
Human-Powered
Database Operations:

Part 1

Dongwon Lee

Penn State University, USA
dongwon@psu.edu!

!
Slide available @ http://goo.gl/4pNUhB

SBBD 2014 Tutorial

POSTECH Colloquium 2010

2

Where Am I From?

Penn State University

l  State College, PA
l  Out of nowhere,

but close to
everywhere

l  West: 2.5 hours to
Pittsburgh

l  East: 4 hours to
New York

l  South: 3 hours to
Washington DC

l  North: 3 hours to
Niagara Fall

3

Penn State i-School
l  College of Information Sciences and

Technology (IST)
l  http://ist.psu.edu/

l  40+ tenure-track faculty on diverse areas
l  CompSci & EE

l  MIS & LIS
l  Design
l  Law

l  Psychology
l  Medical Infomatics

4

Other Tutorials on Crowdsourcing
5

The Focus of This Tutorial

l  Part 1 on basics of
crowdsourcing

l  Part 2 on DB

operations that
exploit
crowdsourcing

6

http://istc-bigdata.org/index.php/crowdsourcing-big-data/

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions

l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries

l  Transcription
l  Sorting

l  Demo

7

Eg, Francis Galton, 1906
8

Weight-judging competition:
1,197 (mean of 787 crowds) vs. 1,198 pounds (actual measurement)

Eg, StolenSidekick, 2006
l  A woman lost a cellphone in a taxi
l  A 16-year-old girl ended up having the phone

l  Refused to return the phone

l  Evan Guttman, the woman’s friend, sets up a
blog site about the incident
l  http://stolensidekick.blogspot.com/
l  http://www.evanwashere.com/StolenSidekick/

l  Attracted a growing amount of attention à the story
appeared in Digg main page à NY Times and CNN
coverage à Crowds pressure on police …

l  NYPD arrested the girl and re-possessed the
phone

9

http://www.nytimes.com/2006/06/21/nyregion/21sidekick.html?_r=0

Eg, Finding “Jim Gray”, 2007
10

Eg, Threadless.com

l  Sells t-shirts, designed/voted by crowds
l  Artists whose designs are chosen get paid

11

Eg,
12

l  Crowdfunding, started in 2009
l  Project creators choose a deadline and a

minimum funding goal
l  Creators only from US, UK, and Canada

l  Donors pledge money to support projects, in
exchange of non-monetary values
l  Eg, t-shirt, thank-u-note, dinner with creators

l  Donors can be from anywhere

l  Eg, Pebble, smartwatch
l  68K people pledged 10M

Eg, reCAPCHA
13

As of 2012

Captcha: 200M every day

ReCaptcha: 750M to date

Eg, DARPA Challenge, 2009

l  To locate 10 red balloons in
arbitrary locations of US

l  Winner gets $40K
l  MIT team won the race with

the strategy:
l  2K per balloon to the first

person, A, to send the correct
coordinates

l  1K to the person, B, who invited
A

l  0.5K to the person, C, who
invited B, …

14

Eg, Berkeley Mobile Millennium
15

Eg, Who Wants to be a Millionaire?
16

Asking the
audience
usually works è
Audience
members have
diverse
knowledge that
can be
coordinated to
provide a
correct answer
in sum

Eg, Who Wants to be a Millionaire?
17

Eg, Game-With-A-Purpose: GWAP
l  Term coined by Luis

von Ahn @ CMU
l  Eg,

l  ESP Game à Google
Image Labeler: image
recognition

l  Foldit: protein folding

l  Duolingo: language

translation

18

19

http://www.resultsfromcrowds.com/features/crowdsourcing-landscape/

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions
l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries

l  Transcription
l  Sorting

l  Demo

20

James Surowiecki, 2004

“Collective intelligence
can be brought to bear
on a wide variety of
problems, and
complexity is no bar…
conditions that are
necessary for the crowd
to be wise: diversity,
independence, and …
decentralization”

21

Jeff Howe, WIRED, 2006

“Crowdsourcing represents
the act of a company or
institution taking a function
once performed by employees
and outsourcing it to an
undefined (and generally
large) network of people in the
form of an open call. … The
crucial prerequisite is the use
of the open call format and
the large network of potential
laborers…”

22

http://www.wired.com/wired/archive/14.06/crowds.html

“Human Computation”, 2011

“Human computation is
simply computation that
is carried out by
humans…
Crowdsourcing can be
considered a method or
a tool that human
computation systems
can use…”

By Edith Law & Luis von Ahn

23

Daren Brabhan, 2013

“Crowdsourcing as
an online, distributed
problem-solving and
production model that
leverages the
collective intelligence
of online communities
to serve specific
organizational goals…
top-down and bottom-
up …”

24

What is Crowdsourcing?
l Many	
 defini*ons	

l A	
 few	
 characteris*cs	

l  Outsourced	
 to	
 human	
 workers	

l  Online	
 and	
 distributed	

l  Open	
 call	
 &	
 right	
 incen2ve	

l  Diversity	
 and	
 independence	

l  Top-­‐down	
 &	
 bo=om-­‐up	

	

