chapter 3, we introduce effective deep generative
frameworks where we build LSTMs into VAEs structures to amplify data based
on the latent features extracted from the existing data. In this method, we posit
the education time series data as longitudinal data where time-invariant subject
descriptors co-exists with time varying variables. We hypothesis there exists a
relationship between the subject descriptors and the latent features. Therefore, we
leverage a module from the existing Longitudinal VAE frame work, namely, a multi-
output additive Gaussian Prior (GP), to extract such relationship. Furthermore,
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Figure 1.1: An illustration of typical education data. ‘ST’ stands for a student;
‘var’ stands for regular time-varying variables; ‘d_var’ stands for time-invariant
description variable. The blue indicates that the variable values are the same for
the description variables for each students.

Figure 1.2: Creating Lags for Student ‘0’ with L-1 lags.

we propose a subject-based training where we split and impute data by subject id
to reflect the longitudinal nature of the education time series data and it achieves
a satisfactory results. We are able to boost original model performance by 50%
in average RMSE. Furthermore, a robustness measuring experiment is conducted
to demonstrate that only 10% of the generated data is needed to boost original
model performance if models are small to medium size.
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1.3 Knowledge Generalization
To tackle the two scenarios of knowledge generalization, we employ transfer learn-
ing extensively to meet the ends. To explain transfer learning further, we define D
as a domain that consists of a feature space X and a marginal probability distri-
bution P(X) over the feature space, where X = {x1, ..., xn} ∈ X . Given a domain,
D={X , P (X)}, a task T which consists of a label space Y and an objective pre-
dictive function f(·) (denoted by T = {Y , f(·)}) that is typically learned from the
training data {xi, yi} pairs, where xi ∈ X and yi ∈ Y . The function f(·) can also
be seen as the conditional probability distribution function of P(Y|X). Therefore,
given a source domain DS , a corresponding source task TS, as well as a target
domain DT and a target task TT , the objective of transfer learning is to allow
us to learn the target conditional probability function P (YT |XT ) in DT with the
information gained from DS and TS where DS 6= DT or TS 6= TT [4].

Based on the aforementioned settings, transfer learning can be categorized into
three groups: (1) inductive transfer learning, where DS = DT but TS 6= TT ; (2)
transductive transfer learning, where DS 6= DT but TS = TT ; (3) unsupervised
learning, where we solve unsupervised tasks when DS = DT but TS 6= TT ; This
thesis focuses on the first two settings which are the correspondence to the two
scenarios of knowledge generalization. Inductive transfer learning corresponds to
scenario (a) (i.e., model generalization), under which knowledge is generalized be-
tween different tasks but within the same domain whereas transductive transfer
learning corresponds to scenario (b) (i.e., knowledge transfer), under which knowl-
edge often exists in different domains. Below we introduce the proposed transfer
learning methods for the two scenarios in detail.
Scenario (a) Approach: Under inductive transfer learning setting, there are
four common methods to adopt: instance transfer, feature-representation-transfer,
parameter-transfer and relational-knowledge-transfer. Instance transfer assumes
certain parts of the source data instances can be reused by DT or TT . Feature-
representation-transfer aims to find good feature representation that reduces differ-
ence between DS and DT . Parameter-transfer assumes there exists shared hyperpa-
rameters or priors between DS and DT to benefit knowledge transfer. Relationship-
knowledge transfer builds mappings of relational knowledge between relational DS

and DT . To improve model generalization in Scenario (a), this thesis adopts the
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instance- and feature-based methods and compares their efficacy in Chapter 4.
More particularly, we apply instance-based method by training a Maximum Mean
Discrepancy (MMD) loss function to minimize the distance between TS and TT . We
apply the feature-based approach by freezing layers (or weights) of source model to
maintain the good feature representation from TS . We discover feature-approach
is more effectively at reserving the features from the TS and can be applied to TT

to improve model generalization. The feature-based method via weights-freezing
outperforms the instance-based method featuring MMD method by up to 10%
(approximately 5 times) in average RMSE across different models. In addition,
Chapter 4 also observe Transformer has superior transferability over other time
series models such as LSTM and AdaRNN (a GRU based model) with a margin
of 4-7% in average RMSE, about 3-4 times more effective.
Scenario (b) Approach: In Scenario (b), knowledge/features exists in a do-
main DS that is different from the education domain DT but there exists common
knowledge/features between DS and DT that can be learned to apply onto the
similar tasks in the education domain. For example, in the field of NLP, many
language models that are pre-trained on news data such as the Wall Street Jour-
nal, Wikipedia share semantic representation with the content in the education
domain. Therefore, to predict textual tasks in the education domain, we could
leverage these pre-trained models from general language to save training time and
cost. Chapter 5 introduced TAPT (Task-adapted Pre-trained) model that inher-
its the pre-trained weights from a general language model (i.e., BERT-base) and
adapts to the education specific tasks. It obtains performances that exceed exist-
ing SOTA model of about 2.3%. However, in the process of transferring knowledge
from general language to specific domain texts, we observe it is difficult to adapt
general language to a specific type of texts such as mathematical texts which is rich
in equations and symbols. Thus, this thesis hypothesizes that a language model
trained on domain specific texts (i.e., mathmatical texts) could better fit TT in DT .
Chapter 6 introduce DAPT (Domain-adapted Pre-trained) model, namely Math-
BERT which surpasses the best prior model by up to 22% and even out-performs
the general language model by 2-8%.
Illustration: To further differentiate the above approaches, we call Scenario (a)
and illustrated in Figure 1.3 whereas we call Scenario (b) approach as Approach
(b) illustrated in Figure 1.4. Approach (a) does not involve massive pre-training as
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Figure 1.3: An illustration of Approach (a)

Figure 1.4: An illustration of Approach (b)

Approach (b) but simply develops a customized model (source model) and extracts
the knowledge via either instance-based or feature-based transfer learning methods
and finally apply on the TT . Chapter 4 utilizes this approach to boost model
generalization. Approach (b) has two variants: TAPT and DAPT models, both of
which are further trained from pre-trained general language models. The difference
between TAPT and DAPT is that TAPT during further-train only adapts to TT

but DAPT adapts to DT with much more corpora. Thus, TAPT can only be
applied to specific TT that it gets trained on whereas DAPT can be applied to
multiple tasks that DT can cover. To predict TT , they both will go through a
fine-tunig process where the last layer of the model will be trained according to
the specific task to gain target outputs.
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Chapter 2 |
Augment Data via Time Lag
Optimization

2.1 Introduction
Knowledge tracing (KT) is a modeling task whose goal is to trace the knowl-
edge state of students based on their past exercise performance and predict how
students will perform on future interactions. It is usually formulated as a su-
pervised sequence learning problem: given a student’s past exercise interactions
X = {x1, x2, ..., xt, }, predict the probability that the student will answer the next
exercise correctly, i.e., p(rt = 1|qt, X ). Input xt = (qt, rt) is a tuple containing the
exercise qt, which students attempt at the timestamp t, and the correctness of the
students’ response rt. KT models consider rt as the observed time series variable
with t as the time step and assume a hidden knowledge state at each time step. To
predict a student’s future knowledge mastery (i.e., knowledge state) is essentially
to predict rt. Therefore, KT models can be considered as single-variate time series
models.

Knowledge tracing data presents two unique characteristics. First, it comprises
sequences which have various lengths. This sequence is students’ past exercise in-
teraction in the form of question-answer pair. For example, student A has 34
exercise questions answered in the last month whereas student B could have 150
exercise questions answered assuming student B takes additional exercises to mas-
ter one concept. Second, there always exists a good number of time steps missing
for certain percentage of students for various reasons and it is hard to impute. In
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the example of temperature data, it is safe to impute missing daily values with the
adjacent values or simply weekly average. However, it is risky to impute students’
responses using the adjacent responses. For example, a student could be answer-
ing an addition problem at the current step but answering an algebra problem for
next. Based on the two traits, a common way to augment the data volume in
the knowledge tracing field is to apply statistical time series modeling technique,
namely creating time lags. The classic practice is to multiply the data by taking its
-1 to −(L− 1) lags to achieve the purpose of volume increasing. In addition, due
to the vast adopting of temporal neural network structure such as RNN, attention
mechanism, when constructing time lags for training, data have to be processed as
a fixed length sequence. Thus, long sequences will cut short to the length of the
fixed sequence length and short sequence will get padded for “0” (see the illustra-
tion in Figure 2.1). If we have many records of short sequences, the training data
noticeably will be mainly filled up with “0”s and get sparse matrices. Therefore, it
still introduces data scarcity in the training data even after we augment the data
via creating time lags. To get rid of such side effect and optimize the classic statis-
tical data augmentation approach for knowledge tracing data, we hypothesize that
including less time lags or finding the best performing time lag could effectively
reduce matrix sparsity (i.e., the training data scarcity) and increase model perfor-
mance. We validate the performance after reducing time lags through classic KT
models: DKT [7] and NPA [8].

Thus, this chapter attempts to answer the following research questions (RQs):

• RQ1: Does reducing time lags increase model performance in general?

• RQ2: Can reducing time lags improve the performance of models regardless
of the sequence length and data size?

• RQ3: Does it exist a certain range of time lags that are more optimal than
other time lag groups during optimization?

Through the answers to the above RQs (AQs), this chapter makes contributions
as follows:

• To overcome the data sparsity in the education data, we propose to find the
best time lag to reduce the presence of sparse matrices
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Figure 2.1: An illustration of KT data sequence aligning process.

• We discover reducing time lag has a significant effect on small to medium size
data but mild on huge/long sequence data in boosting model performance

• There exists a certain range of time lags that have better performance than
other time lags group

2.2 Related Work

2.2.1 Knowledge Tracing Models

In the field of knowledge tracing, researchers have long treated the exercises that
students take during their learning trajectory as temporal sequence and here-
after build a number of effective time series neural networks such as DKT [7],
DKVMN [9], NPA [8], SAKT [10], SAINT [11]. Researchers have done bench-
marking evaluation on all the aforementioned algorithms on the same data sets 1.
Based on such evaluation results, we choose DKT and NPA models as our valida-
tion models because they obtain the best performances for majority of the public
KT data sets. The DKT model is built on top of LSTM structure with an addi-
tional embedding layer that factors in the total number of questions a knowledge
tracing data usually contains. The model first aligns all the exercise sequence to
be a fixed length vector and uses LSTM cells to capture the hidden state informa-
tion that is summarized from the past exercise sequence guided by what type of
questions a student answers. This information then can be used to predict the next
question response assuming next questions are in the same testing system. The
input of the model is a question response pair and the sequence of question will be

1https://github.com/seewoo5/KT
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converted to temporal information when fed into the LSTM structure. The nut-
shell of this algorithm is simply an LSTM model that fits on a single-variate time
series knowledge tracing data. The NPA model is a complex version of adopting
both LSTM and attention layers that also rely on the question number informa-
tion to form the embedding layers. It utilizes bi-LSTM layer that takes in a matrix
multiplication of question and response embedding to exhaustively learn the char-
acteristics revealed from the question and response pair instead of only questions.
An additive attention layer is applied afterwards to generate a score to indicate
which question the new question assembles the most. The model although complex
is effective in many settings and a good bench-marking algorithm to choose.

2.2.2 Time Lag Selection

In time series forecasting, the determination on which time lag to choose is critical
to the forecast accuracy as not every past step has the impact on the current step.
Many optimization approaches have been proposed to find the appropriate time
lag to boost model performance. However, no single method has been proven to
perform best in all prediction models and all time-sereis data. There are mainly
three groups of approaches: (i) massive experiments; (ii) statistical approach -
autocorrelation function; (iii) heuristic algorithms. Researchers have developed
customized RNN-based structures to choose what time lag fits the best [12–14].
These methods although effective are time and resource intensive. In addition,
these methods work the best for the continuous time series data such as air pollu-
tion, meteorological observation data. The heuristic [15–17] algorithms, although
work effectively, only work for a specific domain and task such as finance, neu-
roscience, meteorology, business, which causes an application barrier. A recent
study [18] that utilizes Genetic Algorithm to optimize time lag selection seems to
be effective. However, it only works for data sets with short sequence length below
50, beyond which the computation costs spiral. [18] conducted comparison studies
to examine the benefit and weakness of each approach and demonstrated the com-
bination of experiment and heuristic algorithm seems to work the best but again
for the continuous time series data. However, because our data is not continuous,
the method is not applicable and we opt for the experiment approach.
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2.3 Experiments

2.3.1 Problem Setup

Many of the existing KT models rely on the neural network’s memory mechanism
executed by memory cells (e.g., LSTM), attention mechanism (e.g., Transformer).
Therefore, in the pre-processing, data is usually cut into segments of the equal
sequence lengths before feeding into the neural network. This sequence length L̄

normally is calculated as the mean of all the data sequences from various time
steps: L̄ = 1

N

∑N
t=1 Lt. KT models then will look L − 1 (L is the total time

steps) lags back to increase data volume and also for the past information to make
prediction on the future sequences. The input at time step t (Xt) will present two

situations after pre-processing. When Lt < L̄, Xt = {x1, ...xt︸ ︷︷ ︸
t

,

L−t︷ ︸︸ ︷
0, ...0}, in which, ‘0’

is a padded value and there are L − t zero values in the input sequence. When
Lt > L̄, Xt = {x1, ... x

′, ...xt︸ ︷︷ ︸
L

}, in which, there is no zero padding and the input is

cut short to extract the last L lags of the sequence (see in Figure 2.1 for details).
Therefore, if the gap between Lt and L̄ is huge or there are many Lt < L̄ instances,
we can imagine the input will contain large quantity of zero padded values and
hence lead to data sparsity in the training process. Although we can not control
the gap between Lt and L̄, we can control the instances when Lt < L̄. We use %
of short sequences to measure how inclined the data set to have sparse matrices
(see the % in Table 2.1). Instead of looking back L lags which is the full length of
the set sequence, we hypothesize that not every step of looking back in the time
series data plays the equal role in predicting the future sequence. We call the
looking back step as “lag step” and set the desired lag step to be L̃ which meets
L̃ < L̄ and is sufficient to predict for the future sequence and achieve equivalent or
even better performance. To find such L̃, we adopt an embarrassingly simple but
efficient method by looping through all the time lags till L̄− 1 and obtain the KT
model performance via the neural network architectures of DKT [7] and NPA [8]
which are the representative work of utilizing LSTM and attention mechanism in
the single variate KT models.
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Table 2.1: Six Data Sets Details. All ASSISTments data from ASSISTments
platform [1]

.

Metric ASSISTments2009 ASSISTments2015 STATICS JUNYI K12 Geom K12 Alg2

# of Input 1 1 1 1 8 8
Target Variable 0 or 1 0 or 1 0 or 1 0 or 1 [0,1] [0,1]

# Questions 110 100 1223 722 1,430 1,154
Avg. Seq Length 80 34 576 100 150 150

# Users 4,151 19,840 333 247,796 3,298 2121
# Instances 325,637 683,801 189,297 25,925,992 494,686 336,412

% Short Sequence 60.42% 66.56% 45.65% 59.63% 45.06% 47.43%

2.3.2 Data sets

We choose six data sets to evaluate the effect of time lags (see details in Table 2.1).
They are four single-variate public data sets (i.e., ASSISTments 2009 [1] 2, AS-
SISTments 2015 [1]3, Junyi4, STATICS 5) and two multi-variate private data sets
(i.e., K12 Geometry, K12 Algebra) including multiple educational information such
as test attempts, attempt duration, item difficulty, question type. The prediction
on the four public data sets are binary classification tasks whereas the prediction
on the two private data sets are regression tasks with target variable as score rate.

The four public KT data sets are chosen due to their varying sequence lengths
(34-576 time steps) and data size (from thousands to millions). This way, we can
examine whether or not the effect is different for various-length sequences and sizes
of data sets. The two private data sets we choose is medium-sequence length (150)
and medium sized data sets (around 500k). The number of questions will used as a
hyperparameter in embeddings of DKT and NPA architectures. The fixed length
of the data set sequence L̄ tells the average time steps per student in each data
set, which also affects how many loops we will need to go through to find L̃. The
two private data sets contain eight variables: “question_order”, “total_attempts”,
“test_attempts”, “assessment_duration”, “question_difficulty”, “item_difficulty”,
“usmo_difficulty”, “usmo_id”. “USMO” stands for ‘Universal Standard Master
Objective’, a K12 internal naming convention to measure the objective level be-

2https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-
data?authuser=0

3https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
4https://pslcdatashop.web.cmu.edu/Project?id=244
5https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
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tween questions and standards (skills). The attempts and duration measures are
extracted from K12 platform log files. The question/item/usmo difficulty are a
result by dividing the total score from users who answer the question/item/usmo
correctly from the total score obtained by all the users from the current data set.
Although the number of instances and average sequence length in each data set
seem to be a decent size, the percentage of short sequence is quite large, about
50% of almost every data set are short sequences, indicating how many “0”s we
introduce into training (see in Table 2.1).

The first four data sets are binary classification problem to predict if the student
will answer the next question correctly. We use Accuracy (ACC) and Area Under
the Curve (AUC) to evaluate these data sets. The two private data sets are
regression problems with target variable as score rates, which is a value in a range
of 0-1 obtained by dividing the earned score of each individual question from the
total scores that a student obtained in the data set. We use Root Mean Square
Error (RMSE) and Least Absolute Deviation (L1) to evaluate these data sets.
The choice of these evaluation metrics is consistent with the evaluation metrics in
general KT field.

2.4 Results

2.4.1 AQ1: Better Performance with Less Time Lags

After determining the data sets for experiments, we choose two single-variate KT
models (i.e., DKT and NPA) to evaluate if reducing time lags will increase model
performance (RQ1). In these two models, time lag is the only variable included and
it can avoid the influence from other variables. We run experiments for every time
lag till the maximum number of L̄ − 1 lags and present the performance change
in Figure 2.2. The figure demonstrates that as the time lag becomes bigger, the
ACC/AUC metric goes down or becomes plateau for the binary classification data
sets such as ASSISTment2009, ASSISTments2015, Junyi and STATICS. We only
obtain STATICS data every 50 lags after l = 400 to be computationally frugal and
we do not foresee big spikes between 400 and 575 based on the trend.

We then present the best performance lag (l) from each data set and compare
with the full lag (L̄ − 1) performance in the Table 2.2. We are able to get better
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(a) DKT Performance Across Data Sets By Lag

(b) NPA Performance Across Data Sets By Lag

Figure 2.2: DKT and NPA Model Performance Across Data Sets By Lag.
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Table 2.2: Performance Comparison Between Best Lag vs. Full Lags Across Data
Sets. The subscripts indicate the relative improvement from the full lag perfor-
mances (Negative means no improvement). * indicates significance. All perfor-
mances are five random seeds average. FL: full lag.

