
l-Injection: Toward Effective Collaborative
Filtering Using Uninteresting Items

Jongwuk Lee, Won-Seok Hwang, Juan Parc, Youngnam Lee,

Sang-Wook Kim ,Member, IEEE, and Dongwon Lee

Abstract—We develop a novel framework, named as l-injection, to address the sparsity problem of recommender systems.

By carefully injecting low values to a selected set of unrated user-item pairs in a user-item matrix, we demonstrate that top-N

recommendation accuracies of various collaborative filtering (CF) techniques can be significantly and consistently improved. We first

adopt the notion of pre-use preferences of users toward a vast amount of unrated items. Using this notion, we identify uninteresting

items that have not been rated yet but are likely to receive low ratings from users, and selectively impute them as low values. As our

proposed approach is method-agnostic, it can be easily applied to a variety of CF algorithms. Through comprehensive experiments

with three real-life datasets (e.g., Movielens, Ciao, and Watcha), we demonstrate that our solution consistently and universally

enhances the accuracies of existing CF algorithms (e.g., item-based CF, SVD-based CF, and SVD++) by 2.5 to 5 times on average.

Furthermore, our solution improves the running time of those CF methods by 1.2 to 2.3 times when its setting produces the best

accuracy. The datasets and codes that we used in the experiments are available at: https://goo.gl/KUrmip.

Index Terms—Recommender systems, collaborative filtering, data sparsity, uninteresting items, pre-use preference, post-use preference

Ç

1 INTRODUCTION

THE goal of recommender systems (RS) is to suggest
appealing items (e.g., movies, books, or news articles)

to a user by analyzing her prior preferences. As a large
number of online applications use RS as a core component,
improving the quality of RS becomes a critically important
problem to businesses. Among existing solutions in RS, in
particular, collaborative filtering (CF) methods (e.g., [2], [3],
[4], [5], [6], [7]) have been shown to be widely effective.
Based on the past behavior of users such as explicit user rat-
ings and implicit click logs, CF methods exploit the similari-
ties between users’ behavior patterns.

However, when the fraction of known ratings in a rating
matrix R is overly small (so-called data sparsity problem),
CF methods tend to suffer. For an R with m users and n
items, if we assume that each user has rated k items on aver-
age, the fraction of rated items in R is k

n (=
m�k
m�nÞ. Asymptoti-

cally, such a fraction of rated items in R is extremely small
(i.e., k � n). It is common for an e-business to sell millions
of items with a very long tail, and many users rate very
few items (i.e., cold-start users). The goal of this work is to
mitigate such a data sparsity problem to improve top-N

recommendation accuracies of CF methods. Our proposal is
based on the following hypothesis in CF:

Hypothesis 1. Filling some values into empty cells, i.e., unrated
items, in a rating matrix R can improve the accuracy of CF
methods for top-N recommendation.

We first argue that ratings in R be often a reflection of the
satisfaction of users. Therefore, users tend to rate (high)
only the items that they like, and those who are dissatisfied
tend not to rate items in R. Corroborating this point, Table 1
illustrates severe imbalance between low (i.e., 1 or 2) and
high (i.e., 3, 4, or 5) ratings from three real-life datasets that
we used in our experiments. Note that only a small fraction
(i.e., 10-17 percent) of ratings are low values. Then, a natural
question to raise is: how can we identify the unknown opinions
of those users who were dissatisfied with and did not leave ratings
for items ?

To answer this question, note that unrated items in R can
be classified into three different types: (1) unrated items
whose existence users were not aware of, (2) unrated items
that users knew and purchased but did not rate, and (3)
unrated items that users knew but did not like and thus did
not purchase. We note that the unrated items of the third
type, called uninteresting items (denoted by Iun), clearly indi-
cate users’ latent negative preferences on them. Therefore,
it is better not to recommend those uninteresting items.
In order to identify such uninteresting items, we propose to
use a new notion of pre-use preference, i.e., an impression
of items before purchasing and using them. That is, by defi-
nition, uninteresting items indicate the items with low pre-
use preferences. Unfortunately, the ratings in R do not indi-
cate pre-use preferences but the preferences after using the
items, called post-use preference.

� J. Lee is with the Department of Software, Sungkyunkwan University,
Suwon-si, Gyeonggi-do, Republic of Korea. E-mail: jongwuklee@skku.edu.

� W.-S. Hwang, J. Parc, Y. Lee, and S.-W. Kim are with the Department of
Computer and Software, HanyangUniversity, Seongdong-gu, Seoul, Repub-
lic of Korea. E-mail: {hws23, crystaldia, utopianami, wook}@hanyang.ac.kr.

� D. Lee is with the College of Information Sciences and Technology, The
Pennsylvania State University, PA 16801. E-mail: dongwon@psu.edu.

Manuscript received 11 Sept. 2016; revised 7 Mar. 2017; accepted 15 Apr.
2017. Date of publication 27 Apr. 2017; date of current version 5 Dec. 2018.
Recommended for acceptance by W. Lehner, J. Gehrke, and K. Shim.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2017.2698461

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 1, JANUARY 2019 3

1041-4347� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6345-9084
https://orcid.org/0000-0002-6345-9084
https://orcid.org/0000-0002-6345-9084
https://orcid.org/0000-0002-6345-9084
https://orcid.org/0000-0002-6345-9084
https://goo.gl/KUrmip
mailto:
mailto:
mailto:

Based on this novel notion of pre-use preference and
uninteresting item, we develop a solution that consists of
three steps: (1) infer the pre-use preferences of unrated
items by solving the one-class collaborative filtering (OCCF)
problem [8], [9], (2) assign “low” values to uninteresting
items in R, yielding an augmented matrix L, and (3) apply
existing CF methods to L, instead of R, to recommend
top-N appealing items. This simple-yet-novel imputation
solution significantly alleviates the data sparsity problem
by augmenting R. Extending our prior work [1], in this
work, we develop a more general l-injection to infer differ-
ent user preferences for uninteresting items for users, and
show that l-injection mostly outperforms 0-injection in [1].

The proposed l-injection approach can improve the accu-
racy of top-N recommendation based on two strategies: (1)
preventing uninteresting items from being included in the
top-N recommendation, and (2) exploiting both uninterest-
ing and rated items to predict the relative preferences
of unrated items more accurately. With the first strategy,
because users are aware of the existence of uninteresting
items but do not like them, such uninteresting items are
likely to be false positives if included in top-N recommenda-
tion. Therefore, it is effective to exclude uninteresting items
from top-N recommendation results. Next, the second strat-
egy can be interpreted using the concept of typical memory-
based CF methods. Suppose that a few neighbors of a user u
rated an item i high but most neighbors of u considered i
uninteresting (thus left i unrated in R). In this case, existing
CF methods tend to recommend i to user u. However, if
many neighbors of u consider i as an uninteresting item, we
should avoid recommending i to u.

To summarize, our main contributions are as follows:

� We introduce a new notion of uninteresting items,
and classify user preferences into pre-use and post-use
preferences to identify uninteresting items.

� We propose to identify uninteresting items via pre-
use preferences by solving the OCCF problem and
show its implications and effectiveness.

� We propose low-value injection (called l-injection) to
improve the accuracy of top-N recommendation in
existing CF algorithms.

� We evaluate the proposed solution with three real-
life datasets, and demonstrate that our solution con-
sistently outperforms baseline CF methods (e.g.,
item-based CF, SVD-based CF, and SVD++) with
respect to accuracy (by 2.5 to 5 times) and running
time (by 2.5 to 5 times) on average.

The remainder of this paper is organized as follows. In
Section 2, we explain the preliminaries of our approach. In
Section 3, we present our approach. In Section 4, we evalu-
ate our approach by comparing it with existing methods via
extensive experiments. In Section 5, we review related
work. In Section 6, we conclude our work.

2 PRELIMINARIES

In general, CF methods have been studied under two set-
tings: (1) predicting the ratings of unrated items, and (2) rec-
ommending top-N unrated appealing items to users. In this
paper, we focus on the top-N recommendation setting,
which is more practical in real-world applications [10].

We first explain some basic notations used throughout
this paper. Let U ¼ fu1; . . . ; umg be a set of m users, I ¼
fi1; . . . ; ing be a set of n items, and rui be the rating given to
item i by user u. A corresponding rating matrix is referred
to as R ¼ ðruiÞm�n, and pui (respectively qui) indicates the
pre-use (respectively post-use) preference for item i of user u.
The pre-use preference pui is different from a known rating
rui in the rating matrix R, implying post-use preference
qui. In theory, both types of preferences pui and qui exist as a
user-item pair ðu; iÞ although they are not always available.

Note that it is possible to infer the pre-use preference for
item i 2 I of user u from its external features, (e.g., genre,
director, or actors, in the case of a movie). After using i,
based on the level of her satisfaction, u then assigns a spe-
cific score to i, indicating her post-use preference for i.
Therefore, the post-use preference is determined by the
inherent features that u had not known before using i (e.g.,
storyline or choreography of a movie). Let us explain both
types of preferences using the following example.