25

What is Computational Crowdsourcing?

l  Focus on computational aspect of
crowdsourcing
l  Algorithmic aspect
l  Non-linear optimization problem

l  Mainly use micro-tasks

l  When to use Computational Crowdsourcing?
1.  Machine cannot do the task well

2.  Large crowds can probably do it well
3.  Task can be split to many micro-tasks

26

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions

l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries

l  Transcription
l  Sorting

l  Demo

27

Three Parties

l  Requesters
l  People submit some tasks
l  Pay rewards to workers

l  Marketplaces
l  Provide crowds with tasks

l  Crowds
l  Workers perform tasks

Submit	
 tasks	
 Collect	
 answers	

Find	
 tasks	
 Return	
 answers	

28

Notable Marketplaces
l  Mechanical Turk

l  CrowdFlower

l  CloudCrowd

l  Clickworker

l  SamaSource

29

AMT: mturk.com
30

Workers Requesters

AMT: Workers vs. Requesters
l  Workers

l  Register w. credit account (only US workers can
register as of 2013)

l  Bid to do tasks for earning money

l  Requesters
l  First deposit money to account
l  Post tasks

o  Task can specify a qualification for workers

l  Gather results
l  Pay to workers if results are satisfactory

31

AMT: HIT
l  Tasks

l  Called HIT (Human Intelligence Task)
l  Micro-task

l  Eg
l  Data cleaning
l  Tagging / labeling
l  Sentiment analysis

l  Categorization
l  Surveying

l  Photo moderation
l  Transcription

32

Translation task

Micro- vs. Macro-task: Eg, oDesk
33

Workers

Requesters

AMT: HIT List
34

Workers qualification

AMT: HIT Example
35

AMT: HIT Example
36

Open-Source Marketplace S/W
37

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions

l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries
l  Transcription
l  Sorting

l  Demo

38

Three Computational Factors
l  Latency (or execution time)

l  Worker pool size
l  Job attractiveness

l  Monetary cost
l  Cost per question
l  # of questions (ie, HITs)
l  # of workers

l  Quality of answers
l  Worker maliciousness

l  Worker skills
l  Task difficulty

Latency

Cost

Quality

How much $$ does
we spend?

How long do we wait for?

How much is the
quality of

answers satisfied?

39

#1: Latency
l  Some crowdsourcing tasks finish faster than

others
l  Eg, easier, or more rewarding tasks are popular

l  Dependency among tasks

40

#2: Cost
l  Cost per question
l  # of HITs

41

Remaining cost to pay:
$0.03 X 2075 = $62.25

#3: Quality of Answers
l  Avoid spam workers
l  Use workers with reputation

l  Ask the same question to multiple workers to
get consensus (eg, majority voting)

l  Assign more number of (better-skilled)
workers to more difficult questions

42

Size of Comparison
l  Diverse forms of questions in a HIT
l  Different sizes of comparisons in a question

43

Which is better?

Which is the best?

. . .

Accuracy Cost
Latency

Binary
question

N-ary
question

Size of Batch
l  Repetitions of questions within a HIT
l  Eg, two n-ary questions (batch factor b=2)

44

Which is the best?

. . .

Which is the best?

. . .

Accuracy

Smaller b

Cost
Latency

Larger b

Response (r)
l  # of human responses seeked for a HIT

45

Which is better?

W1

Which is better?

W1

W2

W3

r = 1 r = 3

Accuracy Cost, Latency

Larger r Smaller r

Round (= Step)
l  Algorithms are executed in rounds
l  # of rounds ≈ latency

46

Which is better?

Which is better?

Round #1

Which is better?

Round #2

Parallel
Execution

Sequential Execution

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions

l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries

l  Transcription
l  Sorting

l  Demo

47

Eg, Text Transcription [Miller-13]

l  Problem: one person cannot do a good
transcription

l  Key idea: iterative improvement by many
workers

Greg	
 Li:le	
 et	
 al.	
 “Exploring	
 itera*ve	
 and	
 parallel	
 human	
 computa*on	

processes.”	
 HCOMP	
 2010	

48

Eg, Text Transcription [Miller-13]
49

improvement $0.05

Eg, Text Transcription [Miller-13]
50

3 votes @ $0.01

Eg, Text Transcription [Miller-13]
51

After 9 iterations

Eg, Text Transcription [Miller-13]
52

I had intended to hit the nail, but I’m
not a very good aim it seems and I

ended up hitting my thumb. This is a
common occurrence I know, but it

doesn’t make me feel any less
ridiculous having done it myself. My

new strategy will involve lightly tapping
the nail while holding it until it is

embedded into the wood enough that
the wood itself is holding it straight and

then I’ll remove my hand and pound
carefully away. We’ll see how this

goes.

After 8 iterations
with thousands of crowds

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions

l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries

l  Transcription
l  Sorting

l  Demo

53

Human-Powered Sort
l  Rank N items using crowdsourcing with

respect to the constraint C
l  Often C is subjective, fuzzy, ambiguous,

and/or difficult-for-machines-to-compute

l  Eg,
l  Which image is the most “representative” one

of Brazil?

l  Which animal is the most “dangerous”?
l  Which actress is the most “beautiful”?