Data Name DKT
Best/Total Lags ACC AUC

ASSISTments 2009 FL=79 0.7428 0.7997
3/79 0.7627_+2.68%* 0.8151_+1.92%*

ASSISTments 2015 FL=33 0.7555 0.7016
1/33 0.9063_+19.96%* 0.9264_+32.04%*

Junyi FL=99 0.8302 0.7842
45/99 0.7823_-5.77%* 0.7968_+2.60%*

STATICS FL=575 0.7950 0.7864
1/575 0.7979_+0.37% 0.8650_+10.00%*

Best/Total Lags RMSE L1

K12 Geometry FL=149 0.4011 0.3215
13/149 0.3849_+4.05%* 0.2837_+11.75%*

K12 Algebra II FL=149 0.4146 0.3373
13/149 0.4045_+2.43%* 0.3110_+7.80%*

Data Name NPA
Best/Total Lags ACC AUC

ASSISTments 2009 FL=79 0.6322 0.6178
5/79 0.6486_+2.60%* 0.6276_+1.59%*

ASSISTments 2015 FL=33 0.7555 0.7016
1/33 0.8023_+7.79%* 0.6706_+4.97%

Junyi FL=99 0.8150 0.7332
75/99 0.8116_-0.42%* 0.7339_+0.10%

STATICS FL=575 0.7962 0.7929
1/575 0.7667_-3.70%* 0.8149_+2.78%

Best/Total Lags RMSE L1

K12 Geometry FL=149 0.4191 0.3541
4/149 0.4092_+2.36%* 0.3106_+12.28%*

K12 Algebra II FL=149 0.4296 0.3623
21/149 0.4149_+3.42%* 0.3248_+10.34%*

performance with less time lags. For example, for ASSISTments 2009 data set, the
best DKT performance we find is at l = 3 and best NPA performance at l = 5
with 2.68% and 2.60% increase in ACC respectively with significance. Similarly
for ASSISTments2015 data, both models’ best-performing lags is l = 1, which is
same as what we see in Figure 2.2 with decent improvement of 19.96% and 7.79%
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respectively with significance in ACC and 32.04% and 4.97% in AUC. For the two
private data sets, we obtain the best performance at l = 13 for DKT and l = 4
for NPA models in K12 Geometry data and l = 13 and l = 23 for Algebra II data
set comparing to the model of full-lag at l = 150. We observe the best performing
lags are much shorter but has much higher performance than the full lag models
in these two private data sets. For example, the DKT model at l = 13 for K12
Geometry data outperforms the full lag model by 4.05% in RMSE and 11.75%
in L1 with significance and 2.36% and 12.28% for NPA model with significance.
Similarly, the DKT model at l = 13 for K12 Algebra II data set surpasses the full
lag model performance by 2.43% in RMSE and 7.80% in L1 with significance and
3.42% and 10.34% for NPA model with significance.

2.4.2 AQ2: Mild Effect on Long Sequence or Large Data Set

In Table 2.2, ASSISTments 2009 and ASSISTments 2015 are considered as small
to medium data sets (< 700k), where we observe significant improvement in model
performance after we reduce the time lags. Meanwhile, we do not see huge im-
provement on the large data set (i.e., Junyi) and the long sequence data set (i.e.,
STATICS). However, we still find decent increase in AUC with 2.60% (sig.) in
Junyi and 10.00% (sig.) in STATICS for DKT model and +0.10% (sig.) in Junyi
and +2.78% (not sig.) in STATICS for NPA model. The reason why the increase
is not huge for both the long sequence and large data might be due to that % of
short sequences are lower than the small to medium size data sets with 45.65% and
59.63% respectively compared to above 60% for the other two data sets. Further-
more, given these two data sets are imbalanced data, AUC usually is a preferred
measure to assess prediction robustness. Thus, the positive improvement from
AUC is still a promising signal that we can use less time lags instead of full lag
data to train for large or long sequence data sets. To answer RQ2, we observe that
reducing time lags do not always work for all the data sets regardless the sequence
length and data size. We observe significant improvement of ACC on small to
medium size data but only discover a mild improvement of AUC on long sequence
or large data sets.
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Figure 2.3: Illustration of A Violin Plot

2.4.3 AQ3: Relationship between Lag Group and Model Perfor-
mance

To answer RQ3 (whether certain lag groups perform better than others), we create
violin plot (see the understanding of a violin plot in Figure 2.3) in Figure 2.4 and
2.5 to demonstrate all the model performances in terms of distribution by ACC
(blue) and AUC (orange) across the four public data sets. Given each data set has
different lag sequence, we plot lag groups via 20% increments: ≤ 20%, 20-40%,
40-60%, 60-80%, ≥ 80%. For STATICS and Junyi data sets in Figure 2.5, we
observe the higher lag group center points of both ACC and AUC distributions
are higher than the ones from the lower lag group, especially lag group 40-60%
having the highest mean of all. Note the white dot is median whereas the mean
is the center point of the blue/orange distribution. The phenomenon that large
or long sequence data sets have better performances at higher lag indirectly infers
that the mild effect on the large/long sequence data sets. For small to medium
size data sets such as ASSISTments2009 and ASSISTments2015 in Figure 2.4, it is
noticeable that lower lag groups especially group ≤20% have higher point of means
for both DKT and NPA models. In addition, they have much longer tails (where
the maxima-highest performance is) than the higher lag groups demonstrated by
the orange/blue dotted lines in Figure 2.4, indicating the highest performance
appear more often in lower lag groups. When evaluating both DKT and NPA
models, we keep all the training and model hyper-parameters same for both the
data sets. Therefore, the model performance increase is mainly due to the time
lag difference. Thus, we answer RQ3 that for small to medium size data set, ≤20%
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Figure 2.4: Small to Medium Size Data Sets Classification Task Maximum Perfor-
mance by Lag Group. The orange/blue horizontal line are plotted to compared
the maxima (highest point) on y axis for the orange/blue distribution. The figure
is scaled by each category’s total sample for a fair distribution comparison.

lag group have better performance than others and 40-60% lag group seem to be
superior than other groups for large or long sequence data sets. In practice, 20%
lags are about 7-14 time steps for ASSISTments data sets, which equates about
1-2 days of learning journey if students take 7 questions each day. For STATICS
and Junyi, 40-60% lag group are about 250 time steps, which equates 30 days
of learning journey (based on 7 steps/day). This indicates the the past month
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Figure 2.5: Long (STATICS) /Big (Junyi) Sequence Data Sets Classification Task
Performance by Lag Group. The orange/blue horizontal line are plotted to com-
pared the maxima (highest point) on y axis for the orange/blue distribution. The
red dotted arrow points to the lag group 40-60%.
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learning have more impact on the future question answering for students taken
courses in STATICS and Junyi data sets.

Figure 2.6: Regression Task Performance by Lag Group in Violin Plot. The or-
ange/blue horizontal line are plotted to compared the minima (lowest point) on y
axis for the orange/blue distribution. The figure is scaled by each category’s total
sample for a fair distribution comparison.

We plot Figure 2.6 to show the performance distribution in terms of RMSE
and L1 by 30 lag increments for the two private data sets. Although the two
private data sets have multiple variables, we only include the score rate and the
sequential order in the training, which makes it comparable to other single-variate
data sets. In the figure, we observe an increasing trend in means of RMSE and L1
distributions as the lag groups increase intervals. For example, lag group of ≤ 30)
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has much lower RMSE and L1 error than higher lag groups (e.g., 90_120, ≥120)
demonstrated by the orange/blue dotted lines. We also notice the distribution
centers (i.e., mean) go much higher after lag 90 (see the black dotted line in Figure
2.6), which indicates lags ≤ 90 days have better performance than lags ≥ 90.
According to the K12 Geometry and Algebra II data sets, the average questions
that a student take per day is 8 and 9 respectively. This means about 3 (when
l = 30) to 10 ( when l = 90) days of the past question answering could well infer
a student’s score rate for the next question.

2.5 Limitation
The above experiment although exhaustively looped over all the time lags to ex-
amine which particular time step can drive the best performance. We are not able
to run experiments on other classic KT models such as DKVMN [9], SAKT [10],
SAINT [19] due to the limitation in computation resource. We are also aware of
other large KT data sets such as EdNet [20] and NeurIPS 2020 Challenge Data
set [21] which can be interesting to test on because the fixed sequence length could
be much longer and the data size is much larger. Therefore, if we are given much
ampler resources and time, we would also like to run experiments on the aforemen-
tioned KT models and data sets to see if our results hold.

2.6 Summary
In this work, we called out the data sparsity that exists during training even after
the data set is increased by time lags. We then proposed training with less time
lags to reduce sparsity. We demonstrated that reducing the time lags can greatly
increase model performance for a margin of up to 32% of AUC in classification tasks
and up to 12% of RMSE in regression tasks with significance for small to medium
data sets but mild effect for the large or long sequence data set. In addition, we
discovered the past learning information of less than 10 days has more impact
on students’ performance for small-to-medium data sets (i.e., ASSISTments and
Geom and Alg2 data sets) and about 1 month of past learnings affect their next
engagements with tests for longer sequence data sets (i.e., STATICS and Junyi).

22



Chapter 3 |
Augment Data via Subject-based
VAEs

Knowledge tracing (KT) as a student modeling technique has been widely used
to predict and trace students’ knowledge state during their learning processes. In
recent years, with the huge success that deep learning has brought to the field,
there are many KT algorithms that can predict individuals’ knowledge state to a
decent extent. However, the sparseness of students’ exercise data represented by
missing values still limits the models’ performance and application [22]. About half
of the existing publications use public data sets [23], which can not be available for
huge amount due to administration cost. Researchers could opt for other private
data sets that however may not even have the sizable volume as the public data
sets. Besides, many deep learning algorithms including the state-of-art (SOTA)
KT algorithms need huge and diverse amount of training data to obtain decent
performances. On the other hand, it is unavoidable to see the missing values in
KT data because of two reasons: (i) data is missed completely at random (MCAR)
where the probability of missing data is independent on its own value and on other
observable values [24]. For example, due to COVID, we have many students miss-
ing exams; (ii) the data is missed not at random (MNAR), which indicates the
reason for a missing value can depend on other variables but also on the value that
is missing. For example, if a student performs poorly on the English subject and
often miss exams in other subjects, his missed records in English quizzes can be
attributed to other known reasons. Moreover, KT data is a type of longitudinal
data, all collected repeatedly over time for each subject (i.e., student). Such data
contains both dependent and independent variables. For example, the dependent
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variables in KT data can comprise time-varying measurements per subject (e.g.,
response correctness, time taken per question), whereas independent variables are
time-invariant subject descriptors (e.g., grade, gender, gifted or not) (see the il-
lustration in Figure 3.1). Analyzing such data is challenging as it often includes
high-dimensional time [in]variant variables with missing values. Despite that miss-
ing data in KT field is ubiquitous and poses challenges on achieving better model
results, there are very few studies researching on effective approaches to tackle the
missing data issue in KT field. Our work is one of the few studies to address such
challenge.

To that end, we suppose a deep generative model such as Variational Autoen-
coders (VAE) [25] could effectively generate data for the missing values because of
its superiority over other generative models (e.g., Generative Adversarial Networks)
in time series data generation [26,27]. Furthermore, given the challenge arisen from
the longitudinal KT data, we make two hypotheses: (i) a training style that can
reflect the subject longitudinal nature could be more effective; (ii) the information
from subject descriptors could potentially represent the latent space better and
help improve the quality on the data generation. To validate hypothesis (i), we
develop a subject-based training style where we split and impute data by student
IDs to reflect the longitudinal nature of the subjects. The benefit of doing so is to
maintain the complete sequence for each student whereas splitting by row number
could separate the individual sequence and entail inefficient training. Thus, ap-
plying subject-based training on top of VAE framework could potentially address
the challenge. To validate hypothesis (ii), we leverage a module from the existing
Longitudinal VAE (LVAE) [28] framework called additive multi-output Gaussian
Process (GP) prior that can extrapolate the correlation between time-invariant
subject descriptors and the latent space to enhance the latent variable learning.
Given the longitudinal nature of the LVAE framework, a subject-based training
can be naturally applied to boost data generation quality. Furthermore, we build
LSTM kernels to both VAE and LVAE frameworks because LSTMs are good at
extrapolating the temporal relationship from multi-variate time series data [29,30].
With the generated data from the proposed frameworks, we will be able to im-
pute them back for retraining and evaluate the effectiveness of the imputed data
on boosting the original model performance. Besides, we are also interested to
discover how robust our generated data can be on boosting the original model
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Figure 3.1: An Illustration of the Longitudinal (student) Data in KT Field. ‘p’:
student p. ‘P’: total # of students.

performance, e.g., by only applying a fraction of the generated data.
Thus, this work attempts to make the following contributions:

• Overcoming the issue of the missing KT data, we conduct subject-based train-
ing on KT data via LSTM-VAE framework

• Leveraging the additive GP prior module from LVAE, we form a LSTM-
LVAE framework to showcase the superiority of training additional subject
descriptors for better latent space representation

• We demonstrate the robustness of only using a fraction of the generated data
to boost the original model performance

25



Figure 3.2: Overview of the methodology proposed in this work.

3.1 Method
We propose two deep generative frameworks: LSTM-VAE and LSTM-LVAE. The
both frameworks use subject-based training. We explain the details as follows.

3.1.1 Problem setting

According to [28], let D be the dimensionality of the observed data, P be the
number of unique students, np be the total number of longitudinal samples from
student p, and N = ∑P

p=1 np be the total number of samples. Therefore, the
longitudinal samples for student p are denoted as Yp = [yp1, ..., ypnp

]T , where each
sample ypt ∈ Y and Y = RD. The subject descriptors for students are represented
as Xp = [xp1, ..., xpnp

]T , where xpt ∈ X and X = RQ, Q be the number of descriptors.
The latent space is then denoted as Z = RL and a latent embedding for all N
samples as Z = [z1, ..., zN ]T ∈ RN×L with L being the number of latent dimensions.
To generate data, a joint generative model is then parameterized by w = {ψ, θ}
as pw(y, z) = pψ(y|z)pθ(z). Therefore, if the latent variable z is known, it will be
easy to infer y and hence generate the desired data.
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3.1.2 VAE and LVAE

To infer the latent variable z given y, the posterior distribution is pw(z|y) =
pψ(y|z)pθ(z)/pw(y) and is generally intractable due to the marginalization over the
latent space pw(y) =

∫
pψ(y|z)pθ(z)dz. Therefore, Variational Auto-Encoder [25]

introduced the approximated version posterior, noted as qϕ(z|y) instead of the
true posterior pw(z|y) and fit the approximate inference model by maximizing the
Evidence Lower Bound (ELBO) of the marginal log-likelihood w.r.t. ϕ:

log pw(Y ) ≥ L(ϕ, ψ, θ;Y )

≜ Eqϕ
[log pψ(Y |Z)]−DKL(qϕ(Z|Y )||pθ(Z))→ max

ϕ
,

where Eqϕ
[log pψ(Y |Z)] is a reconstruction error, measuring the difference between

the input and the encoded-decoded data. and DKL denotes the Kullback-Leibler
Divergence (KLD), measuring the divergence between qϕ(Z|Y ) and pθ(Z). In prac-
tice, we minimize the negative ELBO: DKL(qϕ(Z|Y )||pθ(Z) − Eqϕ

[log pψ(Y |Z)],
where all the parameters are learned simultaneously together: L(ϕ, ψ, θ;Y ) →
minϕ,ψ,θ.

When facing the longitudinal data, [28] hypothesize z has relationship with
both Y and X and formulate the generative model as

pw(Y |X) =
∫
Z
pψ(Y |Z,X)pθ(Z|X)dZ

=
∫
Z

∏
pψ(yn|zn)pθ(Z|X)dZ,

where pψ(yn|zn) is normally distributed probabilistic decoder and pθ(Z|X) is de-
fined by the multi-output additive GP prior that regulates the joint structure of
Z with descriptors X. The Additive GP is a Gaussian process prior as f(x) ∼
GP (µ(x), K(x, x′|θ)), where µ(x) ∈ RL is the mean (assumed as 0) and K(x, x′|θ)
is a matrix-valued positive definite cross-covariance function (CCF). Based on the
practice of [31], LVAE constructs the additive GP components with squared expo-
nential CFs (from continuous variables), categorical CFs (from categorical covari-
ates),the interaction CFs (the product of the categorical and squared exponential
CFs) and the product of the squared exponential CFs and the binary CFs. Finally,
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the ELBO function changes to the following after factoring the descriptors X:

log pw(Y |X) ≥ L(ϕ, ψ, θ;Y,X)

≜ Eqϕ
[log pψ(Y |Z)]−DKL(qϕ(Z|Y )||pθ(Z|X)→ max

ϕ
.

LVAE differentiates from VAE in that it hypothesizes there exists a relationship
between X and the latent space Z and uses an additive multi-output Gaussian
Prior to extract that relationship.

3.1.3 Generative Frameworks

Based on above solutions, two generative frameworks are developed (see in Figure
3.2). It has 4 phases: (i) input phase that pre-processes data; (ii) generative phase
where data gets generated via the generative model framework; (iii) prediction
phase where we predict target variable for the generated data; (iv) retraining phase,
where we combine the original data and generated data to retrain for donwstream
prediction task.

From the figure, after input phase (i), we see that the data gets separated into
two sets: (a) time-varying data (noted as Y = {y1, ..., yn}); (b) time-invariant
subject descriptors (noted as X = {x1, ..., xn}). The time-varying data yn goes
through a min-max scaler, a typical time series data normalization method [32],
and enters the LSTM encoder to generate µ and log σz for the latent distribution
Zt. The time-invariant subject descriptors Xn on the other hand are only fed into
the Additive GP prior module to train for the approximated GP prior with its
output merging into the latent space Zt. Next, the decoder samples on the latent
distribution and reconstructs data Ŷn, namely encoded-decoded data, based on the
latent features from Zt. Here, we name the generative framework that only includes
the encoder and decoder as LSTM-VAE and the framework that includes encoder,
decoder and the additive GP prior module as LSTM-LVAE. We omit LSTM prefix
for simplicity. After that, we compare Yn to Ŷn for evaluation via ELBO. VAE
assigns the equal weight for both reconstruction and KLD errors whereas LVAE
assigns a weight to KLD to regularize further. Once we have good generation
quality, we generate data on the missing data which has all the subject descriptor
information but missing on all the time-varying features.
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Before entering phase (iii), we conduct initial prediction on the original data
via models that work well with multi-variate time series data: LSTM, adaRNN and
Transformer. Similar to LSTM, adaRNN (i.e., adaptive RNN) [33] is a recurrent
neural network but based on the Gated Recurrent Unit that comprises two gates
(i.e., reset gate and update gate). It usually trains faster than LSTM and easy to
modify and works better if the sequence is not too long. Because some KT data
could present non-sequential characteristics, we include the original Transformer
model [34], whose attention mechanism and positional embedding are great for
non-sequential data. To evaluate these models, we use Root Mean Square Error
(RMSE) as our target variable is continuous (i.e., score rate, the possible score
obtained per question divides the total scores obtained per student). After the
initial round of prediction is performed, we conduct phase (iii) by selecting the
best predicting model to predict the target variable for the generated data from
phase (ii). In phase (iv), we impute the fraction of 10/20/30/50/80/100% of the
generated data (with target variable) back to the original data and retrain for the
downstream predictive task.