Example 1 (Two preference types). Fig. 1 illustrates the
pre-use and post-use preferences of a user u for three
movies. Initially, user u has a high pre-use preference for
Movie #1 and Movie #2. On the other hand, u does not
have a high pre-use preference for Movie #3. In this case,
Movie #1 and Movie #2 are to be called interesting items
while Movie #3 an uninteresting item. Thus, u would
decide to watch only the two movies for which she has
high pre-use preferences. After watching the movies, u
likes Movie #1 as expected, but does not like Movie #2.
Therefore, u assigns a high rating to Movie #1 and a low
rating to Movie #2 as her post-use preferences. In con-
trast, the user does not watch Movie #3 as it is an uninter-
esting movie to her. The post-use preference for Movie #3
thus remains unknown, i.e., missing in the rating matrix.
Fig. 2 further illustrates the preferences of a user u for an

entire set I of items. Iinu denotes interesting items with high
pre-use preferences while Iunu denotes uninteresting items
with low pre-use preferences. Two item sets are disjoint,
i.e., Iinu \ Iunu ¼ ;, Iinu [Iunu ¼ I. We formally define uninter-
esting items as follows:

Definition 1 (Uninteresting items). For a user u, a set of
uninteresting items Iunu is defined as: Iunu ¼ I � Iinu . The
following inequality for pre-use preferences holds: 8i 2 Iunu ;
8j 2 Iinu : pui � puj.

TABLE 1
Rating Distributions of Three Real-Life Datasets

Dataset Low ratings (1 or 2) High ratings (3, 4, or 5)

Movielens 17% 83%
Ciao 10% 90%
Watcha 13% 87%

Fig. 1. Pre-use and post-use preferences for three movies.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 1, JANUARY 2019

A user u purchases some items out of interesting items
Iinu and rates them. A set of items that are likely to receive
high ratings, (i.e., high post-use preferences) is called pre-
ferred items, denoted by Ipreu . Therefore, it is a subset of inter-
esting items as shown in Fig. 2 (i.e., Ipreu � Iinu). In a real
scenario, u would be able to rate only a small fraction of
interesting items. This item set, denoted by Ievalu , is only a
subset of Iinu (i.e., Ievalu � Iinu). For this reason, if we identify
the uninteresting items of each user, we can understand the
user’s taste more accurately.

Based on this viewpoint, our goal is to identify the top-N
preferred items of a user u by considering the “latent” unin-
teresting items of u. In particular, u’s pre-use and post-use
preferences for item i 2 Ievalu are known while both types of
preferences for item j 2 I � Ievalu are unknown. If u has eval-
uated item i, the pre-use preference pui can be considered
high. Based on known pre-use preferences, we infer the
pre-use preferences of the remaining unknown items j. In
addition, the post-use preference qui can be directly indi-
cated by estimating the score of rui. The top-N recommenda-
tion is formally defined as follows:

Problem 1 (Top-N recommendation). For user u, we aim to
identify the top-N unrated items J ¼ fj1; . . . ; jNg such that:
(1) J � Iinu � Ievalu and (2) quj1 � 	 	 	 � qujN � quy (8y 2 I�
Ievalu � J).

3 PROPOSED APPROACH

While existing CF methods only employ user preferences on
rated items, the proposed approach employs both pre-use and
post-use preferences. Specifically, the proposed approach first
infers pre-use preferences of unrated items (Section 3.1) and
identifies uninteresting items Iunu (Section 3.2). Then, it
enriches the rating matrix by exploiting uninteresting items
(Section 3.3). The existing CF methods equipped with our
approach not only benefit from the enriched matrix and but
also exclude the uninteresting items from top-N recommenda-
tion. Lastly, we analyze the benefits of the proposed approach
on account of improving the accuracy greatly (Section 3.4).

The main challenges of our approach are as follows: (1)
how to identify uninteresting items among unrated items and (2)
how to exploit uninteresting items discerned in CF methods. To
address the first challenge, we infer pre-use preferences for
all unrated items and find the unrated items whose pre-use
preferences are low. For the second challenge, we build an
augmented matrix where some missing entries are imputed
by low values if their corresponding items are considered
uninteresting. The augmented matrix can be applied to any

CF method (thus making our approach method-agnostic),
which enables existing CF methods to benefit from uninter-
esting items in their top-N recommendation.

Fig. 3 depicts the overall processes of the proposed
approach. First, we build a pre-use preference matrix
P ¼ ðpuiÞm�n by examining a rating matrix R ¼ ðruiÞm�n. It
is set as one if rui 2 R has been already rated (i.e., u should
have liked i if she bought i) (Step 1). It is the highest because
pui is set as a real value in [0, 1]. Next, we infer pre-use pref-
erence scores on “unrated” user-item pairs ðu; iÞ (i.e.,
puj ¼ null) based on other observed pre-use preferences
(i.e., pui ¼ 1) and add them in P , which becomes P̂ (Step 2).
Based on P̂ , we identify uninteresting items for each user
and build a low-value injected matrix L ¼ ðluiÞm�n (Step 3).
That is, if rui in R is unrated and item i is an uninteresting
item for user u, it is imputed by lui. In the proposed
approach, i is determined as the uninteresting item for u if
the pre-use preference score p̂ui is ranked in the bottom u

percent in P̂ . The augmented matrix L thus includes both
the original ratings for rated items and the imputed ratings
for uninteresting items. Lastly, existing CF algorithms are
applied to the augmented matrix L (Step 4). We recommend
top-N items by predicting the post-use preferences of empty
entries (dotted circles). In the following sections, we explain
each step in detail.

3.1 Inferring Pre-Use Preferences

It is straightforward to determine a pre-use preference pui if
a user u has already rated an item i (i.e., rui 6¼ null). This is
because i may have been interesting to u at first consider-
ation, i.e., Ievalu � Iinu . As such, we set the pre-use preference
pui as one. However, when u has not rated i (i.e., rui ¼ null),
it is non-trivial to determine pui. Therefore, it is essential to
infer pre-use preferences pui if rui is unrated.

To address this challenge, we borrow the framework of
the one-class collaborative filtering problem [8], [9]. The OCCF
problem occurs when a rating score is unary such as clicks,
bookmarks, and purchases so that a cell rij 2 R has a null
value or a single value indicating “yes.” The ambiguity
arises from the interpretation of unrated items. That is, it is
difficult to distinguish negative and positive examples that
co-exist among unrated items [8]. Some unrated items can
be positive because the user is not aware of their existence.
On the other hand, some are negative because the user
knows about the items but dislikes them. Therefore, she
determines not to use them.

Fig. 3. Overall process of the proposed approach.

Fig. 2. Venn diagram for the preferences and interestingness of items.

LEE ET AL.: l-INJECTION: TOWARD EFFECTIVE COLLABORATIVE FILTERING USING UNINTERESTING ITEMS 5

This problem setting also happens when we infer pre-use
preferences for unrated items. That is, known pre-use pref-
erences for rated items have positive values (i.e., pui ¼ 1)
and missing pre-use preferences for unrated items are
ambiguous. In Fig. 2, we observe that both unlabeled posi-
tive examples (Iinu � Ievalu) and negative examples (Iunu) co-
exist in the set of items whose pre-use preferences are
unknown (I � Ievalu). We thus employ the OCCF method [8]
to infer pre-use preferences. In Section 4.2, we also demon-
strate that the OCCF method is the most effective to infer
users’ pre-use preferences.

The basic idea of the OCCF method is to treat all unrated
items as negative examples and to assign weights to quan-
tify the relative contribution of these examples. In our situa-
tion, the OCCF method assigns 0 to every pui whose value is
null in P and determines weight wui by three schemes: uni-
form, user-oriented, and item-oriented schemes. In this paper,
we employ the user-oriented scheme, which was the best
performer in [8]. The underlying principle of the user-
oriented scheme is essentially that as a user rates more items,
she is more likely to dislike unrated items. That is, it computes
the weight wui in proportion to the number of items rated
by u: wui ¼

P
i pui. The OCCF method finally updates

pui 2 P using their corresponding weights. We treat the
updated values as the inferred pre-use preference scores.

To update these values, the OCCF method employs the
weighted alternating least squares (wALS) method [11] in
building a singular value decomposition (SVD) with a rating
matrix and its weight matrix. It infers the preference scores
for each user’s unrated items via the SVD model. The wALS
method decomposes a matrix P into two low-rank matrices
X and Y while optimizing an objective function
pound; ðX;Y Þ. The matrix P represents observed pre-use
preferences in our case, i.e., P ¼ ðpuiÞm�n. The matrices X
and Y represent the latent features of users and items,
respectively. The objective function is represented as follows:

pound; ðX;Y Þ ¼
X
u

�X
i

wuifðpui �XuY
T
i Þ2

þ�ðkXuð	Þk2F þ �kYið	Þk2F Þg
�
;

(1)

where pui and wui are the entries in the observed pre-use
preference matrix P and its weight matrix W , respectively.
The vector Xu is the uth row of matrix X, and the vector Yi

is the ith row of matrix Y . The two vectors represent the fea-
tures of user u and item i. In addition, k 	 kF denotes the Fro-
benius norm and � is a regularization parameter.