54

Human-Powered Sort
55

SELECT !*!
FROM! !SoccerPlayers AS P!
WHERE !P.WorldCupYear = ‘2014’ !
ORDER BY !CrowdOp(‘most-valuable’)!

. . .

Naïve Sort
l  Eg, “Which of two players is better?”
l  Naïve all pair-wise comparisons takes

comparisons
l  Optimal # of comparison is O(N log N)

.

56

N
2











Who is better? Who is better?

. . .
Who is better?

Who is better? Who is better?

. . .
Who is better?

.

Naïve Sort
l  Conflicting opinions may occur

o  Cycle: A > B, B > C, and C > A

l  If no cycle occurs
l  Naïve all pair-wise comparisons takes

comparisons

l  If cycle exists
l  More comparisons are required

57

N
2











A

C

B

Sort [Marcus-VLDB11]
l  N=5, S=3

58

W1

W2

W3

W4

✖

A

C

B E

D

2

1

1

1

1

1

1

1

1

1

1

A

B

C

D

E

> >

> >

> >

> >

1

Sort [Marcus-VLDB11]
l  N=5, S=3

59

A

C

B E

D

Topological
Sort

DAG

A

B

C

D

E

A

B

C

E

D

Sorted
Result

∨

∨

∨

∨

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions

l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries

l  Transcription
l  Sorting

l  Demo

60

Demo: Human-Powered Sorting
l  From your smartphone or laptop, access the

following URL or QR code:

 http://goo.gl/3tw7b5

61

Part 1 Conclusion
l  Crowdsourcing ≈ Human Computation
l  Academia: novel paradigm to solve the

challenging problems in Computer Science
l  Industry: novel entrepreneurial opportunities

l  Eg, Brazil-version Mechanical Turk?

62

This slide is available at

 http://goo.gl/4pNUhB

Reference
l  [Brabham-13] Crowdsourcing, Daren Brabham, 2013
l  [Franklin-SIGMOD11] CrowdDB: answering queries with crowdsourcing,

Michael J. Franklin et al, SIGMOD 2011

l  [Howe-08] Crowdsourcing, Jeff Howe, 2008
l  [LawAhn-11] Human Computation, Edith Law and Luis von Ahn, 2011
l  [Li-HotDB12] Crowdsourcing: Challenges and Opportunities, Guoliang Li,

HotDB 2012

l  [Marcus-VLDB11] Human-powered Sorts and Joins, Adam Marcus et al.,
VLDB 2011

l  [Miller-13] Crowd Computing and Human Computation Algorithms, Rob
Miller, 2013

l  [Shirky-08] Here Comes Everybody, Clay Shirky, 2008

63

Human-Powered
Database Operations:

Part 2

Dongwon Lee

Penn State University, USA
dongwon@psu.edu!

!
Slide available @ http://goo.gl/UEUEBh

SBBD 2014 Tutorial

Part 1: Crowdsourcing Basics
l  Examples
l  Definitions

l  Marketplaces
l  Computational Crowdsourcing

l  Preliminaries

l  Transcription
l  Sorting

l  Demo

2

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

3

New Challenges
l  Open-world

assumption (OWA)

l  Non-deterministic
algorithmic behavior

l  Trade-off among cost,

latency, and accuracy

4

Latency

Cost

Accuracy

http://www.info.teradata.com

Crowdsourcing DB Projects
l  CDAS @ NUS

l  CrowdDB @ UC Berkeley
 & ETH Zurich

l  MoDaS @ Tel Aviv U.

l  Qurk @ MIT

l  sCOOP @ Stanford & UCSC

5

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort
l  Select
l  Count
l  Top-1
l  Top-k
l  Join

6

Sort Operation
l  Rank N items using crowdsourcing w.r.t some

criteria

l  Assuming pair-wise comparison of 2 items
l  Eg, “Which of two images is better?”

l  Cycle: A > B, B > C, and C > A

l  If no cycle occurs
l  Naïve all pair-wise comparisons takes

comparisons

l  If cycle exists
l  More comparisons are required

7

N
2











A

C

B

Sort [Marcus-VLDB11]
l  Proposed 3 crowdsourced sort algorithms
l  #1: Comparison-based Sort

l  Workers rank S items () per HIT
l  Each HIT yields pair-wise comparisons

l  Build a directed graph using all pair-wise
comparisons from all workers
o  If i > j, then add an edge from i to j

l  Break a cycle in the graph: “head-to-head”
o  Eg, If i > j occurs 3 times and i < j occurs 2 times, keep

only i > j

l  Perform a topological sort in the DAG

8

S ⊂ N
S
2

!