3.1.4 Subject-based Training

Besides the generative frameworks, this work also takes a new training strategy,
that is, subject-based training. We refer subject-based training to a style where
data are split and imputed back by student IDs instead of row number. We call the
training using row-number splitting as non-subject based training. For example, in
subject-based setting, 70% of student IDs are extracted as training data and 10%
student IDs are extracted as validation data whereas in non-subject based setting,
70% of total rows are extracted as training data and 10% total rows are extracted
as validation data) (see the illustration in Figure 3.3). We see the split points by
IDs are not the same as splitting by row number. It indicates there is chance that
the sequence of certain students will be cut into two pieces, leaving them into two
different sets (e.g, val and test). If we split the data by student IDs, we can impute
the generated data back to the original data via IDs and keep the learning sequence
relevant and complete for each student. If we opt for row-number splitting, the
student’s original sequence will be interfered and not be trained appropriately.
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Figure 3.3: An Illustration of Split by IDs vs. Row Number

Figure 3.4: An illustration of KT data sequence aligning process and 3 Padding
Strategy.

3.2 Experiments
In this section, we carry out two major experiments. The first experiment is to
generate the data and impute back to the original data for retraining. It has three
steps: (a) generate knowledge tracing data by utilizing VAE and LVAE; (b) predict
the target variable for the generated data using the best model obtained from the
KT prediction task; (c) merge the generated data with the original data to retrain
for model performance. The second experiment is to validate the robustness of
imputed data on boosting the original model performance. More specifically, we
add a fraction of the generated data in the cadence of 10%, 20%, 30%, 50%, 80%,
100% during the retraining phase to examine the boosting effect.
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3.2.1 Data sets

To achieve above, we need to apply our model onto the data sets that have sub-
ject descriptors so that we can use LSTM-LVAE model to generate missing data.
Unfortunately, the public data sets (e.g., ASSISTment datasets, Junyi, STATICS,
EdNet, etc) in KT field do not contain subject descriptor information such as the
student’s grade level, gifted or not. This is also why the renowned deep learning
models such as DKT, DKVMN, NPA, SAINTS [9–11, 35] are not included in the
chapter because most of these models are generated for single variable KT data or
take data feature as hyper-parameters. Thus, we use the two private multivariate
KT data sets from K12.com platform (an online K-Grade 12 education platform).
They are : (1) Grade 10 geometry course (noted as Geom) quiz answering data
set with average sequence length of 150 time steps; (2) Grade 11 algebra II (noted
as Alg2) quiz answering data set with average sequence length of 150 time steps.
Each data set contains 11 temporal features (i.e. sequence number, assessment
duration, attempts per question, total attempts, question difficulty, item difficulty,
standard difficulty, question reference, item reference, standard id, question type)
from July 2017 to June 2019 and 7 subject descriptors that define the student pro-
files (i.e., school ID, special ED, student id, free reduced lunch, gifted_talented,
grade level, score rate). The Geom data set contains 3,265 total students with
412,397 observed instances whereas the Alg2 data has 2,110 total students with
277,548 observed instances.

3.2.2 Identify Missing Values

In practice, it is hard to identify the missing steps each student has because their
learning experience varies. Thus, we develop a regime where we first find all the
quiz times of a school where the student is located and then fill up the missing
times by comparing to the school’s full quiz taking schedule. For example, if school
A has 100 quiz times but student A only has 60 records, we fill out the remaining
40 quiz time steps based on the event time variable. This approach is a bit rigorous,
assuming all the students are required to test for the same number of quizzes if
they are in the same school and skipping any quiz is considered as a missing step.
In reality, there might be scenarios where students are allowed to skip, which is
complex to study and hence we use this approach as it is straightforward. With
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that, we are able to retrieve the missing time steps before and after the current
temporal steps for all the students. As the students are known, this missing data
has all the subject descriptor information.

3.2.3 Data Processing

To conduct the training for generation, we split the data by 0.5/0.1/0.2/0.2 for
train/val/test/generate and 0.7/0.1/0.2 for train/val/test during downstream pre-
diction (see in Table 3.1). Note that the generation set with a ratio of 0.2 is used
to evaluate the quality of generation whereas the generated set we use to impute
back to the original data is generated from missing data. Based on the above
missing data identification regime, we are able to identify 3,233 out of 3,265 total
students who have a total of 799,408 missed instances from the Geom course and
2,057 out of 2,110 students who have a total of 516,884 missed instances from the
Alg2 course (see in Table 3.1). Because all the ratios are applied to both subject
and non-subject based training, the generated data from missing values will be
imputed back to the original data via IDs in the subject-based training and via
row number in the non-subject based training in the splits of train/val/test. Both
training styles align data to a fixed sequence length which is due to the model
input requirement of 3D dimensions (i.e., batch size * sequence length * number
of dimensions). This also aligns with the typical data processing technique for KT
model training [8,10,36]. If the actual student learning sequence is longer than the
fixed sequence length, we cut the part where it exceeds. If the sequence is shorter
than the fixed sequence, we pad it (see in Figure 3.4). We use three padding
strategies to find an optimal model performance: (a) zero paddding; (b) ffill; (c)
bfill. Ffill pads forward with the last value ‘v’ whereas bfill pads backward with
the first value ‘w’ (see in Figure 3.4). Bfill in practice assumes that a student gets
the same quiz result in his missed quiz as his first quiz result whereas ffill assumes
that a student gets the same quiz result in his missed quiz as his last quiz result.
Zero-padding just simply assumes that a student gets zero in his missing quiz.

3.2.4 Generation and Imputation

We train three generative models: VAE-NS (non-subject), VAE (subject-based)
and LVAE (subject-based) to generate missing data. Since LVAE is only possible
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Table 3.1: Data Statistics for Geom and Alg2 Data. * is Downstream Task Split

Split Part (Ratio) Geometry (Geom) Algebra II (Alg2)
# Student # of Rows # Student # of Rows

Train (0.5) 1,633 215,632 1,055 137,409
Validate (0.1) 326 42,259 211 30,652

Test (0.2) 653 82,707 422 60,709
Generation (0.2) 653 71,799 422 48,778

Data Total 3,265 412,397 2,110 277,548
Train* (0.7) 2,286 287,431 1,477 186,187

Validate* (0.1) 326 42,259 211 30,652
Test* (0.2) 653 71,799 422 60,709
Data Total* 3,265 412,397 2,110 277,548

Missing Train (0.7) 2,256 559,586 1,440 361,819
Missing Validate (0.1) 322 79,941 206 51,688

Missing Test (0.2) 645 159,882 411 103,377
Missing Data Total 3,223 799,408 2,057 516,884

to train if we have descriptor information, which relies on student ID information,
we do not apply non-subject training for LVAE. After data is generated for all
the missing data, we impute back the generated data from VAE-NS by the row-
number splits and impute the generated data from VAE and LVAE by ID splits
(see in Figure 3.5). We do not only impute back the generated data to the train set
because we believe the data augmentation on all the train, val and test sets will
make the model performance harder to improve than we only augment the train
set but leave the test set the same.

3.2.5 Downstream Prediction

There are two rounds of downstream predictions. The initial round is conducted
on the original data using the three padding strategies to find the best performance
model so that we can use it to predict the target variable for the generate data. The
second round is a retraining round where we impute back the generated data using
the best padding strategy. The second round has two parts: (i) we conduct the re-
training on the combined data that contains all the generated data and the original
data by IDs (for VAE, LVAE) and by row number (for VAE-NS); (ii) we conduct
retraining on the combined data with a fraction (i.e., 10/20/30/50/80/100%) of
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Figure 3.5: An Illustration of the Data Imputation Process.

the generated data and the original data only by IDs (for VAE, LVAE) because
VAE-NS does not show salient improvement with the data it generates.

3.3 Results

3.3.1 Evaluating the Quality of the Generated Data

We exhaustively train three generative models (i.e., VAE-NS, VAE and LVAE) until
its loss stops improving with different sets of hyper-parameter tuning to reach the
best result. We observe that VAE-NS model is hard to converge and stops early
with final loss of around 13.4349 for Alg2 data set and 0.6282 for geom data set.
VAE is able to decrease loss to 0.2652 for Alg2 data set and 0.2661 for geom data
set. LVAE however can decrease loss to 0.2291 for alg2 data and 0.1863 for geom
data set with the latent dimension as 64 and hidden dimension as 128. Figure 3.6
selects the ‘assessment_duration’ feature to compare the data distribution between
original data and generated data by VAE-NS, VAE and LVAE. We can tell that the
Geom generated data for the feature ‘assessment_duration’ from VAE-NS sways
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(a) Geom Data Set

(b) Alg2 Data Set

Figure 3.6: ‘Assessment Duration’ Feature Distribution Comparison Between Orig-
inal Data and Generated Data

the farthest from the original data whereas the generated data from VAE and
LVAE are closer to the original data distribution with LVAE slightly better. The
same case applies to the Alg2 data. The plot also shows that generally both VAE
and LVAE can reconstruct data closely to the original data distribution, indicating
that we are safe to use such generated data for downstream prediction tasks.
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(a) Geom Data Set

(b) Alg2 Data Set

Figure 3.7: Average Retraining RMSE Using Generated Data From Different Mod-
els. The error bar shows the min. and max. of the 10 random seeds.

Table 3.2: Average RMSE by Padding Strategy, Models and Data sets. The bold-
face represents the best performance.

Avg. RMSE Geometry (Geom) Algebra II (Alg2)
adaRNN LSTM Transformer adaRNN LSTM Transformer

Bfill 0.50734 0.47665 0.48613 0.52034 0.48967 0.49463
Ffill 0.51946 0.47664 0.49713 0.51895 0.48995 0.49632
Zero 0.48160 0.47702 0.40208 0.48860 0.49173 0.45138

3.3.2 Evaluating the Effectiveness of the Imputed Data

Before we impute the generated data, we conduct the first round of downstream pre-
diction via three models (i.e., LSTM, adaRNN and Transformer) by three padding
strategies (i.e., bfill, ffill and zero padding) to select the best model performance
as the baseline original data model performance. We run 10 random seeds for
each model, padding strategy and data set. Table 3.2 shows the detailed average
RMSE for each model by padding schemes. We see that adaRNN and Transformer
model obtain the best performances when padded with zero whereas LSTM model

36



Table 3.3: Average RMSE by Generative Models for Prediction Tasks. The bold
face represents the best performance.

Avg. RMSE Geometry (Geom) Algebra II (Alg2)
adaRNN LSTM Transformer adaRNN LSTM Transformer

Original 0.48160 0.47664 0.40208 0.48860 0.49173 0.45138
VAE-NS 0.58251 0.48030 0.37090 0.49388 0.48989 0.34071

VAE 0.26570 0.26559 0.32902 0.30304 0.27293 0.35260
LVAE 0.26226 0.26185 0.28913 0.29470 0.27326 0.35911

obtains its best performance via ffill padding for Geom data and bfill for Alg2 data.
We then use the best performing model to predict target variable for the generated
data and impute back the generated data (with the target variable) to the original
data set for retraining.

We observe the retrained model performance surpasses the original model per-
formance by big margins (see in Table 3.3). From the table on column 1 under
Geom data, we observe the retrained adaRNN model performance using the gen-
erated data from VAE is 0.26570, almost about 50% lower than the original model
performance of 0.48160 in RMSE. Oppositely, the retrained model performance us-
ing the generated data from VAE-NS has RMSE of 0.58251, which is higher than
the original model RMSE. This might indicate the generated data from non-subject
based training perturbs the original data and creates negative gain. Further, we
notice the model performance of using generated data from LVAE is even slightly
better than VAE with a lower average RMSE of 0.26226. This phenomenon is
present across the three models for Geom data. For Alg2 data, we also observe
superior performance from both VAE and LVAE. However, the retrained model
using generated data from VAE seems to perform slightly better than the one with
LVAE generated data. Figure 3.7 visually presents the sharp drop of the average
RMSE after imputing the generated data from both VAE and LVAE models.

3.3.3 Evaluating the Robustness of the Imputed Data

Once we learn that imputed data can boost original model performance to a sig-
nificant extent, we further experiment to validate the robustness of the imputed
data. More specifically, we impute the number of students in the fraction of 10%,
20%, 30%, 50%, 80%, 100% back to their original train/val/test sets. The choice
of percentage increments in number of students are arbitrary but all the students
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(a) Geom Data Set

(b) Alg2 Data Set

Figure 3.8: Average RMSE by % of Imputed Data vs. Original Data.

are linked back via their IDs to the original train/val/test sets. It is designed this
way so that it is harder for the retrained model to outperform the original model as
the number of students in the train/val/test set are still the same but with longer
sequences. Figure 3.8 showcases the effectiveness of adding different fractions of
students to boost the original model performance. For LSTM and adaRNN model,
we observe that the model performance starts to boost after imputing only 10%
of student IDs back. As the percentage gets higher, we see higher boosting. For
Transformer model, it starts to boost after imputing 50% of student IDs back. This
confirms a known fact that large models such as Transformer model needs more
data to boost its performance. In general, imputing data based on the subjects
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can boost the model to a great extent.

3.4 Summary
In conclusion, to augment missing data in KT field, we first identified missing values
by school testing schedules and then we train two deep generative models (i.e., VAE
and LVAE) to generate quality data in the subject-based setting for imputation.
With the imputed data, we are able to boost the original model by almost 50% in
average RMSE. In addition, we validate the robustness of the imputed data and
observe that only 10% of students data are needed to boost the original model
performance for small to medium models such as LSTM and adaRNN and 50% of
students data are needed to boost large models such as Transformer. In future, we
plan to test the effectiveness of training using the varying length, instead of fixed
length, on the model performance.
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Chapter 4 |
Generalize Between The Same
Domain: A Comparison Approach

4.1 Introduction
Above chapters have explored multiple ML methods to tackle the data scarcity is-
sue via data augmentation approach in the content of knowledge tracing, this chap-
ter will switch the focal point to the knowledge generalization challenge mentioned
in Chapter 1, specifically Scenario (a) (i.e., model generalization) in the same con-
tent of knowledge tracing. As we already know, a student’s knowledge state could
be determined by educational information such as skills (learning standards that
a student has to master in one particular subject), item difficulty, cognitive infor-
mation such as student ability, slip/guess factor, etc. Existing KT models such as
BKT [37] is built based on the cognitive factors (i.e., slip/guess factors) and deep
learning models such as DKT [7], DKVMN [9], NPA [8], SAKT [10] tried to learn
educational information (e.g., skills, item difficulty, number of questions taken) as
hyperparameters in their neural networks to increase model performance. How-
ever, an unseen data set might have different education information, which leads
to mismatched model parameters. Hence, the model would fail to generalize. In
the case of mismatched parameters, because many KT deep learning models learn
exclusively for the specific data set, a covariance shift [38] often happens in the
new data, where the marginal probability distributions of the covariates in the two
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data sets are different but the conditional distributions are the same [33]. One gen-
eralizability study [39] found a SOTA model with 92% high accuracy could only
generate 14% on a new data set. Thus, to have good model performance on the
new data set, we need to retrain the model which leads to the repeated time and
effort and could be very expensive in the real world production setting. To solve
such problem, we first choose generic models that take educational information
as no hyperparameters such as RNN-based structure (e.g., LSTM, AdaRNN [33])
and Transformer (adapted from the original version [34]) 1 for time series data
prediction. Second, we adopt the inductive transfer learning (see in Chapter 1)
to generalize knowledge within the same domain from the source model to the
target data to save retraining time and effort. To this end, we employ two trans-
fer learning methods: (i) a feature-based approach where we freeze n layers of a
pre-trained source model and continuously train/fine-tune on the target task as-
suming the layers would retain common features between the source and target
data; (ii) an instance-based approach using Maximum Mean Discrepancy (MMD)
function to reduce the distance between the source and target data assuming there
exists a subset of data that have similar distribution in both source and target
data. Moreover, we are interested to investigate the efficacy of transfer learning
if we increase the size of the source to train the source model. To that end, we
augment data sets using the methodology introduced in Chapter 3. To compare
the ability to transfer between domains and tasks, namely transferability, we set
up further experiments to examine the saliency of transferibility between different
models and different methods as a note for future source model and method se-
lection for transfer learning. With that, we aim to answer the following research
questions (RQs):

• RQ1: Can transfer learning effectively improve model generalization on multi-
variate KT data?

• RQ2: Does the size of source data matter if we want to boost transferability?

• RQ3: How does each model structure’s transferability differ?

• RQ4: Do we see salient difference between the two transfer learning methods?
1https://github.com/maxjcohen/transformer
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By answering the RQs, this chapter makes the following contributions:

• Solving the poor generalization issue, we conduct transfer learning to gener-
alize knowledge from source model to predict target task via two methods

• We discover the effect of transfer learning is increased by training on the
augmented source data

• We demonstrate that the transferability of Transformer model is more salient
than AdaRNN and LSTM

• We showcase that freezing-layer approach is more effective and less expensive
to generalize knowledge than the method where we train via a MMD loss
function

4.2 Related Work
Transfer learning was first introduced to recognize and apply knowledge and skills
learned in previous tasks to new tasks. Later researchers found the transferabil-
ity of knowledge can be used to reduce the need and effort to recollect and re-
train models and outperforms models without transfer learning mechanism by a
large margin [4]. In transfer learning, the knowledge is obtained from a source
training task in a source domain and is applied to a target task in the target
domain. To achieve the effective knowledge transfer in various settings, tech-
niques although vary mainly fall under four categories: (i) instance-transfer [40–46],
(ii) feature-representation-transfer [47–52], (iii) parameter-transfer [53–55], (iv)
relational-knowledge-transfer [56, 57] (see details in Chapter 1). Instance-based
approach which this work adopts estimates the weights corresponding to each in-
stance in the source domain and is typically proportional to the distance between
source and target density distributions [58]. MMD as one of the distance measures
was first proposed by Pan et al. with the assumption that there exists a subset
of instances that have similar distributions in the source and target domains. An-
other method this work uses is feature-transfer. This method attempts to extract
relevant features from the source data and apply that to the target data. The
transferred knowledge is encoded into the shared features and can be transferred
across tasks [4]. To discover such relevant features, our work attempts to freeze the
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different layers of the pre-trained source model to retain the features from source
data.

As far as transfer learning model framework is concerned, many of them origi-
nated from image processing or NLP field. While it is noticeable that the value of
knowledge transfer is huge in those areas, we should not ignore its value in time
series data where transfer learning can be used to extract useful information from
the past time lags for future prediction. AdaRNN is such a model that is created
to tackle the covariance shift between different periods of time and apply the useful
learnings from the past segments to forecast for the future segments. The RNN-
based model has a pre-training mechanism which features a temporal distribution
matching to adaptively match the distributions between the RNN cells of two peri-
ods while capturing the temporal dependencies [33]. It has experimented on time
series data such as human activity recognition, air quality prediction, household
power consumption and financial analysis data, achieving 2.6% increase in clas-
sification tasks and 9.0% in regression tasks when comparing to SOTA methods.
We think this would be a good model to adopt for our purpose. We also include
Transformer model because it has been proved to have superior transfer learning
ability in the NLP field. However, we would like to validate its transfer learning
efficacy on the time series data. Moreover, LSTM as a plain RNN structure model
is included as a baseline to adaRNN and transformer model.

