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Where Am I From?  



Penn State University 

l  State College, PA 
l  Out of nowhere, 

but close to 
everywhere 

l  West: 2.5 hours to 
Pittsburgh 

l  East: 4 hours to 
New York  

l  South: 3 hours to 
Washington DC 

l  North: 3 hours to 
Niagara Fall 
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Penn State i-School 
l  College of Information Sciences and 

Technology (IST) 
l  http://ist.psu.edu/ 

l  40+ tenure-track faculty on diverse areas 
l  CompSci & EE 

l  MIS & LIS 
l  Design 
l  Law 

l  Psychology 
l  Medical Infomatics 
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Other Tutorials on Crowdsourcing 
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The Focus of This Tutorial 

l  Part 1 on basics of 
crowdsourcing 

 
l  Part 2 on DB 

operations that 
exploit 
crowdsourcing 
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http://istc-bigdata.org/index.php/crowdsourcing-big-data/ 



Part 1: Crowdsourcing Basics 
l  Examples 
l  Definitions 

l  Marketplaces 
l  Computational Crowdsourcing 

l  Preliminaries 

l  Transcription 
l  Sorting 

l  Demo 
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Eg, Francis Galton, 1906 
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Weight-judging competition:  
1,197 (mean of 787 crowds) vs. 1,198 pounds (actual measurement) 



Eg, StolenSidekick, 2006 
l  A woman lost a cellphone in a taxi 
l  A 16-year-old girl ended up having the phone 

l  Refused to return the phone 

l  Evan Guttman, the woman’s friend, sets up a 
blog site about the incident 
l  http://stolensidekick.blogspot.com/ 
l  http://www.evanwashere.com/StolenSidekick/ 

l  Attracted a growing amount of attention à the story 
appeared in Digg main page à NY Times and CNN 
coverage à Crowds pressure on police … 

l  NYPD arrested the girl and re-possessed the 
phone 
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http://www.nytimes.com/2006/06/21/nyregion/21sidekick.html?_r=0 



Eg, Finding “Jim Gray”, 2007  
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Eg, Threadless.com 

l  Sells t-shirts, designed/voted by crowds 
l  Artists whose designs are chosen get paid   
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Eg, 
12 

l  Crowdfunding, started in 2009 
l  Project creators choose a deadline and a 

minimum funding goal 
l  Creators only from US, UK, and Canada 

l  Donors pledge money to support projects, in 
exchange of non-monetary values 
l  Eg, t-shirt, thank-u-note, dinner with creators 

l  Donors can be from anywhere 

l  Eg, Pebble, smartwatch 
l  68K people pledged 10M 



Eg, reCAPCHA 
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As of 2012 
 

Captcha: 200M every day 
 

ReCaptcha: 750M to date 



Eg, DARPA Challenge, 2009 

l  To locate 10 red balloons in 
arbitrary locations of US 

l  Winner gets $40K 
l  MIT team won the race with 

the strategy: 
l  2K per balloon to the first 

person, A, to send the correct 
coordinates 

l  1K to the person, B, who invited 
A 

l  0.5K to the person, C, who 
invited B, … 
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Eg, Berkeley Mobile Millennium 
15 



Eg, Who Wants to be a Millionaire? 
16 

Asking the 
audience 
usually works è 
Audience 
members have 
diverse 
knowledge that 
can be 
coordinated to 
provide a 
correct answer 
in sum 



Eg, Who Wants to be a Millionaire? 
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Eg, Game-With-A-Purpose: GWAP 
l  Term coined by Luis 

von Ahn @ CMU 
l  Eg,  

l  ESP Game à Google 
Image Labeler: image 
recognition 

l  Foldit: protein folding 

 
l  Duolingo: language 

translation 
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http://www.resultsfromcrowds.com/features/crowdsourcing-landscape/ 



Part 1: Crowdsourcing Basics 
l  Examples 
l  Definitions 
l  Marketplaces 
l  Computational Crowdsourcing 

l  Preliminaries 

l  Transcription 
l  Sorting 

l  Demo 

20 



James Surowiecki, 2004 

“Collective intelligence 
can be brought to bear 
on a wide variety of 
problems, and 
complexity is no bar… 
conditions that are 
necessary for the crowd 
to be wise: diversity, 
independence, and … 
decentralization” 
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Jeff Howe, WIRED, 2006 

“Crowdsourcing represents 
the act of a company or 
institution taking a function 
once performed by employees 
and outsourcing it to an 
undefined (and generally 
large) network of people in the 
form of an open call. … The 
crucial prerequisite is the use 
of the open call format and 
the large network of potential 
laborers…” 
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http://www.wired.com/wired/archive/14.06/crowds.html 



