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ABSTRACT

The profitability of fraud in online systems such as app markets and

social networks marks the failure of existing defense mechanisms.

In this paper, we propose FraudSys, a real-time fraud preemption

approach that imposes Bitcoin-inspired computational puzzles on

the devices that post online system activities, such as reviews and

likes. We introduce and leverage several novel concepts that include

(i) stateless, verifiable computational puzzles, that impose minimal

performance overhead, but enable the efficient verification of their

authenticity, (ii) a real-time, graph based solution to assign fraud

scores to user activities, and (iii) mechanisms to dynamically ad-

just puzzle difficulty levels based on fraud scores and the compu-

tational capabilities of devices. FraudSys does not alter the experi-

ence of users in online systems, but delays fraudulent actions and

consumes significant computational resources of the fraudsters. Us-

ing real datasets from Google Play and Facebook, we demonstrate

the feasibility of FraudSys by showing that the devices of honest

users are minimally impacted, while fraudster controlled devices

receive daily computational penalties of up to 3,079 hours. In addi-

tion, we show that with FraudSys, fraud does not pay off, as a user

equipped with mining hardware (e.g., AntMiner S7) will earn less

than half through fraud than from honest Bitcoin mining.
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1 INTRODUCTION

The social impact of online services built on information posted by

their users has also turned them into a lucrative medium for fraudu-

lently influencing public opinion [8, 17, 21, 24]. The need to aggres-

sively promote disinformation has created a black market for social
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Figure 1: Timeline of daily penalties (in hours) assigned by

FraudSys to theGoogle Play activities of two fraudsters we iden-

tified in Freelancer.com. FraudSys imposes daily penalties of up

to 1,247 hours to the fraudster at the top and 3,079 hours for the

fraudster at the bottom. As a result, the fraudsters need to con-

sume significant computational resources, while their fraud is

significantly delayed. This in turn reduces the number of pay-

ments they would receive, and impacts their profitability.

network fraud, that includes fake opinions and reviews, likes, fol-

lowers and app installs [4–6, 18, 22, 23, 25]. For instance, in § 3.1,
we show that in fraud markets, a fake review can cost between $0.5

and $3 and a fake social networking “like” can cost $2. The prof-

itability of fraud suggests that current solutions that focus on fraud

detection, are unable to control organized fraud.

In this paper we introduce the concept of fraud preemption sys-

tems, solutions deployed to defend online systems such as social

networks and app markets. Instead of reacting to fraud posted in the

past, fraud preemption systems seek to discourage fraudsters from

posting fraud in the first place. We propose FraudSys, the first real-

time fraud preemption system that reduces the profitability of fraud

from the perspective of both crowdsourced fraud workers and the

people who hire them. FraudSys imposes computational penalties:

the activity of a user (e.g., review, like) is posted online only after

his device solves a computational puzzle. Puzzles reduce the prof-

itability of fraud by (i) limiting the amount of fraud per time unit

that can be posted for any subject hosted on the online system, and

(ii) by consuming the computational resources of fraudsters. For in-

stance, Figure 1 shows the timelines of daily penalties assigned by

FraudSys to two fraudsters we detected in Google Play. Based only

on the recorded activities, FraudSys frequently assigned hundreds

of hours of daily computational penalties to a single fraudster.

Challenges. Implementing a fraud preemption system raises sev-

eral challenges. First, FraudSys needs to detect fraud in real-time,
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whenever a user performs an online system activity. Once assigned,

a puzzle cannot be rescinded. This is in contrast to existing systems

(e.g., Yelp) that detect fraud retroactively and can update previous

decisions when new information surfaces. Second, FraudSys needs

to impose difficult puzzles on fraudsters, but minimally impact the

experience of honest users. This is made even more complex by

the fact that fraudsters can attempt to bypass detection and even ob-

scure their true ability to solve puzzles. Third, a stateful FraudSys

service that maintains state for millions of issued and active puzzles

is expensive and vulnerable to DoS attacks.

Our Contributions. Through FraudSys, we introduce several in-

novative solutions. To address the first challenge, we exploit obser-

vations of fraudulent behaviors gleaned from crowdsourcing sites

and online systems, to propose a real-time graph based algorithm to

infer an activity fraud score, the chance that a user activity is fraud-

ulent [§ 4.2]. More specifically, we introduce features that group

fraudulent activities according to their human creator: FraudSys

identifies densely connected components in the co-review graph

of the subject targeted by the user activity, each presumably con-

trolled by a different fraudster. It then quantifies the connectivity

of the user account performing the action, to each component, and

uses the highest connectivity as features that may indicate that the

user account and the corresponding component are controlled by

the same fraudster. FraudSys then leverages supervised learning al-

gorithms trained on these features to infer the activity fraud score.

To address the second challenge, we develop adaptive hashrate

inference techniques to detect the computational capabilities of even

adversarial controlled devices to solve puzzles [§ 4.3], and devise

mechanisms to convert fraud scores to appropriate temporal penalty

and puzzle difficulty values [§ 4.3]. The puzzles assigned by FraudSys
do not alter the online experience of users, as they are solved on

their devices, in the background. However, the puzzles (1) signif-

icantly delay detected fraudulent activities, posted only when the

device returns the correct puzzle solutions and (2) consume the com-

putational resources of the fraudsters who control the devices.

To address the third challenge, we propose the notion of stateless

computational puzzles, computational tasks that impose no storage

overhead on the fraud preemption system provider, but enable it to

efficiently verify their authenticity and the correctness of their solu-

tions [§ 4.1]. Thus, the fraud preemption system can assign a puzzle

to a device from which an activity was performed on the online sys-

tem, without storing any state about this task. The device can return

the results of the puzzle in 5 seconds or 1 day, and the provider

can verify that the task is authentic, and its results are correct. This

makes our approach resistant to DoS attacks that attempt to exhaust

the provider’s storage space for assigned puzzles.