4.3 Experiment

4.3.1 Data sets

To examine the multi-variate covariance shift between data sets, we use two K12.com
multi-variate data sets: (i) Grade 10 geometry course quiz answering data set
(noted as Geom data) with 98.71% of students who have missing data; (2) Grade
11 algebra II quiz answering data set (noted as Alg2 data) with 97.49% of students
who have missing data. Each data set contains 8 temporal features (i.e., question
type, sequence number, assessment duration, total attempts, attempts per ques-
tion, question difficulty, item difficulty, standard difficulty) from Jan to June 2019
(see in Table 4.1). Because this work also compares the transfer learning effect
change on a larger source data, we fill up the missing values by augmenting the
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Table 4.1: Data Statistics for Geom and Alg2 Data For Non-augmented (noted as
‘non-aug’) and Augmented (noted as ‘Aug’) Data

Splits Geometry (# of rows) Algebra II (# of rows)
Non-aug Aug Non-aug Aug

Train (0.7) 288,784 619,173 194,286 405,224
Validate (0.1) 41,255 88,453 27,755 57,889

Test (0.2) 82,510 176,907 55,510 115,778
Total 412,548 884,533 277,551 578,891

two data sets using the generative technology introduced in Chapter 3 with target
variables predicted by the correspondent LSTM, adaRNN and Transformer models
(see details in Chapter 3). Note that we do not take the augmented data generated
by LVAE from Chapter 3 because we want to make our case reproducible without
the need to apply a special algorithm or framework. After augmentation, the data
size almost doubled (see in Table 4.1). These two particular data sets are chosen
because they are from the same platform (i.e., K12.com), ensuring that the trans-
fer learning is performed within the same domain and meaningful. To perform
general transfer learning, we do not typically require the source and target need
to be from the same platform/system. However, in the education domain, if the
teaching platforms are different, the knowledge learned from one platform will not
be applicable to the other. For example, many public data sets in KT field are
from different platforms such as ASSISTments data (e.g., mainly K-12 data), Junyi
(e.g., college students in Taiwan), STATICS (e.g., college students that learn statis-
tics at Carnegie Mellon University). Thus, the learning we draw from STATICS
data set cannot be easily applied to the K-12 learning in ASSISTments platform
because many of the K-12 students do not even have statistics lessons or it is too
long of learning gap between the college and grades under 12.

4.3.2 Training Setup

Training Methods: During training, we split the data into training (Ta)/validation
(V )/test (Te) sets with a ratio of [0.7,0.1,0.2] for the source data s and target data
t. To compare the generalization between the training with and without the trans-
fer learning, we carefully design five training methods to predict the same target
testing set Tet: (1) baseline training, where we train on the source training data
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Table 4.2: RMSE Comparison Between ML and DL Methods For Non-augmented
Data Sets. The ML performances are best estimator results after randomized
search CV (5). The DL performance is the average by the same hyperparameter
tuning across 5 random seeds. Combine: train/val/test are a mix of source and
target; Boldface represents the best performance.

Model Name Geom → Alg2 Alg2 → Geom
Baseline Combine Baseline Combine

Random Forest 0.7136 0.5851 0.5637 0.5893
AdaBoost 0.7012 0.6193 0.5899 0.6028
XGBoost 0.7070 0.6929 0.6926 0.6936

LSTM 0.4828 0.4824 0.4705 0.4700
AdaRNN 0.4854 0.4996 0.4722 0.4791

Transformer 0.4065 0.3707 0.3809 0.3641

Tas and validate on source validation set Vs to obtain a source model M and then
test on target test set Tet; (2) combined training, where we combine the train-
ing data of both source and target data (Tas+t) to train and combine the both
validation sets (Vs+t) to validate and test on Tet; (3) further-training, where we
continuously train the model M but with the target train data Tat, validate on
Vt and test on Tet; (4) further-train with frozen layers, where we freeze layers of
M and further train on Tat, validate on Vt and test on Tet. To ensure the deep
learning (DL) models we select have superior performance than traditional ma-
chine learning (ML) models, we conduct training on three traditional ML models
whose performances can be comparable to DL models in various situations: Ran-
dom Forest, AdaBoost and XGBoost (see details in Table 4.2). Because traditional
ML are not convenient to do further-training, we only compared training method
(1) and (2) between ML and DL models. We observe that the selected DL mod-
els out-perform the ML models (i.e., Random Forest, AdaBoost, XGBoost) to a
great extent with Transformer has the best performing RMSE. Therefore, we opt
to conduct further experiments on the DL models.

Given LSTM is a 2 layer model, we only freeze the first layer-feature layer.
We freeze the first two layers (feature layers) out of AdaRNN’s total four layers.
Transformer has 4 layers with encoder, decoder as feature layers and 2 linear layers.
We also freeze two feature layers for it; (5) transfer learning via MMD, where we
train a MMD loss between Tals and Talt, l is the smaller length of the source and
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Table 4.3: Data Assignment By Training Methods For Non-augmented Data. G:
Geom data; A: Alg2 data; l: the smaller data length of the G and A. FT: further-
train; TR: transfer learning.

Train Method Geom (G) → Alg2 (A) Alg2 (A) → Geom (G)
Ta V Te Ta V Te

Baseline G G A A A G
Combine G +A G +A A A+ G A+ G G

Further-train (FT) G +A A A A+ G G G
FT+Freeze Layers G +A A A A+ G G G

TR via MMD Gl +Al G +A A Al + Gl Al + Gl G

target data, then we validate on Vs+t and test on Tet (see details in Table 4.3).
Method (1) is a classical generalization approach where you train a source model
using source data and test on the target data. Method (2) can be considered
retraining method where we merge the majority of target data (Tat) back to the
source data and validate on both of the source and target data to finally test on the
target unseen data Tet. In practice, Method (2) is resource-intensive as we have to
completely train the model from fresh, which requires increased computation power
and time due to the increased data set size. This is also the method we should try to
avoid in the practical setting. Method (3) is basically a continuously train method,
where we continuously train the pre-trained model using the existing checkpoints
for more epochs but on Tat, validate on Vt and test on Tet. This method requires
relatively less resource because the computation power and time will only be spent
on the target data. Method (4) is a feature-based transfer learning where we
extract the good features that can be shared between the source and target data
from the source model and apply that to the target data. Time and computation
power is the same as Method (3). For Method (5), we adopt the instance-based
transfer learning where a MMD transfer loss is implemented between the source
and target data for l rows and validate on both the source and target validation set
but still test on Tet. It is different from Method (3) where the complete data set
of source and target will be used for training and there is no MMD loss included
in (3).
Hyperparameter-tuning: The data is split by row number and organized into
a fixed length in the pre-processing step (see in the non-subject-based process in
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Table 4.4: Model Parameters by Model. We apply the same for the source models
and transfer learning models. ‘-’ indicates the model network does not use such
parameter. ‘Q/V/H/N’ is specific to Transformer models and stand for the query
(Q), value (V), number of heads (H) and number of encoder and decoder layers to
stack (N).

Model Name #In #Out # Layers #Hidden Q V H N #Attention
LSTM 8 1 2 128 - - - - -

adaRNN 8 1 2 64 - - - - -
Transformer 8 1 - - 8 8 8 2 4

Chapter 3 Figure 3.3). We think the row-number splitting is sufficient because
we do not need to do imputation which requires alignment with students to not
interfere the sequence forming, as demonstrated in Chapter 3. As far as hyperpa-
rameter tuning for the training, we keep the training parameters unchanged for
all the models with learning rate of 2e-4, 5 epochs, weight decay of 5e-4 at batch
size of 32. Depending on different model architectures, we tune the model param-
eters differently. Table 4.4 lists all the customized hyperparameters we use. For
the two RNN-based models which use hidden dimensions, adaRNN uses 64 hidden
dimensions for each layer following [33] and LSTM uses 128 hidden dimensions
for 2 layers following the LSTM hyperparameter specification in [7] and [8]. For
Transformer model, we set up hyperparameter values for Q/V/H/N following the
guidance from both original paper [34] and the adapted transformer for time series
data 2. In the scenario of comparing feature-based and instance-based method
in Section 4.4.4, we adjust the hyperparameter tuning for Q/V/H/ to be 16 and
attention size to be 8 with N=4.
Loss Function: To compare the generalization among different models, we use
Root Mean Squared Error (RMSE) to evaluate the model performance which aligns
with the typical KT model evaluation metric and also more robust compared to
the L1 error. Hence, we use MSE (Mean Squared Error) error as loss function
across models. During the training for transfer learning via MMD, we apply the
loss function L = Ls + Lt + w ∗ Ltr, where Ls and Lt are the source and target
RMSE error and Ltr is the MMD loss. MMD is a distance measure function to
find the discrepancy between the source and target domain and can be represented
as dist(X′src, X′tar) =

∥∥∥ 1
n1

∑n1
i=1 ϕ(xsrci

)− 1
n2

∑n2
i=1 ϕ(xtari

)
∥∥∥

H
where ϕ is a mapping

2https://github.com/maxjcohen/transformer
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function. We use Adam optimizer to optimize the total loss L during training.

4.4 Results

4.4.1 Transfer Learning Improves Generalization

Table 4.5 presents all the model performances in RMSE error on Tet by different
training methods and model architectures. ∆ is a relative change in % of RMSE be-
tween the baseline and other training methods. The lower the ∆, the better. More
importantly, the negative ∆ shows the drop in RMSE, indicating the improvement
of generalization on Tet. From the table, we can see the lowest ∆ are located in
the bottom two rows of the table, which represent the model performances of the
two transfer learning methods (i.e., FT+Freeze Layers and TR via MMD) for both
generalization directions. In addition, majority of them are negative, especially for
‘FT+Freeze Layers’ method, from -6.22% to -0.09% for each model. These negative
∆ are also significant after tested for two sample t-test except for the ∆ on the
LSTM model when generalizing from Geom to Alg2 (insig.). This indicates that
transfer learning improve model generalization is not due to chance. Therefore, we
can answer RQ1 that transfer learning can effectively improve model generalization
in general. Note that we exclude ∆ of ‘Combine’ training method from comparison
because it is a quite costy method and should be avoided in practice. Even when
we compare to the ‘Combine’ method, transfer learning results are still superior
across models with the only exception on the Transformer model ∆ of ‘Combine’
method for Geom → Alg2 with -8.22% (Combine) vs. -6.2% (FT+Freeze Layer).

4.4.2 Augmented Source Data Increases Transfer Learning Ef-
fect

The above demonstrates that transfer learning is effective on generalizing knowl-
edge between the similar size data sets (289k vs. 194k rows). To answer RQ2,
we further conduct experiments to validate whether augmenting source data could
increase the transfer learning effect. Therefore, we augment the Geom and Alg2
data via VAE model and predict the correspondent target variable using LSTM,
AdaRNN and Transformer models which are introduced in Chapter 3. To ensure
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Table 4.5: RMSE Comparison Among Models With and Without Transfer Learn-
ing For Non-augmented Data Sets. The performances are the average by the same
hyperparameter tuning across 5 random seeds. Combine: train/val/test are a mix
of source and target; TR: transfer learning; boldface indicates the biggest reduction
in RMSE excluding ‘combine’ method; * indicates two-sample T-test significance.

Train Method Geom → Alg2 Alg2 → Geom
LSTM AdaRNN Transformer LSTM AdaRNN Transformer

Baseline 0.4828 0.4854 0.4065 0.4705 0.4722 0.3809
Combine 0.4824 0.4996 0.3707 0.4700 0.4791 0.3641

Combine ∆ -0.08% +2.92% -8.81%* -0.11%* +1.46% -4.39%*
Further-train (FT) 0.4827 0.4824 0.4541 0.4700 0.4721 0.3664

FT ∆ -0.01% -0.06%* +11.71% -0.11%* -0.02% -3.78%*
FT+Freeze Layers 0.4823 0.4818 0.3812 0.4701 0.4708 0.3599

FT+Freeze Layers ∆ -0.09% -0.75%* -6.22%* -0.09%* -0.29%* -5.49%*
TR via MMD 0.4825 0.4962 0.3894 0.4699 0.4929 0.3834

TR via MMD ∆ -0.06% +2.22% -4.23%* -0.14%* +4.38% +0.67%

the generalization is from the same target data and make performances compara-
ble, we only replace the source data with augmented data and keep the target data
as non-augmented. Table 4.6 showcases the data assignment for train/val/test af-
ter augmenting the source data by each training method. Table 4.7 presents the ∆
comparison by each model and training method. We also include the ∆ obtained
from the non-augmented data in Table 4.5 and mark it as †. By doing so, we can
test the hypothesis that whether or not the augmented data has different transfer
learning effect. We observe from the table that the lowest ∆s (marked with bold-
face) still remain in the bottom two rows which are the model performances for
transfer learning training methods. Except for the LSTM model when generaliz-
ing from Geom to Alg2 (i.e., -0.06% for FT+Freeze Layers and -0.02% for TR via
MMD), the model performances from both the transfer learning methods general-
ize better than the baseline model with significance. Moreover, these significant
drops have bigger magnitude than the ones from non-augmented data except for
the ‘TR via MMD’ performance on LSTM model when generalizing from Alg2a to
Geom (i.e., -0.06% vs. -0.14%). For example, for AdaRNN transferring from Geom
to Alg2, the average RMSE error when generalizing from augmented data to target
data drops by 2.54% comparing to 0.75% drop when training on non-augmented
data. The superiority is seen in the transfer direction of Alg2a → Geom as well.
Therefore, to answer RQ2, we observe that the source model trained with the aug-
mented data gain better transfer learning effect except for LSTM model which has
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Table 4.6: Data Assignment By Training Methods for Augmented Data. G: Geom
data; A: Alg2 data; l: the smaller data length of the G and A, a indicates aug-
mented data

Train Method Geoma (G) → Alg2 (A) Alg2a (Aa) → Geom (G)
Ta V Te Ta V Te

Baseline Ga Ga A Aa Aa G
Combine Ga +A Ga +A A Aa + G Aa + G G

Further-train (FT) Ga +A A A Aa + G G G
FT+Freeze Layers Ga +A A A Aa + G G G

TR via MMD Gla +Al Ga +A A Ala + Gl Ala + Gl G

Table 4.7: Generalization Performance Comparison Among Models With and With-
out Transfer Learning For Augmented Data Sets. The performances are averaged
across 5 random seeds using the same training parameter tuning. Combine: train/-
val/test are a mix of source and target; TR: transfer learning; † is the ∆ from Table
4.5; boldface is the lowest ∆ for each model excluding ‘combine’ method and † ∆.

Train Method Geoma → Alg2 Alg2a → Geom
LSTM AdaRNN Transformer LSTM AdaRNN Transformer

Base 0.4827 0.4820 0.3902 0.4700 0.4766 0.3822
Combine 0.4824 0.4914 0.3542 0.4696 0.4701 0.3663

Combine†∆ -0.08% +2.92% -8.81%* -0.11%* +1.46% -4.39%*
Combine∆ -0.06% +1.96% -9.22%* -0.08%* -1.37%* -4.17%*

FT 0.4824 0.4823 0.3590 0.47009 0.4915 0.3704
FT†∆ -0.01% -0.61%* 11.71% -0.11%* -0.02% -3.78%*
FT ∆ -0.06% +0.07% -8.00%* +0.02% +3.13% -3.08%*

FT+Freeze Layers 0.4824 0.4697 0.3517 0.4701 0.4703 0.3634
FT+Freeze Layers†∆ -0.09% -0.75%* -6.22%* -0.09%* -0.29%* -5.49%*
FT+Freeze Layers ∆ -0.06% -2.54%* -9.87%* +0.01% -1.33%* -4.90%*

TR via MMD 0.4826 0.4969 0.3857 0.4697 0.4940 0.4081
TR via MMD† ∆ -0.06% +2.22% -4.23%* -0.14%* +4.38% +0.67%
TR via MMD ∆ -0.02% +3.09%* -1.16% -0.06%* +3.64% +6.77%

very minimal gains (i.e., < 0.2%). It is worth noticing that the further-trained
methods are not that salient for LSTM (Alg2a → Geom) and AdaRNN models
(both transfer directions) as they present positive changes (i.e., +0.02%, +0.07%
and +3.13%) on the RMSE, indicating LSTM and AdaRNN’s poor facilitation on
the generalization from the augmented source data. The reason could be because
the further-train method is essentially continuous training on the existing check-
points of the source model. With such operation, no feature extraction are applied
and it is expected we do not see valid improvement on the model generalization.
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4.4.3 Transferability Saliency Comparison Between Models

From Section 4.4.2, we observe that Transformer models gain the highest improve-
ment with 6.22% for Geom → Alg2 and 5.49% for Alg2 → Geom with signifi-
cance. LSTM has the worst generalization with under 0.2% improvement whereas
AdaRNN has improvement of 0.75% for Geom → Alg2 and 0.29% for Alg2 →
Geom for the method ‘FT+Freeze Layers’. It seems that the Transformer models
from both generalization directions transfer knowledge significantly better than
the LSTM, AdaRNN models (see row 4 from the bottom) with -9.87% (Trans-
former) vs. -2.54% (AdaRNN) vs. -0.06% (LSTM) for Geoma → Alg2 and -4.90%
(Transformer) vs. -1.33% (AdaRNN) vs. +0.01% (LSTM) for Alg2a → Geom
in the ‘FT+Freeze Layers’ category. That is about 3-4 times better, emphasiz-
ing the superior transferability from the Transformer models. On the other hand,
with the least improvement and insignificance, LSTM seems to be the worst model
to choose when it comes to transfer knowledge. Therefore, we will leave it out
and compare AdaRNN model and Transformer model for their saliency in transfer
learning. The AdaRNN structure contains 4 layers including one feature layer, one
bottleneck layer, another feature layer and a batch normalization layer whereas the
Transformer model is a modified version of the original version from [34], which
contains one encoder, one decoder, two linear layers with encoder and decoder to
be two-head multi-head attention modules (see in Figure 4.1). We then freeze the
two feature extraction layers for AdaRNN (the feature and bottleneck layer) and
freeze encoder and decoder (2 head attention feature extractor) layers for Trans-
former model. Although frozen the same number of layers (2 layers), AdaRNN’s
generalizability looks much weaker than the Transformer model’s.

To find out how the difference arrives between the AdaRNN and Transformer
models in terms of transferability, we freeze parameter groups within each model
type to examine the inner workings behind the layer-freezing for the difference.
In Figure 4.1, we split Transformer model into five weights groups: (1) the first
head encoder; (2) the second head encoder; (3) the first head decoder; (4) the
second head decoder; (5) a linear layer. (1)-(4) are the feature extractor groups
inside the Transformer network. We split AdaRNN into four weights groups: (1)
a feature layer with two GRU cells; (2) a bottleneck layer with two batch normal-
ization weights; (3) a feature layer with two linear weights; (4) a gate and batch
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(a) AdaRNN layers

(b) Transformer Layers

Figure 4.1: An Illustration on the Major Parts of AdaRNN and Transformer Neural
Networks. (1)-(5) are the weights groups in each network.

normalization layer that contains gate weights and batch normalization weights
(see in Figure 4.1). The (1)-(2) weights groups are the feature extractor inside the
AdaRNN network. We then freeze only the weights and keep the bias trainable for
each group to further train the existing source model (i.e., baseline model). Table
4.8 demonstrates the average RMSE acquired after we freeze each weights group for
AdaRNN and Transformer models comparing to the results of freezing two layers
for each model. From the table, we observe that AdaRNN stops updating (marked
as →) performance after weights group (3) which is right after feature and bottle-
neck layers whereas Transformer model performances keep changing (marked as ↑,
↓) at each weight group even after feature extractor (weights group (4)). We also
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Table 4.8: Transfer Learning Freezing Layers vs. Freezing Parameter Comparison
Between AdaRNN and Transformer Model For Non-augmented and Augmented
Data. The performances are averaged across 5 random seeds. We freeze 1 layer
for AdaRNN and 2 layers for Transformer. ‘†’ indicates the result is from Table
4.5 whereas ‘‡’ indicates the result is from Table 4.7. * indicates the two-sample
T-test significance with the ‘Freeze Layers’ performance as base sample.