“Human Computation”, 2011 

“Human computation is 
simply computation that 
is carried out by 
humans… 
Crowdsourcing can be 
considered a method or 
a tool that human 
computation systems 
can use…” 

 
By Edith Law & Luis von Ahn 
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Daren Brabhan, 2013 

“Crowdsourcing as 
an online, distributed 
problem-solving and 
production model that 
leverages the 
collective intelligence 
of online communities 
to serve specific 
organizational goals… 
top-down and bottom-
up …” 
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What is Crowdsourcing? 
l Many	
  defini*ons	
  

l A	
  few	
  characteris*cs	
  
l  Outsourced	
  to	
  human	
  workers	
  
l  Online	
  and	
  distributed	
  
l  Open	
  call	
  &	
  right	
  incen2ve	
  
l  Diversity	
  and	
  independence	
  
l  Top-­‐down	
  &	
  bo=om-­‐up	
  
	
  

25 



What is Computational Crowdsourcing? 

l  Focus on computational aspect of 
crowdsourcing 
l  Algorithmic aspect 
l  Non-linear optimization problem 

l  Mainly use micro-tasks 

l  When to use Computational Crowdsourcing? 
1.  Machine cannot do the task well 

2.  Large crowds can probably do it well 
3.  Task can be split to many micro-tasks 

26 



Part 1: Crowdsourcing Basics 
l  Examples 
l  Definitions 

l  Marketplaces 
l  Computational Crowdsourcing 

l  Preliminaries 

l  Transcription 
l  Sorting 

l  Demo 

27 



Three Parties 

l  Requesters  
l  People submit some tasks 
l  Pay rewards to workers 
 

l  Marketplaces 
l  Provide crowds with tasks 

 

l  Crowds 
l  Workers perform tasks 

Submit	
  tasks	
 Collect	
  answers	


Find	
  tasks	
 Return	
  answers	
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Notable Marketplaces 
l  Mechanical Turk 

l  CrowdFlower 

l  CloudCrowd 

l  Clickworker   

l  SamaSource 
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AMT: mturk.com 
30 

Workers Requesters 



AMT: Workers vs. Requesters 
l  Workers 

l  Register w. credit account (only US workers can 
register as of 2013) 

l  Bid to do tasks for earning money 

l  Requesters 
l  First deposit money to account 
l  Post tasks 

o  Task can specify a qualification for workers 

l  Gather results 
l  Pay to workers if results are satisfactory 
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AMT: HIT 
l  Tasks 

l  Called HIT (Human Intelligence Task) 
l  Micro-task 

l  Eg 
l  Data cleaning 
l  Tagging / labeling 
l  Sentiment analysis 

l  Categorization 
l  Surveying 

l  Photo moderation 
l  Transcription 
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Translation task 



Micro- vs. Macro-task: Eg, oDesk  
33 

Workers 

Requesters 



AMT: HIT List 
34 

Workers qualification 



AMT: HIT Example 
35 



AMT: HIT Example 
36 



Open-Source Marketplace S/W 
37 
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Three Computational Factors 
l  Latency (or execution time) 

l  Worker pool size 
l  Job attractiveness 

l  Monetary cost 
l  Cost per question 
l  # of questions (ie, HITs) 
l  # of workers 

l  Quality of answers 
l  Worker maliciousness 

l  Worker skills 
l  Task difficulty 

Latency 

Cost 

Quality 

How much $$ does  
we spend? 

How long do we wait for? 

How much is the  
quality of  

answers satisfied? 
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#1: Latency 
l  Some crowdsourcing tasks finish faster than 

others 
l  Eg, easier, or more rewarding tasks are popular 

l  Dependency among tasks 
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#2: Cost 
l  Cost per question 
l  # of HITs 
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Remaining cost to pay: 
$0.03 X 2075 = $62.25 



#3: Quality of Answers 
l  Avoid spam workers 
l  Use workers with reputation 

 

l  Ask the same question to multiple workers to 
get consensus (eg, majority voting) 

l  Assign more number of (better-skilled) 
workers to more difficult questions 
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Size of Comparison 
l  Diverse forms of questions in a HIT 
l  Different sizes of comparisons in a question 
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Which is better? 

Which is the best? 

. . . 

Accuracy Cost 
Latency 

Binary  
question 

N-ary 
question 



Size of Batch 
l  Repetitions of questions within a HIT 
l  Eg, two n-ary questions (batch factor b=2) 
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Which is the best? 

. . . 

Which is the best? 

. . . 

Accuracy 

Smaller b 

Cost 
Latency 

Larger b 



Response (r) 
l  # of human responses seeked for a HIT 
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Which is better? 