We show that the computational penalty imposed by FraudSys

on a fraudulent activity is a function of the capabilities of the de-

vice from which it is performed, and the probability that the ac-

tivity is fraudulent. We introduce and prove upper bounds on the

profitability of fraud and the amount of fraud that can be created

for a single subject, per time unit [§ 5] . We evaluate FraudSys on

23,028 fraudulent reviews (posted by 23 fraudsters from 2,664 user

accounts they control), and 1,061 honest reviews we collected from

Google Play, as well as 274,297 fake and 180,400 honest likes from

Facebook. Even with incomplete data, FraudSys imposes temporal

penalties that can be as high as 3,079 hours per day for a single

fraudster. Further, we show that fraud does not pay off. At today’s

fraud payout, a fraudster equipped with an AntMiner S7 (Bitcoin

mining hardware) will earn through fraud less than half the payout

of honest Bitcoin mining.

2 RELATEDWORK

Computation Based Fraud Preemption. Dwork and Naor [12]

were the first to propose the use of computation to prevent fraud,

in particular spam, where the sender of an e-mail needs to include

the solution to a “moderately hard function” computed over a func-

tion of the e-mail. Juels and Brainard [15] proposed to use puzzles

to prevent denial of service attacks, while Borisov [11] introduced

puzzles that deter Sybils in peer-to-peer networks. In Borisov [11],

newly joined peers need to solve a puzzle to which all the other

peers have contributed.

FraudSys not only seeks to adapt computational puzzles to pre-

vent online system fraud, but also needs to solve the additional chal-

lenges of building puzzles whose difficulty is a function of the prob-

ability that an activity is fraudulent, while handling heterogeneous

user devices (e.g., ranging from smartphones to machines that spe-

cialize in such puzzles).

Graph Based FraudDetection. Graphs have been used extensively

to model relationships and detect fraudulent behaviors in online sys-

tems. Ye and Akoglu [26] quantified the chance of a subject to be

a spam campaign target, then clustered spammers on a 2-hop sub-

graph induced by the subjects with the highest chance values. Lu et

al. [16] proposed a belief propagation approach implemented on a

review-to-reviewer graph, that simultaneously detects fake reviews

and spammers (fraudsters).

Mukherjee et al. [19] proposed a suite of features to identify re-

viewer groups, as users who review many subjects in common but

not much else, post their reviews within small time windows, and

are among the first to review the subject. Hooi et al. [14] have

recently shown that fraudsters have evolved to hide their traces,

by adding spurious reviews to popular items. To identify “camou-

flaged” fraud, Hooi et al. [14] introduced “suspiciousness” met-

rics that apply to bipartite user-to-item graphs, and developed a

greedy algorithm to find the subgraph with the highest suspicious-

ness. Akoglu et al. [2] survey graph based online fraud detection.

[13] provide a survey of community detection methods, evaluation

scores and techniques for general networks.

Unlike previous work, FraudSys assigns fraud scores to individ-

ual user activities in real time, thus uses only partial information. To

achieve this, FraudSys develops and leverages features that quantify

the connectivity of the user activity to other groups of activities pre-

viously performed by other fraudsters on the same subject. Further,

FraudSys also imposes computation and temporal penalties to dis-

courage fraud creation.

3 SYSTEM AND ADVERSARYMODEL

Figure 2 illustrates the three main components of the system model.

First, the online service (the service) hosts the system functionality,

and stores information about user accounts and featured subjects.

Subjects can be apps in stores like Google Play, or pages for busi-

nesses, accounts and stories in social networks like Facebook.
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Figure 2: System model. The user performs actions on the on-

line service, from a device that can range from a smartphone

to a Bitcoin miner. The online service implements and posts the

activity only if and after the FraudSys service validates it. The

FraudSys functionality can be implemented by the online ser-

vice or by a third party provider.

Second, the users: they register with the service, record profile

information (e.g., name) and receive initial service credentials, in-

cluding a unique id. Users can access the online service from a va-

riety of devices. For this, they need to install a client (e.g., app) on

each device they use. The online service stores and maintains in-

formation about each device that the user has used, e.g., to provide

compatibility information on Google Play apps.

Users are encouraged to act on existing subjects. The activities

include posting reviews, comments, or likes, installing mobile apps,

etc. The online service associates statistics over the activities per-

formed for each supported subject. The statistics have a significant

impact on the popularity and search rank of subjects [1, 7], thus are

targets of manipulation by fraudsters (see § 3.1).
The third component of the system model is the FraudSys ser-

vice, whose goal is to validate user activities. For increased flexibil-

ity, Figure 2 shows FraudSys as an independent provider. However,

FraudSys can also be a component of the online service.

3.1 Adversary Model

We consider two types of adversaries – adversarial owners and crowd-

sourced fraud workers.

Adversarial owners. Adversarial behaviors start with the subject

owners. Adversarial owners seek to fraudulently promote their sub-

jects (or demote competitor subjects) in order to bias the popularity

and public opinion of specific subjects. For instance, fraudulent pro-

motions seek to make subjects more profitable [3, 17], increase the

“reachability” of malware (through more app installs), and boost the

impact of fake news.

Fraud workers (= fraudsters). We assume that adversarial owners

crowdsource this promotion task (also known as search rank fraud)

to fraud workers, or fraudsters. In this paper we focus on two types

of fraudulent activities: writing fake reviews in Google Play and

posting fake “Likes” in Facebook. We have studied fraudster recruit-

ment jobs in crowdsourcing sites and fraud posted in Google Play

and Facebook. This has allowed us to collect fraud data (see § 6.1)
and to identify several fraud behaviors: (i) more than one fraud-

ster can target the same subject; (ii) user accounts controlled by a

fraudster tend to have a significant history of common activities,

i.e., performed on the same subjects; and (iii) accounts controlled

by different fraudsters tend to have few common past activities.

