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Abstract—High-dimensional data usually incur learning
deficiencies and computational difficulties. We present a
novel semi-supervised dimensionality reduction technique
that embeds high-dimensional data in an optimal low-
dimensional subspace, which is learned with a few user
supplied constraints as well as the structure of input data.
We study two types of constraints that indicate whether
or not pairs of data points originate from the same class.
Data partitions that satisfy both types of constraints may
be conflicting. To solve this problem, our method projects
data into two different subspaces, one in the kernel space
and one in the original input space, each is designed for
enforcing one type of constraints. Projections in the two
spaces interact and data are embedded in an optimal low-
dimensional subspace where constraints are maximally
satisfied. Besides constraints, our method also preserves
the intrinsic data structure, such that nearby/far away
data points in the original space are still near to/far from
each other in the embedded space. Compared to existing
techniques, our method has the following advantages: 1)
It can benefit from constraints even when only a few
are available. 2) It is robust and does not suffer from
overfitting. 3) It handles nonlinearly separable data, but
learns a linear data transformation. Thus the method can
be easily generalized to new data points and is efficient
in dealing with large data sets. Experiments on real data
from multiple domains clearly demonstrate that signifi-
cant improvements in learning accuracy can be achieved
after dimensionality reduction by employing only a few
constraints.

I. INTRODUCTION

There are two major difficulties in analyzing or learn-
ing from high-dimensional data. First, the learning accu-
racy is low due to the redundancies in high-dimensional
feature spaces and the relatively small amount of training
available compared to the dimensionality. Second, the
computational cost is so high that many techniques are
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not readily applicable to handle large amount of high-
dimensional data [9].

Dimensionality reduction is the technique that solves
the high dimensionality problem and has been exten-
sively studied and widely applied in text categoriza-
tion, face recognition and microarray gene expression
analysis where data are usually expressed as vectors of
high dimensionality. Two representative dimensionality
reduction techniques are Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA). PCA
is an unsupervised method that maximally preserves the
variance of the data, and LDA is a supervised method
that achieves maximal class separation by maximizing
the ratio of between-class variance to the within-class
variance. Both PCA and LDA are global methods since
they do not preserve local data structures. To overcome
the drawbacks of global methods and their variants,
a number of local dimensionality reduction methods
have been proposed, such as Locally Linear Embedding
(LLE) [7] and Locality Preserving Projections (LPP) [5].
These methods embed data in the low-dimensional space
such that nearby data points in the original space are still
near to each other in the embedded space.

Recently, semi-supervised dimensionality reduction
has stirred many research interests. This is due to the
fact that supervision in the form of pairwise constraints
is often easier to get than labeled data, and is naturally
available in many real application domains. For example,
it may be difficult, tedious or costly for users to label
thousands of images into pre-set class labels. However,
when users are presented with a few simple binary
questions of the form “are objects in image a and b the
same?”, answering Yes/No to the questions is a lot easier.
Moreover, for the task of Web document clustering, doc-
uments which share large number of similar hyperlinks,
or a group of documents with strong co-citation (i.e., co-
reference) patterns can be viewed as similar in content.



Constraints take two general forms: the must-links are
pairs of points that originate from the same class and
thus should be grouped together, and the cannot-links are
pairs of points that should be put into different groups.
To incorporate constraints in dimensionality reduction,
[2] proposed relevant component analysis (RCA) that
exploits must-links only. [6] extends RCA by explor-
ing cannot-links. Recently, [1] proposed to incorporate
constraints using a modified LPP cost function. All these
methods exploit constraints only and do not consider the
usefulness of abundant unconstrained data. With limited
constraints, the methods face the overfitting problem.
That is, the subspace that best satisfies a few pairs of
constraints does not necessarily reveal the structure of the
entire dataset. To this end, [10] and [3] proposed semi-
supervised dimensionality reduction methods that exploit
both constraints and unconstrained data. However, both
methods need users to intuitively set parameters to
balance the constrained and the unconstrained data. Be-
sides, all the aforementioned existing methods for semi-
supervised dimensionality reduction have their kernel-
space equivalents to deal with non-linearly separable
data. However, because the projection is non-linear, in
order to compute the projection of testing points all the
training points besides the transformation matrix need
to be stored, and the inner product between the testing
points to all the training points need to be calculated and
stored. Therefore, such extra storage and computational
cost limit their application to large datasets.