W1 

Which is better? 

W1 

W2 

W3 

r = 1 r = 3 

Accuracy Cost, Latency 

Larger r Smaller r 



Round (= Step) 
l  Algorithms are executed in rounds 
l  # of rounds ≈ latency 
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Which is better? 

Which is better? 

Round #1 

Which is better? 

Round #2 

Parallel 
Execution 

Sequential Execution 
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Eg, Text Transcription [Miller-13] 

l  Problem: one person cannot do a good 
transcription 

l  Key idea: iterative improvement by many 
workers 

Greg	
  Li:le	
  et	
  al.	
  “Exploring	
  itera*ve	
  and	
  parallel	
  human	
  computa*on	
  
processes.”	
  HCOMP	
  2010	
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Eg, Text Transcription [Miller-13] 
49 

improvement $0.05 



Eg, Text Transcription [Miller-13] 
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3 votes @ $0.01 



Eg, Text Transcription [Miller-13] 
51 

After 9 iterations 



Eg, Text Transcription [Miller-13] 
52 

I had intended to hit the nail, but I’m 
not a very good aim it seems and I 

ended up hitting my thumb. This is a 
common occurrence I know, but it 

doesn’t make me feel any less 
ridiculous having done it myself. My 

new strategy will involve lightly tapping 
the nail while holding it until it is 

embedded into the wood enough that 
the wood itself is holding it straight and 

then I’ll remove my hand and pound 
carefully away. We’ll see how this 

goes. 

After 8 iterations 
with thousands of crowds 
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Human-Powered Sort 
l  Rank N items using crowdsourcing with 

respect to the constraint C  
l  Often C is subjective, fuzzy, ambiguous, 

and/or difficult-for-machines-to-compute 

l  Eg, 
l  Which image is the most “representative” one 

of Brazil? 

l  Which animal is the most “dangerous”? 
l  Which actress is the most “beautiful”? 
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Human-Powered Sort 
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SELECT !*!
FROM! !SoccerPlayers AS P!
WHERE !P.WorldCupYear = ‘2014’ !
ORDER BY !CrowdOp(‘most-valuable’)!

. . . 



Naïve Sort 
l  Eg, “Which of two players is better?” 
l  Naïve all pair-wise comparisons takes        

comparisons 
l  Optimal # of comparison is O(N log N) 

. 
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N
2











Who is better? Who is better? 

. . . 
Who is better? 

Who is better? Who is better? 

. . . 
Who is better? 

. . . . . . . . . 



Naïve Sort 
l  Conflicting opinions may occur  

o  Cycle: A > B, B > C, and C > A 

l  If no cycle occurs 
l  Naïve all pair-wise comparisons takes        

comparisons 

l  If cycle exists 
l  More comparisons are required 
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N
2











A 

C 

B 



Sort [Marcus-VLDB11]  
l  N=5, S=3 
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Sort [Marcus-VLDB11]  
l  N=5, S=3 
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A 

C 

B E 

D 

Topological 
Sort 

DAG 

A 

B 

C 

D 

E 

A 

B 

C 

E 

D 

Sorted  
Result 

∨ 

∨ 

∨ 

∨ 
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Demo: Human-Powered Sorting 
l  From your smartphone or laptop, access the 

following URL or QR code: 

   http://goo.gl/3tw7b5 
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Part 1 Conclusion 
l  Crowdsourcing ≈ Human Computation  
l  Academia: novel paradigm to solve the 

challenging problems in Computer Science 
l  Industry: novel entrepreneurial opportunities 

l  Eg, Brazil-version Mechanical Turk? 

62 

This slide is available at 
 

 http://goo.gl/4pNUhB 
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New Challenges 
l  Open-world 

assumption (OWA) 
 

l  Non-deterministic 
algorithmic behavior 

 
 
l  Trade-off among cost, 

latency, and accuracy 
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Latency 

Cost 

Accuracy 

http://www.info.teradata.com 



Crowdsourcing DB Projects 
l  CDAS @ NUS 

l  CrowdDB @ UC Berkeley    
 & ETH Zurich 

l  MoDaS @ Tel Aviv U. 

l  Qurk @ MIT 

l  sCOOP @ Stanford & UCSC 
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Sort Operation 
l  Rank N items using crowdsourcing w.r.t some 

criteria 

l  Assuming pair-wise comparison of 2 items 
l  Eg, “Which of two images is better?” 

l  Cycle: A > B, B > C, and C > A 

l  If no cycle occurs 
l  Naïve all pair-wise comparisons takes        

comparisons 

l  If cycle exists 
l  More comparisons are required 
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N
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





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
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Sort [Marcus-VLDB11]  
l  Proposed 3 crowdsourced sort algorithms 
l  #1: Comparison-based Sort 

l  Workers rank S items (          ) per HIT 
l  Each HIT yields        pair-wise comparisons 

l  Build a directed graph using all pair-wise 
comparisons from all workers 
o  If i > j, then add an edge from i to j 

l  Break a cycle in the graph: “head-to-head” 
o  Eg, If i > j occurs 3 times and i < j occurs 2 times, keep 

only i > j  

l  Perform a topological sort in the DAG 
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S ⊂ N
S
2

!