"
#

$

%
&

Sort [Marcus-VLDB11]
9

5 4 3 1 2

2 1 3 5 4

Error

Sort [Marcus-VLDB11]
l  N=5, S=3

10

W1

W2

W3

W4

✖

A

C

B E

D

2

1

1

1

1

1

1

1

1

1

1

A

B

C

D

E

> >

> >

> >

> >

1

Sort [Marcus-VLDB11]
l  N=5, S=3

11

A

C

B E

D

Topological
Sort

DAG

A

B

C

D

E

A

B

C

E

D

Sorted
Result

∨

∨

∨

∨

Sort [Marcus-VLDB11]

l  #2: Rating-based Sort
l  W workers rate each item along a numerical scale

l  Compute the mean of W ratings of each item
l  Sort all items using their means

l  Requires W*N HITs: O(N)

12

. . .

1.3

3.6

8.2

Worker Rating

W1 4

W2 3

W3 4

Worker Rating

W1 1

W2 2

W3 1

. . .

Mean
rating

Sort [Marcus-VLDB11]
13

Sort [Marcus-VLDB11]
l  #3: Hybrid Sort

l  First, do rating-based sort à sorted list L
l  Second, do comparison-based sort on S ()

l  How to select the size of S
o  Random
o  Confidence-based

o  Sliding window

14

S ⊂ L

Sort [Marcus-VLDB11]
15

Worker agreement Rank correlation btw.
Comparison vs. rating

Sort [Marcus-VLDB11]
16

Part II: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

17

Select Operation
l  Given N items, select k items that satisfy a

predicate P

l  ≈ Filter, Find, Screen, Search

18

Select Operation
l  Examples

l  [Yan-MobiSys10] uses crowds to search an
image relevant to a query

l  [Parameswaran-SIGMOD12] develops human-
powered filtering algorithms

l  [Franklin-ICDE13] efficiently enumerates items
satisfying conditions via crowdsourcing

l  [Sarma-ICDE14] finds a bounded number of
items satisfying predicates using the optimal
solution by the skyline of cost and time

19

Select [Yan-MobiSys10]
l  Improving mobile image search using

crowdsourcing

20

Select [Yan-MobiSys10]
l  Ensuring

accuracy
with majority
voting

l  Given
accuracy,
optimize cost
and latency

l  Deadline as
latency in
mobile
phones

21

Select [Yan-MobiSys10]
l  Goal: For a query image Q, find the first

relevant image I with min cost before the
deadline

22

Select [Yan-MobiSys10]
l  Parallel crowdsourced validation

23

Select [Yan-MobiSys10]
l  Sequential crowdsourced validation

24

Select [Yan-MobiSys10]
l  CrowdSearch: using early prediction on the

delay and outcome to start the validation of
next candidate early

25

Select [Yan-MobiSys10]
26

Select [Parameswaran-SIGMOD12]
l  Novel grid-based visualization

27

No

Yes

A

B

D

C

Same person?

Yes No

Select [Parameswaran-SIGMOD12]
l  Common strategies

l  Always ask X questions, return
most likely answer à Triangular
strategy

l  If X YES return “Pass”, Y NO return
“Fail”, else keep asking à
Rectangular strategy

l  Ask until |#YES - #NO| > X, or at
most Y questions à Chopped off
triangle

28

Select [Parameswaran-SIGMOD12]
l  What is the best strategy? Find strategy with

minimum overall expected cost s.t.
1.  Overall expected error is less than threshold

2.  # of questions per item never exceeds m	

29

6 5 4 3 2 1

6

5

4

3

2

1

NOs

YESs

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

30

Count Operation
l  Given N items, estimate a fraction of items M

that satisfy a predicate P

l  Selectivity estimation in DB à crowd-
powered query optimizers

l  Evaluating queries with GROUP BY +
COUNT/AVG/SUM operators

l  Eg, “Find photos of females with red hairs”
l  Selectivity(“female”) ≈ 50%

l  Selectivity(“red hair”) ≈ 2%
l  Better to process predicate(“red hair”) first

31

Count Operation
32

l  Q: “How many teens are participating in the
Hong Kong demonstration?”

Count Operation
33

http://www.faceplusplus.com/demo-detect/

10 - 56 20 - 30 15 - 29

l  Using Face++, guess the age of a person

Count [Marcus-VLDB13]
l  Hypothesis: Humans can estimate the

frequency of objects’ properties in a batch
without having to explicitly label each item

l  Two approaches
l  #1: Label Count

o  Sampling based
o  Have workers label samples explicitly

l  #2: Batch Count
o  Have workers estimate the frequency in a batch

34

Count [Marcus-VLDB13]
35

l  Label Count (via sampling)

Count [Marcus-VLDB13]
36

l  Batch Count

Count [Marcus-VLDB13]
l  Findings on accuracy

l  Images: Batch count > Label count
l  Texts: Batch count < Label count

l  Further Contributions
l  Detecting spammers
l  Avoiding coordinated attacks

37

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

38

Top-1 Operation
l  Find the top-1, either MAX or MIN, among N

items w.r.t. some criteria

l  Objective
l  Avoid sorting all N items to find top-1

39

Top-1 Operation
l  Examples

l  [Venetis-WWW12] introduces the bubble max
and tournament-based max in a parameterized
framework

l  [Guo-SIGMOD12] studies how to find max using
pair-wise questions in the tournament-like setting
and how to improve accuracy by asking more
questions

40

Max [Venetis-WWW12]

l  Introduced two Max algorithms
l  Bubble Max
l  Tournament Max

l  Parameterized framework
l  si: size of sets compared at the i-th round
l  ri: # of human responses at the i-th round

41

Which is better?

si = 2
ri = 3

si = 3
ri = 2

Which is the best?