Geom → Alg2

Model Name Freeze Layers Freeze Parameters
1 2 3 4 5

AdaRNN 0.4818† 0.4822 0.4813*↓ 0.4813*→ 0.4813*→ /
Transformer 0.3812† 0.4010↑ 0.3512↓ 0.3494↓ 0.3535↑ 0.3740*↑
AdaRNNa 0.4697‡ 0.4816*↑ 0.4812*↓ 0.4812*→ 0.4812*→ /

Transformera 0.3517‡ 0.3511↓ 0.3511*→ 0.3513↑ 0.3519↑ 0.3722*↑
Alg2 → Geom

Model Name Freeze Layers Freeze Parameters
1 2 3 4 5

AdaRNN 0.4708† 0.4702↓ 0.4704↑ 0.4704→ 0.4704→ /
Transformer 0.35994† 0.3589↓ 0.3612↑ 0.3591↓ 0.3601↑ 0.3660*↑
AdaRNNa 0.4703‡ 0.4923↑ 0.4609*↓ 0.4609*→ 0.4609*→ /

Transformera 0.3634‡ 0.3607*↓ 0.3602*↓ 0.3603*↑ 0.3603*→ 0.3732*↑

observe Transformer models have better initial performances than AdaRNN after
freezing the first weight group, e.g., 0.4010 (Transformer) vs. 0.4822 (AdaRNN)
for Geom → Alg2. This could be because that AdaRNN was designed for training
MMD loss and its special module ‘Temporal Distribution Matching’ only works
for time series without the longitudinal nature such as weather and utility time
series data. Meanwhile, the superiority of Transformer models could be due to
the excellent feature extraction from its encoder and decoder structures with mul-
tiple heads (also known as multi-head attention) that potentially learn different
patterns by each head. Thus to answer RQ3, we conclude that Transformer has
better transferability comparing to the other two model structures (i.e., AdaRNN
and Transformer) due to its excellent feature extraction from the multi-head at-
tention mechanism.

4.4.4 Transferability Saliency Comparison Between Methods

From Section 4.4.2, we discover that ‘FT+Freeze Layers’ seems to always perform
better than ‘TR via MMD’ for the same training parameter tuning. In addition, all
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the significant drop in RMSE are obtained from the ‘FT+Freeze Layers’ method
except for one (i.e., LSTM ∆ of -0.14% for Alg2 → Geom), indicating that the
feature-based method via freezing layers may have superior performance over the
instance based transfer learning method via MMD. The reason could be that freez-
ing layers is able to lock down the common features between source and target
data and gain increased performance when further training whereas the instance-
based method relies on training the MMD loss function to minimize the distance
between the source and target data, which could require much time and compu-
tational resource to reach its optimal performance. Note that we only train the
method with 5 epochs for all the models, which might not be enough to reach the
best performance for MMD method. To validate this, we increase training epochs
and further tune hyperparamters for the ‘TR via MMD’ method. We observe that
the RMSE is able to go down when the epochs are increased to 10 and the hid-
den dimensions are doubled to 256 except for Geom → Alg2 on the augmented
data (see ∆ in Table 4.9 ). This infers that the training cost of ‘TR via MMD’
method is much higher than ‘FT+Freeze Layers’, indicating ‘FT+Freeze Layers’
is computationally frugal and effective with less adjustment on hyperparameter
tuning.

In addition, Section 4.4.1 and 4.4.2 demonstrate that the performances from
‘TR via MMD’ method are not significantly different from the baseline method
whereas the performances from ‘FT+Freeze Layers’ are. Thus, we can conclude
the answer to RQ4 that the feature-based transfer learning method featuring
‘FT+Freeze Layers’ has better transferability than the instance-based method fea-
turing ‘TR via MMD’ method.

4.5 Limitations
Although this chapter offers an interesting angle to compare the transferability
between different models and different methods, the experiment design are rather
exploratory than empirically strict. Our claims are only induced from two multi-
variate data sets and limited to two models for Transformer model to compare. As
future work, the transferability experiments should be extended to multiple other
data sets and increasing the number of models to compare with for Transformer
model is also desirable to solidify the results.

54



Table 4.9: Feature-based vs. Instance-based Transferability Comparison For Trans-
former Model. The performances are averaged across 5 random seeds. ‘†’ indicates
the result is from Table 4.5 whereas ‘‡’ indicates the result is from Table 4.7. ∆ is
the relative % change in RMSE from ‘TR via MMD’ method in the same row.

Geom →Alg2

Data Type FT+FL TR via MMD Continue-Train on TR via MMD
Hid_Dim=256 ∆ Ep=10 ∆

Non-aug 0.3812† 0.3894† 0.4312 +10.74% 0.3760 -3.43%
Aug 0.3517‡ 0.3857‡ 0.4064 +4.92% 0.4004 +3.82%

Alg2→Geom
Non-aug 0.3599† 0.3834† 0.3799 -0.91% 0.3773 -1.59%

Aug 0.3634‡ 0.4081‡ 0.3939 -3.47% 0.4045 -0.86%

4.6 Summary
To reduce the model generalization error, this chapter proposed transfer learn-
ing approach via feature-based (i.e., freeze layers) and instance-based methods
(i.e., MMD training). We tested the transfer learning effectiveness on both non-
augmented and augmented data as source data and demonstrated that transfer
learning can successfully improve generalization by a margin of 5-10%. Further-
more, we showcase that knowledge can be more effectively transferred from aug-
mented source data to small size data than between the similar size data sets.
Moreover, we compared the transferability between three models and between
two methods. We observe that Transformer is the most salient at transferring
knowledge as a model structure and feature-based approach by freezing layers is
empirically more effective and computationally frugal in generalizing knowledge
from source to target task.
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Chapter 5 |
Generalize Between Different Do-
mains: A TAPT Approach

5.1 Introduction
In the math education community, teachers, Intelligent Tutoring Systems (ITSs)
and Learning Management Systems (LMSs) have long focused on bringing learners
to the target mastery over a set of skills, also known as Knowledge Components
(KCs). Common Core State Standards (CCSS)1 is one of the most common
categorizations of knowledge components skills in mathematics from kindergarten
to high school in the United States with a full set of 385 KCs. For example, in
the CCSS code 7.NS.A.1, 7 stands for 7-th grade, NS stands for the topic Number
system, A.1 stands for the lesson number [59]. In the process of using KCs, the
aforementioned stakeholders often encounter the challenges in three scenarios: (1)
teachers know how to describe the areas where a student is unable to master but
don’t know what exact skill code that is (S1), (2) ITSs need to tag instructional
videos with KCs for better content management (S2), and (3) LMSs need to know
what KCs a problem is associated with in recommending instructional videos to
aid problem solving (S3).

The solutions to these scenarios typically framed the problem as the multinomi-
nal classification–i.e., given the input text, predicts one most relevant KC label out
of many KCs: I(nput) 7→ text and O(utput) 7→ KC. Prior research solutions in-
cluded SVM-based [60], Non-negative Matrix Factorization (NMF) [61], Skip-gram

1www.corestandards.org
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Table 5.1: Examples of three data types, all having the KC label “8.EE.A.1"

Data Type Text

Description Text Know and apply the properties of integer
exponents to generate equivalent numerical expressions

Video Title Apply properties of integer exponents to generate
equivalent numerical expressions

Problem Text Simplify the expression: (z2)2 *Put parentheses around
the power if next to coefficient, for example: 3x2=3(x2),x5=x5

Representation [62], Neural Network [39] or even cognitively-based knowledge rep-
resentation [63]. Existing solutions, however, used relatively small number of labels
(e.g., 39 or 198) from CCSS with the input of problem text only (similar to Ta-
ble 5.1-Row 3) [39, 60, 62]. In addition, they often rely on customized feature
engineering that varies from data set to data set and needs to to rebuilt whenever
a new testing data set distribution deviates from the original training data set.

Such finding gives rise to the need of a knowledge transfer model. It will
conduct transductive transfer learning, which generalize the knowledge between
different domains-i.e., from other domains to the education domain for text pre-
diction task. Based on the huge success in the NLP field with high-performing
pre-trained language models, we adopt the pretrained language model approach
to carry out the transfer learning in the above setting. Toward such goal, in this
chapter, we propose the following research questions:

RQ1: Can we build a transfer learning model that leverages recent success of pre-
trained models in NLP field and prove its superior performance to the prior
state-of-the-art (SOTA) models and even the original general language model
(denoted as BASE BERT [64])?

RQ2: How does such model generalize across different skill-related text data? Would
augmenting the training data help to improve the generalization further?

RQ3: How to better evaluate the miss-predictions which education experts deemed
not incorrect from such model?

By answering the above research questions, this chapter makes the following
contributions:
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• Train a Task-adaptive Pretraining (TAPT) model from the BASE BERT
on three types of skill-related text data and compare its performance to
the prior models and BASE BERT. Our experiments demonstrate that the
TAPT model outperforms all the prior SOTA methods and obtains 0.5-2.3%
improvement on the BASE BERT.

• Improve the TAPT model’s generalizability with a margin of 1-3% via aug-
menting the training data.

• Propose a new evaluation measure, TEXSTR, that enables 56-69% more KC
labels to be correctly predicted than using the classical measure of accuracy.

5.2 Related Work
KC Models. Rose et al. [63] is one of the earliest work predicting knowledge
components, which took a cognitively-based knowledge representation approach.
The scale of KCs it examined was small with only 39 KCs. Later research extended
the scale of KCs using a variety of techniques. For example, Desmariais [61] used
non-negative matrix factorization to induce Q-matrix [65] from simulated data and
obtained an accuracy of 75%. The approach did not hold when applying to real
data and only got an accuracy of 35%. The two aforementioned studies shared the
same drawback: not using the texts from the problems. Karlovcec et al. [60] used
problem text data from the ASSISTments platform [1] and created a 106-KC model
using 5-fold cross validation via ML approach SVM, achieving top 1 accuracy of
62.1% and top 5 accuracy of 84.2%. Pardos et al. [62] predicted for 198 labels and
achieved 90% accuracy via Skip-gram word embeddings of problem id per user (no
problem text used). However, Patikorn et al. [39] did a generalizability study of
Pardos et al. [62]’s work and only achieved 13.67% accuracy on a new data set.
They found that was because Pardos et al. [62]’s model was over-fitting due to
memorizing the question templates and HTML formatting as opposed to encoding
the real features of the data. Hence, Patikorn et al. [39] removed all the templates
and HTML formatting and proposed a new model using Multi-Layer-Perceptron
algorithm, which achieved 63.80% testing accuracy and 22.47% on a new data set.
The model of Patikon et al. [39] became the highest performance for the type of
problem text. The preceding research is only focused on problem related content
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(ID or texts) whereas our work uses not only the problem text but also the KC
descriptions and video title data covering a broad range of data.
Pre-Trained BERT Models. The state-of-the-art language model BERT (Bidi-
rectional Encoder Representations From Transformer) [64] is a pre-trained lan-
guage representation model that was trained on 16 GB of unlabeled texts including
Books Corpus and Wikipedia with a total of 3.3 billion words and a vocabulary size
of 30,522. Its advantage over other pre-trained language models such as ELMo [66]
and ULMFiT [67] is its bidirectional structure by using the masked language model
(MLM) pre-training objective. The MLM randomly masks 15% of the tokens from
the input to predict the original vocabulary id of the masked word based on its
context from both directions [64]. The pre-trained model then can be used to train
from new data for tasks such as text classification, next sentence prediction.

Users can also further pre-train BERT model with their own data and then
fine-tune. This combining process has become popular in the past two years as it
can usually achieve better results than fine-tuning only strategy. Sun et al. [68]
proposed a detailed process on how to further pre-train new texts and fine-tune for
classification task, achieving a new record accuracy. Models such as FinBERT [69],
ClinicalBERT [70], BioBERT [71], SCIBERT [72], and E-BERT [73] that were
further pre-trained on huge domain corpora (e.g., billions of news articles, clini-
cal texts or PMC Full-text and abstracts) were referred as Domain-adaptive Pre-
trained (DAPT) BERT and models further pre-trained on task-specific data are re-
ferred as Task-adaptive Pre-trained (TAPT) BERT by Gururangan et al. [74] such
as MelBERT [75] (Methaphor Detection BERT). Although DAPT models usually
achieve better performance (1-8% higher), TAPT models could also demonstrate
competitive or even higher performance (2% higher) according to Gururangan et
al. [74]. In Liu et al. [69], FinBERT-task was 0.04% higher than domain FinBERT
in accuracy. In addition, TAPT models require less time and resource to train. In
light of this finding, we use the task-specific data to further pre-train the BERT
model.

5.3 The Proposed Approach
To improve upon existing solutions to the problem of auto-labeling educational
content, we propose to exploit recent advancements by BERT language models.
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Figure 5.1: An illustration of training and fine-tuning process of BASE vs. TAPT
BERT

Since BERT can encode both linguistic structures and semantic contexts in texts
well, we hypothesize its effectiveness in solving the KC labeling problem. By
effectively labeling the KCs, we expect to solve the challenges incurred from three
scenarios in Section 5.1.

5.3.1 Task-Adpative Pre-Trained (TAPT) BERT

In particular, we propose to adopt the Task-adaptive Pre-trained (TAPT) BERT
and fine-tune it for three types of data. The “pre-training" process is unsupervised
such that unlabeled task-specific texts get trained for MLM objective whereas
the “fine-tuning" process is supervised such that labeled task-specific texts get
trained for classification (see Fig. 5.1). We call a BERT model that only has a
fine-tuning process as BASE. For the TAPT model, we first initialize the weights
from the original BERT (i.e., BERT-base-uncased model). Then, we further pre-
train the weights using the unlabeled task-specific texts as well as the combined
task texts (see details in Section 5.4.1) for MLM objective, a process of randomly
masking off 15% of the tokens and predict their original vocabulary IDs. The pre-
training performance is measured by the accuracy of MLM. Once the TAPT model
is trained, we fine-tune the TAPT model with the task-specific labeled texts by
splitting them into training, validation and testing data sets and feed them into the
last softmax layer for classification. We measure the performance of fine-tuning via
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the testing data accuracy. For BASE, we do not further train it after initializing
the weights but directly fine-tune it with the task-specific data for classification
(see Fig. 5.1). To show the effectiveness of the TAPT BERT approach, we compare
it against six baselines including BASE BERT for three tasks:

• Td: to predict K-12 KCs using data set Dd (description text) based on S1

• Tt: to predict K-12 KCs using data set Dt (video title text) based on S2

• Tp: to predict K-12 KCs using data set Dp (problem text) based on S3

5.3.2 Evaluating KC Labeling Problem Better: TEXSTR

In the regular setting of multinomial classification to predict KC labels, the evalu-
ation is done as binary–i.e., exact-match or non-match. For instance, if a method
predicts a KC label to be 7.G.B.6, but its ground truth is 7.G.A.5, 7.G.B.6 is
considered to be a non-match. However, the incorrectly predicted label of 7.G.B.6
could be closely related to 7.G.A.5 and thus still be useful to teachers or content
organizers. For example, in Fig. 5.2, the input to the classification problem is a
video title “Sal explains how to find the volume of a rectangular prism fish tank
that has fractional side lengths." Its ground truth label is 7.G.B.6 (7-th grade
geometry KC), described as “Solve real world problem involving ... volume ...
composed of ... prisms." When one looks at three non-match labels, however, their
descriptions do not seem to be so different (see in Fig. 5.2). That is, all of the three
non-match labels (6.G.A.2, 5.MD.C.5, and 5.MD.C.3 ) mention “volume solving"
through “fine/relate/recognize with operations and concepts," which is quite sim-
ilar to the KC description of the ground truth. However, due to the nature of
exact-match based evaluation, these three labels are considered wrong predictions.
Further, domain experts explain that some skills are prerequisites to other skills,
or that some problems have more than one applicable skills (thus multiple labels)
and they could all be correct.

Therefore, we argue that using a strict exact-matching based method in eval-
uating the quality of the predicted KC labels might be insufficient in practical
settings. We then propose a method that considers both semantic and structural
similarities among KC labels and their descriptions to be an additional measure
to evaluate the usability of the predicted labels.
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Figure 5.2: An illustration of multiple possibilities of a correct label for a given
video title text

• Semantic Similarity (Ct): We adopt the Doc2Vec algorithm [76] to capture
the similarity between KC labels. Doc2Vec, derived from word-vector algo-
rithm, generates similarity scores between documents instead of words and is
proved to have lower error rate (7.7-16%) than the word vector approach [76].

• Structural Similarity (Cs): We exploit prerequisite relationships among skills
(KC labels) and capture such as edges and KC labels as nodes in a graph. The
prerequisite relationships are extracted from a K-G8 math coherence map by
Jason Zimba [77] and a high school (G9-G12) coherence map by UnboundEd
Standard Institue [78]. Then, we adopt Node2Vec algorithm [79] that is
efficient and flexible in exploring nodes similarity and achieved a new record
performance in network classification problem [79].

In the end, we craft a new evaluation measure, named as TEXSTR (Λ), by
combining both Ct and Cs as follows: Λ = α · Ct + (1 − α) · Cs, where α controls
the weight between Ct and Cs as an oscillating parameter.
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5.4 Empirical Validation

5.4.1 data sets and Evaluation Measure

Table 5.2 summarizes the details of the data sets for pre-training and fine-tuning
processes. Dd contains 6,384 description texts (84,017 tokens) and 385 math
KCs (an example shown in Fig. 5.1-a). Part of Dd are extracted from Com-
mon Core Standards website2 and part are provided by k12.com3, an education
management organization that provides online education to American students
from kindergarten to Grade 12. Dt contains 6,748 video title texts (62,135 tokens)
and 272 math KCs (an example shown in Fig. 5.1-b) Part of Dt are extracted
from Youtube.com (via youtube DataAPI4) and part are provided by k12.com. Dp

contains 13,722 texts (589,549 tokens) and 213 math KCs provided by ASSIST-
ments5 (an example shown in Fig. 5.1-c). Further, Dd+t, Dd+p, Dt+p, and Dall are
different combinations of the unlabeled texts from Dd, Dt, and Dp. They are only
used in the TAPT pre-training process. We pre-process all aforementioned texts by
removing all the templates and HTML markups to avoid over-fitting, suggested by
the prior highest accuracy method [39]. In the TAPT pre-training process, 100%
of the unlabeled texts from the aforementioned data sets are used for pre-training.
In fine-tuning process for both TAPT and BASE BERT, only Dd, Dt, and Dp are
used and 72% of their texts and labels are used for training, 8% are for validation
and 20% are for testing (see in Table 5.2 Row 1-3 and Col. 6-8).