"
#

$

%
&



Sort [Marcus-VLDB11]  
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Sort [Marcus-VLDB11]  
l  N=5, S=3 
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Sort [Marcus-VLDB11]  
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Sort [Marcus-VLDB11]  

l  #2: Rating-based Sort 
l  W workers rate each item along a numerical scale 

l  Compute the mean of W ratings of each item 
l  Sort all items using their means 

l  Requires W*N HITs: O(N)  
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. . . 

1.3 

3.6 

8.2 

Worker Rating 

W1 4 

W2 3 

W3 4 

Worker Rating 

W1 1 

W2 2 

W3 1 

. . . 

Mean  
rating 



Sort [Marcus-VLDB11]  
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Sort [Marcus-VLDB11]  
l  #3: Hybrid Sort 

l  First, do rating-based sort à sorted list L 
l  Second, do comparison-based sort on S (         ) 

l  How to select the size of S 
o  Random 
o  Confidence-based 

o  Sliding window 
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S ⊂ L



Sort [Marcus-VLDB11]  
15 

Worker agreement Rank correlation btw.  
Comparison vs. rating 



Sort [Marcus-VLDB11]  
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Select Operation 
l  Given N items, select k items that satisfy a 

predicate P 

l  ≈ Filter, Find, Screen, Search 
 

18 



Select Operation 
l  Examples 

l  [Yan-MobiSys10] uses crowds to search an 
image relevant to a query 

l  [Parameswaran-SIGMOD12] develops human-
powered filtering algorithms 

l  [Franklin-ICDE13] efficiently enumerates items 
satisfying conditions via crowdsourcing 

l  [Sarma-ICDE14] finds a bounded number of 
items satisfying predicates using the optimal 
solution by the skyline of cost and time 

 

19 



Select [Yan-MobiSys10] 
l  Improving mobile image search using 

crowdsourcing 
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Select [Yan-MobiSys10] 
l  Ensuring 

accuracy 
with majority 
voting 

l  Given 
accuracy, 
optimize cost 
and latency 

l  Deadline as 
latency in 
mobile 
phones 
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Select [Yan-MobiSys10] 
l  Goal: For a query image Q, find the first 

relevant image I with min cost before the 
deadline 
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Select [Yan-MobiSys10] 
l  Parallel crowdsourced validation 
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Select [Yan-MobiSys10] 
l  Sequential crowdsourced validation 
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Select [Yan-MobiSys10] 
l  CrowdSearch: using early prediction on the 

delay and outcome to start the validation of 
next candidate early 
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Select [Yan-MobiSys10] 
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Select [Parameswaran-SIGMOD12] 
l  Novel grid-based visualization 
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No 

Yes 

A 

B 
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C 

Same person? 

Yes No 



Select [Parameswaran-SIGMOD12] 
l  Common strategies 

l  Always ask X questions, return 
most likely answer à Triangular 
strategy 

l  If X YES return “Pass”, Y NO return 
“Fail”, else keep asking à 
Rectangular strategy 

l  Ask until |#YES - #NO| > X, or at 
most Y questions à Chopped off 
triangle 

28 



Select [Parameswaran-SIGMOD12] 
l  What is the best strategy? Find strategy with 

minimum overall expected cost s.t. 
1.  Overall expected error is less than threshold  

2.  # of questions per item never exceeds m	
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Count Operation 
l  Given N items, estimate a fraction of items M 

that satisfy a predicate P 

l  Selectivity estimation in DB à crowd-
powered query optimizers 

l  Evaluating queries with GROUP BY + 
COUNT/AVG/SUM operators 

l  Eg, “Find photos of females with red hairs” 
l  Selectivity(“female”) ≈ 50% 

l  Selectivity(“red hair”) ≈ 2% 
l  Better to process predicate(“red hair”) first 

31 



Count Operation 
32 

l  Q: “How many teens are participating in the 
Hong Kong demonstration?” 