In this paper, we propose a novel semi-supervised
dimensionality reduction technique named as DSP (Dual
Subspace Projections) which can simultaneously pre-
serve the structure of original high-dimensional data
and the pairwise constraints specified by users. Thus,
the method does not overfit. Furthermore, our method
has a closed-form solution of an generalized eigenvalue
problem, and therefore can be solved efficiently in the
training phase. Moreover, the method uses kernel trick
to handle nonlinearly separable data, but the learned
projection is still linear. So handling testing data is very
efficient.

II. METHOD OVERVIEW

The motivation in this paper is to enforce a set of
pairwise constraints in dimensionality reduction such
that the intrinsic structure of data in the reduced space
can be easily captured by the following data analysis
phases, such as clustering and classification. Without loss
of generality, we evaluate our dimensionality-reduction

technique for clustering tasks, although the technique is
equally applicable to classification problems too.

The two types of constraints often lead to conflicting
data partitions, even if constraints by themselves are
consistent. This is because data are not linearly separable
in the input space. The problem can be solved by using
the kernel trick. It is always possible to find a data
partition that satisfies all the constraints in the high-
dimensional space. However, kernel machine will overfit
with limited constraints.

Our proposed method alleviates the conflicting con-
straints problem by exploiting two types of constraints
separately in two different subspaces. First, data points
are projected to a high-dimensional kernel space, where
we further embed data to a subspace such that the two
data points constrained by a must-link will be mapped
to a single point. This idea originates from [8], where
must-link constraints are explored to improve kernel
Mean Shift clustering performance. Second, the pairwise
distances of embedded data are further explored in the
original input space. In particular, we enforce the cannot-
link constraints and the intrinsic structure of the input
data at this step. We embed data into the second subspace
such that nearby/far away data points in the original
input space are still near to/far from each other. Besides,
cannot-linked data points are also projected to be well
separated. The second subspace is therefore a desirable
projection direction since it embodies both types of
constraints as well as the original data structure.

III. MAIN PROPOSAL

A. Problem Setting

Let X be the input space containing n data points
in f dimensions, {xi}ni=1 ∈ X . We are given two
types of pairwise constraints organized in two sets. Let
ΩM = {(xi,x′i)}mi=1 be the set of m pairs of must-link
constraints, and ΩC = {(xi,x′i)}ci=1 be the set of c pairs
of cannot-link constraints. Let r be a desired subspace
dimensionality. We want to embed the f -dimensional
data in an r-dimensional subspace, s.t. r � f by
learning a linear data transformation Z ∈ Rf×r, such that
y = ZTx where y is the low-dimensional embedding of
x. The Euclidean distance between two points y1 and
y2 in the reduced space can be expressed as

d(y1,y2) =
√

(x1 − x2)TZZT (x1 − x2) (1)

which only depends on the original data points and the
learned transformation matrix.
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Fig. 1. Illustration of must-link constraints enforcement. (a) Input space. 36 one-dimensional data points originated from two clusters
(18 points each, differentiated by markers) that are not linearly separable. Black crosses mark the must-link constraint pair (m1,m2). (b)
The input space is mapped to the 2-dimensional feature space via quadratic mapping φ(x) = [x x2]T . The blue arrow is the difference
vector (φ(m2) − φ(m1))

T . The dotted line is the null space. (c) The feature space is projected to the null space of the difference vector.
Constrained points collapsed to a single point and a clustering algorithm trivially groups them together.
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Fig. 2. Illustration of a must-link enforcement error on unconstrained data points. Same set-up as Figure 1 with a different pair of must-link
constraint. The null space projection result in (c) clearly demonstrates that although the constrained points are mapped to a single point,
points from different clusters are mixed together too and leads to clustering mistakes.