In order to factorize matrix P , the OCCF method first
assigns random values to elements in matrix Y , and updates
elements in matrix X as in Eq. (2) by optimizing the objec-
tive function. 81 � u � m

Xuð	Þ ¼ puð	Þ ewuð	ÞY ðY T ewuð	ÞY þ �ð
X
i

wuiÞIÞ�1; (2)

where ewuð	Þ is a diagonal matrix with elements of wuð	Þ on the
diagonal, and matrix I is an identity matrix. Next, the OCCF
method updates elements in matrix Y while fixing matrix X
as in Eq. (3). 81 � i � n

Yið	Þ ¼ pTð	Þi ewð	ÞiXðXT ewð	ÞiX þ �ð
X
u

wuiÞIÞ�1: (3)

We optimize the objective function by repeating Eqs. (2)
and (3) until matricesX and Y converge to a local optimum.
Finally, we approximate matrix bP by calculating an inner
product ofX and Y as in Eq. (4) where an entry bpui in matrixbP represents a pre-use preference score of user u for item i

bP
 P ¼ XY T : (4)

3.2 Identifying Uninteresting Items

Once pre-use preferences of unrated items are computed,
we can identify uninteresting items. Based on the pre-use
preference scores inferred by the OCCF method, the unin-
teresting items of user u are defined as follows:

Iunu ðuÞ ¼ fijrðp̂uiÞ � u; rui ¼ nullg; (5)

where rðp̂uiÞ indicates the percentile rank of p̂ui among all
user-item pairs whose ratings are missing in R. For exam-
ple, Iunu ð20Þ indicates that we assign all unrated items whose
percentile ranks of pre-use preference scores are at the bot-
tom 20 percent as uninteresting items.

In Eq. (5), we do not use an absolute cut-off value for pre-
use preference scores because the OCCF method is origi-
nally designed for computing users’ relative preferences. In
addition, we adjust the parameter u to obtain the best accu-
racy for top-N recommendation. If u is set high, a large num-
ber of unrated entries are injected with low values, leading
to a less sparse rating matrix. On the other hand, if u is set
low, we may not be fully utilizing the benefit of uninterest-
ing items as only a small number of unrated entries are
injected. The simple use of relative cut-off based on the per-
centile rank works well. (In Section 4.4, we will evaluate the
effectiveness of the cut-off method.)

Example 2 (Uninteresting items). Fig. 4 illustrates a pre-

use preference matrix P̂ , where the cells with one and

with decimal numbers are originally derived from the

rated and unrated items in R, respectively. For a larger u,

more items are considered as uninteresting items. For

example, when u ¼ 20, only light-colored cells become
uninteresting items. If u ¼ 80, both light and middle-

colored cells become uninteresting items. Finally, when

u ¼ 99, all colored cells become uninteresting items. Note

that the number of uninteresting items could be different

per user. For instance, when u ¼ 80, the numbers of unin-

teresting items for u1 and u2 are 1 and 4, respectively.
It is worthwhile to emphasize that our approach identi-

fies uninteresting items more broadly than what a user

Fig. 4. Identifying uninteresting items from pre-use preference matrix P̂ .

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 1, JANUARY 2019

herself would have recognized. In a real setting, even if
asked, users are able to review only a small fraction of (mil-
lions of) unrated items to identify truly uninteresting items.
In clear contrast, our approach can find a large number of
uninteresting items that users have not recognized yet but
are likely to consider uninteresting.

3.3 l-Injection

We now propose a novel method to impute missing ratings,
named as l-injection, such that we assign a “low” value to
rui 2 R if an item i is determined as uninteresting for a user
u. This is because u would not be satisfied with an uninter-
esting item i even if recommended.

By filling a rating matrix Rwith low values, we can build
a new “denser” matrix that contains low value ratings as
well as actual user ratings. We call this augmented matrix
an l-injected matrix L ¼ ðluiÞm�n, where entry lui is defined as
follows:

lui ¼
rui if u has ratedi;
vui if ð1Þ u has not rated i and

ð2Þ i is an uninteresting item to u;
null otherwise,

8>><
>>:

where vui is to be defined below. We now develop various
methods to impute missing ratings to uninteresting items.
(In Section 4.4, we evaluate the effectiveness of various
imputation methods for uninteresting items.) To determine
vui, a simple way is to fill it with zero [1]. This imputation
means that a user does not like uninteresting items at all.
Alternatively, because uninteresting items are generally less
preferred than rated items, we can also fill a “low” value by
under-estimating the average of known ratings. To calculate
the global average for rated items, we define an indicator
yui for the existence of rui as follows:

yui ¼ 1 if uhas rated i;
0 otherwise.

�

When we use the global average of ratings, vui is defined as

vui ¼
P

x2U;j2I yxjrxjP
x2U;j2I yxj

� d; (6)

where d 2 ½0; 1� is used to control the degree of uninterest-
ingness compared to the average. It is also possible to use
the average of ratings per user/item. For the user average,
vui is computed by

vui ¼
P

j2I yujrujP
j2I yuj

� d: (7)

For the item average, vui is computed by

vui ¼
P

x2U yxirxiP
x2U yxi

� d: (8)

Note that the proposed approach works regardless of the
choice of underlying CF methods as it simply replaces the
original rating matrix R by the l-injected matrix L. The pro-
posed approach is orthogonal to existing CF methods , which
is one of our key strengths. It is also possible to develop

other imputation methods to reflect the characteristic of
uninteresting items. Because our intention is to evaluate
the effectiveness of using uninteresting items for top-N rec-
ommendation, we leave more sophisticated modeling for
l-injection as our future work.

The proposed approach can improve existing CFmethods
with three aspects. First, whenCFmethods are applied, unin-
teresting items are excluded from the recommendation list.
While existing CF methods consider all items whose ratings
are missing as the candidates for top-N recommendation, we
essentially avoid uninteresting items from top-N recommen-
dation. That is, the l-injected matrix can prevent uninterest-
ing items from top-N recommendation. Second, the l-injected
matrix includes a higher number of ratings (including ratings
with low values) for uninteresting items than the original rat-
ing matrix. The CF algorithms equipped with an l-injected
matrix are able to understand users’ preferences more accu-
rately. Lastly, because the number of candidates for top-N
recommendation essentially reduces, the computational cost
can also decrease in top-N recommendation.

We further discuss a key difference from existing work.
Similar to an l-injected matrix, PureSVD [7] also assigns
zero to missing ratings. However, PureSVD has no regard
for identifying uninteresting items and simply fills zero
values to “all” missing ratings. That is, PureSVD simply
regards all unrated items as uninteresting items. In addi-
tion, PureSVD considers the items with missing ratings as
candidates for top-N recommendation. In clear contrast, the
l-injection selectively fills the uninteresting items Iunu with
low values, to help understand user preferences more pre-
cisely, and exclude uninteresting items from top-N recom-
mendation. In Section 4, we demonstrate the superiority of
our approach over PureSVD.

3.4 Why Does the l-Injected Matrix Help?

We argue that an l-injected matrix helps improve the accu-
racy of any CF method. To present the ground for our argu-
ment, we discuss the effect of our approach when applied
to two popular CF methods: item-based collaborative filtering
method (ICF) [4] and SVD-based method (SVD) [5].

ICF predicts a rating l̂ui for a target item i of a user u by
referencing her ratings on those items similar to the item i
as follows:

l̂ui ¼
P

j2Sifluj � simði; jÞgP
j2Si simði; jÞ ; (9)

where Si is a set of (up to) k items which have most similar
rating patterns to the items for which item i of user u is
known. If there are less than k items evaluated by u, Si

includes that number of items only instead of k. In addition,
let simði; jÞ denote the similarity between items i and j in
terms of users’ rating patterns. In this paper, we adopt
Pearson’s correlation coefficient as the well-known similar-
ity measure [2], [12].

Example 3 (l-injected matrix). Fig. 5 illustrates the differ-
ence between a rating matrix R and its corresponding
l-injected matrix L. We observe that, unlike R, L has extra
low-value ratings (in red color) implying users’ uninter-
esting items. Suppose that ICF predicts the rating r11 of a
user u1 for an item i1 when its parameter k is set as 3.

LEE ET AL.: l-INJECTION: TOWARD EFFECTIVE COLLABORATIVE FILTERING USING UNINTERESTING ITEMS 7

With the rating matrix, it refers to only r14 for prediction
because u1 has not rated i2 and i3 (i.e., r12 and r13 are
nulls). In contrast, owing to our l-injection, ICF can con-
sider more ratings, i.e., l12, and l13 in the l-injected matrix,
which can help improve the accuracy of ICF.
The l-injected matrix can help find items that are truly

similar. With R, ICF may conclude that i1 and i3 are highly
similar because u4 gives 1 to both of them. However, because
it is based on only a single user’s opinion, the similarity can
be inaccurate. With L, the two items are regarded much less
similar because u2 rated the two items very differently. As
such, an l-injected matrix is useful to compute the similarity
between users more accurately because it enables CF to
reflect more users’ opinions. In particular, we note that the
l-injection makes it possible for ICF to successfully find truly
similar users who have a set of uninteresting items in com-
mon, which has been overlooked in existing CFmethods.

Next, we explain how an l-injected matrix makes existing
SVD-based methods [5] more accurate. Given L, it is factor-
ized into an inner product of two low-rankmatricesX and Y
with a dimension f . That is, one low-rank matrix is anm-by-
f user-factor matrix and the other is an n-by-f item-factor
matrix. Each user u is thus associated with an f-dimensional
vector xu. Each item i is involved with an f-dimensional vec-
tor yi. The rating prediction for l̂ui is computed by

l̂ui ¼ xuy
T
i : (10)

With the original rating matrix R in Fig. 5, SVD cannot
recognize that u2 is related to u1 or u3 because they have no
common items rated. In contrast, when using L, it can suc-
cessfully observe the relationship between those users, i.e.,
both u2 and u1 are not interested in i3 and have different
opinions on i2. In addition, it can overlook the relationships
between items such as i2 and i3 with R while it can find the
relationship between i2 and i3 by using L.