Count Operation 
33 

http://www.faceplusplus.com/demo-detect/ 

10 - 56 20 - 30 15 - 29 

l  Using Face++, guess the age of a person 



Count [Marcus-VLDB13] 
l  Hypothesis: Humans can estimate the 

frequency of objects’ properties in a batch 
without having to explicitly label each item 

l  Two approaches 
l  #1: Label Count 

o  Sampling based 
o  Have workers label samples explicitly 

l  #2: Batch Count 
o  Have workers estimate the frequency in a batch 

34 



Count [Marcus-VLDB13] 
35 

l  Label Count (via sampling) 



Count [Marcus-VLDB13] 
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l  Batch Count 



Count [Marcus-VLDB13] 
l  Findings on accuracy 

l  Images: Batch count > Label count 
l  Texts: Batch count < Label count 

l  Further Contributions 
l  Detecting spammers 
l  Avoiding coordinated attacks 
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Top-1 Operation 
l  Find the top-1, either MAX or MIN, among N 

items w.r.t. some criteria 

l  Objective 
l  Avoid sorting all N items to find top-1 
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Top-1 Operation 
l  Examples 

l  [Venetis-WWW12] introduces the bubble max 
and tournament-based max in a parameterized 
framework  

l  [Guo-SIGMOD12] studies how to find max using 
pair-wise questions in the tournament-like setting 
and how to improve accuracy by asking more 
questions 
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Max [Venetis-WWW12] 

l  Introduced two Max algorithms 
l  Bubble Max 
l  Tournament Max 

l  Parameterized framework 
l  si: size of sets compared at the i-th round 
l  ri: # of human responses at the i-th round 

41 

Which is better? 

si = 2 
ri = 3 

si = 3 
ri = 2 

Which is the best? 



Max [Venetis-WWW12] 

l  Bubble Max Case #1 

42 

s1 = 2 
r1 = 3 

s2 = 3 
r2 = 3 

s3 = 2 
r3 = 5 

•  N = 5 
•  Rounds = 3 
•  # of questions =  

 r1 + r2 + r3 = 11  



Max [Venetis-WWW12] 

l  Bubble Max Case #2 
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s1 = 4 
r1 = 3 

•  N = 5 
•  Rounds = 2 
•  # of questions =  

 r1 + r2  = 8  

s2 = 2 
r2 = 5 



Max [Venetis-WWW12] 

l  Tournament Max 

44 

•  N = 5 
•  Rounds = 3 
•  # of questions 

  = r1 + r2 + r3 + r4 = 10  

s1 = 2 
r1 = 1 

s3 = 2 
r3 = 3 

s4 = 2 
r4 = 5 

s2 = 2 
r2 = 1 



Max [Venetis-WWW12] 
l  How to find optimal parameters?: si and ri 
l  Tuning Strategies (using Hill Climbing) 

l  Constant si and ri 
l  Constant si and varying ri 

l  Varying si and ri 
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Max [Venetis-WWW12] 
l  Bubble Max 

l  Worst case: with si=2, O(N) comparisons needed 

l  Tournament Max 
l  Worst case: with si=2, O(N) comparisons needed 

l  Bubble Max is a special case of Tournament 
Max 
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Max [Venetis-WWW12] 
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Max [Venetis-WWW12] 
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Top-k Operation 
l  Find top-k items among N items w.r.t. some 

criteria 

l  Top-k list vs. top-k set 

l  Objective 
l  Avoid sorting all N items to find top-k 
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Top-k Operation 
l  Examples 

l  [Davidson-­‐ICDT13]	
  inves&gates	
  the	
  variable	
  user	
  
error	
  model	
  in	
  solving	
  top-­‐k	
  list	
  problem 

l  [Polychronopoulous-­‐WebDB13]	
  proposes	
  
tournament-­‐based	
  top-­‐k	
  set	
  solu&on	
  

51 



Top-k Operation 
l  Naïve solution is to “sort” N items and pick 

top-k items 
l   Eg, N=5, k=2, “Find two best Bali images?” 

l  Ask         = 10 pair-wise questions to get a total 
order 

l  Pick top-2 images 
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l  Phase 1: Building a tournament tree 
l  For each comparison, only winners are promoted 

to the next round 

Top-k: Tournament Solution (k = 2) 
53 

Round 1 

Round 2 

Round 3 

Total, 4 questions  
with 3 rounds 



l  Phase 2: Updating a tournament tree 
l  Iteratively asking pair-wise questions from the 

bottom level 

Top-k: Tournament Solution (k = 2) 
54 

Round 1 

Round 2 

Round 3 



l  Phase 2: Updating a tournament tree 
l  Iteratively asking pair-wise questions from the 

bottom level 

Top-k: Tournament Solution (k = 2) 
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Round 4 