Max [Venetis-WWW12]

l  Bubble Max Case #1

42

s1 = 2
r1 = 3

s2 = 3
r2 = 3

s3 = 2
r3 = 5

•  N = 5
•  Rounds = 3
•  # of questions =

 r1 + r2 + r3 = 11

Max [Venetis-WWW12]

l  Bubble Max Case #2

43

s1 = 4
r1 = 3

•  N = 5
•  Rounds = 2
•  # of questions =

 r1 + r2 = 8

s2 = 2
r2 = 5

Max [Venetis-WWW12]

l  Tournament Max

44

•  N = 5
•  Rounds = 3
•  # of questions

 = r1 + r2 + r3 + r4 = 10

s1 = 2
r1 = 1

s3 = 2
r3 = 3

s4 = 2
r4 = 5

s2 = 2
r2 = 1

Max [Venetis-WWW12]
l  How to find optimal parameters?: si and ri
l  Tuning Strategies (using Hill Climbing)

l  Constant si and ri
l  Constant si and varying ri

l  Varying si and ri

45

Max [Venetis-WWW12]
l  Bubble Max

l  Worst case: with si=2, O(N) comparisons needed

l  Tournament Max
l  Worst case: with si=2, O(N) comparisons needed

l  Bubble Max is a special case of Tournament
Max

46

Max [Venetis-WWW12]
47

Max [Venetis-WWW12]
48

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

49

Top-k Operation
l  Find top-k items among N items w.r.t. some

criteria

l  Top-k list vs. top-k set

l  Objective
l  Avoid sorting all N items to find top-k

50

Top-k Operation
l  Examples

l  [Davidson-­‐ICDT13]	
 inves&gates	
 the	
 variable	
 user	

error	
 model	
 in	
 solving	
 top-­‐k	
 list	
 problem

l  [Polychronopoulous-­‐WebDB13]	
 proposes	

tournament-­‐based	
 top-­‐k	
 set	
 solu&on	

51

Top-k Operation
l  Naïve solution is to “sort” N items and pick

top-k items
l  Eg, N=5, k=2, “Find two best Bali images?”

l  Ask = 10 pair-wise questions to get a total
order

l  Pick top-2 images

52

5
2











l  Phase 1: Building a tournament tree
l  For each comparison, only winners are promoted

to the next round

Top-k: Tournament Solution (k = 2)
53

Round 1

Round 2

Round 3

Total, 4 questions
with 3 rounds

l  Phase 2: Updating a tournament tree
l  Iteratively asking pair-wise questions from the

bottom level

Top-k: Tournament Solution (k = 2)
54

Round 1

Round 2

Round 3

l  Phase 2: Updating a tournament tree
l  Iteratively asking pair-wise questions from the

bottom level

Top-k: Tournament Solution (k = 2)
55

Round 4

Round 5

Total, 6 questions
With 5 rounds

l  This is a top-k list algorithm
l  Analysis

l  If there is no constraint for the number of

rounds, this tournament sort based top-k
scheme yields the optimal result

k = 1	
 k ≥ 2	

# of questions	
 O(n)	

# of rounds	

Top-k: Tournament Solution
56

Top-k [Polychronopoulous-­‐WebDB13]
l  Top-k set algorithm

l  Top-k items are “better” than remaining items
l  Capture NO ranking among top-k items

l  Tournament-based approach

l  Can become a Top-k list algorithm
l  Eg, Top-k set algorithm, followed by [Marcus-

VLDB11] to sort k items

57

K	
 items	

Top-k [Polychronopoulous-­‐WebDB13]
l  Algorithm

l  Input: N items, integer k and s (ie, s > k)
l  Output: top-k set
l  Procedure:

o  O ß N items
o  While |O| > k

§  Partition O into disjoint subsets of size s

§  Identify top-k items in each subset of size s: s-rank(s)

§  Merge all top-k items into O

o  Return O

l  More effective when s and k are small
l  Eg, s-rank(20) with k=10 may give poor accuracy

58

Top-k [Polychronopoulous-­‐WebDB13]
l  Eg, N=10, s=4, k=2

59

s-rank() s-rank()

s-rank()

s-rank()

Top-2 items

s-rank()

s-rank()

Top-k [Polychronopoulous-­‐WebDB13]
l  s-rank(s)