Fiverr

Appsuch.com

Appsviral.com

App−reviews.org

Thesocialmarketeers.org

Ranklikes.com

Reviewroster.com

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Price per review ($)

Figure 3: Price per review (minimum, average and maximum),

for crowdsourcing sites that focus on app market fraud. The

sites offer “fraud packages” and even discounts for bulk fake

review purchases. A fake review costs between $0.5-$3.

Fraud incentives. We assume that fraud workers are rational, mo-

tivated by financial incentives. That is, given an original investment

in expertise and equipment, a fraud worker seeks to maximize his

revenue achieved per time unit. Figure 3 shows the minimum, av-

erage and maximum cost per fraudulent activity, as advertised by

several crowdsourcing and fraud-as-a-service (FAAS) sites: a fake

review for an app is worth between $0.5-$3, while a fake social

networking “like” can cost $2. In contrast, an adversarial owner

may have both financial incentives (e.g., increased market share for

his subject, thus revenue), and external incentives (e.g., malware or

fake news distribution).

3.2 Fraud Preemption System Definition

We introduce the concept of fraud preemption systems, that seek to

restrict the profitability of fraud for both fraudsters and the people

who hire the fraudsters (i.e., adversarial owners). Specifically, let

Sys = (U ,S ,F , P ) be a system that consists of finite sets of users

(U), subjects (S) and fraudsters (F) that interact through a set of

procedures P . In the adversary model of § 3.1, we say that Sys
is a (p,a)-fraud preemption system if it satisfies the following two

conditions:

(1) Fraudster deterrence: The average payout per time unit

of any fraudster in F does not exceed p.
(2) Adversarial owner deterrence: The average number of

fraudulent activities allowed for any subject in S per time

unit does not exceed a.

In addition, a puzzle-based fraud preemption system needs to sat-

isfy the following requirements:

(1) Real-time fraud detection. Detect fraud at the time it is

created, with access to only limited information (i.e., no

knowledge of the future).

(2) Penalty accuracy. Impose difficult puzzles on fraudsters,

but minimally impact the online experience of honest users.

(3) Device heterogeneity. Both honest and fraudulent users

may register and use multiple devices to access the online

service. Malicious users may obfuscate the computational

capabilities of their devices.

(4) Minimize system resource consumption. The high num-

ber of issued, active puzzles will consume the resources of

the FraudSys provider, and open it to DoS attacks.
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Figure 4: FraudSys architecture. The Fraud Detector module

uses supervised learning to assign a fraud score to user activi-

ties. The Fraud2Penalty module converts the fraud score to a

time penalty. The Hashrate Inference module estimates the com-

putational capabilities of the user device. Finally, the Puzzler

module generates a puzzle that the device should take approxi-

mately the time penalty to solve.

4 FRAUDSYS

We introduce FraudSys, a real-time fraud preemption system that

requires users to verify commitment through an imposed resource

consumption action for each activity they perform on the online

system. Specifically, FraudSys requires the device from which the

activity was issued, to solve a computational puzzle. FraudSys con-

sists of the modules illustrated in Figure 4: The Fraud Detection

module takes as input a user activity and the current state of the sub-

ject, and outputs a fraud score. The Fraud2Penalty module converts

the fraud score to a time penalty: the time that the user’s device will

need to spend working on a computational puzzle. The Hashrate In-

ference module interacts with the user device in order to learn its

puzzle solving capabilities. Finally, the Puzzler module uses the in-

ferred device capabilities to generate a puzzle that the device will

take a time approximately equal to time penalty to solve.

To address requirement #1, the Fraud Detection module exploits

the fraudulent behaviors described in § 3.1. It builds co-activity

graphs and extracts features that model the relationships between

the user performing the activity and other users that have earlier

performed similar activities for the same subject.

We address requirement #2 through a two-pronged approach. First,

the Fraud Detection and Fraud2Penalty modules ensure that the dif-

ficulty of a FraudSys puzzle will be a function of the detected prob-

ability of fraud: activities believed to be honest will be assigned triv-

ial puzzles, while increasingly fraudulent activities will be assigned

increasingly difficult puzzles. Second, FraudSys does not change

the experience of the user on the online system: the user writes the

review or clicks on the like button, then continues browsing or quits

the app. The assigned puzzle is solved in the background by the

device on which the activity was performed. However, FraudSys

delays the publication of the activity, until the device produces the

correct puzzle solution.

Notation Definition

U , D, S, A user, device, subject, activity

T time of puzzle issue

r activity fraud score

∆ puzzle difficulty

ηD hashrate of device D
Γ puzzle cookie

Π puzzle

target puzzle target value

τ temporal penalty

q number of shares (puzzle solutions)

K secret key of FraudSys

Table 1: FraudSys symbol table.

To address requirement #3, the Hashrate Inference module es-

timates the hashrate of the device performing the activity, and pro-

vides the tool to punish devices that cheat about their puzzle solving

capabilities. To solve requirement #4, the Puzzler module generates

puzzles that outsource the storage constraints from the FraudSys

service to the user devices that solve the puzzles. In the following

we detail each FraudSys module, starting with the central puzzle

creation module.

4.1 The Puzzler Module: Stateless Puzzles

Let U be a user that performs an activity A from a device D, on a

subject S hosted by the online service. Table 1 summarizes the no-

tations we use. The FraudSys service stores minimal state for each

registered user, and serializes his activities, see Figure 5: the de-

vices from which a user performs a sequence of activities on the

online service, are assigned one puzzle per activity, each with its

own timeout. The device needs to return the puzzle solutions be-

fore the associated timeout. To implement this, for each user U , the

FraudSys service stores the following entry:

U, [〈Di, ηi〉]i=1..d, timeout,

where, for each of the i = 1..d devices registered by U , Di is the

device identifier and ηi is its hashrate (puzzle solving capabilities

measure, see following), and timeout is the latest time by which

one of these devices needs to return puzzle solutions.