B. Integrating Must-link Constraints

Given a pair of must-link constraint (x,x′), following
the idea presented in [8], we can project the input space
onto the null space of the difference vector (x − x′)T ,
which is the direction orthogonal to the difference vector.
Hence, x and x′ will be mapped to the same point,
and the must-link constraint is maximally satisfied. This
method does not scale well with the increasing number
of must-links. For data with f -dimensional features, if
the number of must-link constraints exceeds f − 1 all
the data points will collapse to a single point. For this
reason, we first map data to an enlarged feature space,
and then apply the same technique to exploit must-
link constraints. We call this method kernel null space
projection. Figure 1 illustrates this idea using a one-
dimensional data set.

Formally, let K : X × X 7→ R be a positive definite
kernel function satisfying for all x,x′ ∈ X

K(x,x′) = φ(x)Tφ(x′) (2)

where φ is a nonlinear mapping function

φ : X 7→ H

that maps input space X into the fφ-dimensional feature
space H. Define the m× fφ must-link constraint matrix
M as follows:

M =

 (φ(x1)− φ(x′1))T

...
(φ(xm)− φ(x′m))T

 (3)

Then, the projection matrix

P = Ifφ −U (4)

where
U = MT (MMT )#M

projects data in H to the null space of M, and is the
desired projection. # stands for the pseudo-inverse. One
can prove that in the null space of M, every pair of
must-linked data points collapse to a single point, and



thus the must-link constraints are maximally satisfied
(see Appendix).

By simple algebra formulation, the projected kernel
function is given by

K̂(x,x′) = K(x,x′)−K(φ(x),M)TW#K(φ(x′),M) (5)

where K(φ(x),M) denotes the m-dimensional vector K(x,x1)−K(x,x′1)
...

K(x,xm)−K(x,x′m)


and

Wi,j = K(xi,xj)−K(xi,x
′
j)−K(x′i,xj) +K(x′i,x

′
j)

Since all the computations of K̂(x,x′) can be expressed
in terms of K(x,x′), the subspace projection is per-
formed implicitly in the kernel space.

Note that, null space projection P is the optimal
projection in the sense that it preserves the variance
along the orthogonal directions to the projection direc-
tion. Therefore, the original distance measure is best
preserved.

C. Integrating Cannot-link Constraints and Data Struc-
ture

The kernel null space projection introduced in the
last section guarantees the enforcement of must-link
constraints by pulling data from the same class close
to each other. Thus, the pairwise distances of the em-
bedded data d(φ̂(x), φ̂(x′)) fit the intra-class structure
better than the pairwise distances in the original space
d(x,x′). However, the kernel null space projection can
also mistakenly pull data points from different clusters
close to each other, thus leading to clustering mistakes.
Figure 2 illustrates this issue using the same data as in
Figure 1 but with a different pair of must-link constraint.
As a result, the pairwise distances of embedded data
d(φ̂(x), φ̂(x′)) do not capture the inter-class structure
well.

This problem can be solved by further exploiting
cannot-link constraints based on the kernel null space
projection result. The goal of adopting cannot-link con-
straints is to embed data in a subspace where data points
from different classes are further pushed away from
each other while the intra-class distance measure is still
best preserved. Before presenting how to find such a
subspace, let us first make the following declaration and
define a few concepts.

Without loss of generality, we assume all the distances
have been normalized to [0, 1] in our discussion. Then

the similarity between any two points xi and xj is
evaluated as 1 − d(xi,xj). Let N(xi) denotes the set
of k-nearest neighbors of point xi for a given k. Let S
be the adjacency matrix, such that

Si,j =

{
1− d̂φ(xi,xj) xi ∈ N(xj) ∨ xj ∈ N(xi)
0 otherwise

(6)

where d̂φ(xi,xj) is the kernel distance defined as:

d̂φ(xi,xj) = d(φ̂(xi), φ̂(xj))

=

√
K̂(xi, xi) + K̂(xj , xj)− 2K̂(xi, xj) (7)

and satisfies d̂φ(xi, xj) = 0, if (xi, xj) ∈ ΩM . We adopt
the kernel distances in the adjacency matrix because they
fit the intra-class structure better.