As an evaluation measure, following prior research [39,60–63] for direct compar-
ison, we use Accuracy@k as (TP + TN)/(TP + TN + FP + FN), when a method
predicts top-k KC labels. Further, we evaluate our method using the proposed
TEXSTR measure.

5.4.2 Pre-training and Fine-tuning Details

To further pre-train, we follow the same pre-training process of original BERT with
the same network architecture (12 layers, 768 hidden dimensions, 12 heads, 110M

2http://www.corestandards.org/math
3http://www.k12.com
4http://developers.google.com/youtube/v3
5http://www.assistments.org/
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Table 5.2: A Summary Statistics of Data sets.

Name # Labels # Texts # Tokens Fine-tuning Partition
Training (72%) Validation (8%) Testing (20%)

Dd 385 6,384 84,017 4,596 511 1,277
Dt 272 6,748 62,135 4,858 540 1,350
Dp 213 13,722 589,549 9,879 1,098 2,745
Dd+t / 13,132 146,152 / / /
Dd+p / 20,106 673,566 / / /
Dt+p / 20,470 651,684 / / /
Dall / 26,854 735,701 / / /

parameters) but on our own unlabeled task-specific texts (see Col. 4 in Table 5.2).
With an 8-core v3 TPU, we further train all our models with 100k steps, achieving
MLM accuracy of above 97% that lasts about 1-4 hours. We experiment hyper-
parameters such as learning rate (lr) ∈ {1e− 5, 2e− 5, 4e− 5, 5e− 5, 2e− 4}, batch
size (bs) ∈ {8, 16, 32}, and max-sequence length (max-seq-len) ∈ {128, 256, 512}.
The highest MLM accuracy was achieved when lr ← 2e-5, bs ← 32, and max-seq-
len ← 128 (for Dd and Dt) and max-seq-len ← 512 with the same lr and bs (for
Dp, Dd+p, Dt+p, Dall). To fine-tune, we also follow the original BERT script by
splitting Dd, Dt, Dp into 72% for training, 8% for validation and 20% for testing
per task. We experiment ep ∈ {5, 10, 25} due to the small size of the data size and
retain the same hyper-parameter search for lr, bs, max-seq-len. We find that the
best testing accuracy is obtained when ep← 25, lr← 2e-5, bs← 32, and max-seq-
len← 128 for Dd, Dt whereas the best testing accuracy for Dp is obtained when ep
← 25, lr← 2e-5, bs← 32, and max-seq-len← 512. We find that after ep← 25, it
is difficult to gain significant increase on the testing accuracy. Hence, the optimal
hyper-parameters while task-dependent seem to have very minimal change across
tasks. This finding is consistent with SCIBERT reported [72].

5.4.3 Result #1: TAPT BERT vs. Other Approaches

Table 5.3 summarizes the experimental results of six baseline approaches and
TAPT BERT for each task. For baseline methods, we group them into categories
(see in Table 5.3) (1) classical ML, (2) prior work, and (3) BASE BERT. By includ-
ing popular ML methods such as Random Forest and XGBoost, we aim to compare
its performance to the one from prior ML work (SVM) proposed by Karlovec et
al [60] in the literature review. As to comparing to the prior highest accuracy
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Table 5.3: Accuracy comparison (best and 2nd best accuracy in blue bold and
underlined, respectively, BL† for baseline best, and * for statistical significance
with p-value < 0.001)

Approach Type Algorithm Dd Dt Dp

ACC@1 ACC@3 ACC@1 ACC@3 ACC@1 ACC@3

Classical ML
SVM [60] 44.87 70.40 48.15 70.30 78.07 87.69
XGBoost 43.07 71.34 45.33 66.15 77.63 87.94

Random Forest 49.26 78.78 49.33 74.37 78.03 88.23

Prior Work Skip-Gram NN [62] 34.07 34.15 43.00 43.52 76.88 77.06
Sklearn MLP [39] 50.53 74.41 48.22 57.95 80.70 81.13

BERT BASE 48.30 76.40 50.99 76.55 81.73 90.99
TAPT 50.60 79.29 52.71 78.83 82.43 92.51

Improvement |TAPT −BL†| 0.07 0.51 1.72 2.28 0.70 1.52
|TAPT −BASE| 2.30∗ 0.51∗ 1.72∗ 2.28∗ 0.70∗ 1.52∗

method [39], we applied the same 5-fold cross-validation on our own problem texts
and obtain ACC@1 (Accuracy of the Top 1 Prediction) and ACC@3 (Accuracy of
Top 3 Predictions). Overall, we see that TAPT models outperform all other meth-
ods at both ACC@1 and ACC@3 across three tasks. Note TAPT models here are
simply trained on the unlabeled texts from Dd, Dt, and Dp. Compared to the best
method in baseline, the TAPT model has an increase of 0.07%, 1.72%, 0.70% at
ACC@1 and 0.51%, 2.28%, 1.52% at ACC@3 across the three tasks. Compared to
the BASE BERT, the TAPT BERT shows an increase of 2.30%, 1.72%, 0.70% at
ACC@1 and 0.51%, 2.28%, 1.52% at ACC@3 across the three tasks. ACC@1 and
ACC@3 from both TAPT and BASE models are the average performance over five
random seeds with significant difference (see last row in Table 5.3). BERT variants
such as FinBERT [69], SCIBERT [72], BioBERT [71] and E-BERT [73] were able
to achieve a 1-4% increase when further trained on much larger domain knowledge
corpus (i.e., 2-14 billion tokens). Our corpus although comparatively small with
Dd (84,017 tokens), Dt (62,135 tokens), and Dp (589,549 tokens) still result in a
decent improvement of 0.51-2.30%.

5.4.4 Result #2: Augmented TAPT model and Its Generaliz-
ability

In addition to the simply trained TAPT models (referred as simple TAPT) in Table
5.3, we augment the pre-training data and form another four TAPTs (TAPTd+t,
TAPTd+p, TAPTt+p and TAPTall). We call them augmented TAPT. Table 5.4
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Table 5.4: ACC@3: BASE vs. TAPT BERT. (best and 2nd best per row in bold
and underlined, and subscripts indicate outperformance over BASE)

Data BASE Simple Augmented
TAPTd TAPTt TAPTp TAPTd+t TAPTd+p TAPTt+p TAPTall

Dd 76.40 79.292.89 78.782.38 77.841.44 79.403.00 79.563.16 79.012.61 79.012.61
Dt 76.55 77.851.30 78.832.28 76.30−0.25 77.561.01 77.561.01 77.701.15 77.781.23
Dp 90.99 91.220.23 91.440.45 92.511.52 92.061.07 92.501.51 92.641.65 92.351.36

showcases the differences in ACC@3 between simple and augmented TAPT. For
Dd, augmented TAPTd+p outperforms all simple TAPT models (ACC@3 = 79.56%)
and augmented TAPTd+t achieves the second best ACC@3 (79.40%). For Dt, all
the augmented TAPT models only outperform simple TAPTp. For Dp, augmented
TAPTt+p outperforms all simple TAPTs with ACC@3 of 92.64%. To sum up,
augmenting the pre-training data for TAPT models seems to help increase the
accuracy further.

Furthermore, we compare the generalizability of TAPT to BASE BERT over
different data sets. We define the generalizability as task accuracy (specifically
ACC@3) that a model can obtain when applied to a different data set. Both
BASE and TAPT BERTs are pre-trained models and obtain task accuracy via
fine-tuning on a different task data. The subscripts in Table 5.4 present the differ-
ence in ACC@3 between TAPT and BASE BERT, showcasing who has stronger
generalizability (− sign indicates weak generalizability). ForDd, all simple and aug-
mented TAPT models generalize better than BASE, especially augmented TAPTs
have an average of about 3% increase. For Dt, all TAPT models have better gen-
eralizability than BASE with over 1% average increase except for TAPTp. For Dp,
we also see all the TAPTs generalize better than BASE model with the augmented
TAPTt+p having the best generalizability.

5.4.5 Result #3: TEXSTR Based Evaluation

Following the definition of TEXSTR (=Λ) in Chapter ?? Section 5.3.2, we vary the
values of α by {0, 0.5, 1} and generate three variations of Λ for top-3 predictions.
We then decide the percentage of miss-predictions to be reconsidered based on Λ
value by three cut-off thresholds {0.5, 0.75, 0.9}. Before that, we make sure that
the predicted labels are not subsequent to the ground truth, i.e., if the ground
truth is 7.G.A.2, a predicted label such as 8.G.A.3 shall not be reconsidered as
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correct because it is the skill to be learned subsequently “after" 7.G.A.2. In such
a case, we exclude predicted labels that have subsequent relations to the ground
truth and calculate Λ. Table 5.5 presents the percentage of miss-predictions after
removing the subsequent-relation labels by three Λ thresholds when α ∈ {0, 0.5, 1}.
Across three values of α and data sets, note that 56-73% of miss-predictions could
be reconsidered as correct if Λ > 0.5, 5-53% of them could be reconsidered if
Λ > 0.75, and 0-32% could be reconsidered if Λ > 0.9. The wide percentage range
for Λ ∈ {0.75, 0.9} infers that higher thresholds of Λ are more sensitive to the
change of α.

To further ensure the TEXSTR measure to be useful in practice, we conduct
an empirical study where eight experienced K-12 math teachers rate each pair
of top-3 KC labels and the corresponding text (e.g., description, video title, or
problem text) on a scale of 1 to 5. The Fleiss’ kappa value to assess the multi-
rater agreement among eight teachers is 0.436, which is considered as moderate
agreement by Landis et al. [80]. We ensure that none of top-3 miss-predicted KCs
are subsequent to ground truths and have Λ score at least 0.5. Then, we quantify
the relevance (Υ) score as either Λ score (when α = 0.5) or teachers’ rating of
[1,5] range divided by 5 (to be on the same scale as TEXSTR’s [0,1]). Table 5.6
summarizes three varying relevance scores (Υ ∈ {0.5, 0.75, 0.9}) on the pair of top-
3 predictions and the texts. For Top-1 predictions, TEXSTR considers all of them
to have Υ > 0.5 (due to the pre-selection) and 37.93% of all have Υ > 0.75 and
3.45% have Υ > 0.9. Teachers, on the other hand, think that only 54.31% of the
texts have Υ > 0.5 (↓ 45.69% from Λ) but 43.53% have Υ > 0.75 (↑ 5.6% from
Λ) and 31.03% have Υ > 0.9 (↑ 27.58% from Λ). We also find a similar pattern
for Top-2 and Top-3 predictions where teachers find 6.47-6.89% more cases than
TEXSTR that have Υ > 0.75 and 9.48-13.79% more cases than TEXSTR that
have Υ > 0.9. This indicates that TEXSTR is more conservative than teachers
in judging the relevance of KC labels to texts when Υ ∈ {0.75, 0.9}, suggesting
TEXSTR is effective in reassessing miss-predictions and “recover" them as correct
labels in practice.
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Table 5.5: % of miss-predictions recovered by TEXSTR (Λ)

Data # Miss-predictions Λ > 0.5 Λ > 0.75 Λ > 0.9
α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

Dd 248 70.16 68.95 72.98 52.82 24.19 8.87 32.26 2.42 0.81
Dt 240 58.33 55.83 57.5 37.92 17.08 6.67 17.08 0 1.25
Dp 166 60.84 56.63 58.43 38.55 16.27 5.42 18.67 1.2 1.2

Table 5.6: % of top-3 predictions by relevance (Υ) level when α = 0.5

Υ Top 1 Top 2 Top 3
Λ Teachers ∆ Λ Teachers ∆ Λ Teachers ∆

> 0.5 100 54.31 -45.69 100 40.95 -59.05 100 21.98 -78.02
> 0.75 37.93 43.53 5.60 20.69 27.16 6.47 6.9 13.79 6.89
> 0.9 3.45 31.03 27.58 0 13.79 13.79 0 9.48 9.48

5.5 Summary
The chapter classified 385 math knowledge components from kindergarten to 12th
grade using three data sources (e.g., KC descriptions, video titles, and problem
texts) via the Task-adaptive Pre-trained (TAPT) BERT transfer learning model.
The TAPT model has achieved a new record by outperforming six baselines by
up to 2% at ACC@1 and up to 2.3% at ACC@3. We also compared TAPT to
BASE BERT and found the accuracy of the TAPT BERT increased by 0.5-2.3%
with a significant p-value. Furthermore, the chapter discovered that the TAPT
model trained on the augmented data by combining different task-specific texts
had better ACC@3 than the TAPT model simply trained on the individual data
sets. In general, the TAPT model has better generalizability than BASE BERT
by up to 3% at ACC@3 across different tasks. Finally, the chapter proposed a new
evaluation measure TEXSTR to reassess the predicted KCs by taking into account
semantic and structural similarity. TEXSTR was able to reconsider 56-73% of
miss-predictions as correct for practical use.
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Chapter 6 |
Generalize Between Different Do-
mains: A DAPT Approach

6.1 Introduction
The arrival of transformer-based language model, BERT [64], has revolutionized
the NLP research and affected the ways transfer learning are carried out. One
strength of BERT is its ability to adapt to a new task which we have proved effec-
tive in Chapter 5 and also by other works [68], [81], [75], [82], [74]. Beside adapting
to new tasks, it is also flexbile to adapt to a new domain through pre-training to
transfer the learning from general language field to a target field. By taking an ad-
vantage of this benefit researchers have adapted BERT into diverse domains such
as FinBERT [69], ClinicalBERT [83], BioBERT [71], SCIBERT [72], E-BERT [73],
LiBERT [84] with improved performances. In the domain of mathematics, as
mathematical text often use domain or context specific words, together with math
equations and symbols, we posit that mathematics-customized BERT would help
researchers and practitioners sort out the meaning of ambiguous language better
by using surrounding text to establish “math" context. Further, such an improved
context-aware understanding of language could help develop and improve solutions
for challenging NLP tasks in mathematics. Although we have developed TAPT
models in Chapter 5 to gain high accuracy for the individual tasks, a domain-
adapted BERT model is expected to handle multiple tasks with one model instead
of training individual TAPT models from the individual task data. This is knowl-
edge generalization applied in the same setting, namely, between different domains
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but is an extension to Chapter 5.
Therefore, we restate the tasks and uncover what challenges and/or opportunity

the existing methods leave us to. The popular AI tasks in the education domain
are: (i) large-scale knowledge component (KC, a.k.a. skill) prediction (denoted as
Tkc), (ii) open-ended question answer scoring (i.e., auto-grading) (denoted as Tag),
and (iii) knowledge tracing (KT) correctness prediction (denoted as Tkt).

The struggle with Tkc (e.g., predicting the right mathematical skill for a given
text description) is partly attributed to its tediousness and labor-intensive work
for teachers/tutors to label all knowledge components in texts where they need to
organize mathematical problems, or descriptions of instructional videos, etc. The
traditional way to address this challenge of Tkc is to use machine learning to classify
them via feature extraction [39,60,62], which has produced decent results but cost-
intensive because researchers need to develop individual sets of features for each
model. For Tag, although they are becoming less popular due to the difficulty
of developing universal automated support in assessing the response quality, it
is still important because open-ended questions are known to be able to provide
critical evaluation in testing students true critical thinking and understanding. The
existing methods tends to solve the automation task from seeking similarity via
distance features customized towards individual training data [85–88].

Third, Knowledge Tracing, a very important task in the education domain, is
defined as the task of tracing students’ knowledge state, which represents their
mastery of educational content based on their past learning activities. Predicting
students’ next question correctness as a KT task is, for instance, well studied
[8,10,37,89,90] in the general ML and DL fields but these solutions tend to simply
include question-answer time sequence pair as input. The current solutions are
still not able to capture the complex nature of students’ learning activities over
extended periods of time. Last but not the least, all the solutions developed
towards the aforementioned tasks live in its silo system. In other words, they
are developed individually for each task and none of them can be applied over
each other to get similar high performance due to the label space and conditional
probability differences.

In light of the recent successes from transfer learning language models such
as ELMo [66], ULMFiT [67] and BERT [64], the above challenge could be likely
tackled by a transfer learning solution approached via the high-performing pre-
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trained language model. Therefore, we propose the below research questions:

RQ1: Can we develop a BERT-like transfer learning model to predict multiple NLP
tasks in math domain instead of a single task? Can it be more effective than
the prior methods and BASE BERT ?

RQ2: What makes this BERT variant more effective than the prior methods and
the BASE BERT?

RQ3: How to make this BERT variant more beneficial to the education community
to help improve mathematics education further?

To answer the first research question, we realize that directly applying BERT
to mathematical tasks has limitations. First, the original BERT (i.e., BASE
BERT) was trained mainly on general domain texts (e.g., general news articles
and Wikipedia pages). As such, it is difficult to estimate the performance of a
model trained on these texts on tasks using data sets that contain mathematical
text. Second, the marginal distributions of general corpora is quite different from
mathematical corpora (e.g., mathematical equations and symbols), which can often
be a problem for mathematical task related models. Therefore, we hypothesize that
a special BERT model needs to be trained on mathematical domain corpora to be
effective in mathematics-related tasks. Thus, we make the following contributions
in this chapter:

1. We build MathBERT by pre-training the BASE BERT on mathematical do-
main texts ranging from pre-k to high-school to graduate level mathematical
curriculum, books and paper abstracts and evaluate its performance by com-
paring to five baseline models including the prior best method and BASE
BERT with a margin of [1%,22%] and [2%,8%] respectively.

2. We build and release a custom vocabulary mathVocab to examine its contri-
bution to MathBERT’s superior performance via comparing the performance
of MathBERT pre-trained with mathVocab to MathBERT pre-trained with
the original BASE BERT vocabulary.

3. We publicly release MathBERT as a community resource below, which en-
ables the use cases where the two major learning management systems: AS-
SISTments and K12.com by Stride adopt MathBERT to improve the math
education on their systems.
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• https://github.com/tbs17/MathBERT for codes on how to further-
train and fine-tune, and

• https://huggingface.co/tbs17/MathBERT for PyTorch version Math-
BERT and tokenizer.

• AWS S3 URLs 1 for Tensorflow version MathBERT and tokenizer.

6.2 Related Work
The state-of-the-art (SOTA) language model BERT (Bidirectional Encoder Rep-
resentations From Transformer) [64] is a pre-trained language representation model
that was trained on 16 GB of unlabeled texts, including Books Corpus and Wikipedia,
with a total of 3.3 billion words and a vocabulary size of 30,522. Its advantage
over other pre-trained language models such as ELMO [66] and ULMFiT [67] is its
bidirectional structure by using the masked language model (MLM) pre-training
objective [64]. The MLM randomly masks 15% of the tokens from the input to
predict the original vocabulary id of the masked word based on its context from
both directions [64]. The pre-trained model can be used directly to fine-tune on
new data for NLP understanding and inference tasks or further pre-trained to get
a new set of weights for transfer learning.