Round 5 

Total, 6 questions  
With 5 rounds 



l  This is a top-k list algorithm 
l  Analysis 

 
l  If there is no constraint for the number of 

rounds, this tournament sort based top-k 
scheme yields the optimal result 

k = 1	
 k ≥ 2	


# of questions	
 O(n)	


# of rounds	


Top-k: Tournament Solution 
56 



Top-k [Polychronopoulous-­‐WebDB13] 
l  Top-k set algorithm 

l  Top-k items are “better” than remaining items 
l  Capture NO ranking among top-k items  

l  Tournament-based approach 

l  Can become a Top-k list algorithm 
l  Eg, Top-k set algorithm, followed by [Marcus-

VLDB11] to sort k items  
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Top-k [Polychronopoulous-­‐WebDB13] 
l  Algorithm 

l  Input: N items, integer k and s (ie, s > k) 
l  Output: top-k set 
l  Procedure: 

o  O ß N items 
o  While |O| > k 

§  Partition O into disjoint subsets of size s 

§  Identify top-k items in each subset of size s: s-rank(s) 

§  Merge all top-k items into O 

o  Return O 

l  More effective when s and k are small 
l  Eg, s-rank(20) with k=10 may give poor accuracy 
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Top-k [Polychronopoulous-­‐WebDB13] 
l  Eg, N=10, s=4, k=2 
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s-rank() s-rank() 

s-rank() 

s-rank() 

Top-2 items 

s-rank() 

s-rank() 



Top-k [Polychronopoulous-­‐WebDB13] 
l  s-rank(s) 

// workers rank s items and aggregate 
l  Input: s items, integer k (ie, s > k), w workers 
l  Output: top-k items among s items 

l  Procedure: 
o  For each of w workers 

§  Rank s items ≈ comparison-based sort [Marcus-VLDB11] 

o  Merge w rankings of s items into a single ranking 
§  Use median-rank aggregation [Dwork-WWW01] 

o  Return top-k item from the merged ranking of s items 
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Top-k [Polychronopoulous-­‐WebDB13] 
l  Eg, s-rank(): s=4, k=2, w=3 
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W1 

4 1 2 3 

W2 

4 2 1 3 

W3 

3 2 3 4 

Median  
Ranks 4 2 2 3 

Top-2 



Top-k [Polychronopoulous-­‐WebDB13] 
l  Comparison to Sort [Marcus-VLDB11] 
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Top-k [Polychronopoulous-­‐WebDB13] 
l  Comparison to Max [Venetis-WWW12]  
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Part 2: Crowdsourced Algo. in DB 
l  Preliminaries 
l  Sort 

l  Select 
l  Count 
l  Top-1 
l  Top-k 
l  Join 
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Join Operation 
l  Identify matching records or entities within or 

across tables 
l  ≈ similarity join, entity resolution (ER), record 

linkage, de-duplication, … 
l  Beyond the exact matching 

l  [Chaudhuri-ICDE06] similarity join  
l  R JOINp S, where p=sim(R.A, S.A) > t 
l  sim() can be implemented as UDFs in SQL 

l  Often, the evaluation is expensive 
o  DB applies UDF-based join predicate after Cartesian 

product of R and S 
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Join Operation 
l  Examples 

l  [Marcus-VLDB11] proposes 3 types of joins  
l  [Wang-VLDB12] generates near-optimal 

cluster-based HIT design to reduce join cost 

l  [Wang-SIGMOD13] reduces join cost further 
by exploiting transitivity among items 

l  [Whang-VLDB13] selects right questions to 
ask to crowds to improve join accuracy 

l  [Gokhale-SIGMOD14] proposes the hands-off 
crowdsourcing for join workflow 
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Join [Marcus-VLDB11]  
l  To join tables R and S 
l  #1: Simple Join 

l  Pair-wise comparison HIT 
l  |R||S| HITs needed 

l  #2: Naïve Batching Join 
l  Repetition of #1 with a batch factor b 
l  |R||S|/b HITs needed 

l  #3: Smart Batching Join 
l  Show r and s images from R and S 
l  Workers pair them up 

l  |R||S|/rs HITs needed 
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Join [Marcus-VLDB11]  
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#1 Simple 
Join 



Join [Marcus-VLDB11]  
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#2 Naïve 
Batching 

Join 

Batch factor 
b = 2 



Join [Marcus-VLDB11]  
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#3 Smart 
Batching 

Join 

r images 
from R 

s images 
from S 



Join [Marcus-VLDB11]  
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MV: Majority Voting 
QA: Quality  Adjustment 