Let N(xi)
⊥ be the set of k points that are farthest from

xi for a given k. In consequence, points in N(xi)
⊥ tend

to originate from a different class than xi. Let R be a
matrix which is called the disjoint matrix, such that

Ri,j =

{
1− d(xi,xj) xi ∈ N(xj)

⊥ ∨ xj ∈ N(xi)
⊥

0 otherwise
(8)

Because the disjoint matrix mostly encodes the inter-
class structure, the distance measure of the original input
space preserves the structure better.

Let Z =
[
z1 · · · zr

]
be the matrix containing r

transformation vectors zi|ri=1 that embeds data points
in the f -dimensional input space in the r-dimensional
subspace by yi = ZTxi, xi ∈ Rf , yi ∈ Rr. In order
to preserve both the intra and inter-class structures, we
minimize the following objective function

min

∑
i,j(yi − yj)

2Si,j∑
i,j(yi − yj)2Ri,j

(9)

The numerator incurs heavy penalties if nearby data
points (i.e. Si,j is big) are mapped far apart. Therefore,
minimizing it is an attempt to ensure that if xi and xj are
close then yi and yj are close as well. The denominator
assigns big rewards if nearby data points from different
classes (i.e. Ri,j is big) are mapped far away. Therefore,
maximizing the denominator has the effect of pushing
different classes farther away. Overall, minimizing Eq.
(9) both preserves the structure of data and makes the
structure more evident.

Similarly, the goal of pushing apart cannot-linked data
points is achieved by maximizing the following objective
function

max
∑

(xi,xj)∈ΩC

(yi − yj)
2(1− d(xi,xj)) (10)



If we modify the disjoint matrix R to incorporate cannot-
link constraints as

R̃i,j =

 1− d(xi,xj) xi ∈ N(xj)
⊥ ∨ xj ∈ N(xi)

⊥

∨ (xi,xj) ∈ Ωc
0 otherwise

(11)
then the two objectives in Eq. (9) and Eq. (10) can be
integrated into a single optimization problem as

z∗ = arg min
z

∑
i,j(z

Txi − zTxj)
2Si,j∑

i,j(z
Txi − zTxj)2R̃i,j

= arg min
z

zTXLSX
T z

zTXLR̃XT z
(12)

where LS = DS − S and LR̃ = DR̃ − R̃ are the
graph Laplacians [4] related to the adjacency matrix
S and the disjoint matrix R̃ respectively, and DS and
DR̃ are diagonal matrices with DS

i,i =
∑

j Si,j and
DR̃
i,i =

∑
j R̃i,j . The r optimal transformation vectors

z∗i |ri=1 can be found by solving the general eigenvalue
problem

XLSX
T z = λXLR̃X

T z (13)

The r eigen vectors related to the r smallest eigen values
are the solution.

Obviously, the performance of the above optimization
problem strongly depends on the pairwise distances of
data points, which are encoded in matrices LS and LR̃.
By adopting the kernel distance d̂φ(xi, xj), and distances
d(x,x′) of the original input space, the modification to
the feature space in the kernel null space projection step
is incorporated. Therefore, the final optimal projection
direction is determined by both types of constraints as
well as the intrinsic structure of data.

IV. EXPERIMENT

A. Datasets

We use multiple real datasets from different domains
to evaluate our proposal. Datasets are summarized in
Table I. The datasets used are very diverse in terms
of size of data, size of feature spaces and number of
clusters. In particular, 10 datasets are gathered from
the UCI machine learning database 1 because of their
popularity in the field of machine learning. Besides, we
use the COIL-20 database 2, which is widely used in
3D object recognition research. This database contains
gray-scale images of 20 objects. Each object has 72

1http://archive.ics.uci.edu/ml/
2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

Fig. 3. COIL-20 database. Left: 6 random samples, right: 6
orientations of one object

images taken at different orientations. Thus, the entire
database contains 1,440 images. Each image is of size
128× 128 = 16, 384 pixels. We further perform bicubic
interpolation to downsize every image to 16× 16 pixels.
This is a commonly used technique to achieve tradeoff
between complexity and accuracy. Thus, each image is
represented as a vector of dimension 256. Samples of
the COIL-20 database are listed in Figure 3.