FraudSys builds on the computational puzzles of Bitcoin, see [20].

Let H2(M) denote the double SHA-256 hash of a message M .

Then, the FraudSys puzzle issued to device D consists of a target
value and a fixed string F . We detail F shortly. To solve the puz-

zle,D needs to randomly choose 32 byte long nonce values until it
finds at least one that satisfies:

H2(nonce||F ) < target (1)

That is, the double hash of the nonce concatenated withF , needs

to be smaller than the target value, another 32 byte long value. A

smaller target implies a harder puzzle. The largest target accept-
able by the system is called target 1, or target of difficulty 1.

Bitcoin has two drawbacks. First, the current difficulty of Bit-

coin puzzles requires computational capabilities that greatly exceed

those of devices used to access online services. Second, Bitcoin re-

quires the network to maintain state about issued puzzles. State stor-

age exposes FraudSys to attacks, while not storing state can enable
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Figure 5: Puzzle serialization: a user can perform multiple ac-

tivities, but each receives a different puzzle with its own timeout,

authenticated through the cookie Γ.

adversaries to lower the difficulty of their assigned puzzles. To ad-

dress these problems we (i) change the target 1 difficulty to allow

trivial puzzles, and (ii) introduce puzzle cookies, special values that

authenticate puzzles with minimal FraudSys state, see following.

Device hashrate and puzzle difficulty. We set the target 1 value

to be a 32 byte long value with one zero at the beginning, e.g.,

2255 − 1. In addition, the hashrate ηD of a device D is a measure

that describes the ability of the device to solve puzzles. Since the

puzzles need to be solved in a brute force approach, the hashrate is

measured in hashes per second. A relevant concept is the notion of

difficulty, denoted by ∆, a measure of how difficult it is to solve a

puzzle whose input values hash below a given target. Its relation-

ship to the above target value is given by:

∆ =
target 1

target
=

2255 − 1

target
(2)

Given ηD , we derive the time τ taken by D to solve a puzzle with

difficulty ∆, as follows. First, the number of hashes smaller than

a given target is equal to the target. For instance, the number of

hashes smaller than target 1 is 2255 − 1 . Then, the probability

p of finding an input that hashes to a value smaller than the target

is equal to the target divided by the total number of hashes (2256).
Furthermore, the expected number of hashes, E, before achieving

the target is given by 1/p. Thus:

E = ηD × τ =
2256

target
=

2256

target 1
×

target 1

target
≈ 2×∆

and conclude that

τ =
2×∆

ηD
(3)

For instance, the lowest puzzle difficulty is 1, which occurs when

the target has a prefix of one zero and the device is expected to

generate 2 hashes before solving the puzzle. Similarly, the maxi-

mum difficulty is (2255 − 1), for a target = 1, when the device is

expected to perform 2255−1
1

× 2 ≈ 2256 hashes.

The FraudSys puzzle and cookies. To minimize the storage im-

posed on the FraudSys service (see above), we leverage the cookie

concept [10]. Algorithm 1 illustrates the puzzle creation, verifica-

tion and computation components. The FraudSys service generates

and stores a secret key K (line 2). When a user U performs an ac-

tivity A from a device D on a subject S of the online service, the

online service calls the BuildCookie function of the FraudSys ser-

vice (lines 3-11). BuildCookie retrieves the hashrate of the device

D from the record stored by FraudSys for U (line 4). It then com-

putes the fraud score associated to the activity (line 5) then converts

it to a time penalty τ (line 6). We describe this functionality in the

next subsections. BuildCookie then uses a modified Equation 3 to

Algorithm 1 FraudSys puzzle creation, verification and
computation components.

1. Object FraudSysService

2. K: key;

3. Function BuildCookie(U , D, S, A, q)

4. ηD := getHashrate(U, D);

5. r := computeFraudScore(U, S,A);

6. τ := fraud2Penalty(r);

7. ∆ := ηD × τ/2q

8. oldT := getTimeout(U);

9. newT := oldT + τ ;

10. Γ := HMAC(K,U,D, S, newT,∆, A);

11. setTimeout(U , newT );

12. return Γ, ∆, newT ;

13. Function VerifyPuzzle(U , D, S,A, timeout, Γ, σ: share[q])

14. if (Γ != HMAC(K,U,D, S,A, timeout,∆) return -1;

15. target := getTarget(∆);

16. for (i := 0; i < q; i++)

17. if (H2(σ[i] || Γ) > target) return -1;

18. waitUntil(timeout); post A;

19. τ ′ := Tc − T ;

20. if ((ηD := 2∆/τ ′) ≥ ηmin)

21. updateHashrate(U , D, ηD);

22. Object UserDevice

23. Function SolvePuzzle(Γ, ∆, timeout, q)

24. target := getTarget(∆);

25. σ := new share[q]; i := 0;

26. while (i < q) do

27. nonce := getRandom();

28. if (H2(nonce || Γ) < target)

29. σ[i] := nonce;

30. i := i+1;

31. return U,D, S,A, timeout, Γ, σ;

compute the difficulty ∆ that the puzzle should have (line 7). ∆ is

q times smaller than in Equation 3, as the puzzle solution consists

of q shares, see SolvePuzzle. BuildCookie gets the current timeout

oldT of U , and updates it to newT by adding the penalty τ to it

(lines 8-9). It then computes the puzzle cookie Γ,

Γ = HMACK(U,D, S,A, timeout,∆)

as a keyed HMAC [9] over the user and device id, subject, activity,

new timeout and puzzle difficulty (lines 9-10). BuildCookie sets

U ’s timeout value to the updated newT value (line 11), then returns

the following puzzle (line 12) to the online service that forwards it

to device D (see Figure 2):

Π = Γ,∆, timeout.