The further pre-training process has become popular in the past two years as
it is able to achieve better results than the fine-tuning only strategy. According to
Gururangan et al. [74], there are two styles of further pre-training on the BASE
BERT [64]: (i) further pre-train the BASE BERT on a task-specific data set with
tasks being text classification, question and answering inference, paraphrasing, etc.
Gururangan et al. [74] call this kind of model a Task-adaptive Pre-trained (TAPT)
Model. (ii) further pre-train the BASE BERT on a domain-specific data set with
domains being finance, bio-science, clinical fields, etc. Gururangan et al. [74] call
this kind of model a Domain-adaptive Pre-trained (DAPT) Model. Both TAPT
and DAPT BERT models start the further pre-training process from the BASE
BERT weights but pre-train on different types of corpora. TAPT BERT models
pre-train on task-specific data, whereas DAPT BERT models pre-train on the

1http://tracy-nlp-models.s3.amazonaws.com/mathbert-basevocab-uncased/
http://tracy-nlp-models.s3.amazonaws.com/mathbert-mathvocab-uncased/
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Table 6.1: Corpora Comparison for DAPT BERT Models

Domain Name # Tokens Corpora

General NLP Original BERT 3.3B News article,
Wikepedia

Bio Medicine BioBERT 18B PubMed,
PMC articles

Clinical Medicine ClinicalBERT 2M (notes) Hospital
Clinical Notes

Science SciBERT 3.2B Semantic
Scholar Papers

Job LiBERT 685M LinkedIn search query
profile, job posts

E-commerce E-BERT 233M (reviews) Amazon Data Set2

Finance FinBERT 12.7B Reuters
News stories

Mathematics MathBERT 100M Math curriculum and books,
(This Work) Math arXiv paper abstract

Table 6.2: Corpora Comparison for TAPT BERT Models. * indicates that the
number is an estimation based on 150 tokens per sentence

Domain Data set # Tokens Task

BioMed ChemProt [74] 1.5M* relation classification
RCT [74] 12M* abstract sent. roles

Comp. Sci. ACL-ARC [74] 291,150* citation intent
SCIERC [74] 697,200* relation classification

News HyperPartisan [74] 96,750* partisanship
AgNews [68,74] 5.6M topic

Reviews Yelp [68] 25M review sentiment
IMDB [68,74] 14.6M review sentiment

Linguistics VUA-20 [75] 205,425 metophor detection
VUA-Verb [75] 5,873 metophor detection

Mathematics KC [81] 589,549 skill code detection

domain-specific data before they are fine-tuned for use in any downstream tasks
(see the process illustrated in Figure 6.1).

The domain specific corpora that DAPT BERT models trained on are usually
huge (e.g., billions of news articles, clinical texts or PMC full-text and abstracts),
which help DAPT BERT models achieve SOTA performance in the corresponding
domains. For example, FinBERT [69], ClinicalBERT [83], BioBERT [71], SCIB-
ERT [72]. Other DAPT models such as E-BERT [73] and LiBERT [84] not only
further pre-trained on the domain specific corpora but also modified the trans-
former architecture to achieve better performance for the domain related tasks. A
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Figure 6.1: An illustration of training and fine-tuning process of BASE vs. TAPT
vs. DAPT BERT models. The pre-training data are from this study. KC, Auto-
grading, and KT Texts are task data for Tkc, Tag, and Tkc respectively.

comparison between different domain-specific BERT models’ corpora is shown in
Table 6.1. From the table, we can see that BioBERT was pre-trained on the largest
set of tokens (18B) whereas our MathBERT is pre-trained on the smallest set of
tokens (100M). Although the scale of training data is much smaller than the BASE
BERT, MathBERT is still more effective in evaluating mathematics related tasks.

There are also a few works that focus on TAPT models. Sun et al. [68] pro-
posed a detailed process on how to further pre-train a TAPT BERT model and
fine-tune it for three types of classification tasks (i.e., sentiment, question, and
topic), achieving a new record accuracy. Shen et al. [81] pre-trained a TAPT BERT
model to predict knowledge components and surpassed the BASE BERT accuracy
by about 2%. MelBERT [75] further pre-trained the RoBERTa-base BERT on
well-known public English data sets (e.g.,VUA-20, VUA-Verb) that have been re-
leased in metaphor detection tasks and obtained [0.6%, 3%] out-performance over
the RoBERTa-base [82]. Gururangan et al. [74] pre-trained RoBERTa-base [82]
on famous task data sets (e.g., Chemprot, RCT, ACL-ARC, SCIERC, Hyperparti-
san, AgNews, and IMDB tasks) and obtained [0.5%, 4%] better performance than
RoBERTa-base. Table 6.2 presents the training data size for the aforementioned
TAPT Models, showcasing that TAPT models have much smaller training data
size than the DAPT BERT models. In general, DAPT models usually achieve bet-
ter performance (1-8% higher) than TAPT models [74]. Although DAPT BERT
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models require more time and resource to train, they have wider applications than
TAPT BERT models because they do not need to retrain in the case of different
tasks, where TAPT BERT models tend to.

In light of the aforementioned success, we also build a DAPT model, Math-
BERT, that is further pre-trained from the BASE BERT model with a dedicated
mathematical corpus. With the similar goal to our MathBERT, we note that the
work by [91] was also independently announced about the same time (i.e., [91] was
submitted to arXiv while our MathBERT was released to GitHub and Hugging
Face, both in May 2021). Peng et al. [91] also built a pre-trained BERT from the
mathematical formula data and applied it on three formula-related tasks (i.e., math
info retrieval, formula topic classification, formula headline generation). However,
as they claimed, their BERT is the first pre-trained model for mathematical for-
mula understanding and was only trained on 8.7 million tokens of formula latex
data with the 400 surrounding characters from arXiv papers (graduate-level). Our
MathBERT is pre-trained on 100 million tokens of more general purpose mathe-
matical corpora including curriculum, books, and arXiv paper abstracts, covering
all the grade bands from pre-k to college graduate-level. Our training data not
only include formulas and their contexts but also more general mathematical in-
structional texts from books, curriculum, MOOC courses, etc. We consider our
work has a potential to be widely used for “general" mathematics-related tasks.
For instance, MathBERT in Hugging Face has been downloaded more than 100K
times since May 2021 with the peak of 31,370 in July, 2021. As [91] has not re-
leased their code and model artifacts, we could not compare our results directly to
theirs. We welcome further comparison and analysis by releasing all our code and
model artifacts at https://github.com/tbs17/MathBERT.

6.3 Building MathBERT

6.3.1 Math Corpora

MathBERT is pre-trained on mathematics related corpora that comprise mathe-
matics curricula from pre-k to high school, mathematics textbooks written for high
school and college students, mathematics course syllabi from Massive Online Open
Courses (MOOC) as well as mathematics paper abstracts (see in Table 6.3). We
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Table 6.3: Math Corpus Details. Note all the corpus is in mathematics domain

Source Math Corpora Tokens

arxiv.org Paper abstract 64M
classcentral.com College MOOC syllabus 111K
openculture.com pre-k to College Textbook 11M

engageny.org Pre-k to HS Curriculum 18M
illustrativemathematics.org K-12 Curriculum 4M
utahmiddleschoolmath.org G6-8 Curriculum 2M

ck12.org K-12 Curriculum 910K

crawl these data from popular mathematics curriculum websites (illustrativemath-
ematics.org, utahmiddleschoolmath.org, engageny.org), a free text book website
(openculture.com), a MOOC platform (classcentral.com), and arXiv.org, with a
total data size of around 3GB and 100 Million tokens. The mathematics corpora
not only contain text but also mathematics symbols and equations. Among all
these data, the text book data is in PDF format and we hence converted them into
text format using the Python package pdfminer3, which preserves the mathematics
symbols and equations (see sample text in Figure 6.2).

6.3.2 Training Details and Outcome

To pre-train MathBERT efficiently, we adopt a similar data processing strategy to
the ROBERTa model, which threaded all the sentences together and split them
into a maximum length of 512-token sequence sections [82]. In other words, one
sequence of data is longer than the original single sentence from the mathematics
corpora. Inspired by SciBERT [72], we create a custom mathematical vocabulary
(mathVocab) using Hugging Face BertWordPieceTokenizer4 with a size of 30,522
from the BASE BERT. We select 50 words from the same rank tier of #2100
to #2150 and discover that mathVocab has more mathematical jargon than the
original vocabulary (origVocab) from BERT [64] (see in Table 6.4).

We use 8-core TPU machine from Google Colab Pro to pre-train the BASE
BERT on the mathematics corpora. The largest batch size (bs) we can fit into
the TPU memory is 128 and the best training learning rate (lr) is 5e − 5 with

3https://pypi.org/project/pdfminer/
4https://huggingface.co/docs/tokenizers/python/latest/quicktour.html
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Table 6.4: Vocabulary Comparison: origVocab vs. mathVocab. Tokens in blue are
mathematics domain specific.

Vocab Type 50 Selected Tokens (from #2100-#2150)

origVocab

##y, later, ##t, city, under, around, did,
such, being, used, state, people, part,

know, against, your, many, second, university,
both, national,##er, these, don, known, off,

way, until, re, how, even, get,
head, ..., didn, ##ly, team, american,

because, de, ##l, born, united,
film, since, still, long, work, south, us

mathVocab

cod, exist, ##olds, coun, ##lud, ##ments,
squ, ##ings, known, ele, ##ks, fe,

minutes, continu, ##line, addi, small, ##ology,
triang, ##velop, ##etry, log, converg,
asym, ##ero, norm, ##abl, ##ern,
every, ##otic, ##istic, cir, ##gy,

positive, hyper, dep, ##raw, ##ange, analy,
equival, ##ynam, call, mon, numerical,
fam, conject, large, ques, ##sible, surf

maximum sequence length (max-seq) of 512 for both MathBERT with origVocab
and mathVocab. We measure the effectiveness of training via Mask Language
Modeling (MLM) accuracy (ACC), where the model predicts the vocabulary ID of
the masked words in a sentence [64]. For training steps, we find both versions of
MathBERT reach their best result at 600K with MLM accuracy of above 99.8%
after a training time of 5 days each. We release MathBERT model artifacts trained
with origVocab and mathVocab in both Tensorflow and Pytorch versions (see in
https://github.com/tbs17/MathBERT). Specifically, one can use AWS S3 bucket
URLs5 to download the Tensorflow version of model artifact. The Pytorch version
can be downloaded from the Hugging Face Repo6 or directly installed within the
Hugging Face’s framework under the name space “tbs17".

5http://tracy-nlp-models.s3.amazonaws.com/mathbert-basevocab-uncased
http://tracy-nlp-models.s3.amazonaws.com/mathbert-mathvocab-uncased

6https://huggingface.co/tbs17/MathBERT
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6.4 Downstream Math NLP Tasks

6.4.1 Three Tasks

We use three mathematical tasks mentioned in Section 6.1 to demonstrate the
usefulness of MathBERT. They can be formulated as follows:

• KC Prediction (Tkc): a single sentence multinominal classification problem
(213 labels) with Input(I) 7→ text and Output(O) 7→ KC (i.e., one of 213
labels).

• Auto-grading (Tag): a two-sentence multinominal classification problem (5
labels) with I 7→ Question&Answer pair and O 7→ Score.

• KT Correctness (Tkt): a two-sentence binary classification problem with I 7→
Question&Answer pair and O 7→ Correctness.

6.4.2 Task Data

The three task data sets are noted as Dkc for Tkc, Dag for Tag, and Dkt for Tkt,
respectively. They are used not only to fine-tune for task classification but also for
pre-training TAPT BERT models, which will serve as baseline models for Math-
BERT in Section 6.5. All of three data sets are provided from ASSISTments [1].
We use the same mathematical problem data set as in the best performing prior
work [81] with 13,722 texts and 213 labels for KC prediction. The auto-grading
task data is the same as in the best performing prior work [85] with 141,186 texts
to predict scores 1 to 5. The KT data is the text version (269,230 texts and 2
labels) of the ASSISTments 2009 data7, the numeric form of which was used by
the best performing prior work [8].

Among the three data sets, Dkc has the smallest number of records (13,722
rows) but the most unique labels (213 labels), whereas Dkt has the largest number
of records (269,230 rows) but the least unique labels (2 labels) (see in Table 6.5).
These three data sets were chosen due to their accessibility and we don’t expect
our results would be significantly better or worse if we choose other data sets.

7https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-
builder-data-2009-2010
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Table 6.5: Task Data Details. KC: Knowledge Component, KT: Knowledge Trac-
ing. All data from ASSISTments platform [1].

Task #Labels #Texts #Fine-tune Split
Train (72%) Validate (8%) Test (20%)

Dkc 213 13,722 9,879 1,098 2,745
Dag 5 141,186 101,653 11,295 28,238
Dkt 2 269,230 193,845 21,539 53,846

Table 6.6: Example texts of the three tasks with labels

Task Data Label Text

Dkc 8.EE.A.1

Simplify the expression: (z2)2
Put parentheses around the power
if next to coefficient, for example:

3x2=3(x2),x5=x5

Dag 5

Q: Explain your answer
on the box below.

A: because it is the same shape,
just larger, making it similar

Dkt 1 Q: What is 2.6 + (-10.9)?
A: -8.3

When fine-tuning, both the labels and texts are used (see Column 2 and 3) with
split ratio of 72% training, 8% validating, and 20% testing. When pre-training for
TAPT BERT models, only the unlabeled texts are used for further pre-training
without splitting (see Column 3).

Table 6.6 provides examples from the three task data sets. In Dkc, the label
‘8.EE.A.1’ represents a knowledge component (KC) code where ‘8’ means Grade
8, ‘EE’ is the skill name called ‘Expression and Equation’, and ‘A.1’ is the lesson
code. There are total of 213 KC codes in Dkc with each represented by a specific
knowledge component. In Dag, the label ‘5’ is the grading score ‘5’ for the answer
in the text. There are total of 5 labels in Dag with ‘5’ being the highest and ‘1’
being the lowest. In Dkt, the label ‘1’ means ‘correct’ for the answer in the text.
There are total 2 labels in Dkt with another label ‘0’ meaning ’incorrect’ for student
answers.
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Table 6.7: Training Steps and Accuracy: MathBERT vs. TAPT vs. Math-
BERT+TAPT

Model Task Steps MLM ACC (%)
origVocab mathVocab

MathBERT / 600K 99.85 99.95

TAPT
Tkc 100K 100 /
Tag 100K 99.10 /
Tkt 120K 99.04 /

MathBERT+TAPT
Tkc 100K 100 99.99
Tag 100K 99.95 99.96
Tkt 100K 99.67 99.68

6.4.3 Task Training and Fine-tuning

We pre-train BASE BERT on the unlabeled texts of Dkc, Dag, Dkt to build TAPT
BERT models and compare their performance to MathBERT. The difference be-
tween TAPT and DAPT BERT training is illustrated in Figure 6.1 where the input
corpora is different. DAPT BERT models have much larger corpora whereas TAPT
BERT models are more specific to tasks. We pre-train three TAPT models with
origVocab from the BASE BERT [64]. Among them, TAPTkc and TAPTag reach
the best results at 100K steps and TAPTkt reaches its best result at 120K steps with
the MLM accuracy of above 99%. Each of the TAPT models takes approximately
1 day to train. In addition to creating TAPT models pre-trained from BASE
BERT, we also pre-train TAPT models from the MathBERT weights, called Math-
BERT+TAPT. They reach the best results at steps of 100K for both origVocab
and mathVocab with the MLM accuracy of above 99.6%. The MathBERT+TAPT
models also take approximately 1 day each to pre-train. We try to keep the MLM
accuracy of TAPT Models similar to MathBERT (see in Table 6.7). For fine-
tuning, we apply Dkc, Dag, Dkt onto BASE BERT, TAPT BERT, MathBERT,
and MathBERT+TAPT models separately. We discover that hyper-parameter
tuning has more to do with the task data instead of the model itself. In other
words, the best hyper-parameter combinations are the same across MathBERT,
TAPT, and MathBERT+TAPT but vary from task to task. Table 6.8 shows the
optimal combinations of all the hyper-parameters for each task. This result is ob-
tained after hyper-parameter search on lr ∈ {1e− 5, 2e− 5, 5e− 5, 8e− 5, 1e− 4},
bs ∈ {8, 16, 32, 64, 128}, max-seq ∈ {128, 256, 512}, and ep ∈ {5, 10, 15, 25}.
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Table 6.8: Optimal Hyper-parameter Combination for Task fine-tuning

Task learning rate batch size max sequence length epochs
Tkc 5e-5 64 512 25
Tag 2e-5 64 512 5
Tkt 5e-5 128 512 5

Table 6.9: Performance Comparison: MathBERT vs. Baseline Methods across Five
Random Seeds. Bold font indicates best performance and underlined values are
the second best. * indicates statistical significance. ∆ shows relative improvement
(%) of MathBERT over baselines.

Method Vocab Tkc (%) Tag (%) Tkt (%)
F1 ACC AUC AUC ACC

Prior Best / 88.69 [81] 92.51 [81] 85.00 [85] 81.82 [8] 77.11 [8](p)
BASE-BERT orig 90.14 91.78 88.67 88.90 86.88(b)

TAPT orig 91.77 92.96 90.34 95.88 93.49(t)
MathBERT orig (o) 92.67 93.79 90.57 96.04 94.07

(m) math (c) 92.51 93.60 90.45 95.95 94.01
MathBERT+TAPT orig (o) 92.54 93.82 90.73 97.25 95.52

(mt) math (c) 92.65 93.92 90.46 97.57 95.67

∆m−p
orig +4.49% +1.38% +6.55% +17.38% +21.99%

math +4.31% +1.18% +6.41% +17.27% +21.92%

∆m−b
orig +2.81%* +2.19%* +2.14%* +8.03%* +8.28%*

math +2.63%* +1.98%* +2.01%* +7.93%* +8.21%*

∆m−t
orig +0.98%* +0.89%* +0.25%* +0.17% +0.62%*

math +0.81%* +0.69%* +0.12% +0.07% +0.56%*

∆m−mt
orig +0.14% -0.03% -0.18% -1.26%* -1.54%*

math -0.15% -0.35% -0.01% -1.69%* -1.77%*
∆mc−mo / -0.17% -0.20% -0.13% -0.09% -0.06%
∆mtc−mto / +0.12% +0.11% -0.30% +0.33%* +0.16%

6.5 Evaluation of MathBERT
We denote MathBERT pre-trained with origVocab as MathBERT-orig and Math-
BERT pre-trained with mathVocab as MathBERT-custom. To evaluate their effec-
tiveness across the tasks of Tkc, Tag and Tkt, we fine-tune MathBERT on Dkc, Dag

and Dkt and compare the performance to the baseline models (see in Table 6.9).
We group the baseline models into four categories: (1) Prior solutions with the best
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known performance, [8, 81, 85], (2) BASE BERT without any further pre-training,
(3) TAPT BERT models pre-trained on the task specific texts from BASE BERT
weights, and (4) MathBERT+TAPT models pre-trained on the task-specific texts
from MathBERT weights in both origVocab and mathVocab versions.

We use both F1 and ACC (i.e., Accuracy @Top 3) to measure Tkc prediction
results because traditionally, KC problems have been evaluated using ACC [39,60,
62,63]. We provide the additional measure (F1) to account for the imbalance in the
KC labels in Dkc. In addition, we use Area-Under-the-Curve (AUC) to measure Tag
because AUC is the typical measure used for the auto-grading problem. Finally,
both AUC and ACC are used to measure Tkt because historically both metrics
were used for evaluation [7–10]. After obtaining the best hyper-parameter tuning
for each task from Table 6.8, we run each model with five random seeds. We report
the average value over five random seeds for each model and use t-tests to evaluate
the significance of these results. A t-test is not applied to prior test results as we
do not have the five random seeds results from the prior best method due to the
lack of accessible codes.