B. Competitive Techniques and Evaluation

Our proposal has been compared to four state-of-the-
art and representative semi-supervised and unsupervised
dimensionality reduction techniques. LPPSI [1] is a
recent semi-supervised dimensionality reduction method
that has been successfully applied to solve face recog-
nition problem. We compare to the kernel version of
LPPSI since it is reported to have better performance
than the non-kernel version. LPP [5] is an unsupervised
dimensionality reduction technique that preserves the
local structures of data, and has been widely adopted in
visualization and text indexing. SLPP is the supervised
version of LPP. PCA is the classical unsupervised dimen-
sionality reduction technique. We test the dimensional-
ity reduction performance achieved by each method in
a clustering setting. A better dimensionality reduction
technique should reveal the intrinsic structure of the data,
and thus leads to higher clustering accuracy. k-means
is used as the underlying clustering model for all the
experiments. We use the F -score, which is a harmonic
mean of precision and recall ranging in [0, 1], to evaluate
clustering accuracy. The clustering error rate is defined
as 1−F -score. All the reported results are based on the
average of 20 independent runs.

C. Parameter Setting

For all the kernel methods, we use the RBF kernel,
which is defined as:

K(x, x′) = exp(−‖x− x′‖2

2δ2
) (14)

The parameter δ often significantly influences the perfor-
mance of kernel methods. With the help of constraints,



TABLE I
DATASETS SUMMARY (n: # SAMPLES; f : # FEATURES; k: # CLUSTERS; δ: KERNEL PARAMETER )

dataset n f k δ

wine 178 13 3 0.6
vehicle 846 18 4 0.9

iris 150 4 3 0.3
balance 625 4 3 0.7

ionosphere 351 34 2 1
glass 214 9 6 0.3
breast 682 10 2 1

Multiple Features 2,000 649 10 0.2
isolet 7,797 617 26 7

Pendigit 10,992 16 10 46
COIL-20 1,440 16,384 20 0.4

we choose the δ value by a simple grid search. For a
given δ, we perform the kernel null space projection
only, and cluster the projected data. Since the kernel
null space projection guarantees that all must-linked data
points will be trivially clustered together, we pick the
δ value that achieves the maximal clustering accuracy
on cannot-link constraints. Empirical results show that
this method works very well even with a few pairs of
constraints. The δ values chosen for each dataset are
listed in Table I. The number of nearest neighbors used
in constructing the adjacency and disjoint matrices is set
to 5 and is kept the same for all the methods and all the
datasets.

D. Fixed Subspace Dimensions

In this experiment, we test the dimensionality reduc-
tion performance on datasets with moderate sizes. The
purpose is to learn the best projection direction by using
all the available data and evaluate the performance. For
each dataset and each cluster, we run the experiments by
alternatively generating 5 and 20 random pairs of must-
link and cannot-link constraints each based on class la-
bels. This end up with 2×k×5(20) pairs of constraints in
total for each dataset, where k is the number of clusters.
For easy reference, we refer to them as “5(20) pairs”
of constraints hereafter. We fix the subspace dimension
to be half of the original dimension. Table II shows the
evaluation result. On 5 out of 7 datasets, DSP achieves
the best F-scores. For the remaining 2 datasets, DSP still
shows satisfactory F-scores. Most importantly, when the
number of constraints is small (i.e. the 5 pairs case),
the performance of DSP is still robust and is better than
or similar to the performances of the two unsupervised
method PCA and LPP. This means that DSP does not
suffer from overfitting, unlike competing methods.

E. Various Subspace Dimensions

In this experiment, we evaluate the dimensionality
reduction techniques for various subspace dimensions.
Due to limited space, we show the results on the COIL-
20 database for 3D object recognition and the Multi-
ple Features dataset for handwritten digit recognition
only, in Figures 4 and 5 respectively. For each dataset
5/10/20/30 pairs of constraints per cluster are generated
following the last experiment. The reduced dimensions
range from 2 to 200. DSP significantly outperforms other
dimensionality reduction techniques for both datasets
under all experiment settings. The stable performance
of DSP given a few constraints and very low subspace
dimensionality is particularly impressive. It is interesting
to notice that although LPPSI and SLPP perform well
for the COIL-20 dataset, their performances on the digit
dataset are worse than the unsupervised LPP for low
dimensions and small number of constraint pairs. This
effect could be the result of overfitting due to few
training data.