4 EXPERIMENTS

In this section, we evaluate the accuracy and efficiency of
the proposed approach. We first validate the accuracy of the
OCCF method [8], which is used to infer pre-use preferen-
ces of items. We then compare several methods to inject low
values for uninteresting items and examine the sensitivity
of a parameter u meaning the ratio of uninteresting items
out of all unrated items. Finally, we compare the proposed
methods equipped with an l-injected matrix against existing
CF methods.

4.1 Experimental Setup

We employ three real-life datasets: (1) MovieLens 100 K [6]
includes 943 users, 1,682 items, and 100,000 ratings; (2) Ciao
[13] consists of 996 users, 1,359 items, and 18,648 ratings; (3)
Watcha consists of 1,391 users, 1,927 items, and 101,073 rat-
ings. All ratings take integer values ranging from 1 (worst)
to 5 (best). As the latest dataset, the Watcha dataset is pri-
vately released from a Korean movie recommendation com-
pany (http://watcha.net). Because the datasets have clear
differences for density, the number of ratings, and rating
distributions, it is effective for cross-checking the accuracy
of the proposed algorithms. Table 2 reports statistics of
three datasets. If the dataset is not explicitly mentioned in
experiments, we use the “MovieLens” dataset by default,
which has been widely used.

For top-N recommendation, we vary the value of N
from 5 to 20 in an increment of 5 (default N = 5). It is also
possible to recommend more items by extending N .
Because users are usually interested a few items, we focus
on evaluating small N . (When extending N , it is found
that the tendency of accuracy is still consistent.) We only
consider the items with 5 (best) as relevant items, i.e.,
ground truth , because it is most effective for top-N recom-
mendation, as discussed in [14]. That is, correctly predict-
ing items with the highest ratings leads to positive
business ramifications.

We adopt four metrics to measure the accuracy of top-N
recommendation, namely, precision, recall, normalized dis-
counted cumulative gain (nDCG), and mean reciprocal rank
(MRR). For a user u, precision Pu@N and recall Ru@N are

computed by jRelu\Recuj
jRecu j and jRelu\Recuj

jReluj , respectively. Let Recu
denote a set of N items recommended to u, and Relu denote
a set of items considered relevant. nDCG is used to reflect
ranked positions of items in Recu. Let yk represent a binary
variable for the kth item ik in Recu. If ik 2 Relu, yk is set as
one. Otherwise, yk is set as zero. Then, nDCGu@N is com-

puted by DCGu@N
IDCGu@N, where DCGu@N ¼ PN

k¼1
2yk�1

log 2ðkþ1Þ, and

IDCGu@N is an ideal DCGu@N where yk is set as one for
every item ik 2 Recu. MRR is computed as the average
inverse rankings of every item ik 2 Recu. For user u, MRRu

is computed by 1
jReluj

PjReluj
i¼1

1
ranki

. We performed four cross-

validations for all experimental results.

To evaluate the accuracy of the proposed approach, we
first augment a rating matrix R to an l-injected matrix L,
and feed L as input to existing CF methods such as item-
based CF (ICF) [4] and SVD-based CF (SVD) [5]. We
adopted the ICF and SVD algorithms implemented in the
open-source MyMediaLite [15] with their default parameter
settings. All datasets and codes that we used are available
at: https://goo.gl/KUrmip.

Fig. 5. Comparison of an original rating matrix and its corresponding
l-injected matrix.

TABLE 2
Statistics of Three Real-Life Datasets

MovieLens Ciao Watcha

Density 6.30% 1.38% 3.77%
Min. # of ratings of users 20 1 16
Max. # of ratings of users 737 319 513
Avg. # of ratings per user 106.04 18.72 72.66
of total ratings 100,000 18,648 101,073

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 1, JANUARY 2019

https://goo.gl/KUrmip

The goal of our empirical study is to answer the follow-
ing key questions through comprehensive evaluation.

� Q1: Is the OCCF method (most) effective to infer
users’ pre-use preferences?

� Q2: Are users not satisfied with uninteresting items
that our approach infers?

� Q3: How does the accuracy of our approach change
over injected values and the ratios of uninteresting
items? Howmich sensitive is it to them?

� Q4: How much does our approach enhance the accu-
racy of existing CF methods? Is our hypothesis
valid?

� Q5: How much running time does our approach
spend compared to existing CF methods?

4.2 Inference of Pre-Use Preferences

We validate how effective the OCCF method is against three
candidates: user-oriented method (UOM), binary item-based
method (BIM), and item-based method (IM). First, UOM
determines pre-use preference scores of users to be
inversely proportional to the number of rated items. Second,
BIM uses the observed (binary) pre-use preference matrix P
and infers pre-use preference scores by using item-based
CF [4]. Third, IM indicates item-based CF, which produces
pre-use preference scores from original rating matrix R. For
the OCCF method, we followed the same parameter settings
for wALS as in [8].

We define an error rate to quantify the ratio ofmisclassified
items out of all rated items. It is calculated as: erruu ¼
jIunu ðuÞ\Itestu j

jItestu j . Itestu is a set of items rated by u in a test set, and

Iunu ðuÞ is a set of uninteresting items (i.e., ranked in the bottom
u percent according to the inferred pre-use preference scores).
The lower the error rate, the better is the inferencemethod.

Fig. 6 depicts the result for comparing error rates of four
inference methods. As u increases, the error rates of all
methods increase as well. The error rates of UOM and IM
increase more rapidly than those of the OCCF method and
BIM. In contrast, the OCCF method and BIM show rela-
tively small error rates until u reaches 90 percent, implying
that their accuracies are fairly good when u is smaller than
90 percent. Above 90 percent, their error rates grow rapidly.
This is because at this point there are only a relatively small
number of unrated items left. Among the four methods, the
OCCF method shows the best error rates regardless of u.

We further examine if pre-use preferences inferred by the
OCCF method indeed yield the best accuracy. We first build
an l-injected matrix L using pre-use preferences, and apply
L to two CF methods: item-based CF (ICF) and SVD-based
CF (SVD). We vary u as 30, 60, and 90 percent. Because all
accuracy metrics show similar tendencies, we only report
the results for P@5. (More detailed analysis on the effect of u

will be given in Section 4.4.) Table 3 shows the P@5 of ICF
and SVD with the l-injected matrix. As shown in Fig. 6, the
OCCF method consistently shows the best accuracy in all
cases (19-26 percent higher than BIM, the second best one)
while UOM shows the worst accuracy.

As for Q1 , we conclude that the OCCF method is most
effective for inferring pre-use preferences. Therefore, we
adopt the OCCF method to infer pre-use preferences in sub-
sequent evaluation.

4.3 User Satisfaction for Uninteresting Items

Our main assumption is that a user would not be satisfied
with her uninteresting items. To justify this assumption, we
examine how much users are satisfied with items in propor-
tion to their pre-use preference scores. Recall that an item is
likely to be selected as an uninteresting item if its pre-use
preference score is relatively low.

We first hide the ratings of items in the test set and com-
pute the pre-use preference scores for all unrated items by
using the ratings of items in the training set as done in
Section 4.2. We then partition all unrated user-item pairs
into 100 bins according to their percentile rank r of pre-use
preference scores. We calculate the error rates for the jth
subset, Iunu ðbj;bjþ1Þ, instead of Iunu ðuÞ to show the ratio of
those user-item pairs that are actually rated in the test set.
That is, Iunu ðbj;bjþ1Þ includes u’s unrated items whose rank
r is between bj and bjþ1 (i.e., bj � rðp̂uiÞ < bjþ1 for
8i 2 Iunu ðbj;bjþ1Þ).

Fig. 7 depicts the distribution of error rates over r. As r

increases, the error rate increases rapidly. Moreover, the test
set verifies that users have evaluated only a few items whose
r is low. For example, among all the rated items, 90 percent
items (resp. 95 percent items) have r higher than 74 percent
(resp. 79 percent) (marked in Fig. 7). This result indicates
that users hardly ever rate the items whose pre-use prefer-
ence scores are low. Therefore, our assumption holds.

Next, we analyze rated items according to their pre-use
preference scores. We divide user-item pairs into 10 bins
according to their percentile rank r of pre-use preference
scores. For rated items in the test set, we compare the num-
ber of items rated as 1 or 2 and that of items rated as 4 or 5
in each bin. For fair comparison, we note two important
observations: (1) users leave 4 or 5 ratings (i.e., 55 percent of
all ratings) much more often than 1 or 2 ratings (i.e.,
17 percent of all ratings) in the MovieLens dataset; (2) the

Fig. 6. Comparison on error rates of four inference methods.