In Table 6.8, we note that MathBERT-orig is about 1.38% to 22.01% better and
MathBERT-custom is about 1.18% to 21.92% better than the best prior methods
across all metrics and tasks. In addition, MathBERT-orig outperforms BASE
BERT by about 2.14 % to 8.28%, all with statistical significance and MathBERT-
custom outperforms it by about 1.98% to 8.21% across metrics and tasks, all with
statistical significance. Both versions of MathBERT out-performs TAPT BERT
models by [0.07%,0.98%] relatively with statistical significance for all tasks. We
see both versions of MathBERT under-perform the MathBERT+TAPT models by
0.03 % to 1.77% across all the metrics except for F1 score on Tkc from MathBERT-
orig. However, only the metrics for Tkt have obtained significance. This is expected
as MathBERT+TAPT was further pre-trained by adapting it to the task-specific
data on top of the MathBERT weights.

In addition, the best performance for each task is all from MathBERT related
models. For example, for Tkc, the best F1 performance is from MathBERT-orig
followed by the second best from MathBERT+TAPT-custom whereas the best and
second-best ACC are from both of the MathBERT+TAPT versions (origVocab
& mathVocab). For Tag, we find the best AUC is from MathBERT+TAPT-orig
followed by MathBERT-orig. For Tkt, the best and second best AUC and ACC
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are from both versions of MathBERT+TAPT with MathBERT+TAPT-custom
having higher performance.

6.6 Use Cases
In this section, we describe the ongoing activities to incorporate MathBERT into
two popular learning platforms.

6.6.1 ASSISTments

ASSISTments is an online learning platform that focuses on K-12 mathematics
education. Within ASSISTments, teachers assign course work and view reports
on their students. The reports show statistics on the class’s performance and the
responses of each student. Within the reports, teachers see a timeline of how each
student progressed through the assignment and can grade students’ open ended
responses as well as leaving comments. Figure 6.3 shows an example of an open
ended response within a student’s report, together with the score and comment
left by the teacher.

These open ended responses provide the first opportunity to use MathBERT
within ASSISTments. ASSISTments has recently begun using Sentence-BERT
[92] to suggest grades to open response questions [86]. MathBERT provides a
more domain-specific BERT model for this task with high AUC. The similar task
in our experiment Tag obtains 6.55% higher in AUC than the prior best work
[85] which uses Sentence-BERT [86], and can replace the current Sentence-BERT
implementation. MathBERT can not only provide teachers with suggested grades
based on students’ open ended responses, but also be used to suggest comments
for teachers based on the content of the students’ answers.

In addition to MathBERT’s benefit to teachers using ASSISTments, Math-
BERT can also be used to enhance the student experience. As students complete
problem sets in the ASSISTments Tutor, shown in Figure 6.4, they can be shown
general educational material, such as YouTube videos, if they need additional guid-
ance. MathBERT can be used to identify relevant content by predicting the skills
required to solve the problem. As the fine-tuning results for Tkc using MathBERT-
orig shows, the F1 score and ACC for the top 3 predictions are 92.67% and 93.79%
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respectively. Relevant supplemental education material can then be selected and
shown to the student. Identifying the skills required to solve a problem will also
integrate well with ASSISTments’ Automated Reassessment and Relearning Sys-
tem (ARRS) [93]. This service automatically creates follow-up assignments for
students when they fail to learn the material they were assigned. The purpose
of the follow-up assignments is to test students’ knowledge with problems similar
to the ones the students previously got wrong. Although MathBERT was tested
on text prediction tasks such as Tkc, Tag and Tkt, it is not limited to only text
prediction problems and can be applied to determine textual similarity, similar
to the Semantic Textual Similarity Benchmark (STS-B) task from General Lan-
guage Understand Evaluation (GLUE)8 which BASE BERT was evaluated on for
its performance [64]. Therefore, we can use MathBERT to automatically evalu-
ate problems for similarity, either by determining the skills required to solve the
problems, or by directly comparing problem texts.

6.6.2 K12.com by Stride

Stride, Inc that manages the learning platform of K12.com, is a leading education
management organization that provides online education to American students
from kindergarten to Grade 12 as well as adults. K-G12 math teachers rely on
the Stride system to give math lessons, assign practice, home work, or exams, and
grade them to provide feedback to students. Teachers have long been challenged
by the time and effort they spend to grade and give feedback on open-ended math
questions where various answers could be right and it is difficult to scale feedback
for immediacy and volume.

Therefore, Stride is considering an automatic scoring pipeline where they can
train a model on their huge proprietary reservoir of open-ended responses and
teacher feedback to automatically suggest scores and generate constructive feed-
back/comments for teachers to use. MathBERT could be a nice fit for this model
and play two roles: (i) MathBERT fine-tunes on students’ responses (input) with
ground truth teacher scoring (label) to predict scores with high accuracy (as sug-
gested by Tag), and (ii) MathBERT fine-tunes on the different scores (input) as-
sociated with teacher feedback (label) to predict/generate teacher feedback for a

8https://gluebenchmark.com/
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certain kind of score. For example, a student may only correctly answer part of
the question and get a score of 3 out of 5, MathBERT can recommend a feedback
such as ‘You are very close! Can you tell us more?’. The prediction output from
MathBERT can then be wrapped into a question-specific teaching assistant API
that prompts in front of students to guide them to reach the full score and truly
master the knowledge component (see the pipeline in Figure 6.5).

The pipeline will be split into three phases: (i) collect data (i.e. responses,
score, and feedback); (ii) use MathBERT to fine-tune on the training data and
predict scores and feedback, suggested to teachers via API. Teachers semi-auto
grade and give feedback using MathBERT suggested score and feedback. The
final grade and feedback given to the students will then be sent back to the model
to further fine-tine, and (iii) improve the accuracy of the question-specific teaching
assistant API for fully automatic-scoring where teachers will only play a role in
monitoring, reviewing the scores, and providing feedback.

As a proof of concept, Figure 6.6 illustrates what MathBERT will output after
fine-tuning on the open-ended responses, scores, and feedback after phase 1. The
red words are the feedback that the question-specific API will generate to guide
students to achieve a full score. The points (in the yellow box) will be predicted
by MathBERT and automatically suggested to teachers.

6.7 Discussion and Limitation
Although we have verified that MathBERT is more effective than the BASE BERT
for mathematics related tasks with a proportional improvement of [1.98%, 8.28%]
with statistical significance, the effect from an in-domain vocabulary (mathVocab)
is not what we expect. As we see from Table 6.9, MathBERT-custom has under-
performed MathBERT-orig when directly fine-tuned on, but outperformed MathBERT-
orig when further pre-trained on task specific data. However, t-tests show MathBERT-
orig is not significantly better than MathBERT-custom and MathBERT+
TAPT-custom’s out-performance over MathBERT+TAPT-orig is only statistically
significant for Tkc.

Regarding the finding where we don’t find significant help from mathVocab to
boost performance further, SciBERT [72] explained that the out-performance over
BASE BERT could be mainly from the domain corpus pre-training rather than the
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in-domain vocabulary that got trained on. Therefore, our discovery is consistent
with what SciBERT has found about the custom vocabulary effect. In addition,
we note that MathBERT is not only applicable in text prediction tasks but also for
other NLP understanding tasks such as paraphrasing, question and answering, and
sentence entailment tasks. We evaluate MathBERT for Tkc, Tag, and Tkt because
these three tasks have been heavily studied and their test data are available to us.

In future, we plan to pre-train another MathBERT on “informal" mathematics-
related texts as opposed to the formal mathematical content (e.g., math curricu-
lum, book and paper) that the current MathBERT is pre-trained on. We could
potentially use such an informal MathBERT to generate answers/conversations
for mathematics tutoring chat bots in order to improve the interaction between
teachers/tutors and students.

6.8 Summary
In this chapter, we built and introduced MathBERT-orig and MathBERT-custom
to effectively transfer the learning from a general language model to the three
mathematics-related target tasks. Users can use the code from github to ac-
cess the model artifacts. We showed that MathBERT not only out-performed
prior best methods by [1.18%, 22.01%], but also proportionally out-performed the
BASE BERT by [1.98%, 8.28%] and TAPT BERT models by [0.25%, 0.98%] with
statistical significance. Although MathBERT-custom was pre-trained with the
mathematical vocabulary (mathVocab) to reflect the special nature of mathemat-
ical corpora, we didn’t find the significant over-performance to MathBERT-orig.
MathBERT currently is being adopted by two major learning management sys-
tems (i.e., ASSISTments and K12.com) to build automatic-scoring/commenting
solutions to benefit teachers and students.
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(a) Content of a Math Book

(b) Abstract of a Math arXiv Paper

(c) Snippet of a Math Curriculum

Figure 6.2: Sample mathematical corpora text from math book, arXiv paper ab-
stract, and curriculum

87



Figure 6.3: An open response in a student’s report with the teacher’s score and
comment.

Figure 6.4: The ASSISTments Tutor, as seen by students when completing problem
sets.
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Figure 6.5: Stride auto-scoring pipeline using MathBERT

Figure 6.6: Stride auto-scoring model output in the unit test
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Chapter 7 |
Conclusion

To sum up the above chapters, we point out the two challenging issues with AI
in education: (i) data scarcity; (ii) knowledge generalizability. To solve the first
issue, this thesis proposed two data augmentation methods derived from statistics
and generative model perspectives. To solve the second issue, we proposed transfer
learning mechanism to effectively generalize knowledge from source model or source
domain to a different task or data domain. Below we summarize the limitations,
ethical consideration and application of our approaches.

7.1 Limitations
Data Scarcity: Despite that the two data augmentation methods introduced
in this thesis are demonstrated effective on the education data, the methods at-
tempted are rather limited and the vast majority of other data augmentation meth-
ods have not been validated. For example, the branch of meta learning for data
augmentation comprises methods such as smart augmentation [5] which reduces
over-fitting efficiently, autoaugment [94], a reinforcement based algorithm to auto
search for an optimal policy for augmentation, as well as population based aug-
mentation which trains a series of population of neural networks and optimize
their output to find the optimal state quickly. In terms of computation cost, the
first method introduced in Chapter 2 might be a bit expensive to operate as we
loop through all the time lags (100-600). We suggest practitioners conduct auto-
correlation analysis or use Genetic Algorithm [16] to find the best time lag instead
if the data sequence is short such as below 50. Furthermore, when we generate data
using VAE structures in the subject-based training style, we have not demonstrated
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its efficacy on the public education-domain data sets and the private data sets we
introduced are not open to the public. Hence, this might harm the reproducibility
a bit.
Knowledge Generalization: This thesis categorized knowledge generalization
into two scenarios with Scenario (a) as model generalization and Scenario (b) as
knowledge transfer. To overcome the model generalization issue, this thesis con-
ducted effective transfer learning and compared the saliency of the transferabil-
ity between different model structures as well as transfer learning methods (i.e.,
feature- and instance-based). However, the thesis is a bit limited on types of model
structures and not exhaustive on the transfer learning methods comparison due to
the constraint of the data types and conventional models used in the education do-
main. Moreover, in spite of that feature-based transfer learning via freezing layers
are demonstrated efficient and less computationally expensive than the instance-
based approach featuring a MMD loss function, the thesis did not exclude the
possibility of different findings if more time and resources are given to exhaust the
hyperparameter tuning for the instance-based method. Regarding Scenario (b),
although the proposed solutions (i.e., TAPT and DAPT) have high efficacy and
are well applicable in the education domain, one weakness of the TAPT/DAPT ap-
proach is that the further training on mathematical symbols and equations is loose
as we relied on the pdf extractors’ ability to extract the signs and equation rep-
resentation. If the pdf extractors cannot extract complex equations or decompose
them into a latex syntax, they will not be included into our training corpus. In
addition, the performance of MathBERT-custom model that are not demonstrated
as significantly better than the MathBERT-base could be potentially improved by
modifying the neural network structure to fully represent the custom dictionary of
the math.

7.2 Ethical Consideration
Ethical considerations in research are a set of principles that include voluntary
participation, informed consent, anonymity, confidentiality, potential for harm, and
results communication 1. In the case of this thesis, we will relate to data annoymity
and confidentiality, potential for harm. For the numerical data in this thesis (see

1https://www.scribbr.com/methodology/research-ethics/
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in Chapter 2, 3 and 4), the identity information of students from both the public
data sets and private data sets have been removed and hence the confidentiality
is maintained. The model artifacts generated from these chapters are not shared
with the public but the model performances are shared only for demonstration
purpose. Therefore, we do not foresee any potential harm to the public. As for the
textual data we extracted online to train TAPT and DAPT models (see in Chapter
5 -6), they are open source curriculum and arxiv paper content data which do not
contain any student identity or author information. In addition, given the size
of the corpora, we did not make them available to download but disclosed the
code on how to extract them. Therefore, we do not violate the confidentiality
principle. As far as the model artifacts related to MathBERT from Chapter 6 that
are shared on huggingface.co 2, we do not concern the issue of the potential harm
either because the training corpora is not biased to any specific race, gender but
plain mathmatical curriculum explanation and academic documents in the math
domain. A suggested usage of our model is to predict on the education related
textual data such as question contents instead of any personal or identity related
textual data (see in our model disclaimer 3 on huggingface website).

7.3 Application and Impact
To apply the results of our solutions to combat data scarcity on longitudinal data
sets, we recommend adopting the VAE and LVAE structures to generate data be-
cause they are demonstrated to be more efficient and effective in augmenting data
for longitudinal data comparing to the time lag optimization approach, which is a
bit computationally costy. Meanwhile, researchers and practitioners should keep
mind of subject-based training by splitting and imputing data via subjects instead
of row numbers when generating data for longitudinal time sequence data. When
it comes to apply transfer learning solutions to improve model generalization (i.e.,
Scenario (a)), we recommend using the feature-sharing approach by freezing a
number of layers of a source model on the target data instead of co-training on
the source and target data for a transfer loss function (e.g., MMD function). The
reason is that freezing layers on the previously trained model could more efficiently

2https://huggingface.co/tbs17/MathBERT
3https://huggingface.co/tbs17/MathBERT
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transfer the numerical knowledge and only need to fine-tune on the target data.
It is usually computationally frugal comparing to retraining the whole model on
source and target data. For users who have limited access to the computational
resources, this will become an easier and convenient solutions. Besides that, the
specification of the hyperparameter tuning revealed in this thesis is for reference
only and users are welcome to apply different turnings to fit their specific problems.
However, it is worth pointing out that we apply the same training hyperparameters
such as learning rate, weight decay, batch size and epochs to compare the efficiency
between different models. We do not rule out the possibility that one could gain bet-
ter results after extensively tuning a specific model and get a different results from
ours. To conduct knowledge transfer (i.e., Scenario (b)) and apply MathBERT
that we release on huggingface.co 4, researchers and practitioners are welcome to
use it in their favorite deep learning framework as we have provided both pytorch
and tensorflow versions. However, as we mentioned above, MathBERT is trained
on open source mathematics curriculum and arxiv paper content, the appropriate
usage is not to predict general language texts such as “Paris is the [MASK] of
France” but rather a sentence like “students apply these new understandings as
they reason about and perform decimal [MASK] through the hundredths place”
for a fill-mask task. Furthermore, MathBERT is suitable to use for GLUE5 like
tasks such as paraphrasing, natural language inference including similarity, entail-
ment, reference in the mathematics content. However, this thesis only provided
testimony on tasks such as sequence classification, token classification and ques-
tion answering (see in Chapter 6). We believe the generalization superiority from
MathBERT can benefit the prediction tasks in the education domain to a decent
extent, entailing less training time and efforts.

As for the social impact of the proposed technical contributions, this thesis
rather provides a tool, a method that any researcher or industry practitioner could
use to help achieve any specific project goal for social good. For example, using
deep generative technology could generate data points for the missing values in
the finance transaction data so that we can detect abnormal financial activities if
the observed data points are not align with the generated data distribution; Using
freeze-layer transfer learning can reduce model training time and avoid retraining,

4https://huggingface.co/tbs17/MathBERT
5https://gluebenchmark.com/tasks
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which will yield quick turn-around on the newly ingested training data. Using
task/domain adapted further training techniques, a light-weighted language model
or chat-bot can be trained for special education community whose members are
quite different from average people’s learning and understanding capability which
large language models such as GPT series or ChatGPT provide but are biased
towards.

7.4 Summary
Through this thesis, we provided solutions to two major issues in the education
AI domain: (i) data scarcity; (ii) knowledge generalization. Two approaches are
suggested and evaluated to tackle each issue. For issue (i), the first solution is
to select the best time lag when augmenting data. It is an optimized approach
based on the time series lagging practice and is able to improve the SOTA model
performance by 32% of AUC in classification task and 12% of RMSE in regression
task. The second solution of (i) is to generate data while conducting subject-based
training via VAE structures (i.e., VAE and LVAE) on longitudinal data. Our
method allows the augmented data to boost original model by almost 50%. Our
work also found only a fraction of the generated data (i.e., 10-50%) needed to
surpass the SOTA model performance. For issue (ii), our solution is conducting
transfer learning to generalize the knowledge from source data to target data for
Scenario (a) (i.e., model generalization) and Scenario (b) (i.e., knowledge transfer).
To this end, we proposed individual frameworks from simple to complex to adopt
multiple methods of transfer learning to solve knowledge generalization in the
education domain. For Scenario (a) (i.e., model generalization), we compared
two methods (i.e., feature-based and instance based) and model structures (i.e.,
Transformer and AdaRNN) that conduct transfer learning. We discovered that
the feature-sharing method via layer-freezing is less expensive but out-performs the
instance-based method featuring MMD loss function up to 5 times (see in Chapter
4). In addition, we observe that Transformer model is 3-4 times more superior than
AdaRNN and LSTM to generalize model performances when applying the same
training hyperparameters. For Scenario (b) (i.e., knowledge transfer), we developed
two approaches: (i) a Task-adpative Pretraining (TAPT) model (see details in
Chapter 5); (ii) a Domain-adaptive Pretraining (DAPT) model MathBERT (see
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details in Chapter 6) to further train on general language models to adapt to
the education domain/tasks. The TAPT approach successfully transferred the
semantic and contextual features from a BASE BERT to the target education
task and outperformed the prior methods and BASE BERT with a margin up to
2%. The DAPT model MathBERT was trained on and adapted towards a huge
mathematics corpus and is suitable to predict multiple target tasks in the education
domain with one single model. It successfully outperforms the prior SOTA and
BASE BERT by a margin of [1%, 22%] and [2%, 8%] respectively.

At the end, we conclude this thesis with limitations, ethical considerations and
applications for each of our solutions. Although all the technical contributions
this thesis proposed was applied in the education domain, their motivation and
intuition could also be applicable in other fields such as bio-medicine, healthcare
fields. Overall, we hope to leverage our proposed methods to effectively improve
AI solutions in education domain and to truly benefit teachers and students for
their teaching and learning.
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