F. Generalization

In this experiment, we evaluate how well DSP handles
new data points on four large scale datasets. For each
dataset, we do 5-fold cross validation. Four folds of
data are used for training, which includes generating
20 pairs of constraints and learning the best subspace
embedding. Then the one fold testing data points are
projected to the learned subspace for further clustering
evaluation. Table III shows the generalization perfor-
mance, compared to the clustering result of testing data
without dimensionality reduction. Because the subspace
dimensions are significantly smaller than the dimensions
of the full feature space, clustering in the subspace will
most of the time sacrifice accuracy for efficiency. With



TABLE II
F-SCORE ON HALF-SIZE FEATURE SPACES

unsupervised 20 pairs 5 pairs
PCA LPP SLPP LPPSI DSP SLPP LPPSI DSP

wine 0.9415 0.9541 0.9563 0.8198 0.9588 0.5962 0.7381 0.9322
vehicle 0.3070 0.3383 0.6024 0.4092 0.6042 0.3417 0.3306 0.3604

iris 0.8112 0.7716 0.8920 0.6982 0.9498 0.8471 0.6244 0.9405
balance 0.5075 0.4754 0.5789 0.5800 0.6068 0.5749 0.5845 0.5693

ionoshpere 0.6050 0.6050 0.7061 0.6205 0.7211 0.6108 0.5992 0.7145
glass 0.3950 0.3903 0.4032 0.4023 0.3833 0.3849 0.3058 0.4131
breast 0.9307 0.9307 0.9027 0.9352 0.9202 0.7478 0.9292 0.9288
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Fig. 4. Error Rate vs. Reduced Dimensions for 3D object recognition

TABLE III
F-SCORE FOR GENERALIZATION (r: SUBSPACE

DIMENSIONALITY)

full feature DSP-generalize(r)
Multiple Features 0.7101 0.9459(20)

isolet 0.5311 0.4740(20)
Pendigit 0.5502 0.5873(5)
COIL-20 0.5732 0.7872(20)

the help of constraints, for three out of four datasets,
the clustering accuracy after DSP reduction is in fact
being improved. This indicates that DSP is effective
in exploiting constraints and generalizing to new data
points.

V. CONCLUSION

We propose a novel semi-supervised dimensionality
reduction technique based on subspace projections in
both the kernel space and the original input space.
Projections in the two spaces interact and data are em-
bedded in an optimal low-dimensional subspace where
the intrinsic structure of data is more evident, and
thus eases the subsequent data analysis. Experiments on
multiple real datasets clearly demonstrate that significant
improvement in learning accuracy can be achieved after
our dimensionality reduction is employed with only a
few constraints.

VI. APPENDIX

We prove that in the null space of M, every pair of
must-linked data points collapse to a single point, and
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Fig. 5. Error Rate vs. Reduced Dimensions for handwritten digit recognition

thus the must-link constraints are maximally satisfied.

PROOF. Let (φ(xi), φ(x′i)) be the i-th pair of must-link
data points in the kernel space H. For any data point
φ(x) ∈ H, its embedding in the null space of M is
given by:

φ̂(x) = Pφ(x) (15)

Given P as defined in Eq. (4), we then have

φ̂(xi)− φ̂(x′i) = P(φ(xi)− φ(x′i))

= (I−U)(φ(xi)− φ(x′i))

= (φ(xi)− φ(x′i))−U(φ(xi)− φ(x′i))

= (φ(xi)− φ(x′i))− (φ(xi)− φ(x′i))

= 0 (16)

The identity U(φ(xi) − φ(x′i)) = (φ(xi) − φ(x′i))
follows from the fact that (φ(xi)−φ(x′i)) is in the row
space of M. Since P is not null, we get

φ̂(xi) = φ̂(x′i) (17)

Thus the two points are mapped to the same point.(q.e.d)
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