The puzzle cookie ensures that an adversary that modifies the puz-

zle’s difficulty or timeout, will be detected: the adversary does not

know the key K, which is a secret of the FraudSys service. Puzzle

cookies are unique with high probability, due to collision resistance

properties of the HMAC, whose input is non-repeating.

Solving the puzzle. When the deviceD receives the puzzle, it needs

to solve it: search for q nonce values that satisfy the inequality
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Figure 6: Visualization of the co-review graph of a fraudulent

Google Play app. The nodes represent user accounts; edges con-

nect nodes corresponding to accounts with common, past review

activities. The nodes in each of the 2 clusters correspond to ac-

counts controlled by the same fraudster.

H2(nonce || Γ) < target, for a target corresponding to the dif-

ficulty ∆. Specifically, D invokes the SolvePuzzle function (lines

23-31), that needs to identify q shares, i.e., nonce values that satisfy
the puzzle. q is a system parameter. The function first uses Equa-

tion 2 to retrieve the target value corresponding to the difficulty∆
(line 24). Then, it generates random nonce values until it identifies
q values that satisfy the puzzle condition (lines 25-30). SolvePuzzle
returns the identified shares (in the σ array), which are then sent to

the online service and forwarded to the FraudSys server, along with

the user, device and subject ids, activity, timeout and cookie of the

received puzzle (see line 12 and Figure 2).

Verification of puzzle correctness. Upon receiving these values,

the FraudSys server invokes the VerifyPuzzle function (lines 13-

21), to verify its correctness as follows: (1) Reconstruct the puzzle

cookie Γ based on the received values and the secret key K. Verify

that this cookie is equal to the received Γ value (line 14). This en-

sures that all values, including the timeout have not been altered

by an adversary; and (2) Verify that each of the q shares satisfy the
puzzle (lines 15-17). If these verifications succeed, FraudSys waits

until timeout expires to confirm the user action A, for posting by

the online service (line 18). It then uses the time required by the

device to solve the puzzle, to re-evaluate the hashrate of the device

(lines 19-20). It updates the stored hashrate only if the new value is

above a minimally accepted hashrate value (lines 20-21).

4.2 The Fraud Detection Module

To assign a fraud score to a user activity in real-time, the fraud de-

tection module can only rely on the existing history of the user and

of the subject on which the activity is performed. We propose an

approach that builds on the co-activity graphs of subjects, where

nodes correspond to user accounts that performed activities on the

subject, and edges connect nodes whose user accounts have a his-

tory of activities that targeted the same subjects. Edge weights de-

note the size of that history. Figure 6 shows the co-review (where

activities are reviews) graph of a fraudulent Google Play app, that

received fake reviews from 2 fraud workers. Each cluster is formed

by accounts controlled by one of the workers.

Figure 7: Fraud detection illustration: temporal evolution of

the co-activity graph of a subject. The nodes represent user ac-

counts that have performed an activity on the subject. Edges

connect accounts with common past activities. As a new user

account posts an activity, FraudSys assigns the activity a fraud

score (the r1..r4 values), based on its connectivity to previous

activities. Yellow nodes are considered fraudulent (r > 0.5).

The fraud detection module leverages the adversary model find-

ings (§ 3.1) that a fraudster-controlled user account that performs

a new activity on a subject, is likely to be well connected to the

co-activity graph of the subject, or at least one of its densely con-

nected sub-graphs. Figure 7 illustrates this approach: Let U be a

user account that performs an activity A for a subject S at time T .
Let G = (V,E) be the co-activity graph of S before time T . Let
GT = (VT , ET ) be the new co-activity graph of S, that also in-

cludes U , i.e., VT = V ∪ U . Given U , S and G, FraudSys extracts

the following features, that model the relationship of U with S:

• Connectivity features. The percentage of nodes in V to whom

U is connected. The average weight of the edges between U and

the nodes in V . The average weight of those edges divided by the

average weight of the edges in E. This feature will indicate if U
increases or decreases the overall connectivity ofG. The number of

triangles in GT that have U as a vertex. The average edge weight

of those triangles.

• Best fit connectivity features. Since U may be controlled by one

of multiple fraudsters who target S, U may be better connected to

the subgraph ofG controlled by that fraudster. Then, use a weighted

min-cut algorithm to partition G into components G1, .., Gk , such

that any node in a component is more densely connected to the

nodes in the same component than to the nodes in any of the other

components. G1, .., Gk may contain user accounts controlled by

different fraudsters, see Figure 6. Identify the component Gb, b ∈
{1, ..k} to which U is the most tightly connected (according to the

above connectivity features). Output the connectivity features be-

tween U and Gb.

•Account based features. The number of activities previously per-

formed by U . The age of U : the time between U ’s creation and the

time when activity A is performed on S. The expertise of U : the

number of actions of U for subjects similar to S. Similarity de-

pends on the online service, e.g., same category apps in Google

Play, pages with similar topics in Facebook.

The Fraud Detection module trains a probabilistic supervised learn-

ing algorithm on these features and uses the trained model to output
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Figure 8: Comparison of functions to convert fraud scores (x

axis) to time penalties (y axis). The logistic function (red dot-

line) exhibits the required exponential increase.

the probability that a given activity is fraudulent. We detail the per-

formance of various algorithms, over data that we collected from

Google Play and Facebook, in § 6.

Per-fraudster timeout. We exploit the ability of the fraud detection

module to identify accounts controlled by the same fraudster, to fur-

ther restrict fraud. Specifically, instead of storing a timeout times-

tamp for each user account, FraudSys can store a single timeout
per detected fraudster. Thus, FraudSys will accumulate penalties in

a single, per-fraudster account. This facilitates Claim 2.

