
Socialbots on Fire: Modeling Adversarial Behaviors of Socialbots

via Multi-Agent Hierarchical Reinforcement Learning

Thai Le

tql3@psu.edu

Penn State University, USA

Long Tran-Thanh

long.tran-thanh@warwick.ac.uk

University of Warwick, UK

Dongwon Lee

dongwon@psu.edu

Penn State University, USA

ABSTRACT

Socialbots are software-driven user accounts on social platforms,

acting autonomously (mimicking human behavior), with the aims

to influence the opinions of other users or spread targeted misinfor-

mation for particular goals. As socialbots undermine the ecosystem

of social platforms, they are often considered harmful. As such,

there have been several computational efforts to auto-detect the

socialbots. However, to our best knowledge, the adversarial nature
of these socialbots has not yet been studied. This begs a question

“can adversaries, controlling socialbots, exploit AI techniques to

their advantage?" To this question, we successfully demonstrate

that indeed it is possible for adversaries to exploit computational

learning mechanism such as reinforcement learning (RL) to maxi-

mize the influence of socialbots while avoiding being detected. We

first formulate the adversarial socialbot learning as a cooperative

game between two functional hierarchical RL agents. While one

agent curates a sequence of activities that can avoid the detection,

the other agent aims to maximize network influence by selectively

connecting with right users. Our proposed policy networks train

with a vast amount of synthetic graphs and generalize better than

baselines on unseen real-life graphs both in terms of maximizing

network influence (up to +18%) and sustainable stealthiness (up to

+40% undetectability) under a strong bot detector (with 90% detec-

tion accuracy). During inference, the complexity of our approach

scales linearly, independent of a network’s structure and the virality

of news. This makes our approach a practical adversarial attack

when deployed in a real-life setting.

CCS CONCEPTS

• Computing methodologies→ Sequential decision making.

KEYWORDS

socialbot, social bot, adversarial, reinforcement learning

ACM Reference Format:

Thai Le, Long Tran-Thanh, and Dongwon Lee. 2022. Socialbots on Fire:

Modeling Adversarial Behaviors of Socialbots via Multi-Agent Hierarchical

Reinforcement Learning. In Proceedings of the ACM Web Conference 2022
(WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3485447.3512215

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3512215

1 INTRODUCTION

Socialbots refer to automated user accounts on social platforms

that attempt to behave like real human accounts, often controlled

by either automatic software, human, or a combination of both–i.e.,

cyborgs [4]. Different from traditional spambots, which may not

have proper profiles or can be easily differentiated from regular ac-

counts, socialbots often mimic the profiles and behaviors of real-life

users by using a stolen profile picture or biography, building legiti-

mate followships, replying to others, etc. [4]. Socialbots are often

blamed for spreading divisive messages–e.g., hate speech, disinfor-

mation, and other low-credibility contents that have been shown to

widen political divides and distrust among both online and offline

communities [4, 20, 30]. To mitigate such harmful proliferation of

socialbots, therefore, there has been extensive research, most of

which focus on how to effectively detect them [10, 37, 54]. How-

ever, these works usually follow the cat-and-mouse game where

they passively wait for socialbot evasion to happen before they can

react and develop a suitable detector [8]. Instead of following such

a reactive scheme, however, proactively modeling socialbots and

their adversarial behaviors on social platforms can better advance

the next bot detection research.

In particular, we pose a question “Can socialbots exploit compu-

tational learningmechanism such as reinforcement learning to their

advantage?" To our best knowledge, adversarial nature of socialbots
has not yet been fully explored and studied. However, it is plau-

sible that adversaries who own a farm of socialbots operate their

socialbots according to certain strategies (or algorithms). Therefore,

proactively simulating such a computational learning mechanism

and understanding adversarial aspect of socialbots better would

greatly benefit future research on socialbot detection.

In general, a socialbot has two main objectives that are adversar-

ial in nature: (i) to facilitate mass propaganda propagation through

social networks and (ii) to evade and survive under socialbot detec-

tors. The first goal can be modeled as an NP-Hard influence maxi-
mization (IM) problem [25] where the bot needs to build up its net-

work of followers–i.e., seed users, overtime such that any new mes-
sages propagated from the bot through these users can effectively

spread out and influence many other people. Simultaneously, it also
needs to systematically constrain its online behaviors such that it

will not easily expose itself to socialbot detectors. Although the IM

problem has been widely studied by several works [3, 24, 25, 27],

they only focus on maximizing the network influence given a fixed
and static budget # of seed nodes (that is relatively small) and they

assume that every node is equally acquirable. However, these as-

sumptions are not practical in our context. Not only a socialbot

needs to continuously select the next best seed node or follower

over a long temporal horizon–i.e., potentially large budget of seed

nodes, it also needs to consider that gaining the followship from

https://doi.org/10.1145/3485447.3512215
https://doi.org/10.1145/3485447.3512215

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Thai Le, Long Tran-Thanh, and Dongwon Lee

a very influential actor–e.g., Elon Musk, is practically much more

challenging than from a normal user. At the same time, a social-

bot that optimizes its network of followers must also refrain from

making suspicious behaviors–e.g., constantly following others, that

can trigger the attention of bot detectors. Thus, learning how to

navigate a socialbot is a very practical yet challenging task with

two intertwined goals that cannot be separately optimized. Toward

this challenge, in this paper, we formulate the Adversarial Social-

bot Learning (ASL) problem and design a multi-agent hierarchical
reinforcement learning (HRL) framework to tackle it.

3Our main contributions are as follows.

• First, we formulate a novel ASL problem as an optimization

problem with constraints.

• Second, we propose a solution to the ASL problem by framing

it as a cooperative game of two HRL agents that represent two

distinctive functions of a socialbot, namely (i) selecting the next

best activity–e.g., tweet, retweet, reply, mention, and (ii) select-

ing the next best follower. We carefully design the RL agents

and exploit unsupervised graph representation learning to mini-

mize the potential computational cost resulted from a long time

horizon and a large graph structure.

• Third, we demonstrate that such RL agents can learn from syn-
thetic graphs yet generalize well on real unseen graphs. Specifi-
cally, our experiments on a real-life dataset show that the learned

socialbot outperforms baselines in terms of influence maximiza-

tion while sustaining its longevity by continuously evading a

strong black-box socialbot detector of 90% detection accuracy.

During inference, in addition, the complexity of our approach

scales linearly and is independent of a network’s structure and

the virality of news.

• Four, we release an environment under the Open AI’s gym [1]

library. This enables researchers to simulate various adversarial

behaviors of socialbots and develop novel bot detectors in a

proactive manner.