TABLE 3
Accuracy (i.e., P@5) of ICF and SVD Equipped with

Our Approach Using Four Inference Methods

CF method Parameter Q Inference Method

OCCF BIM IM UOM

ICF
30% 0.209 0.145 0.113 0.057
60% 0.210 0.155 0.124 0.016
90% 0.216 0.160 0.128 0.002

Average 0.212 0.154 0.122 0.025

SVD
30% 0.205 0.144 0.121 0.066
60% 0.215 0.153 0.150 0.034
90% 0.235 0.194 0.147 0.013

Average 0.218 0.164 0.139 0.038

LEE ET AL.: l-INJECTION: TOWARD EFFECTIVE COLLABORATIVE FILTERING USING UNINTERESTING ITEMS 9

numbers of “rated” items in the test set differ significantly
depending on the bins. For example, 0.1 percent of user-
item pairs have ratings in the first bin, while 86.8 percent of
pairs have them in the last bin. Considering these inequal-
ities, we compute the relative ratio of items rated as 1 or 2
(resp. 4 or 5) for each bin as follows:

ratiouðj; sÞ ¼
jItestu ðsÞ \ Iunu ðbj;bjþ1Þj
jItestu \ Iunu ðbj;bjþ1Þj

 jIevalu ðsÞj
jIevalu j ; (11)

where Itestu is a set of items rated by a user u in the test set,

and Itestu ðsÞ indicates a set of items rated as s in Itestu . In addi-

tion, Ievalu indicates a set of items rated by u among all items,

and Ievalu ðsÞ is a set of items rated by u as s in Ievalu . The frac-
tion before the division sign in Eq. (11) means the ratio of

items rated as s by u to all rated items by u in a bin. The frac-

tion after the division sign in Eq. (11) means the ratio of

items rated as s by u to the whole items rated by u and is

used for normalization. A higher relative ratio indicates that

more items rated as s exist in a bin.
Fig. 8 shows the relative ratios of rated items. When r is

smaller than 0.3, the relative ratio of items rated as 1 or 2
stagnates. This is because there are only a few rated items
whose r is less than 0.3. When r is higher than 0.3, the rela-
tive ratio of items rated as 1 or 2 decreases. When r is
smaller than 0.9, the relative ratio of items rated as 4 or 5 is
smaller than 1. Only when r is in the range of 0.9 and 1, the
relative ratio is higher than 1. That is, the items whose r is
smaller than 0.9 are more likely to be rated as 1 or 2 than 4
or 5. Meanwhile, the items whose r is higher than 0.9 are

more likely to be rated as 4 or 5. Users are less likely to be
satisfied with the items whose r is less than 0.9.

As for Q2, we conclude that users are less satisfied with
the items whose pre-use preferences are low. In addition, it
is found that users tend to be unsatisfied with most of the
items in R (e.g., 90 percent), implying that most of items can
be uninteresting to users.

4.4 Effect of l-Injection

We compare several methods of imputing low values for
uninteresting items. The baseline method is to simply inject
zero for uninteresting items, i.e., vri ¼ 0, which is proposed
in our preliminary work [1]. Alternatively, we utilize the
global average of ratings and the average of ratings per
user/item. Because uninteresting items are unlikely to be
preferred, their ratings should be set relatively low. We
inject a value by under-estimating the averages, i.e., vui ¼
average � d 2 ½0:25; 0:50; 0:75; 1:00�.

Tables 4 and 5 report the accuracies of ICF [4] and
SVD [5] with l-injection matrix L. To build l-injected matrix
L, various imputation methods can be employed. The gray
color indicates the best accuracy over varying d and u. In
both algorithms, the imputation methods of using averages
outperform that of using zero. When d ¼ 0:5, it shows the
best performance regardless of u. Meanwhile, when d < 0:5
or d > 0:5, the accuracies of ICF and SVD tend to decrease.
This implies that users may rate uninteresting items as rela-
tively low values, but they would not extremely dislike
them if rated.

Next, we conduct the sensitivity test to evaluate the effect
of u. Fig. 9 shows the accuracy of top-N (N ¼ 5) recommen-
dation with ICF and SVD over varying u. We increase u in
an increment of 10 percent for the range of 10�90 percent,
while increasing u in an increment of 1 percent for two
extreme ranges, 0-10 and 90-99.7 percent. Note that we do
not report the result with u ¼ 100% because CF methods
with our approach recommend nothing in this case. The
result with u ¼ 0% indicates the accuracy of original ICF
and SVD methods without using our approach. Meanwhile,

Fig. 7. The change of error rates for pre-use preference scores.

Fig. 8. Distribution of pre-use preference scores for rated items.

TABLE 4
Accuracy (i.e., P@5) of ICF Equipped with Our Approach over

Varying Imputation Methods for an l-Injected Matrix

l-Value Parameter (Q)

0 30 60 90

0 0.199 0.199 0.201

User_avg d ¼ 0:25 0.208 0.204 0.207
Item_avg 0.208 0.207 0.210
All_avg 0.205 0.206 0.206

User_avg d ¼ 0:5 0.209 0.210 0.214
Item_avg 0.209 0.210 0.216

All_avg 0.039 0.210 0.209 0.214

User_avg d ¼ 0:75 0.196 0.200 0.212
Item_avg 0.179 0.187 0.206
All_avg 0.202 0.204 0.214

User_avg d ¼ 1:00 0.139 0.144 0.179
Item_avg 0.003 0.056 0.136
All_avg 0.171 0.177 0.203

5 0.000 0.001 0.018

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 1, JANUARY 2019

when setting u up to 99.7 percent, we only leave top-N items
whose pre-use preference scores are the highest for each
user. In this case, all remaining items are thus selected as a
top-N recommendation list (i.e., top-5) to each user without
employing CF methods.

In Fig. 9, we observe that the results of precision, recall,
nDCG, and AUC show similar patterns. The accuracies of
all CF methods increase as u increases up to around
95 percent. Moreover, they grow quite rapidly until u

reaches 10 percent. All results clearly show that our idea of
using l-injection dramatically improves the accuracy of two
original CF methods. ICF using our approach with u ¼ 96%
shows the best precision, 5.2 times higher than ICF without
our approach. Similarly, when u ¼ 95%, our approach
improves the precision of SVD by 3.4 times.

The accuracy changes considerably when u is less than
10 percent ormore than 90 percent while it changesmuch less
when u is between 10 and 90 percent. This phenomenon can
be interpreted as follows: (1) as u increases up to 10 percent,
more user-item pairs (i.e., highly likely to be uninteresting)
are filled and are also correctly excluded from top-N recom-
mendation; (2) when u ranges between 10 and 90 percent,
the accuracy changes less because filling unrated user-item
pairs in the case of (1) has already alleviated most of the data
sparsity problem. Filling more ratings no longer gives useful
information to CF although user-item pairs whose u is
between 10 and 90 percent are highly likely to be uninterest-
ing (See Section 4.3); (3) when u is larger than 90 percent, the
accuracy decreases significantly. As u reaches 99.7 percent,
more user-item pairs with high pre-use preference scores
(i.e., could be interesting to users) are incorrectly filled by

Fig. 9. Accuracy of ICF and SVD equipped with our proposed approach over varying parameter u.

TABLE 5
Accuracy (i.e., P@5) of SVD Equipped with Our Approach
over Varying Imputation Methods for an l-Injected Matrix

l-Value Parameter (u)

0 30 60 90

0 0.177 0.198 0.207

User_avg d =0.25 0.191 0.206 0.222
Item_avg 0.192 0.191 0.223
All_avg 0.192 0.207 0.221

User_avg d =0.5 0.204 0.216 0.235
Item_avg 0.205 0.215 0.235

All_avg 0.063 0.204 0.217 0.234

User_avg d =0.75 0.204 0.215 0.228
Item_avg 0.193 0.205 0.219
All_avg 0.203 0.218 0.227

User_avg d = 1.00 0.138 0.159 0.187
Item_avg 0.018 0.077 0.141
All_avg 0.161 0.176 0.200

5 0.013 0.013 0.031

LEE ET AL.: l-INJECTION: TOWARD EFFECTIVE COLLABORATIVE FILTERING USING UNINTERESTING ITEMS 11

mistake giving inaccurate and less useful information to CF
methods. In addition, they could be incorrectly excluded from
top-N recommendation.

As for Q3, we conclude that the injection of using aver-
ages is useful. In addition, it is found that a very high
accuracy can be achieved even if u is set within a large inter-
val of 10% � u � 95%, indicating that our approach is
parameter-insensitive (with respect to u).

4.5 Accuracy of Modified CF Algorithms

We apply our approach to four existing CF methods (i.e.,
ICF [4], SVD [5], SVD++ [16], [17], and pureSVD [7]). SVD++
utilizes both ratings and binary ratings (just indicating
whether a user evaluates an item or not). PureSVD fills all
missing ratings with zeros, and then produces top-N recom-
mendation based on the SVD model. Based on the findings
in Section 4.4, we set the parameter u as 90 percent in our
approach.

Tables 6, 7, and 8 report the accuracy of all CF methods
with and without our approach in three real-life datasets. We
denote a CFmethod equippedwith our approach as name_LI
(i.e., l-injection) such as ICF_LI, SVD_LI, SVD++_LI, and

PureSVD_LI. The numbers in bold indicate the highest accu-
racy among all CF methods with and without our approach.
We also compare our approaches with OCCF [8] and
MNAR [14], exploiting unrated items.