// workers rank s items and aggregate
l  Input: s items, integer k (ie, s > k), w workers
l  Output: top-k items among s items

l  Procedure:
o  For each of w workers

§  Rank s items ≈ comparison-based sort [Marcus-VLDB11]

o  Merge w rankings of s items into a single ranking
§  Use median-rank aggregation [Dwork-WWW01]

o  Return top-k item from the merged ranking of s items

60

Top-k [Polychronopoulous-­‐WebDB13]
l  Eg, s-rank(): s=4, k=2, w=3

61

W1

4 1 2 3

W2

4 2 1 3

W3

3 2 3 4

Median
Ranks 4 2 2 3

Top-2

Top-k [Polychronopoulous-­‐WebDB13]
l  Comparison to Sort [Marcus-VLDB11]

62

Top-k [Polychronopoulous-­‐WebDB13]
l  Comparison to Max [Venetis-WWW12]

63

Part 2: Crowdsourced Algo. in DB
l  Preliminaries
l  Sort

l  Select
l  Count
l  Top-1
l  Top-k
l  Join

64

Join Operation
l  Identify matching records or entities within or

across tables
l  ≈ similarity join, entity resolution (ER), record

linkage, de-duplication, …
l  Beyond the exact matching

l  [Chaudhuri-ICDE06] similarity join
l  R JOINp S, where p=sim(R.A, S.A) > t
l  sim() can be implemented as UDFs in SQL

l  Often, the evaluation is expensive
o  DB applies UDF-based join predicate after Cartesian

product of R and S

65

Join Operation
l  Examples

l  [Marcus-VLDB11] proposes 3 types of joins
l  [Wang-VLDB12] generates near-optimal

cluster-based HIT design to reduce join cost

l  [Wang-SIGMOD13] reduces join cost further
by exploiting transitivity among items

l  [Whang-VLDB13] selects right questions to
ask to crowds to improve join accuracy

l  [Gokhale-SIGMOD14] proposes the hands-off
crowdsourcing for join workflow

66

Join [Marcus-VLDB11]
l  To join tables R and S
l  #1: Simple Join

l  Pair-wise comparison HIT
l  |R||S| HITs needed

l  #2: Naïve Batching Join
l  Repetition of #1 with a batch factor b
l  |R||S|/b HITs needed

l  #3: Smart Batching Join
l  Show r and s images from R and S
l  Workers pair them up

l  |R||S|/rs HITs needed

67

Join [Marcus-VLDB11]
68

#1 Simple
Join

Join [Marcus-VLDB11]
69

#2 Naïve
Batching

Join

Batch factor
b = 2

Join [Marcus-VLDB11]
70

#3 Smart
Batching

Join

r images
from R

s images
from S

Join [Marcus-VLDB11]
71

MV: Majority Voting
QA: Quality Adjustment

Join [Marcus-VLDB11]
72

Last 50% of wait time is
spent completing

the last 5% of tasks

Join [Wang-VLDB12]
l  [Marcus-VLDB11] proposed two batch joins

l  More efficient smart batch join still generates
 |R||S|/rs # of HITs

l  Eg, (10,000 X 10,000) / (20 x 20) = 250,000 HITs
à Still too many !

l  [Wang-VLDB12] contributes CrowdER:
1.  A hybrid human-machine join

o  #1 machine-join prunes obvious non-matches

o  #2 human-join examines likely matching cases
§  Eg, candidate pairs with high similarity scores

2.  Algorithm to generate min # of HITs for step #2

73

Join [Wang-VLDB12]
l  Hybrid idea: generate candidate pairs

using existing similarity measures (eg,
Jaccard)

74

Main Issue: HIT Generation Problem

Join [Wang-VLDB12]
75

Pair-based HIT Generation
≈ Naïve Batching in
[Marcus-VLDB11]

Cluster-based HIT Generation
≈ Smart Batching in
[Marcus-VLDB11]

Join [Wang-VLDB12]
l  HIT Generation Problem

l  Input: pairs of records P, # of records in HIT k
l  Output: minimum # of HITs s.t.

1.  All HITs have at most k records

2.  Each pair (pi, pj) P must be in at least one HIT

1.  Pair-based HIT Generation
l  Trivial: P/k # of HITs s.t. each HIT contains k pairs

in P

2.  Cluster-based HIT Generation
l  NP-hard problem à approximation solution

76

∈

Join [Wang-VLDB12]
77

Cluster-based
HIT #1

r1, r2, r3, r7

Cluster-based
HIT #2

r3, r4, r5, r6

Cluster-based
HIT #3

r4, r7, r8, r9

k = 4

This is the minimal # of cluster-based HITs
satisfying previous two conditions

Join [Wang-VLDB12]
l  Two-tiered Greedy Algorithm

l  Build a graph G from pairs of records in P
l  CC ß connected components in G

o  LCC: large CC with more than k nodes

o  SCC: small CC with no more than k nodes

l  Step 1: Partition LCC into SCCs
l  Step 2: Pack SCCs into HITs with k nodes

o  Integer programming based

78

Join [Wang-VLDB12]
l  Eg, Generate cluster-based HITs (k = 4)