2 RELATEDWORK

2.1 Socialbots Detection

The majority of previous computational works on socialbots within

the last decade [2, 10, 37, 39, 42, 52, 54] primarily focus on devel-

oping computer models to effectively detect bots on social net-

works [4, 8]. These models are usually trained on a ground truth

dataset using supervised learning algorithms–e.g., Random Forest,

Decision Tree, SVM, to classify an individual social media account

into a binary label–i.e., bot or legitimate [4]. Moreover, these learn-

ing algorithms usually depend on either a set of statistical engi-

neered predictive features such as the number of followers, tweeting

frequency, etc. [5, 42, 54], or a deep learning network where the

features are automatically learned from unstructured data such as

an account’s description text. Even though there are many possible

features that can be used to detect socialbots, statistical features

that can be directly extracted from user metadata provided by offi-

cial APIs–e.g., Twitter API, are more practical due to their favorable

computational speed in practice [54]. In fact, many of the features

that are utilized by the popular socialbot detection API botometer
fall into this category. Moreover, we later also show that using

simple statistical features derived from user metadata can help

train a socialbot detector with around 90% prediction accuracy on

a hold-out test set (Sec. 3.1). Regardless of how a socialbot detector

extracts its predictive features, they are mainly designed following

a reactive schema where they learn how to detect socialbots after

they appear (thus a training dataset can be collected).

2.2 Adversarial Socialbot Learning

While previous works help us to understand better the detection
aspect of socialbots, the learning aspect of them has not been widely

studied [8]. Distinguished from learning how to detect socialbots

using a stationary snapshot of their features, ASL computationally

models the adversarial learning behaviors of socialbots over time.

To the best of our knowledge, relevant works on this task are lim-

ited to [7]. This work adopts an evolution optimization algorithm

to find different adversarial permutations from a fixed socialbot’

encoded activity sequence–e.g., “tweet→tweet→retweet→reply,...",

and examine if such permutations can help improve the detec-

tion accuracy of a bot detector. However, such permutations, even

though adversarial in nature, are just static snapshots of a socialbot

and do not tell a whole story on how the bot evolves. In other

words, we are still lacking a general computation framework that

models the temporal dynamics of socialbots and their adversarial

behaviors. Therefore, this paper aims to formally formulate their

behaviors as a Markov Decision Process (MDP) [21] and designs an

RL framework to train socialbots that can optimize their adversarial

goals on real-life networks.

We investigate two adversarial objectives of a socialbot: influenc-

ing people while evading socialbot detection. While the first one

can be modeled as an IM task on graph networks, traditional IM

algorithms–e.g.,[3, 25, 27], assume that the number of seed nodes

is relatively small and all nodes are equally acquirable, all of which

are not applicable in the socialbot context as previously described.

There have been also a few works–e.g., [33, 49], that utilizes RL to

IM task. Yet their scope is still limited to a single constraint on the

budget number of seeds. Influence maximization under a temporal

constraint–i.e., not to be detected lead to early termination in this

case, is a non-trivial problem.

3 PROBLEM FORMULATION

3.1 Social Network Environment

Network Representation and Influence Diffusion Model A

social network includes users, their interactions and how they

influence each other. We model this network as a directed graph

𝐺=(𝑉 , 𝐸). An edge between two users 𝑢, 𝑣∈𝑉 , denoted as (𝑢, 𝑣)∈𝐸,
means 𝑢 can have influence on 𝑣 . (𝑢, 𝑣) also illustrates a piece of

news can spread from 𝑢 to 𝑣–i.e, 𝑣 follows 𝑢 (thus 𝑢 influences 𝑣).

As there is no influence model that can perfectly reflect real-

world behaviors, to model the influence flow through 𝐺 , we adopt

Independence Cascade Model (ICM) [16, 17], which is the most com-

monly used in the context of a social network [22, 26, 34]. ICM

was originally proposed to model the “word-of-mouth” behaviors,

which resemble the information sharing phenomena online well. In

ICM, a node is either active or inactive. Once a node 𝑢 is activated,

it has a single opportunity to activate or influence its inactive neigh-

bors N(𝑢) with an uniform activation probability 𝑝 . At first, every
node is inactive except a set of seed nodes S. After that, as the

Socialbots on Fire: Modeling Adversarial Behaviors of Socialbots via Multi-Agent Hierarchical Reinforcement Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 1: Predictive features of the socialbot detector F .

Feature Description

#tweets # of tweets posted by the user

#replies # of replies posted by the user

#retweets # of retweets posted by the user

#avg.tweets average # tweets posted per timestep

#avg.replies average # replies posted per timestep

#avg.retweets average # retweets posted per timestep

#retweet.ratio #retweets/#tweets

#replies.ratio #replies/#tweets

#retweet.replies.ratio #retweets/#replies

#mentions.ratio # unique mentions posted per tweet

environment rolls out throughout a sequence of discrete timesteps,

the influence will propagate from S through the network by acti-

vating different nodes in 𝐺 following 𝐸 and 𝑝 . The process ends

when there is no additional activated nodes being activated [24, 32].

Hence 𝑝 is also the virality of news–i.e., how fast a piece of news

can travel through 𝐺 . We then use 𝐺=(𝑉 , 𝐸, 𝑝) to denote the social

network 𝐺 .

Let denote by 𝜎𝜎𝜎 (S,𝐺) the spread function that measures how

many nodes in𝐺 a piece of information–e.g., fake news, can spread

from S via the ICM model. Given a fixed network structure (𝑉 , 𝐸)
and the news virality 𝑝 , different S will result in different values

of 𝜎𝜎𝜎 (S,𝐺). Hence, selecting a good S is decisive in optimizing

the spread of influence on 𝐺 . However, choosing S to maximize

𝜎𝜎𝜎 (S,𝐺) has already been proven to be an NP-Hard problem [25].

Socialbots. A socialbot is then a vertex in𝐺 that attempts to mimic

human behaviors for various aims–e.g., spreading propaganda or

low-credible contents through𝐺 , [4, 44, 46]. It carries out a sequence

of activities A to simultaneously achieve two main objectives:

Obj. 1: Optimizing its influence over𝐺 by selectively collecting good
seed nodes–i.e., followers, S∈𝑉 , over time

Obj. 2: Evading bots detectors–i.e., not to be detected and removed

These two goals are often in tension in that improving Obj 1

typically hurts Obj 2 and vice versa. That is while having a good

network of followers S enables a socialbot to spread disinformation

to a large number of users at any time, having a high undetectability

helps it to sustain this advantage over a long period. As socialbots

are usually deployed in groups, and later coming socialbots can also

easily inherit a previously established network of followers S of a

current one. If a bot is detected and removed from𝐺 , not only it can

lose its followers S and expose itself to be used to develop stronger

detectors, it can also risk revealing the identity of other bots–e.g.,

by way of guilt-by-association [50]. This makes the sustainability

achieved through Obj 2 distinguishably important from previous

literature–e.g., [24, 25, 51], where the optimization of S plays a

more central role.