Join [Marcus-VLDB11]  
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Last 50% of wait time is  
spent completing  

the last 5% of tasks 



Join [Wang-VLDB12] 
l  [Marcus-VLDB11] proposed two batch joins 

l  More efficient smart batch join still generates 
 |R||S|/rs # of HITs 

l  Eg, (10,000 X 10,000) / (20 x 20) = 250,000 HITs 
à Still too many ! 

l  [Wang-VLDB12] contributes CrowdER: 
1.  A hybrid human-machine join 

o  #1 machine-join prunes obvious non-matches 

o  #2 human-join examines likely matching cases 
§  Eg, candidate pairs with high similarity scores 

2.  Algorithm to generate min # of HITs for step #2 

73 



Join [Wang-VLDB12] 
l  Hybrid idea: generate candidate pairs 

using existing similarity measures (eg, 
Jaccard) 
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Main Issue: HIT Generation Problem 



Join [Wang-VLDB12] 
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Pair-based HIT Generation 
≈ Naïve Batching in  
[Marcus-VLDB11] 

Cluster-based HIT Generation 
≈ Smart Batching in  
[Marcus-VLDB11] 



Join [Wang-VLDB12] 
l  HIT Generation Problem 

l  Input: pairs of records P, # of records in HIT k 
l  Output: minimum # of HITs s.t. 

1.  All HITs have at most k records 

2.  Each pair (pi, pj)    P must be in at least one HIT 

1.  Pair-based HIT Generation 
l  Trivial: P/k # of HITs s.t. each HIT contains k pairs 

in P 

2.  Cluster-based HIT Generation 
l  NP-hard problem à approximation solution 
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Join [Wang-VLDB12] 
77 

Cluster-based 
HIT #1 

 
r1, r2, r3, r7 

Cluster-based 
HIT #2 

 
r3, r4, r5, r6 

Cluster-based 
HIT #3 

 
r4, r7, r8, r9 

k = 4 

This is the minimal # of cluster-based HITs 
satisfying previous two conditions 



Join [Wang-VLDB12] 
l  Two-tiered Greedy Algorithm 

l  Build a graph G from pairs of records in P 
l  CC ß connected components in G 

o  LCC: large CC with more than k nodes 

o  SCC: small CC with no more than k nodes 

l  Step 1: Partition LCC into SCCs 
l  Step 2: Pack SCCs into HITs with k nodes 

o  Integer programming based 
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Join [Wang-VLDB12] 
l  Eg, Generate cluster-based HITs (k = 4) 

1.  Partition the LCC into 3 SCCs 
o  {r1, r2, r3, r7}, {r3, r4, r5, r6}, {r4, r7} 

2.  Pack SCCs into HITs 
o  A single HIT per {r1, r2, r3, r7} and {r3, r4, r5, r6} 

o  Pack {r4, r7} and {r8, r9} into a HIT 
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Join [Wang-VLDB12] 
l  Step 1: Partition 

l  Input: LCC, k  Output: SCCs 
l  rmax ß node in LCC with the max degree 
l  scc ß {rmax} 

l  conn ß nodes in LCC directly connected to rmax 

l  while |scc| < k and |conn| > 0 
o  rnew ß node in conn with max indegree (# of edges to 

scc) and min outdegree (# of edges to non-scc) if tie 
o  move rnew from conn to scc 

o  update conn using new scc 

l  add scc into SCC 
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Join [Wang-VLDB12] 
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Join [Wang-VLDB12] 
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Join [Wang-VLDB12] 
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Join [Wang-SIGMOD13]  
l  Use the same hybrid machine-human 

framework as [Wang-VLDB12] 
l  Aim to reduce # of HITs further 

l  Exploit transitivity among records 
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http://blogs.oc.edu/ece/transitivity/ 



Join [Wang-SIGMOD13]  
l  Positive transitive relation 

l  If a=b, and b=c, then a=c 

l  Negative transitive relation 
l  If a = b, b ≠ c, then a ≠ c	
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Join [Wang-SIGMOD13]  
l  Three transitive relations 

l  If there exists a path from o to o’ which only 
consists of matching pairs, then (o, o’) can be 
deduced as a matching pair 

l  If there exists a path from o to o’ which only 
contains a single non-matching pair, then (o, o’) 
can be deduced as a non-matching pair 

l  If any path from o to o’ contains more than one 
non-matching pairs, (o, o’) cannot be deduced. 
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Join [Wang-SIGMOD13]  
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(o3, o5) à match 
 

(o5, o7) à non-match 
 

(o1, o7) à ? 
  



Join [Wang-SIGMOD13]  
l  Given a pair (oi, oj), to check the transitivity 

l  Enumerate path from oi to oj à exponential ! 
l  Count # of non-matching pairs in each path 

l  Solution: Build a cluster graph 
l  Merge matching pairs to a cluster 
l  Add inter-cluster edge for non-matching pairs 
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(o5, o6) à ? 