Among existing CF methods, PureSVD has the best accu-
racy while ICF shows the worst accuracy. Both PureSVD
and SVD++ are known to provide a better accuracy than
SVD and ICF. It is found that our experimental results are
consistent with [7]. We also observe that our approach dra-
matically improves the accuracies of all existing CF methods.
For example, our approach improves P@5 of ICF, SVD, and
SVD++ by 5, 3.3, and 2.5 times , respectively. When our
approach is applied to PureSVD, its improvement is the
smallest. The reason is that PureSVD already assigns zeros
to all missing ratings. This idea is similar to to an l-injection
in the sense that some unrated items are not interested to
the users. That is, SVD_LI performs the best, followed by
ICF_LI among the CF methods equipped with our proposed
approach. Our approach improves both SVD and ICF con-
siderably because they regard all unrated items as unknown
ones. For this reason, SVD_LI and ICF_LI adopt additional
information correctly by regarding low-value ratings as

TABLE 6
Accuracy of Four CF Methods Equipped with Our Approach in the MovieLens Dataset (u ¼ 90%)

Metric ICF SVD SVD++ PureSVD OCCF MNAR

Orginal Ours Gain Orginal Ours Gain Orginal Ours Gain Orginal Ours Gain

P
re
ci
si
o
n @5 0.039 0.216 453.3% 0.063 0.235 272.3% 0.076 0.174 129.0% 0.169 0.227 34.1% 0.192 0.213

@10 0.041 0.169 311.2% 0.056 0.180 221.6% 0.069 0.141 105.0% 0.142 0.177 24.8% 0.151 0.169
@15 0.040 0.144 259.4% 0.053 0.152 187.2% 0.063 0.123 94.6% 0.122 0.150 22.6% 0.129 0.143
@20 0.039 0.127 226.3% 0.048 0.133 177.5% 0.058 0.109 88.2% 0.109 0.130 19.9% 0.115 0.124

R
e
ca
ll

@5 0.030 0.226 653.8% 0.052 0.244 370.0% 0.063 0.181 186.8% 0.177 0.237 34.0% 0.202 0.224
@10 0.059 0.324 449.8% 0.089 0.344 286.6% 0.109 0.271 148.9% 0.280 0.341 21.7% 0.299 0.327
@15 0.085 0.398 368.6% 0.121 0.415 242.9% 0.150 0.339 126.0% 0.346 0.412 19.0% 0.367 0.398
@20 0.111 0.454 309.4% 0.144 0.469 225.7% 0.184 0.396 115.0% 0.397 0.462 16.6% 0.421 0.448

n
D
C
G

@5 0.043 0.292 578.3% 0.076 0.318 318.4% 0.087 0.232 166.8% 0.217 0.312 43.3% 0.254 0.286
@10 0.053 0.307 478.8% 0.084 0.331 293.8% 0.099 0.250 152.3% 0.243 0.327 34.8% 0.272 0.305
@15 0.062 0.326 425.0% 0.094 0.348 270.1% 0.110 0.268 143.7% 0.261 0.344 32.1% 0.290 0.323
@20 0.071 0.342 382.1% 0.101 0.363 259.8% 0.121 0.285 135.2% 0.276 0.359 29.8% 0.306 0.337

MRR 0.106 0.453 327.8% 0.165 0.485 194.1% 0.181 0.384 1123% 0.393 0.487 24.1% 0.453 0.445

TABLE 7
Accuracy of Four CF Methods Equipped with Our Approach in the Ciao Dataset (u ¼ 90%)

Metric ICF SVD SVD++ PureSVD OCCF MNAR

Orginal Ours Gain Orginal Ours Gain Orginal Ours Gain Orginal Ours Gain

P
re
ci
si
o
n @5 0.007 0.030 317.1% 0.005 0.031 521.0% 0.014 0.017 24.7% 0.009 0.024 150.4% 0.028 0.026

@10 0.007 0.023 250.8% 0.004 0.024 468.0% 0.012 0.014 17.4% 0.006 0.018 197.0% 0.023 0.022
@15 0.006 0.020 250.2% 0.004 0.021 415.3% 0.011 0.012 12.6% 0.005 0.015 205.9% 0.019 0.019
@20 0.005 0.018 232.5% 0.004 0.019 373.9% 0.010 0.011 16.3% 0.004 0.014 226.0% 0.017 0.017

R
e
ca
ll

@5 0.017 0.062 264.0% 0.010 0.062 548.1% 0.028 0.038 34.0% 0.021 0.048 130.0% 0.056 0.056
@10 0.030 0.095 218.7% 0.018 0.097 433.0% 0.050 0.061 23.2% 0.025 0.073 185.7% 0.093 0.092
@15 0.038 0.125 228.3% 0.026 0.124 382.3% 0.067 0.081 20.0% 0.032 0.096 196.8% 0.121 0.119
@20 0.047 0.146 208.6% 0.032 0.147 358.3% 0.082 0.100 21.7% 0.036 0.117 221.3% 0.143 0.142

n
D
C
G

@5 0.013 0.052 295.0% 0.008 0.054 602.3% 0.022 0.032 46.5% 0.020 0.041 103.8% 0.048 0.049
@10 0.018 0.064 254.8% 0.011 0.067 523.1% 0.029 0.040 36.3% 0.021 0.049 129.8% 0.061 0.062
@15 0.021 0.073 254.8% 0.013 0.075 476.9% 0.035 0.046 31.5% 0.024 0.057 139.4% 0.070 0.071
@20 0.023 0.080 241.4% 0.015 0.082 447.5% 0.039 0.052 31.5% 0.025 0.063 152.1% 0.077 0.078

MRR 0.032 0.092 187.4% 0.022 0.099 360.5% 0.047 0.062 30.6% 0.029 0.076 161.9% 0.069 0.091

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 1, JANUARY 2019

uninteresting ones and null values as unknown ones.
Because OCCF and MNAR also consider unrated items,
they show a better accuracy than existing CF methods.
Because the SVD equipped with l-injection considers unin-
teresting items more effectively, it shows better than OCCF
and MNAR. These results are consistent with three datasets.

However, our approach does not improve SVD++ and
PureSVD effectively, because they originally have a positive
view on rated items and a negative view on unrated items.
SVD++ builds an SVD model by considering whether a user
rates an item. Meanwhile, SVD++_LI injects uninteresting
items as low values. That is, while SVD++ considers all
unrated items as uninteresting items, SVD++_LI has already
injected uninteresting items as rated items with low values.
This means that the unrated items between SVD++ and
SVD++_LI have a conflict. Some interesting items among
unrated items can be regarded as uninteresting items. SVD+
+ with the l-injected matrix does not effectively capture the
negative view for unrated items. Similarly, because
PureSVD simply fills zeros even for the items that could be
interesting to users, it could affect the accuracy adversely.
For PureSVD, we impute the same values as the l-injected

matrix to unrated items. Similar to SVD++, it may not dis-
tinguish between uninteresting items and unrated items.
Because we have another strategy of excluding uninterest-
ing items from top-N recommendation, it can achieve a bet-
ter accuracy than PureSVD.

We further evaluate the accuracy of CF methods for
extreme cases, e.g., long-tail items and cold-start users.
Because top-N recommendation can be biased to item popu-
larity [7], [18], it is difficult to achieve high accuracy for
long-tail items, i.e., unpopular items with a few ratings. In
addition, the cold-start users [19] mean the users who have
rated only a few items. For the MovieLens dataset, we
define an item to be an long-tail item if its number of ratings
is less than 100. Because the items are unpopular, users tend
to prefer such long-tail items to be recommended [20]. We
also define a user to be a cold-start user if her number of
rated items is less than 10, 15, and 20. Compared to the aver-
age users who have rated more than 100 items in Table 2, it
is much more difficult to infer hidden preferences of cold-
start users. (These definitions for long-tail items and cold-
start users are consistent with these of existing work [7],
[18], [19], [20].)

Table 9 reports the accuracy of CF methods for long-tail
items. For all metrics, it is found that the CF methods
equipped with our approach can consistently improve the
accuracy of top-N recommendation. In addition, it is also
found that using our approach can help improve the accu-
racy of existing CF methods regardless of N . For NDCG@5,
we can achieve the highest improvement of three to six times.