Relationship betweenA andS.A denotes the activity sequence–

i.e., the DNA of the bot [6].A includes four possible types of actions

to be made at every timestep 𝑡 , namely tweet, retweet, reply or men-
tion, and only the last three of which can directly interact with

others to expand S. Despite these actions are in the Twitter context,

other platforms also provide similar functions–e.g., tweet->post,

retweet->share, reply->comment, mention->tag on Facebook. In

practice, not every node requires an equal effort to convert to a

follower. For example, a bot needs to accumulate its reputability

over time and interact more frequently to have an influencer–e.g.,

Elon Musk, rather than a normal user to become its follower. Since

a real model underlining such observation is unknown, we model

it using a simple heuristic:

𝑔𝑄 (𝑢, 𝑡) = max(1, 𝑄 𝑓 (𝑢, 𝑡)) where

𝑓 (𝑢, 𝑡) ∼ Bernoulli(1 − 1 + |S𝑡 |
1 + |N (𝑢) |),

(1)

where 𝑔𝑄 (𝑢, 𝑡) with hyper-parameter 𝑄≥1, is the number of

times the socialbot is required by the environment to continuously

interact with an influencer 𝑢–i.e., high N(𝑢), for it to become a

follower at 𝑡 . Intuitively, a bot with a good reputation overtime–i.e.,

a high number of followers at the timestep 𝑡–i.e., |S𝑡 |, can influ-

ence others to follow itself more effortlessly than a newly created

bot. Overall, A encodes when and what type of interaction–i.e.,

retweet, reply or mention, to use to acquire a new follower 𝑠∈S, 𝑠
then decides the frequency of such interaction in A. Thus, A and

S is temporally co-dependent.

Socialbot Detection Model. Bot detectors are responsible for de-

tecting and removing socialbots from 𝐺 . Let F (A𝑡)∈{0, 1} denote
a model that predicts whether or not an account is a socialbot based

on its activity sequence up to the timestep 𝑡 (A𝑡). This sequence

of ordered activity is then usually represented as an unordered list
of statistical features such as number of replies, tweets per day,

by socialbot detectors [10, 37, 54]. In this paper, F extracts and

adopts several features (Table 1) from previous works for detection.

Most of the features are utilized by the popular bot detection API

Botometer [9]. We train F using the Random Forest [47] algorithm
with supervised learning on a publicly available dataset [36, 53] 1 of
nearly 15K Twitter accounts, half of which is labelled as socialbots.

This dataset is not exposed to the socialbots. Here we also assume

that F (·) is a black-box model–i.e., we do not have access to its

parameters. F achieves nearly 90% in F1 score on an unseen test

set following the standard 5-fold cross validation (train and test

with 80%/20% data). SinceA and S are co-dependent, we can easily

see that S also has effects on the detectability of a socialbot. Note

that to focus on the study of the adversarial aspect of socialbots,

we had to resort to a certain combination of account features and

the socialbot detection model. 90% in F1 score is also in line with

SOTA detectors on a similar set of features [37].

3.2 The ASL Problem and Objective Function

From the above analysis, this paper proposes to study the Adver-

sarial Socialbot Learning (ASL) problem to achieve both Obj 1 and
Obj 2. In other words, we aim to solve the following problem.

Problem: Adversarial Socialbot Learning (ASL) aims to develop an

automatic socialbot that can exercise adversarial behaviors against

a black-box bot detector F while at the same time maximizing its

influence on 𝐺 through a set of selective followers S.

1
https://botometer.osome.iu.edu/bot-repository/

https://botometer.osome.iu.edu/bot-repository/

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Thai Le, Long Tran-Thanh, and Dongwon Lee

Figure 1: An example of ACORN HRL framework. As the environment rolls out, AgentI (𝜋1) decides which type of activity

(T, R, A or M) to perform. Whenever an interactive action (R, A, M) is selected, AgentII (𝜋2) then selects a new follower. Since

the selected user 𝑢4 at 𝑡4 is an influencer, 𝜋2 needs perform not once but 𝑄=3 times of action “A" to acquire 𝑢4 (blue arrow).

Whenever |A| reaches an interval of 𝐾=7, the bot detector F (A𝑡) is triggered (red arrow).

Specifically, we formulate this task as an optimization problem

with the objective function as follows.

Objective Function: Given a black-box bot detection model

F and a social network environment what is characterized by

𝐺=(𝑉 , 𝐸, 𝑝), 𝐾 , 𝑄 , we want to optimize the objective function:

max

S𝑡 ,A𝑡

𝑅∗𝑅∗𝑅∗ = 𝜎𝜎𝜎 (S𝑇 ∗ ,𝐺) (1 +𝑇 ∗) subject to (2a)

𝑇 ∗ = min

𝑇 ∗

[
F (A𝑇 ∗) = 1 ∧ F (A𝑡) = 0

]
(2b)

∀ 1<𝑡<𝑇 ∗, |A𝑡 |mod𝐾=|A𝑇 ∗ |mod𝐾=0 (2c)

𝑔𝑄 (𝑢, 𝑡) =𝑚𝑎𝑥 (1, 𝑄 𝑓 (𝑢, 𝑡)) ∀ 1<𝑡<𝑇 ∗ (2d)

Socialbot detector F can run prediction on the socialbot every time

it performs a new activity. However, A𝑢 and |𝑉 | can potentially

be very large. Thus, we assume that F only runs detection every

time 𝐾 new activities is added to A (Eqn. 2b). This makes 𝑇 ∗ the
earliest interval timestep at which a socialbot is detected and re-

moved by F (Eqn. 2b,c). Since𝑅∗𝑅∗𝑅∗ ismonotonically increasing on both
𝑉≥𝜎𝜎𝜎 (S𝑏 ,𝐺)≥0 and𝑇 ∗≥1, to maximize𝑅∗𝑅∗𝑅∗, a socialbot cannot focus
only either on Obj 1 or Obj 2. In other words, Eqn. (2d) encourages

the socialbot to simultaneously optimize both objectives.