 
(o1, o5) à ?   

   
  



Join [Wang-SIGMOD13]  
l  Problem Definition: 

l  Given	
  a	
  set	
  of	
  pairs	
  that	
  need	
  to	
  be	
  labeled,	
  
minimize	
  the	
  #	
  of	
  pairs	
  requested	
  to	
  crowd	
  
workers	
  based	
  on	
  transiCve	
  relaCons  
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Join [Wang-SIGMOD13]  
90 

(o1, o2), (o1, o6), (o2, o6) 
 

vs.  
 

(o1, o6), (o2, o6), (o1, o2)  
  

N 

l  Labeling order matters ! 

è Given a set of pairs to label, how to order 
them affects the # of pairs to deduce using the 
transitivity 



Join [Wang-SIGMOD13]  
l  Theorem: Optimal labeling order 

 w = <p1, …, pi-1, pi, pi+1, …, pn> 
 w’ = <p1, …, pi-1, pi+1, pi, …, pn> 

l  If pi is a matching pair and pi+1 is a non-matching 
pair, then C(w) ≤ C(w’) 
o  C(w): # of crowdsourced pairs required for w 

l  That is, always better to first label a matching 
pair and then a non-matching pair 

l  In reality, optimal label order cannot be 
achieved 
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Join [Wang-SIGMOD13]  
l  Expected optimal labeling order 

l  w	
  =	
  <p1,	
  p2,	
  …,	
  pn>	
  
l  C(w)	
  =	
  # of crowdsourced pairs required for w 

l  P(pi = crowdsourced) 
o  Enumerate all possible labels of <p1,	
  p2,	
  …,	
  pi-­‐1>,	
  
and	
  for	
  each	
  possibility,	
  derive	
  whether	
  pi  is 
crowdsourced or not 

o  Sum of the probability of each possibility that 
whether	
  pi  is crowdsourced 
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Join [Wang-SIGMOD13]  
l  Expected optimal labeling order 

l  w1	
  =	
  <p1,	
  p2,	
  p3>	
  
l  E[C(w1)]	
  =	
  1	
  +	
  1	
  +	
  0.05	
  =	
  2.05	
  	
  

o  P1:	
  P(P1	
  =	
  crowdsourced)	
  =	
  1	
  
o  P2:	
  P(P2	
  =	
  crowdsourced)	
  =	
  1	
  
o  P3:	
  P(P3	
  =	
  crowdsourced)	
  =	
  P(both	
  P1	
  and	
  P2	
  are	
  non-­‐
matching)	
  =	
  (1-­‐0.9)(1-­‐0.5)	
  =	
  0.05	
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o1 

o2 

o3 

p1 p2 

p3 

Probability 
of matching 

P1 0.9 

P2 0.5 

P3 0.1 

Expected value 

w1 = <p1, p2, p3> 2.05 

w2 = <p1, p3, p2> 2.09 

w3 = <p2, p3, p1> 2.45 

w4 = <p2, p1, p3> 2.05 

… … 



Join [Wang-SIGMOD13]  
l  Theorem: Expected optimal labeling order 

l  Label	
  the	
  pairs	
  in	
  the	
  decreasing	
  order	
  of	
  	
  
the	
  probability	
  that	
  they	
  are	
  a	
  matching	
  	
  
pair	
  

l  Eg,	
  p1,	
  p2,	
  p3,	
  p4,	
  p5,	
  p6,	
  p7,	
  p8	
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Join [Wang-SIGMOD13]  
l  Two data sets 

l  Paper: 997 (author,	
  &tle,	
  venue,	
  date,	
  and	
  pages) 
l  Product: 1081	
  product	
  (abt.com),	
  1092	
  product	
  
(buy.com) 
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Join [Wang-SIGMOD13]  
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l  Transitivity 



Machine vs. Human 
l  Human-Powered Crowdsourcing à “Human-

in-the-loop” Crowdsourcing 
l  Should use machine to process majority of big 

data 
l  Should use human to process a small fraction of 

challenging cases in big data 

l  How to split tasks and combine results for 
machines and human automatically is an 
open issue 
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http://www.theoddblog.us/2014/ 
02/21/damienwaltershumanloop/ 



Conclusion 
l  New opportunities 

l  Open-world assumption 
l  Non-deterministic algorithmic behavior 
l  Trade-off among cost, latency, and accuracy 

l  Crowdsourcing for Big Data? 
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This slide is available at 
 

 http://goo.gl/UEUEBh 
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