Table 10 reports the accuracy of CF methods for cold-
start users. It is found that our approach improves the accu-
racy of top-N recommendation. When the number of ratings

TABLE 8
Accuracy of four CF Methods Equipped with Our Approach in the Watcha Dataset (u ¼ 90%)

Metric ICF SVD SVD++ PureSVD OCCF MNAR

Orginal Ours Gain Orginal Ours Gain Orginal Ours Gain Orginal Ours Gain

P
re
ci
si
o
n @5 0.008 0.083 895.2% 0.022 0.085 284.1% 0.026 0.061 136.6% 0.038 0.082 116.7% 0.061 0.084

@10 0.008 0.069 717.4% 0.020 0.069 254.1% 0.022 0.053 139.4% 0.029 0.067 128.8% 0.053 0.067
@15 0.009 0.060 597.2% 0.017 0.061 248.7% 0.020 0.047 128.9% 0.025 0.058 134.9% 0.047 0.058
@20 0.008 0.054 537.7% 0.016 0.055 235.3% 0.019 0.043 123.9% 0.022 0.051 136.6% 0.043 0.052

R
e
ca
ll

@5 0.009 0.127 1331.8% 0.028 0.131 361.1% 0.032 0.092 189.4% 0.054 0.123 128.2% 0.091 0.123
@10 0.019 0.203 978.3% 0.050 0.208 313.3% 0.054 0.156 191.5% 0.080 0.194 142.6% 0.156 0.197
@15 0.029 0.261 808.7% 0.067 0.266 296.0% 0.074 0.204 177.4% 0.097 0.249 157.5% 0.208 0.250
@20 0.037 0.310 740.9% 0.082 0.316 285.8% 0.091 0.245 168.4% 0.110 0.291 164.1% 0.253 0.296

n
D
C
G

@5 0.009 0.125 1216.4% 0.029 0.127 330.7% 0.037 0.091 143.4% 0.055 0.121 120.6% 0.089 0.124
@10 0.013 0.151 1058.3% 0.037 0.153 315.7% 0.044 0.112 157.6% 0.063 0.145 128.2% 0.111 0.148
@15 0.017 0.170 923.1% 0.042 0.173 307.3% 0.051 0.129 154.1% 0.069 0.163 134.8% 0.129 0.165
@20 0.020 0.186 851.6% 0.048 0.189 298.2% 0.057 0.142 150.9% 0.074 0.177 138.4% 0.143 0.180

MRR 0.033 0.233 611.3% 0.076 0.234 207.8% 0.095 0.185 94.8% 0.164 0.226 37.7% 0.202 0.231

TABLE 9
Accuracy of CF Methods for Long-Tail Items

Metric ICF SVD

Orginal Ours Gain Orginal Ours Gain

P
re
ci
si
o
n @5 0.016 0.105 545.3% 0.031 0.115 272.0%

@10 0.018 0.087 393.3% 0.027 0.092 237.1%
@15 0.018 0.075 319.1% 0.025 0.078 208.1%
@20 0.018 0.066 267.9% 0.024 0.069 190.9%

R
e
ca
ll

@5 0.022 0.184 730.2% 0.045 0.199 339.9%
@10 0.023 0.143 520.5% 0.038 0.149 295.9%
@15 0.035 0.182 416.9% 0.052 0.186 254.3%
@20 0.047 0.207 341.4% 0.065 0.212 227.6%

n
D
C
G

@5 0.017 0.135 673.1% 0.037 0.148 304.7%
@10 0.022 0.143 557.0% 0.039 0.153 289.8%
@15 0.026 0.152 485.2% 0.043 0.160 270.5%
@20 0.030 0.159 426.9% 0.047 0.167 256.3%

MRR 0.057 0.255 343.6% 0.088 0.273 209.7%

TABLE 10
Accuracy of CF Methods for Cold-Start Users

#Ratings ICF SVD

Orginal Ours Gain Orginal Ours Gain

10 0.025 0.073 192.0% 0.037 0.076 105.4%
15 0.024 0.090 275.0% 0.045 0.092 104.4%
20 0.020 0.101 405.0% 0.047 0.101 114.9%

LEE ET AL.: l-INJECTION: TOWARD EFFECTIVE COLLABORATIVE FILTERING USING UNINTERESTING ITEMS 13

per user is 10, the improvement gap is smallest. However,
as the number of ratings per user increases, it increases as
well. This is because the proposed approach can infer hid-
den user preferences more accurately as the number of
rated items increases. For instance, when the number of rat-
ings per user is 20, our approach is shown to improve the
accuracy of the original ICF by four times.

As for Q4 , we conclude that our approach improves the
accuracy of existing CF methods by 2.5 to 5 times. This
improvement is significant in comparison with the results
obtained by other state-of-the-art methods [7], [10]. In addi-
tion, our approach improves the accuracy of existing CF
methods consistently even for the extreme cases of long-tail
items and cold-start users.

4.6 Running Time of Modified CF Algorithms

Finally, we compare the running times of CF methods with
and without our approach. We note the weaknesses of our
approach incur at the pre-computation stage (offline) while
the strengths of our approach are at the recommendation
stage (online). The CF methods build a model or compute
similarities of item/user pairs during the pre-computation
stage, and compute top-N items during the recommenda-
tion stage. Our approach can reduce the recommendation
time because it significantly reduces the number of candi-
date items by excluding uninteresting items from top-N rec-
ommendation. Meanwhile, our approach may require more
pre-computation time because it has to infer pre-use prefer-
ence scores for all unrated items.

We examine the trade-off between the running time of
the pre-computation stage and the accuracy of the recom-
mendation stage. Fig. 10 shows both recommendation and
pre-computation times of SVD_LI, SVD, SVD++, and
PureSVD. The recommendation time includes the running
times for predicting users’ ratings and providing the items
to users, and the pre-computation time does those for build-
ing a model with rating matrix R (SVD, SVD++, and
PureSVD) and l-injected matrix L (SVD_LI). In Fig. 10a, the
recommendation time of SVD_LI decreases rapidly as u

increases because fewer candidate items remain as u

increases. In addition, SVD_LI requires a shorter time at the
recommendation stage. It takes about 1.54 seconds when it
has the highest accuracy (u ¼ 90%), which is 17 percent
shorter than that of SVD. In Fig. 10b, SVD_LI takes more
time for pre-processing with larger u, and is slower than
SVD and PureSVD. This is because SVD_LI builds two mod-
els, one built based on the pre-use preference matrix and the
other built on l-injected matrix while both SVD and
PureSVD build only a single model. However, SVD_LI
requires less pre-computation time than SVD++.

Fig. 11 shows both recommendation and pre-computation
times of ICF_LI and ICF. The pre-computation time indicates
the time for computing the similarities of all pairs of items. In
Fig. 11a, when u is smaller than 20 percent, the recommenda-
tion time of ICF_LI increases as u increases. This is because a
more number of ratings are used for predicting a rating. It
decreases linearly as u increases when u is higher than
20 percent. This is because the number of ratings used for
prediction is fixed as k (as explained in Section 3.4) while a
fewer number of items remain. Compared with ICF, ICF_LI
requires less recommendation time when u is larger than
70 percent. As we know that the accuracy of ICF_LI gets
higher as u increases, a user would be satisfied with ICF_LI
when u is set larger than 70 percent in terms of both accuracy
and recommendation time. Fig. 11b shows the pre-computa-
tion time for computing similarities between items [4]. The
pre-computation time of ICF_LI increases with u. This is
because more numbers of items are needed to compute simi-
larities of a pair of items. Therefore, ICF_LI requires more
pre-computation time than ICF does.

As to Q5, we conclude that our approach reduces the rec-
ommendation times of SVD and ICF with u > 70% while it
needs more pre-computation time. Considering that online
recommendation time is more crucial than offline pre-
computation time, our approach can improve existing CF
methods for online recommendation time.

4.7 Summary of Experimental Results

Based on the experimental results, we answer the key ques-
tions Q1–Q5). For Q1, the OCCF method is the most effec-
tive for inferring pre-use preference scores, compared to
other methods: UOM, IM, and BIM. For Q2, users are
unlikely to be satisfied with uninteresting items with low
pre-use preference scores. For Q3, l-injection using average
values is more effective than 0-injections for most existing
algorithms. For Q4, our approach equipped with an
l-injected matrix can improve the accuracy of existing CF
methods by 2.5 to 5 times. For Q5, our approach can also
save the running time of the recommendation using SVD
and ICF while it needs more pre-computation time.

5 RELATED WORK

In general, CF methods are categorized into two approaches:
memory-based andmodel-based [2]. First, memory-basedmeth-
ods [4], [6], [12] predict the ratings of a user using the similar-
ity of her neighborhoods, and recommend the items with
high ratings. Second, model-based methods [3], [5] build a
model capturing a users’ ratings on items, and then predict
her unknown ratings based on the learnedmodel.

Fig. 10. Running time of SVD variants.
Fig. 11. Running time for ICF variants.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 1, JANUARY 2019

Most CFmethods, despite their wide adoption in practice,
suffer from low accuracy if most users rate only a few items
(thus producing a very sparse rating matrix), called the data
sparsity problem [21]. This is because the number of unrated
items is significantly more than that of rated items. To
address this problem, some existing work attempted to infer
users’ ratings on unrated items based on additional informa-
tion such as clicks [22] and bookmarks [23]. However, these
works require an overhead of collecting extra data, which
itself may have another data sparsity problem. Compared
to [22], [23], our proposal does not require any extra data and
solely works on account of an existing ratingmatrix.

In addition, to improve the accuracy of top-N recommen-
dation, otherworks leverage both ratings and the factwhether
a user evaluates an item or not. For instance, SVD++ [16], [17]
builds an extended SVD model exploiting both information.
The conditional restricted Boltzmann machine (RBM) [24]
and constrained probabilistic matrix factorization (PMF) [25]
also account for both information in learning their models.
However, these approaches are based on a simple assumption
such that a user would dislike all unrated items. On the other
hand, we strive to discern a subset of unrated items that users
truly dislike. Therefore our proposal yields improvements in
accuracy compared to existingmethods.