4 THE PROPOSED METHOD: ACORN

4.1 Markov Decision Process Formulation

The ASL problem can be formulated as an MDP process which

consists of a state set 𝑆 , an action set 𝐴, a transition function P,
a reward function 𝑅, a discount factor 𝛾 ∈ [0, 1] and the horizon

𝑇 . Since the space requirement for 𝐴 can be very large–i.e., 4|𝑉 |
for 4 possible activities and |𝑉 | possible seed nodes, especially on

a large network, this can make the task much more challenging

to optimize due to potential sparse reward problem. To overcome

this, we transformed this into a HRL framework of two functional

agents, AgentI and AgentII, with a global reward (Figure 1). We

call this ACORN (Adversarial soCialbOts leaRniNg) framework.

While AgentI is responsible for deciding which type of activity
among {tweet, retweet, reply, mention} to perform at each timestep

𝑡 , AgentII is mainly responsible for S–i.e., to select which follower

to accumulate, only when AgentI chooses to do so–i.e., retweet,

reply, mention. This reduces the overall space of 𝐴 to only |𝑉 |+4.
Since A and S are co-dependent (Sec. 3.1), the two agents need to

continuously cooperate to optimize both influence maximization

and undetectability. It is noted that the Markov assumption behind

this MDP is not violated because both influence function 𝜎𝜎𝜎 (·) and
detection probability F at time 𝑡 only depends on statistical snap-

shot of the two agents at 𝑡−1. This HRL task is then described in

detail as follows.

State. Following [12, 29, 35], we assume that the state space 𝑆 can

be factorized into bot-specific 𝑆DNA and network-specific 𝑆ENV, and

𝑠𝐼 ∈𝑆DNA, 𝑠𝐼 𝐼 ∈𝑆ENV, where 𝑠𝐼 , 𝑠𝐼 𝐼 is the state space of AgentI and
AgentII, respectively. Specifically, 𝑠𝐼𝑡 encodes (i) the number of fol-

lowers |𝑆 | of the bot and (ii) a snapshot ofA𝑡 at timestep 𝑡 . While 𝑠𝐼𝑡
can directly store the actualA𝑡 sequence, this potentially induces a

computational and space overhead especially when 𝑡 becomes very

large. Instead, we compact A𝑡 into a fixed vector summarizing the

frequency of each tweet, retweet, reply, and mention action up to 𝑡 .

This effectively limits the space complexity of 𝑠𝐼 ∈R5 to O(1). Sim-

ilarly, 𝑠𝐼 𝐼𝑡 ∈ R4+|𝑉 | (𝑘+1) comprises of (i) node2vec(𝐺) [19] which
encodes the structure of 𝐺 to |𝑉 | vectors of size 𝑘 , (ii) a statistical
snapshot of A𝑡 and (iii) information regarding S𝑡 , encoded as:

(1(𝑢∉S𝑡)
1 + |S𝑡 |

1 + |N (𝑢) |)
|𝑉 |
𝑢=0
∈ R |𝑉 | (3)

Previous works have often encoded the network structures ([15,

55]) via a parameterized Graph Neural Network (GCN) [28] as part

of the policy network. As this approach requires frequent parameter

updates during training, instead, we adopt node2vec(𝐺) as an alter-

native unsupervised method which requires the calculation only
once. While S𝑡 can be encoded as a one-hot vector (1(𝑢∉S𝑡)) |𝑉 |𝑢=0

,

we enrich it by multiplying it with the binary 𝑓 (𝑢, 𝑡) condition
1+|S𝑡 |

1+|N(𝑢) | (Sec. 3.1), which then results in Eq. (3). This enables Agen-

tII to select nodes accordingly with the current reputation of the

bot |S𝑡 |.

Socialbots on Fire: Modeling Adversarial Behaviors of Socialbots via Multi-Agent Hierarchical Reinforcement Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Figure 2: Examples of a real (Left) and synthetic (Right) news

propagation networks on Twitter with a similar star-like

shape structure.

Action and Policy. Similarly, we factor 𝐴 into two different ac-

tion spaces 𝑎𝐼 , 𝑎𝐼 𝐼 for AgentI and AgentII, respectively. 𝑎𝐼 ∈R4,
𝑎𝐼 𝐼 ∈R |𝑉 | are both encoded as one-hot vectors, representing one of

four available activities and one of potential followers, respectively.

We then have two policies 𝜋1=(𝑎𝐼 |𝑠𝐼), 𝜋2=(𝑎𝐼 𝐼 |𝑠𝐼 𝐼 , 𝑎𝐼) that control
AgentI and AgentII, respectively.

Reward. Even though we can directly reward the RL agents with

𝜎𝜎𝜎 (S𝑡 ,𝐺)≥1.0 at every timestep 𝑡≤𝑇 ∗, this calculation will incur

large computational cost, especially when 𝑇 ∗ becomes large. In-

stead, therefore, we design an accumulative reward function 𝑅 that

consists of a step reward and a delayed reward to incentivize RL

agents to maximize 𝑅𝑅𝑅∗ (Eqn. 2) as follows.

𝑅𝑅𝑅step (𝑡) = 𝜎𝜎𝜎 (S𝑡 \ S𝑡−1,𝐺)
𝑅𝑅𝑅
delayed

(𝑇 ∗) = 𝜎𝜎𝜎 (S𝑇 ∗ ,𝐺)
(4)

where 𝑇 ∗≤𝑇 is the interval timestep at which the bot is detected

and the episode is terminated. The step reward 𝑅𝑅𝑅step, which can be

efficiently computed, is themarginal gain on the network influence

given a new follower selected at 𝑡 . Using the step reward with a

discount factor, 𝛾step<1.0, helps avoid the sparse reward problem

and encourages good follower selection early during an episode.

Since 𝑅𝑅𝑅step ≥ 1.0, it also encourages the bot to survive against

bot detection longer–i.e., to maximize 𝑇 ∗. In other words, as long

as the socialbot survives–i.e., 𝑇 ∗ increases, in other to make new

friendship, it will be able to influence more people. However, since

𝜎𝜎𝜎 (·) is subadditive–i.e.,𝜎𝜎𝜎 ({𝑢},𝐺)+𝜎𝜎𝜎 ({𝑣},𝐺)≥𝜎𝜎𝜎 ({𝑢, 𝑣},𝐺) ∀ 𝑢, 𝑣∈𝑉 ,
we then introduce the delayed reward 𝑅𝑅𝑅

delayed
at the end of each

episode with a discounted factor 𝛾
delayed

<1.0 as a reward adjust-

ments for each node selection step.