4.3 The Fraud2Penalty Module

Given the fraud score r of an activity of user U (output by the Fraud

Detection module), performed from a device D associated with the

account of U (see the model section), the Puzzler module generates

a puzzle whose difficulty is a function of both r and the computa-

tional capability of D. We now describe the Fraud2Penalty mod-

ule, that converts r into a time penalty. We have explored several

functions to convert the fraud score r of a user activity to a time

penalty. Let minh and maxh, and minf and maxf , denote the

minimum and maximum times imposed on the device from which

an honest, respectively fraudulent activity is performed. Let thr de-
note the threshold fraud score above which we start to consider a

user activity as being fraudulent. We propose a conversion func-

tion that increases linearly when r < thr, and exponentially when

r > thr. Specifically, we propose a flexible generalization of the

logistic function (when r > thr), where the parameter k is the

growth rate:







maxh−minh
thr

r +minh 0 ≤ r ≤ thr
maxf

1+(
maxf−minf

minf
)e−k(r−thr)

thr ≤ r ≤ 1
(4)

We have compared this logistic increase function with other func-

tions, with the same linear increase in the honest region, but expo-

nential ((maxf−minf) e
r
−ethr

e1−ethr +minf ) and logarithmic ((minf−

maxf) logr

log(thr)
+ maxf ) increase in the fraudulent regions. Fig-

ure 8 compares the logistic, exponential and logarithmic functions.

It shows that unlike the exponential and logarithmic functions, the

logistic function exhibits the desired rapid increase for fraud prob-

ability values above the threshold value. In § 6 we detail parameter

values for the logistic conversion function,

4.4 The Hashrate Inference Module

New device registration. When a user registers a new device, the

device sends its specs to the online service that forwards them to

FraudSys. FraudSys leverages its list of profiled devices (see Ta-

ble 2) to retrieve the hashrate of the profiled device with the most

similar capabilities. FraudSys stores the new device along with this

initial hashrate estimate under the id of the user that registers it (see

the Puzzle module). Given this hashrate and the above time penalty,

FraudSys uses Equation 3 to compute an initial puzzle difficulty.

Hashrate correction. The initial hashrate estimate of FraudSys

may be incorrect. In addition, as discussed in the System Model,

the user may be adversarial, thus attempt to provide an inaccurate

view of the puzzle solving capabilities of his device. To address

these problems, FraudSys employs an adaptive hashrate correction

process. Specifically, an adversary with a more capable device than

advertised (see e.g., Table 2) will solve the assigned puzzle faster.

The incentive for this is a shorter wait time for his activity to post

on the online service. If this occurs, FraudSys increases its device

hashrate estimate to reflect the observed shorter time required by

the device to solve the puzzle (see Algorithm 1, lines 19-20).

5 FRAUDSYS PROPERTIES

CLAIM 1. A fraudster that performs a fraudulent activity with

fraud score r from a device with hashrate η, is expected to compute
η×maxf

1+(maxf−minf
minf

)e−k(r−thr)
double hashes.

PROOF. According to Equation 4, the time penalty assigned to a

fraudulent activity with score r is τ = maxf

1+(maxf−minf
minf

)e−k(r−thr)
.

Then, Equation 3 ensures that the number of expected hashes that

the device needs to perform to solve the puzzle of Equation 1 is

η × τ , which concludes the proof. �

Let f be the number of fraud workers in the system (i.e., f =
|F|), τ be the average temporal penalty assigned by FraudSys to

a fraudulent activity, and let p be the expected payout for a single

fraudulent activity. We introduce then the following claim:

CLAIM 2. FraudSys is a (p/τ, f/τ )-fraud preemption
system.

PROOF. The best fit connectivity features of the Fraud Detection

module (see § 4.2) enable FraudSys to detect activities performed

from accounts controlled by the same fraudster. This, coupled with

an extension of the timeout concept applied at the fraudster level

(see § 4.2) ensures a serialization of fraudster activities. Then, the

average number of fraudulent activities that a fraudster can post

per time unit in FraudSys is 1/τ . This implies that, per time unit,

the expected payout of a fraudster is p/τ , and a subject can be the

target of at most f/τ fraudulent activities. This, according to the

definition of § 3.2, completes the proof. �
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5.1 Security Discussion and Limitations

The FraudSys puzzle not only ties the penalty computation to the

user activity, but also addresses pre-computation, replay and guess-

ing attacks: the adversary cannot predict the cookie value of its ac-

tions, thus cannot pre-compute puzzles and cannot reuse old cook-

ies. It also offloads significant work from the FraudSys service,

which no longer needs to keep track of puzzle assignments.

Device deception. An adversary with a specialized puzzle solving

device (e.g., AntMiner) will be assigned puzzles with large diffi-

culty values (see, e.g., Table 2), thus consume the same amount

of time as when using a resource constrained device (e.g., a smart-

phone). The adversary can exploit this observation to avoid the im-

plications of Claim 1: register a resource constrained device, but

rely on a powerful back-end device to solve the assigned puzzles

faster. The adversary has two options. First, report the solutions as

soon as the back-end device retrieves them. In this case however,

the adversary leaks his true capabilities, as FraudSys will update the

adversary hashrate (Algorithm 1, line 20). Thus, subsequently, his

assigned puzzles will have a significantly higher difficulty value. In

a second strategy, the adversary estimates the time that his front-end

device would take to complete the puzzle, then waits the remaining

penalty time. In this case, the adversary incurs two penalties, the

long wait time and the underutilized back-end device investment.

Adversary strategies: new user accounts. To avoid the implica-

tions of Claim 2, the adversary registers new user accounts. While

new accounts are cheap, their freshness and lack of history will en-

able the account based features of the Fraud Detection module to

label them as being likely fraudulent. As the adversary reuses such

accounts, the connectivity features start to play a more important

role in labeling their activities as fraudulent. Thus, the adversary

has a small usable window of small penalties for new accounts.