Finally, several CF methods (e.g., [7], [14]) have been pro-
posed to fill missing ratings with a particular value in order
to improve the accuracy. They also simply assume that a
user would dislike all unrated items. Based on this assump-
tion, PureSVD [7] fills all missing ratings with zeros, and
then makes prediction using both known ratings and zero
ratings. Steck [14] assigns a low value to all missing ratings,
and then makes recommendation by learning a multinomial
mixture model. By filling allmissing ratings with low values,
however, this approach could mistakenly assign low values
to the items that usersmight like, thereby affecting an overall
accuracy in recommendation. Our preliminary work [1]
infers uninteresting items and builds 0-injected matrix.
Because the 0-injected matrix includes the ratings inferred
from uninteresting items, it can infer latent user preferences
more accurately. However, because 0-injection simply con-
siders all uninteresting items as zero, it may neglect to the
characteristics of users or items. In contrast, l-injection not
only maximizes the impact of filling missing ratings but also
considers the characteristics of users and items, by imputing
uninteresting itemswith low pre-use preferences.

6 CONCLUSIONS

In this paper, we proposed a novel approach, l-injection, for
uninteresting items by using a new notion of pre-use preferen-
ces. This approach not only significantly alleviates the data
sparsity problem but also effectively prevents those uninter-
esting items from being recommended. Because the pro-
posed approach is method-agnostic, it can be easily applied
to a wide variety of existing CF methods. Through compre-
hensive experiments, we successfully demonstrated that the
proposed approach is effective and practical, dramatically
improving the accuracies of existing CF methods (e.g., item-
based CF, SVD-based CF, and SVD++) by 2.5 to 5 times. Fur-
thermore, our approach improves the running time of those
CF methods by 1.2 to 2.3 times when its setting produces
the best accuracy.

ACKNOWLEDGMENTS

This research was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIP) (NRF-2017R1A2B3004581), the Ministry of
Science, ICT and Future Planning (MSIP), Korea, under the
Information Technology Research Center (ITRC) support
program (IITP-2017-2013-0-00881), and two awards of NSF
CNS-1422215 and Samsung 2015 GRO-175998. Sang-Wook
Kim is the corresponding author.

REFERENCES

[1] W. Hwang, J. Parc, S. Kim, J. Lee, and D. Lee, “Told you I
didn’t like it: Exploiting uninteresting items for effective col-
laborative filtering,” in Proc. IEEE 32nd Int. Conf. Data Eng.,
2016, pp. 349–360.

[2] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possi-
ble extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6,
pp. 734–749, Jun. 2005.

[3] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techni-
ques for recommender systems,” IEEE Comput., vol. 42, no. 8,
pp. 30–37, Aug. 2009.

[4] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-
oration filtering recommendation algorithms,” in Proc. IEEE 10th
Int. Conf. World Wide Web, 2001, pp. 285–295.

[5] S. Zhang, W. Wang, J. Ford, F. Makedon, and J. Pearlman, “Using
singular value decomposition approximation for collaborative fil-
tering,” in Proc. 7th IEEE Int. Conf. E-Commerce Technol., 2005,
pp. 257–264.

[6] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: An open architecture for collaborative filtering of
netnews,” in Proc. ACM Conf. Comput. Supported Cooperative Work,
1994, pp. 175–186.

[7] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recom-
mender algorithms on top-n recommendation tasks,” in Proc. 4th
ACM Conf. Recommender Syst., 2010, pp. 39–46.

[8] R. Pan, et al., “One-class collaborative filtering,” in Proc. 8th IEEE
Int. Conf. Data Mining, 2008, pp. 502–511.

[9] V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic, “A family of
non-negative matrix factorization for one-class collaborative filter-
ing,” in Proc. ACM Conf. Recommender Syst., 2009, pp. 1–8.

[10] J. Ha, S.-H. Kwon, S.-W. Kim, C. Faloutsos, and S. Park, “Top-N
recommendation through belief propagation,” in Proc. 21st ACM
Int. Conf. Inf. Knowl. Manage., 2012, pp. 2343–2346.

[11] N. Srebro and T. Jaakkola, “Weighted low-rank approximations,”
in Proc. AAAI 20th Int. Conf. Mach. Learn., 2003, pp. 720–727.

[12] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proc. 14th
Conf. Uncertainty Artif. Intell., 1998, pp. 43–52.

[13] J. Tang, H. Gao, and H. Liu, “mTrust: Discerning multi-faceted
trust in a connected world,” in Proc. 5th ACM Int. Conf. Web Search
Data Mining, 2012, pp. 93–102.

[14] H. Steck, “Training and testing of recommender systems on data
missing not at random,” in Proc. 16th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2010, pp. 713–722.

[15] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme ,
“MyMediaLite: A free recommender system library,” in Proc. 5th
ACM Conf. Recommender Syst., 2011, pp. 305–308.

[16] R. Bell and Y. Koren, “Lessons from the netflix prize
challenge,” ACM SIGKDD Explorations Newslett., vol. 9, no. 2,
pp. 75–79, 2007.

[17] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2008, pp. 426–434.

[18] H. Steck, “Item popularity and recommendation accuracy,” in
Proc. 5th ACM Conf. Recommender Syst., 2011, pp. 125–132.

[19] H. Ma, I. King, and M. R. Lyu, “Effective missing data prediction
for collaborative filtering,” in Proc. 30th Annu. Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2007, pp. 39–46.

[20] J. Lee, D. Lee, Y. Lee, W. Hwang, and S. Kim, “Improving the
accuracy of top-N recommendation using a preference model,”
Inf. Sci., vol. 348, pp. 290–304, 2016.

LEE ET AL.: l-INJECTION: TOWARD EFFECTIVE COLLABORATIVE FILTERING USING UNINTERESTING ITEMS 15

[21] Z. Huang, H. Chen, and D. Zeng, “Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filter-
ing,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 116–142, 2004.

[22] J. Liu, P. Dolan, and E. R. Pedersen, “Personalized news recom-
mendation based on click behavior,” in Proc. 15th ACM Int. Conf.
Intell. User Interfaces, 2010, pp. 31–40.

[23] S. Niwa, T. Doi, and S. Honiden, “Web page recommender system
based on folksonomy mining for ITNG ’06 submissions,” in Proc.
3rd IEEE Int. Conf. Inf. Technol., 2006, pp. 383–393.

[24] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann
machines for collaborative filtering,” in Proc. 24th ACM Int. Conf.
Mach. Learn., 2007, pp. 791–798.

[25] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,”
inProc. 20th Int. Conf. Neural Inf. Process. Syst., 2007, pp. 1257–1264.

Jongwuk Lee received the PhD degree in com-
puter science and engineering from the Pohang
University of Science and Technology, Korea. He
is currently an assistant professor in the Depart-
ment of Software, Sungkyunkwan University,
Korea. Before that, he was an assistant professor
with the Hankuk University of Foreign Studies,
Korea. In 2012. His research interests include
data mining, databases, recommender systems,
information retrieval, and Web mining.

Won-Seok Hwang received the PhD degree in
electronics and computer engineering from
Hanyang University, Korea. He is currently a
researcher at the National Security Research
Institute. In 2016. His research interests include
recommendation, data mining, machine learning,
and network security.

Juan Parc received the BS and MS degrees in
computer science from Hanyang University, in
2013 and 2015, respectively. He is now working
as a research engineer for the Intelligence Lab
at LG Electronics, Korea. His areas of interest
include recommender systems, databases, and
data mining.

Youngnam Lee received theMS degrees in com-
puter software fromHanyang University, Korea, in
2017. He is currently a researcher for develop-
ment for event prediction such as cardiac arrest
and sepsis based on deep learning at VUNO. His
research interests include recommender systems,
machine learning, and deep learning.

Sang-Wook Kim received the BS degree in com-
puter engineering from Seoul National University,
in 1989, and the MS and PhD degrees in com-
puter science from the Korea Advanced Institute
of Science and Technology (KAIST), in 1991 and
1994, respectively. From 1995 to 2003, he served
as an associate professor with Kangwon National
University. In 2003, he joined Hanyang Univer-
sity, Seoul, Korea, where he currently is a profes-
sor in the Department of Computer Science and
Engineering and the director of the Brain-Korea-

21-Plus research program. He is also leading a National Research Lab
(NRL) Project funded by the National Research Foundation since 2015.
From 2009 to 2010, he visited the Computer Science Department,
Carnegie Mellon University, as a visiting professor. From 1999 to 2000,
he worked with the IBM T. J. Watson Research Center, USA, as a post-
doc. He also visited the Computer Science Department of Stanford
University as a visiting researcher in 1991. He is an author of more than
200 papers in refereed international journals and international confer-
ence proceedings. His research interests include databases, data min-
ing, multimedia information retrieval, social network analysis,
recommendation, and web data analysis. He is a member of the ACM
and the IEEE.

Dongwon Lee received the BS, MS, and PhD
degrees in computer science from Korea Univer-
sity, in 1993, Columbia University, in 1995, and
UCLA, in 2002, respectively. He is currently a
program director at the US National Science
Foundation (NSF), USA, co-managing cyberse-
curity education programs such as SFS and
SaTC-EDU with the yearly budget of $50 M. He
is also a faculty member at Penn State University,
Pennsylvania, currently on leave. He has pub-
lished more than 140 articles in competitive

venues, researching broadly in data science, in particular, on the man-
agement of and mining in data in diverse forms including structured
records, text, multimedia, social media, and Web. From 1995 to 1997,
he worked at AT&T Bell Labs., New Jersey. Further details of his
research can be found at: http://pike.psu.edu/

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 1, JANUARY 2019

http://pike.psu.edu/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