4.2 Parameterization

A policy network 𝜋1 is a Multi-Layer Perceptron (MLP) followed by

a softmax function that projects 𝑠𝐼 to a probability distribution of 4

possible activities. We can then sample 𝑎𝐼 from such a distribution.

A policy network 𝜋2 utilizes Convolutional Neural Network [23]

(CNN) to efficiently extract useful spatial features from the stack of

representation vectors of all vertex 𝑢∈𝑉 calculated by node2vec(𝐺)
(Sec. 4.1), and MLP to extract features from the rest of the com-

ponents of 𝑠𝐼 𝐼 . The resulted vectors are then concatenated as the

final feature vector. Instead of directly projecting this feature on the

Figure 3:We generate synthetic networks that ensemble real

networks’ structures on the fly to train ACORN and test it

with real networks.

original action space of 𝑎𝐼 𝐼 using an MLP, we adopt the parametric-

action technique [14, 38] with invalid actions at each timestep 𝑡–i.e.,

already chosen node, being masked.

4.3 Learning Paradigm

Learning algorithm. We train 𝜋1, 𝜋2 using the actor-critic Prox-
imal Policy Optimization (PPO) algorithm [43]. It has a theoret-

ical guarantee and is known to be versatile in various scenar-

ios [15, 43, 45, 55]. The actor refers to 𝜋1 and 𝜋2, as described

above. Their critics share the same network structure but output a

single scalar value as the estimated accumulated reward at 𝑡 .

Learning on synthetic and evaluating on real networks. We

evaluate our method on real world data. To make our RL model

generalize well on unseen real networks (Figure 2, Left) with dif-

ferent possible configurations of 𝐺=(𝑉 , 𝐸), it is important to train

our model on a sufficient number of diverse scenarios–i.e., train-

ing graphs. However, collecting such a train dataset often requires

much time and efforts. Hence, we propose to train our model on

synthetic graphs, which can be efficiently generated on the fly dur-

ing the training [24]. To avoid distribution shifts between train and

test graphs, we first collect a seed dataset of several news propaga-
tion networks and use their statistical properties (𝑝𝑖𝑛𝑡𝑟𝑎, 𝑝𝑖𝑛𝑡𝑒𝑟) to

spontaneously generate a synthetic graph (Figure 2, Right) for each

training iteration. We describe this in detail in Section 5.

5 EXPERIMENT

5.1 Set-Up

Datasets. We collected a total of top-100 trending articles on Twit-

ter from January 2021 to April 2021 and their corresponding propa-

gation networks with a maximum of 1.5K nodes using the public

Hoaxy API
2
. All the downloaded data is free from user-identifiable

information. The majority of these articles are relevant to the events

surrounding the 2020 U.S. presidential election and the COVID-19

pandemic. We also share the same observation with previous lit-

erature [24, 41] such that retweet networks tend to have star-like

shapes. These networks have a high 𝑝𝑖𝑛𝑡𝑟𝑎 and a low 𝑝𝑖𝑛𝑡𝑒𝑟 value,

suggesting multiple separate star-shape communities with few con-

nections among them. Therefore, viral news usually originates from

a few very influential actors in social networks and quickly propa-

gates to their followers.

Training and Testing Set. Figure 3 illustrates how to utilize syn-

thetic data during training. Since we observe that our framework

2
https://rapidapi.com/truthy/api/hoaxy

https://rapidapi.com/truthy/api/hoaxy

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Thai Le, Long Tran-Thanh, and Dongwon Lee

Figure 4: Performance comparison of a single socialbot under bot detection constraint.

generalizes better when trained with more complex graphs–i.e.,

more edgeswith high intra-community (𝑝𝑖𝑛𝑡𝑟𝑎) and inter-community

(𝑝𝑖𝑛𝑡𝑒𝑟) edge probabilities, We first selected 10% of the collected real
networks with the highest 𝑝𝑖𝑛𝑡𝑟𝑎 and 𝑝𝑖𝑛𝑡𝑒𝑟 as initial seed graphs–
e.g., Figure 2, Left, to generate the training set and use the rest as

the test set. Then, during training, we used the average statistics

(𝑝𝑖𝑛𝑡𝑟𝑎, 𝑝𝑖𝑛𝑡𝑒𝑟 , # of communities and their sizes) of the seed graphs
to generate a stochastic, synthetic graph for each training episode of

a maximum 𝑇 timesteps–e.g., Figure 2, Right. These two statistics

are selected because they well capture the star-like shapes of a typ-

ical retweet network. Since the real activation probabilities 𝑝 of the

collected networks are unknown, we found that using a fixed high

𝑝 value during training achieves the best results. We then reported

the averaged results across 5 different random seeds on the remain-

ing 90 real test networks with varied 𝑝 values and on a much longer

horizon than 𝑇 . Note that this number of testing networks is much

larger andmore extensive than those of previous studies [24, 25, 51].

Baselines. Since there are no previous works that address the

ASL problem, we combined different approximation and heuristic

approaches for the IM task with the socialbot detector evasion

feature that is provided by learned AgentI as baselines:

• AgentI+C. This baseline extends the Cost Effective Lazy For-
ward (CELF) [31] and exploits the submodularity of the spread

function 𝜎𝜎𝜎 (·) to become the first substantial improvement over

the traditional Greedy method [25] in terms of computational

complexity. IM is a standard baseline in influence maximization

literature.

• AgentI+H. Since 𝐺 consists of several star-like communities,

we also used a heuristic approach Degree [3, 25] that always

selects the node with the largest out-degree that is available–i.e.,

user with the largest # of followers.

• AgentI*+C and AgentI*+H train the first-level agent inde-
pendently from the second-level agent and combined it with

CELF or the heuristic approach Degree, respectively. These

are introduced to examine the dependency between the trained

AgentI and AgentII

Since the Greedy approach does not scale well with a large number

of seeds, however, we excluded it from our experiments.

Models and Configurations. We used a fixed hyper-parameter

setting. During training, we set 𝐾←20, 𝑄←3,𝑇←60, 𝑝←0.8, and

𝛾step, 𝛾delayed←0.99. We refer the readers to the appendix for de-

tailed configurations for RL agents. We ran all experiments on the

machines with Ubuntu OS (v18.04), 20-Core Intel(R) Xeon(R) Silver

4114 CPU @ 2.20GHz, 93GB of RAM and a Titan Xp GPU 16GB. All

implementations are written in Python (v3.8) with Pytorch (v1.5.1).