1.  Partition the LCC into 3 SCCs
o  {r1, r2, r3, r7}, {r3, r4, r5, r6}, {r4, r7}

2.  Pack SCCs into HITs
o  A single HIT per {r1, r2, r3, r7} and {r3, r4, r5, r6}

o  Pack {r4, r7} and {r8, r9} into a HIT

79

Join [Wang-VLDB12]
l  Step 1: Partition

l  Input: LCC, k Output: SCCs
l  rmax ß node in LCC with the max degree
l  scc ß {rmax}

l  conn ß nodes in LCC directly connected to rmax

l  while |scc| < k and |conn| > 0
o  rnew ß node in conn with max indegree (# of edges to

scc) and min outdegree (# of edges to non-scc) if tie
o  move rnew from conn to scc

o  update conn using new scc

l  add scc into SCC

80

Join [Wang-VLDB12]
81

Join [Wang-VLDB12]
82

Join [Wang-VLDB12]
83

Join [Wang-SIGMOD13]
l  Use the same hybrid machine-human

framework as [Wang-VLDB12]
l  Aim to reduce # of HITs further

l  Exploit transitivity among records

84

http://blogs.oc.edu/ece/transitivity/

Join [Wang-SIGMOD13]
l  Positive transitive relation

l  If a=b, and b=c, then a=c

l  Negative transitive relation
l  If a = b, b ≠ c, then a ≠ c	

85

iPad	
 2nd	
 Gen	
 =	
 iPad	
 Two	

iPad	
 Two	
 =	
 iPad	
 2	

iPad	
 2nd	
 Gen	
 =	
 iPad	
 2	

iPad	
 2nd	
 Gen	
 =	
 iPad	
 Two	

iPad	
 Two	
 ≠	
 iPad	
 3	

iPad	
 2nd	
 Gen	
 ≠	
 iPad	
 3	

Join [Wang-SIGMOD13]
l  Three transitive relations

l  If there exists a path from o to o’ which only
consists of matching pairs, then (o, o’) can be
deduced as a matching pair

l  If there exists a path from o to o’ which only
contains a single non-matching pair, then (o, o’)
can be deduced as a non-matching pair

l  If any path from o to o’ contains more than one
non-matching pairs, (o, o’) cannot be deduced.

86

Join [Wang-SIGMOD13]
87

(o3, o5) à match

(o5, o7) à non-match

(o1, o7) à ?

Join [Wang-SIGMOD13]
l  Given a pair (oi, oj), to check the transitivity

l  Enumerate path from oi to oj à exponential !
l  Count # of non-matching pairs in each path

l  Solution: Build a cluster graph
l  Merge matching pairs to a cluster
l  Add inter-cluster edge for non-matching pairs

88

(o5, o6) à ?

(o1, o5) à ?

Join [Wang-SIGMOD13]
l  Problem Definition:

l  Given	
 a	
 set	
 of	
 pairs	
 that	
 need	
 to	
 be	
 labeled,	

minimize	
 the	
 #	
 of	
 pairs	
 requested	
 to	
 crowd	

workers	
 based	
 on	
 transiCve	
 relaCons

89

?	

Join [Wang-SIGMOD13]
90

(o1, o2), (o1, o6), (o2, o6)

vs.

(o1, o6), (o2, o6), (o1, o2)

N

l  Labeling order matters !

è Given a set of pairs to label, how to order
them affects the # of pairs to deduce using the
transitivity

Join [Wang-SIGMOD13]
l  Theorem: Optimal labeling order

 w = <p1, …, pi-1, pi, pi+1, …, pn>
 w’ = <p1, …, pi-1, pi+1, pi, …, pn>

l  If pi is a matching pair and pi+1 is a non-matching
pair, then C(w) ≤ C(w’)
o  C(w): # of crowdsourced pairs required for w

l  That is, always better to first label a matching
pair and then a non-matching pair

l  In reality, optimal label order cannot be
achieved

91

Join [Wang-SIGMOD13]
l  Expected optimal labeling order

l  w	
 =	
 <p1,	
 p2,	
 …,	
 pn>	

l  C(w)	
 =	
 # of crowdsourced pairs required for w

l  P(pi = crowdsourced)
o  Enumerate all possible labels of <p1,	
 p2,	
 …,	
 pi-­‐1>,	

and	
 for	
 each	
 possibility,	
 derive	
 whether	
 pi is
crowdsourced or not

o  Sum of the probability of each possibility that
whether	
 pi is crowdsourced

92

Join [Wang-SIGMOD13]
l  Expected optimal labeling order

l  w1	
 =	
 <p1,	
 p2,	
 p3>	

l  E[C(w1)]	
 =	
 1	
 +	
 1	
 +	
 0.05	
 =	
 2.05	
 	

o  P1:	
 P(P1	
 =	
 crowdsourced)	
 =	
 1	

o  P2:	
 P(P2	
 =	
 crowdsourced)	
 =	
 1	

o  P3:	
 P(P3	
 =	
 crowdsourced)	
 =	
 P(both	
 P1	
 and	
 P2	
 are	
 non-­‐
matching)	
 =	
 (1-­‐0.9)(1-­‐0.5)	
 =	
 0.05	