While new honest accounts may also be assigned larger penalties

for their first few activities, they will not affect the user experience:

the user can continue her online activities, while her device solves

the assigned puzzle in the background.

6 EMPIRICAL EVALUATION

6.1 Datasets

We have collected the following datasets of fraudulent and honest

behaviors from Google Play and Facebook.

Google Play: fraud behavior data. We have identified 23 work-

ers in Freelancer, Fiverr and Upwork, with proven expertise on per-

forming fraud on Google Play apps. We have contacted these work-

ers and collected the ids of 2,664 Google Play accounts controlled

by them. We have also collected 640 apps heavily reviewed from

those accounts, with between 7 and 3,889 reviews, of which be-

tween 2% and 100% (median of 50%) were written from accounts

controlled by the workers. These apps form our gold standard fraud

app dataset. We have also collected the 23,028 fake reviews written

from the 2,664 fraudster controlled accounts for the 640 apps. Fig-

ure 6 shows the co-review graph of one of these apps, that received

fake reviews from 2 of the identified 23 workers.

Google Play: honest behavior data. We have selected 925 can-

didate apps that have been developed by Google designated “top

Device Hashrate Diff (5s) (12hr) (7 day)

Nexus 4 6.53 KH/s 16.32K 141.04M 1.97G

Nexus 5 13.26 KH/s 33.15K 286.41M 4.00G

LG Leon LTE 10.1 KH/s 25.25K 218.16M 3.05G

NVS 295 1.7MH/s 4.25M 36.72G 514.08G

Server 80 MH/s 200M 1.72T 24.19T

AntMiner 4.72 TH/s 11.8T 101.95P 1427P

Table 2: Hashrate profiling table for various device types

(smartphone, tablet, PC and Bitcoin miner), along with diffi-

culty values for penalty times of 5s, 12 hours and 7 days.

developers”. We have removed the apps whose apks (executables)

were flagged as malware by VirusTotal. We have manually inves-

tigated 601 of the remaining apps, and selected a set of 200 apps

that (i) have more than 10 reviews and (ii) were developed by rep-

utable media outlets (e.g., NBC, PBS) or have an associated busi-

ness model (e.g., fitness trackers). We call these the gold standard

benign app dataset.

We have identified 600 reviewers of these 200 benign apps and

140 reviewers of the 640 fraud apps (see above), such that each has

reviewed at least 10 paid apps, i.e., paid to install the app, then re-

viewed it, and had at least 5 posts on their associated Google Plus

(social network) accounts. These 740 user accounts form our gold

standard honest user dataset. We have then retrieved and manually

vetted 854 reviews written by the 600 honest reviewers for the 200

benign apps, and 207 reviews written by the 140 honest reviewers

of the 640 fraud apps. Each selected review is informative, contain-

ing both positive and negative sentiment statements. We call the

resulting dataset, the honest review dataset, with 1,061 reviews.

Facebook Like dataset. We have used a subset of the dataset from [8],

consisting of 15,694 Facebook pages, that each has received at least

30 likes. The pages were liked from 13,147 user accounts, of which

6,895 are fraudster controlled, and 6,252 are honest. In total, these

fraudsters have posted 274,297 fake likes, and the honest accounts

have posted 180,400 honest likes.

6.2 Device Hashrate Profile

Strategy FPR% FNR% Accuracy%

k-NN 1.41 4.45 97.92

SVM 5.8 11.3 92.40

Random Forest 3.44 6.46 95.69

Table 3: 10-fold cross validation results of supervised learning

algorithms in fraud vs. honest Google Play review classification.

k-NN achieves the lowest FPR and FNR.

We have profiled the hashrate of several devices, ranging from

smartphones to a Bitcoin mining hardware (AntMiner S7: ARMv7

CPU, 254 Mb of RAM, 135 BM1385 chips @ 700MHz). Since

Bitcoin mining requires capabilities far exceeding those of smart-

phones, we have implemented an Android app to evaluate the hashrate

of several Android devices. Table 2 shows the hashrate values for

the profiled devices, along with the corresponding difficulty (∆)

values for puzzles required to impose 5 second, 12 hour and 7 day

time penalties on such devices. We observe the significant gap be-

tween the hashrate of a smartphone (10-15 KH/s) and a specialized
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Figure 9: Stats over the Google Play data whenmaxf = 24h,minh = 2s,maxh = minf = 5min. (a) Evolution of average, 1st and 3rd

quartile of the penalty imposed on the i-th fraud activity of a fraudster for the same subject. It shows a steep increase: the average

penalty of the first three fraud activities for a subject sums to 15.34h, while the average penalty of the 12th activity exceeds 24h. (b)

Distribution of per-fraudster daily penalties, over data from 23 fraudsters: in 1,812 days out of 2,708 days, the penalty assigned to

a single fraudster exceeds 24 hours. (c) Distribution of penalties assigned to an honest review. Only 14 out of 4,600 honest review

instances received a penalty exceeding 5 minutes, but still below 1 hour.

device (4.72 TH/s). This motivates the need for the puzzles issued

by FraudSys to have different ∆ values for various user devices.

FraudSys maintains a similar table in order to be able to build ap-

propriate puzzles for newly registered devices.

6.3 Fraud Penalty Evaluation: Google Play

Supervised learning algorithm choice. We first used 10 fold cross-

validation to evaluate the ability of the Fraud Detection module to

correctly classify the 23,028 fraudulent vs. 1,061 honest reviews of

the Google Play dataset previously described. Table 3 shows the

false positive (FPR) and negative (FNR) rates, as well as the accu-

racy achieved by the top 3 performing supervised algorithms. k-NN

has the lowest FPR and FNR, for an accuracy of 97.92%. Thus, in

the following experiments we use only k-NN.