5.2 Main Results

Network Influence Ratio. Figure 4 shows the network influence

ratio–i.e., network influence over total number of users, under a
bot detection environment given different number of budget seeds

|𝑆 | and 𝑝 values:

𝜎𝜎𝜎 (S,𝐺)/|𝑉 |≤1.0 (5)

A high network influence ratio requires both (i) efficient follow-

ship selection and (ii) efficient detection evasion strategy. Overall,

ACORN outperforms all baselines with different news virality (𝑝

values). However, ACORN underperforms when |𝑆 | is low–e.g.,
|𝑆 |=50 in Figure 4. This is because AgentII learns not to connect

with the most influential nodes early in the process. This can help

prevent disrupting the sequence A and lead to early detection,

especially when it gets closer to the next prediction interval of F .
The larger the 𝑝 value, the further–i.e., more hoops, a news can

propagate through 𝐺 . Hence, as 𝑝 increases–i.e., the more viral a

piece of news, utilizing the network structure to make new con-

nections is crucial and more effective than simply selecting the

most influential users. This is reflected in the inferior performance

of AgentI+H when compared with AgentI+C, ACORN in Figure

4, 𝑝=0.75. This means that ACORN is able to utilize the network

structured capture by node2vec and postpone short-term incentives–

i.e., makes friends with influential users, for the sake of long-term

rewards. Overall, Acorn also behaves more predictably than base-

lines in terms of the influence ratio’s deviation across several runs.

Survival Timesteps. We then evaluated if a trained socialbot can

survive even after collecting all followers. Table 2 shows that while

we train a socialbot with a finite horizon 𝑇=60, it can live on the

network for a much longer period during testing. However, other

baselines were detected very early. Since only three out of four

activities–i.e., tweet, retweet, reply, and mention, allow to collect

Socialbots on Fire: Modeling Adversarial Behaviors of Socialbots via Multi-Agent Hierarchical Reinforcement Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Figure 5: Empirical comparison of running time between CELF and AgentII (ACORN).

Figure 6: Insights on the learned policies.

Table 2: Total survival timesteps v.s. network influence ratio

after reaching |𝑆 |=|𝑉 |

𝑝 = 0.25 𝑝 = 0.50 𝑝 = 0.75

%↑ Steps↑ %↑ Steps↑ %↑ Steps↑
AgentI+H 0.63 ± 0.43 1.2K ± 1K 0.68 ± 0.36 1.2K ± 1K 0.73 ± 0.31 1.2K ± 1K

AgentI+C 0.73±0.41 1.5K±968 0.71±0.36 1.3K±1K 0.77±0.30 1.3K±1.1K
ACORN 0.99 ± 0.10 2.1K ± 254 0.99 ± 0.10 2.0K ± 276 0.99 ± 0.10 2.0K ± 305

new followers, it is natural that socialbots need to survive much

longer than |𝑉 | steps–e.g., around 2.0K in Table 2, to accumulate

all followers. This corresponds to 98%, 64%, and 56% of social-

bots surviving–i.e., not detected, after reaching |𝑆 |=𝑉 for Acorn,

AgentI+C and AgentI+H, respectively. Our trained socialbot can

also sustain much longer if we keep it going during testing, even

with different detection intervals 𝐾>20. This implies that AgentI

can generalize its adversarial activities against F toward unseen

real-life scenarios.

Dependency between RL Agents. The above results also demon-

strate the effects of co-training AgentI and AgentII. First, the

heuristic and CELF method when paired with the learned AgentI

(blue & green lines, Figure 4) performs much better than when

paired with an independently trained (without AgentII) AgentI

(yellow & black lines, Figure 4). This shows that AgentI, when

trained with AgentII, becomes more versatile and can help a social-

bot survive a much longer period of time, especially even when the

socialbot only uses a heuristic node selection. However, AgentI

performs the best when paired with AgentII. This shows that two

RL agents successfully learn to collaborate, not only to evade the

socialbot detection but also to effectively maximize its network in-

fluence. This further reflects the co-dependency between the roles

of A and S as analyzed in Sec. 3.1.

Computational Analysis. We compared the computational com-

plexity of AgentII specifically with the CELF algorithm during

inference. Even though CELF significantly improves from the tradi-

tionalGreedy [25] IM algorithmwith the computational complexity

of O(|𝑆 | |𝑉 |𝑚) [48] (assuming each call of 𝜎𝜎𝜎 takes O(𝑚) and only

one round of Monte Carlo simulation is needed), its computation

greatly depends on 𝜎𝜎𝜎 (·), the size of the graph and becomes only

computationally practical when |𝑆 | is small. This is also similar to

other traditional IM algorithms such as CELF++ [18], TIM [48], and

ASIM [13]. To illustrate, CELF takes much more time to compute

as |𝑆 | increases especially with large 𝑝–i.e., more nodes need to

be reached when computing 𝜎𝜎𝜎 (·) (Figure 5). However, with the

O(1) complexity of the forward pass through 𝜋2, AgentII is able

to scale linearly O(|𝑆 |) regardless of the network structure and the

virality of the news during inference. Even though our framework

requires to calculate the graph representation using node2vec, it
is specifically designed to be scalable to be able to process large

graphs [40] and we only need to run it once.

Insights on the Learned Policies.We summarized the node se-

lection strategies of all methods in Figure 6. We observed that both

heuristic and CELF selects very influential nodes with many follow-

ers (high out-degrees) very early. Alternatively, AgentII acquires

an array of normal users (low out-degrees) before connecting with

influential ones. This results in early detection and removal of the

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Thai Le, Long Tran-Thanh, and Dongwon Lee

Figure 7: Performance of multiple socialbots under bot detection constraint on a large network.

baselines and sustainable survival of our approach. This shows that

AgentII can learn to cope with the relationship constraint (Eqn.

(1)) between A and S imposed by the environment. Moreover, the

degrees of selected users by ACORN has a right long-tail distribu-
tion, which means that ACORN overall still tries to maximize its

network influence early in the process.

5.3 Multiple Socialbots Results

We have evaluated our approach on different real-life news propa-

gation graphs. These networks can be considered as sub-graphs of

a much larger social network. In practice, different sub-graphs can

represent different communities of special interests–e.g., politics,

COVID-19 news, or different characteristics–e.g., political orienta-

tion. Since socialbots usually target to influence a specific group of

users–e.g., anti-vaxxer, it is practical to deploy several bots work-

ing in tandem on different sub-graphs. To evaluate this scenario,

we aggregated all 90 test sub-graphs into a large network of 135K

nodes and used each learned socialbot for each sub-graph. Figure

7 shows that ACORN still outperforms other baselines especially

later in the time horizon. Moreover, ACORN can efficiently scale

to a real-life setting thanks to its linear running time and highly

parallel architecture.