93

o1

o2

o3

p1 p2

p3

Probability
of matching

P1 0.9

P2 0.5

P3 0.1

Expected value

w1 = <p1, p2, p3> 2.05

w2 = <p1, p3, p2> 2.09

w3 = <p2, p3, p1> 2.45

w4 = <p2, p1, p3> 2.05

… …

Join [Wang-SIGMOD13]
l  Theorem: Expected optimal labeling order

l  Label	
 the	
 pairs	
 in	
 the	
 decreasing	
 order	
 of	
 	

the	
 probability	
 that	
 they	
 are	
 a	
 matching	
 	

pair	

l  Eg,	
 p1,	
 p2,	
 p3,	
 p4,	
 p5,	
 p6,	
 p7,	
 p8	

94

High

Join [Wang-SIGMOD13]
l  Two data sets

l  Paper: 997 (author,	
 &tle,	
 venue,	
 date,	
 and	
 pages)
l  Product: 1081	
 product	
 (abt.com),	
 1092	
 product	

(buy.com)

95

Join [Wang-SIGMOD13]
96

l  Transitivity

Machine vs. Human
l  Human-Powered Crowdsourcing à “Human-

in-the-loop” Crowdsourcing
l  Should use machine to process majority of big

data
l  Should use human to process a small fraction of

challenging cases in big data

l  How to split tasks and combine results for
machines and human automatically is an
open issue

97

http://www.theoddblog.us/2014/
02/21/damienwaltershumanloop/

Conclusion
l  New opportunities

l  Open-world assumption
l  Non-deterministic algorithmic behavior
l  Trade-off among cost, latency, and accuracy

l  Crowdsourcing for Big Data?

98

This slide is available at

 http://goo.gl/UEUEBh

Reference
l  [Brabham-13] Crowdsourcing, Daren Brabham, 2013
l  [Cao-VLDB12] Whom to Ask? Jury Selection for Decision Making Tasks on

Microblog Services, Caleb Chen Cao et al., VLDB 2012

l  [Chaudhuri-ICDE06] A Primitive Operator for Similarity Join in Data
Cleaning, Surajit Chaudhuri et al., ICDE 2006

l  [Davidson-ICDT13] Using the crowd for top-k and group-by queries, Susan
Davidson et al., ICDT 2013

l  [Dwork-WWW01] Rank Aggregation Methods for the Web, Cynthia Dwork
et al., WWW 2001

l  [Franklin-SIGMOD11] CrowdDB: answering queries with crowdsourcing,
Michael J. Franklin et al, SIGMOD 2011

l  [Franklin-ICDE13] Crowdsourced enumeration queries, Michael J. Franklin
et al, ICDE 2013

l  [Gokhale-SIGMOD14] Corleone: Hands-Off Crowdsourcing for Entity
Matching, Chaitanya Gokhale et al., SIGMOD 2014

l  [Guo-SIGMOD12] So who won?: dynamic max discovery with the crowd,
Stephen Guo et al., SIGMOD 2012

l  [Howe-08] Crowdsourcing, Jeff Howe, 2008

99

Reference
l  [LawAhn-11] Human Computation, Edith Law and Luis von Ahn, 2011
l  [Li-HotDB12] Crowdsourcing: Challenges and Opportunities, Guoliang Li,

HotDB 2012

l  [Liu-VLDB12] CDAS: A Crowdsourcing Data Analytics System, Xuan Liu et
al., VLDB 2012

l  [Marcus-VLDB11] Human-powered Sorts and Joins, Adam Marcus et al.,
VLDB 2011

l  [Marcus-VLDB12] Counting with the Crowd, Adam Marcus et al., VLDB
2012

l  [Miller-13] Crowd Computing and Human Computation Algorithms, Rob
Miller, 2013

l  [Parameswaran-SIGMOD12] CrowdScreen: Algorithms for Filtering Data
with Humans, Aditya Parameswaran et al., SIGMOD 2012

l  [Polychronopoulous-WebDB13] Human-Powered Top-k Lists, Vassilis
Polychronopoulous et al., WebDB 2013

l  [Sarma-ICDE14] Crowd-Powered Find Algorithms, Anish Das Sarma et al.,
ICDE 2014

l  [Shirky-08] Here Comes Everybody, Clay Shirky, 2008

100

Reference
l  [Surowiecki-04] The Wisdom of Crowds, James Surowiecki, 2004
l  [Venetis-WWW12] Max Algorithms in Crowdsourcing Environments, Petros

Venetis et al., WWW 2012

l  [Wang-VLDB12] CrowdER: Crowdsourcing Entity Resolution, Jiannan
Wang et al., VLDB 2012

l  [Wang-SIGMOD13] Leveraging Transitive Relations for Crowdsourced
Joins, Jiannan Wang et al., SIGMOD 2013

l  [Whang-VLDB13] Question Selection for Crowd Entity Resolution, Steven
Whang et al., VLDB 2013

l  [Yan-MobiSys10] CrowdSearch: exploiting crowds for accurate real-time
image search on mobile phones, T. Yan et al., MobiSys 2010

101

	tutorial-sbbd14
	tutorial-sbbd14b