Parameter evaluation. We have used the fraud and honest review

datasets described earlier, to compute the temporal penalties im-

posed by FraudSys on fraudsters and honest users. We have per-

formed the following experiments. In each experiment, we use the

data of 22 fraud workers and 200 randomly chosen honest reviews

(out of 1,061) to train the supervised learning algorithm (k-NN)

then test the model on the data of the remaining fraud worker and

on the remaining 861 honest reviews. Thus, we have performed 23

experiments, one for each worker.

We set the maxf parameter such that the average daily payout

of a fraudster is below the average Bitcoin mining payout with a

last generation AntMiner device. Thus, this ensures that even such

a powerful adversary has more incentive to do Bitcoin mining in-

stead of search rank fraud. Specifically, the above AntMiner’s cur-

rent (Jan. 2017) average daily payout is 0.0037 BTC. At the cur-

rent BTC to USD rate, this means $3.67 per day 1. In addition, we

have experimented withmaxf values ranging from 12 to 48 hours.

The average penalty assigned by FraudSys to a fraudulent review is

8.01 hours whenmaxf=12h, 15.34h whenmaxf=24h, and 29.33h
when maxf=48h. Figure 9a shows the median, first and third quar-

tiles for the time penalty (in hours) imposed on the i-th fraudulent

1Historically speaking, the BTC to USD rate is increasing. The next generation
AntMiner coming up this year is expected to be 3 times more capable.

activity performed by a fraudster for a subject, when maxf= 24h:

the 12th fake activity receives a median penalty of 24h.

Thus, we set maxf=24h, which is sufficient for Google Play

reviews: A fraudster would be able to post on average less than

2 fake reviews per day, thus, even with a reward of $2 per fraud

activity (see Figure 3), achieve a payout of around $3.15 per day,

below the Bitcoin mining payout. In addition, we have set minh
= 2s. Figure 1 shows the penalty timelines of two workers when

minh = 2s,maxh = minf = 5 min,maxf = 24 hours, thr = 0.5,
and k = 30 (for a steep increase of time penalty with fraud score).

We note that a maxh = 5 min is not excessive: this penalty is not

imposed on the user, but on his device. The user experience remains

the same in the online service.

Each vertical bar shows the daily temporal penalty assigned to

a single worker, over reviews posted from multiple accounts. The

maximum daily penalty of the two workers is 1,247 hours and 3,079

hours respectively. We observe that each worker has many days

with a daily penalty exceeding 24 hours.

Figure 9b shows formaxh = minf = 5min, the overall distribu-

tion of daily penalties assigned by FraudSys, over all the 23 fraud

workers, in the above experiment. It shows that during most of the

active days, fraud workers are assigned a daily penalty exceeding

24 hours. Figure 9c (also for maxh = minf = 5min) shows the

distribution of per-review penalty assigned by FraudSys to honest

reviews, shown over 4,600 (23 × 200) honest reviews. Irrespective

of themaxh value, only 14 honest reviews were classified as fraud-

ulent, but assigned a penalty below 1 hour. We observed minimal

changes in the distribution of penalties of fraudulent reviews when

maxh = minf ranges from 5 to 15 minutes.

6.4 Fraud Penalty Evaluation: Facebook

We have performed a similar parameter analysis using the Facebook

“like” dataset. Since this dataset lacks information about the fraud-

sters who control the accounts that posted fake likes, we focus on

the penalties assigned by FraudSys to fake and honest likes.
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Figure 10: (a) Penalty distribution for the fake Facebook likes. 84% of the likes received a penalty that exceeds 12 hours, and the

average fake like penalty is 19.32 hours. (b) Penalty distribution for the honest Facebook likes. 82.97% of the honest likes are assigned

a penalty of under 5 min. The maximum penalty assigned to an honest like is 70 minutes. (c) Comparison of daily payouts provided

by Bitcoin mining, writing fake reviews in Google Play and posting fake likes in Facebook, under FraudSys. Fraud does not pay off

under FraudSys: the fraud payout is less than half the Bitcoin mining payout.

Figure 10a shows the distribution of penalties assigned to fake

likes and Figure 10b shows the distribution of the honest likes. Com-

pared to the results over the Google Play data, we observe a higher

FPR, i.e., more honest likes with fraud level penalties. We posit that

this is due to the fewer features that we can extract for the Facebook

likes, as, unlike for Google Play reviews, we lack the time of the ac-

tivity. Specifically, absence of like sequence information enables us

to only extract features based on the last “snapshot” of the page, and

not the current page snapshot when the like was posted.

However, 82.97% of the honest likes receive a penalty of under

5 mins and the maximum penalty assigned to an honest review

is 70 mins. In addition, 84% of the fake likes receive a penalty

that exceeds 12 hours, and the average penalty for a fake like is

19.32 hours. Figure 10c compares the daily payouts received by an

AntMiner equipped fraudster who writes fake reviews in Google

Play (at $1 per fake review), posts fake likes (at $2 per fake like),

or honestly uses his device to mine Bitcoins. It shows that under

FraudSys, fraud doesn’t pay off: the Bitcoin mining payout is more

than double the fraud payout for either fake reviews or likes.

7 CONCLUSION

We have introduced the concept of real-time fraud preemption sys-

tems, named as the FraudSys, that seek to restrict the profitability

and impact of fraud in online systems. We propose and develop

stateless, verifiable computational puzzles, that impose minimal over-

heads, but enable their efficient verification. We have developed a

graph based, real-time algorithm to assign fraud scores to user activ-

ities and mechanisms to convert scores to puzzle difficulty values.

We used data collected from Google Play and Facebook to show

that our solutions impose significant penalties on fraudsters, and

make fraud less productive than Bitcoin mining.
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