6 DISCUSSION AND LIMITATION

Our contribution goes beyond our demonstration such that one can

train adversarial socialbots to effectively navigate real-life networks

using an HRL framework. We will also publish a multi-agent RL en-

vironment for the ASL task under the gym library [1]. This environ-

ment will facilitate researchers to test different RL agents, examine

and evaluate assumptions regarding the behaviors of socialbots, bot

detection models, and the underlying influence diffusion models

on synthetic and real-life news propagation networks. It remains

a possibility that our proposed framework could be deliberately

exploited to train and deploy socialbots to spread low-credibility

content on social networks without being detected. To reduce any

potential misuse of our work, we have also refrained from evalu-

ating our framework with an actual socialbot detector API such

as Botometer 3
. However, ultimately, such misuse can occur (as

much as the misuse of the latest AI techniques such as GAN or

GPT is unavoidable). Yet, we firmly believe that the benefits of our

3
https://botometer.osome.iu.edu/

framework in demonstrating the possibility of adversarial nature

of socialbots, and enabling researchers to understand and develop

better socialbot detection models far outweigh the possibility of

misuse for developing “smarter" socialbots. In fact, by learning and

simulating various adversarial behaviors of socialbots, we can now

analyze the weakness of the current detectors. Moreover, we can

also incorporate these adversarial behaviors to advance the devel-

opment of novel bot detection models in a proactive manner [4].

Time-wise, this gives us a great advantage over the traditional reac-
tive flow of developing socialbot detectors where researchers and

network administrators are always one step behind the malicious

bots developers [4].

One limitation of our current approach is that we only consid-

ered statistical features of a bot detector that are relevant to four

activities–i.e., tweet, retweet, reply, and mention (Table 1). While

these features help achieve 90% of detection accuracy in F1 score

on a real-life dataset, we hope to lay the foundation for further

works to consider more complex network and content-based fea-

tures [11, 36, 37, 54].

7 CONCLUSION AND FUTUREWORK

This paper proposes a novel adversarial socialbot learning (ASL)

problem where a socialbot needs to simultaneously maximize its

influence on social networks and minimize the detectability of a

strong black-box bot detector.We carefully designed and formulated

this task as a cooperative game between two functional hierarchical
reinforcement learning agents with a global reward. We demon-

strated that the learned socialbots can sustain their presence on

unseen real-life networks over a long period while outperforming

other baselines in terms of network influence. During inference, the

complexity of our approach also scales linearly with the number

of followers and is independent of a network’s structures and the

virality of the news. Our research is also the first step towards

developing more complex adversarial socialbot learning settings

where multiple socialbots can work together to obtain a common

goal [4]. By simulating the learning of these socialbots under vari-

ous realistic assumptions, we also hope to analyze their adversarial

behaviors to develop effective detection models against more ad-

vanced socialbots in the future.
4

4
The work was in part supported by NSF awards #1820609, #1940076, and #1909702

https://botometer.osome.iu.edu/

Socialbots on Fire: Modeling Adversarial Behaviors of Socialbots via Multi-Agent Hierarchical Reinforcement Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.

arXiv:arXiv:1606.01540

[2] Chiyu Cai, Linjing Li, and Daniel Zengi. 2017. Behavior enhanced deep bot

detection in social media. In 2017 IEEE International Conference on Intelligence
and Security Informatics (ISI). IEEE, 128–130.

[3] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in

social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. 199–208.

[4] Stefano Cresci. 2020. A decade of social bot detection. Commun. ACM 63, 10

(2020), 72–83.

[5] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and

Maurizio Tesconi. 2017. The paradigm-shift of social spambots: Evidence, theories,

and tools for the arms race. In Proceedings of the 26th international conference on
world wide web companion. 963–972.

[6] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and

Maurizio Tesconi. 2017. Social fingerprinting: detection of spambot groups

through DNA-inspired behavioral modeling. IEEE Transactions on Dependable
and Secure Computing 15, 4 (2017), 561–576.

[7] Stefano Cresci, Marinella Petrocchi, Angelo Spognardi, and Stefano Tognazzi.

2019. Better safe than sorry: An adversarial approach to improve social bot

detection. In Proceedings of the 10th ACM Conference on Web Science. 47–56.
[8] Stefano Cresci, Marinella Petrocchi, Angelo Spognardi, and Stefano Tognazzi.

2021. The coming age of adversarial social bot detection. First Monday (2021).

[9] Clayton Allen Davis, Onur Varol, Emilio Ferrara, Alessandro Flammini, and

Filippo Menczer. 2016. Botornot: A system to evaluate social bots. In Proceedings
of the 25th international conference companion on world wide web. 273–274.

[10] Guozhu Dong and Huan Liu. 2018. Feature engineering for machine learning and
data analytics. CRC Press.

[11] Phillip George Efthimion, Scott Payne, and Nicholas Proferes. 2018. Supervised

machine learning bot detection techniques to identify social twitter bots. SMU
Data Science Review 1, 2 (2018), 5.

[12] Carlos Florensa, Yan Duan, and Pieter Abbeel. 2017. Stochastic Neural Networks

for Hierarchical Reinforcement Learning. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017.

[13] Sainyam Galhotra, Akhil Arora, Srinivas Virinchi, and Shourya Roy. 2015. Asim:

A scalable algorithm for influence maximization under the independent cascade

model. In Proceedings of the 24th International Conference on World Wide Web.
35–36.

[14] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary

Kaden, Vivek Narayanan, Xiaohui Ye, Zhengxing Chen, and Scott Fujimoto. 2018.

Horizon: Facebook’s open source applied reinforcement learning platform. arXiv
preprint arXiv:1811.00260 (2018).

[15] Tarun Gogineni, Ziping Xu, Exequiel Punzalan, Runxuan Jiang, Joshua Kammer-

aad, Ambuj Tewari, and Paul Zimmerman. 2020. TorsionNet: A Reinforcement

Learning Approach to Sequential Conformer Search. In Advances in Neural Infor-
mation Processing Systems, Vol. 33.

[16] Jacob Goldenberg, Barak Libai, and Eitan Muller. 2001. Talk of the network: A

complex systems look at the underlying process of word-of-mouth. Marketing
letters 12, 3 (2001), 211–223.

[17] Jacob Goldenberg, Barak Libai, and Eitan Muller. 2001. Using complex systems

analysis to advance marketing theory development: Modeling heterogeneity

effects on new product growth through stochastic cellular automata. Academy
of Marketing Science Review 9, 3 (2001), 1–18.

[18] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. 2011. Celf++ optimizing the

greedy algorithm for influence maximization in social networks. In Proceedings
of the 20th international conference companion on World wide web. 47–48.

[19] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[20] Matthew Hindman and Vlad Barash. 2018. Disinformation, and influence cam-

paigns on twitter. Knight Foundation: George Washington University (2018).

[21] Ronald A Howard. 1960. Dynamic programming and markov processes. (1960).

[22] Siwar Jendoubi, Arnaud Martin, Ludovic Liétard, Hend Ben Hadji, and

Boutheina Ben Yaghlane. 2017. Two evidential data based models for influence

maximization in twitter. Knowledge-Based Systems 121 (2017), 58–70.
[23] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A Convolutional

Neural Network for Modelling Sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Baltimore, Maryland, 655–665. https:

//doi.org/10.3115/v1/P14-1062

[24] Harshavardhan Kamarthi, Priyesh Vijayan, Bryan Wilder, Balaraman Ravindran,

and Milind Tambe. 2020. Influence Maximization in Unknown Social Networks:

Learning Policies for Effective Graph Sampling. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (Auckland,
New Zealand) (AAMAS ’20). International Foundation for Autonomous Agents

and Multiagent Systems, Richland, SC, 575–583.

[25] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. 137–146.

[26] Masahiro Kimura and Kazumi Saito. 2006. Tractable models for information

diffusion in social networks. In European conference on principles of data mining
and knowledge discovery. Springer, 259–271.

[27] Hautahi Kingi, Li-An Daniel Wang, Tom Shafer, Minh Huynh, Mike Trinh, Aaron

Heuser, George Rochester, and Antonio Paredes. 2020. A numerical evaluation

of the accuracy of influence maximization algorithms. Social Network Analysis
and Mining 10, 1 (2020), 1–10.

[28] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[29] George Dimitri Konidaris and Andrew G Barto. 2007. Building Portable Options:

Skill Transfer in Reinforcement Learning.. In IJCAI, Vol. 7. 895–900.
[30] Thai Le, Suhang Wang, and Dongwon Lee. 2020. MALCOM: Generating Mali-

cious Comments to Attack Neural Fake News Detection Models. In 2020 IEEE
International Conference on Data Mining (ICDM). 282–291. https://doi.org/10.

1109/ICDM50108.2020.00037

[31] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.

In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. 420–429.

[32] Dexun Li, Meghna Lowalekar, and Pradeep Varakantham. 2021. CLAIM: Curricu-

lum Learning Policy for Influence Maximization in Unknown Social Networks.

arXiv preprint arXiv:2107.03603 (2021).
[33] Hui Li, Mengting Xu, Sourav S Bhowmick, Changsheng Sun, Zhongyuan Jiang,

and Jiangtao Cui. 2019. Disco: Influence maximization meets network embedding

and deep learning. arXiv preprint arXiv:1906.07378 (2019).
[34] Mei Li, XiangWang, Kai Gao, and Shanshan Zhang. 2017. A survey on information

diffusion in online social networks: Models and methods. Information 8, 4 (2017),

118.

[35] Siyuan Li, Rui Wang, Minxue Tang, and Chongjie Zhang. [n. d.]. Hierarchical

Reinforcement Learning with Advantage-Based Auxiliary Rewards. In Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada.

[36] Michele Mazza, Stefano Cresci, Marco Avvenuti, Walter Quattrociocchi, and

Maurizio Tesconi. 2019. Rtbust: Exploiting temporal patterns for botnet detection

on twitter. In Proceedings of the 10th ACM Conference on Web Science. 183–192.
[37] Guanyi Mou and Kyumin Lee. 2020. Malicious Bot Detection in Online Social Net-

works: Arming Handcrafted Features with Deep Learning. In Social Informatics.
220–236.

[38] OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-

mysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,

Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,

Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Sali-

mans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,

FilipWolski, and Susan Zhang. 2019. Dota 2 with Large Scale Deep Reinforcement

Learning. (2019). arXiv:1912.06680 https://arxiv.org/abs/1912.06680

[39] Jorge Rodríguez-Ruiz, Javier Israel Mata-Sánchez, Raul Monroy, Octavio Loyola-

Gonzalez, and Armando López-Cuevas. 2020. A one-class classification approach

for bot detection on twitter. Computers & Security 91 (2020), 101715.

[40] Ryan A Rossi, Rong Zhou, and Nesreen K Ahmed. 2018. Deep inductive graph

representation learning. IEEE Transactions on Knowledge and Data Engineering
32, 3 (2018), 438–452.

[41] Eldar Sadikov, Montserrat Medina, Jure Leskovec, and Hector Garcia-Molina.

2011. Correcting for missing data in information cascades. In Proceedings of the
fourth ACM international conference on Web search and data mining. 55–64.

[42] Mohsen Sayyadiharikandeh, Onur Varol, Kai-Cheng Yang, Alessandro Flammini,

and Filippo Menczer. 2020. Detection of novel social bots by ensembles of

specialized classifiers. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. 2725–2732.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[44] Chengcheng Shao, Giovanni Luca Ciampaglia, Onur Varol, Kai-Cheng Yang,

Alessandro Flammini, and Filippo Menczer. 2018. The spread of low-credibility

content by social bots. Nature communications 9, 1 (2018), 1–9.
[45] Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. 2021.

Autonomous Drone Racing with Deep Reinforcement Learning. arXiv preprint
arXiv:2103.08624 (2021).

[46] Venkatramanan S Subrahmanian, Amos Azaria, Skylar Durst, Vadim Kagan, Aram

Galstyan, Kristina Lerman, Linhong Zhu, Emilio Ferrara, Alessandro Flammini,

and Filippo Menczer. 2016. The DARPA Twitter bot challenge. Computer 49, 6
(2016), 38–46.

https://arxiv.org/abs/arXiv:1606.01540
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.1109/ICDM50108.2020.00037
https://doi.org/10.1109/ICDM50108.2020.00037
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Thai Le, Long Tran-Thanh, and Dongwon Lee

[47] Vladimir Svetnik, Andy Liaw, Christopher Tong, J Christopher Culberson,

Robert P Sheridan, and Bradley P Feuston. 2003. Random forest: a classification

and regression tool for compound classification and QSAR modeling. Journal of
chemical information and computer sciences 43, 6 (2003), 1947–1958.

[48] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization: Near-

optimal time complexity meets practical efficiency. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 75–86.

[49] Shan Tian, Songsong Mo, Liwei Wang, and Zhiyong Peng. 2020. Deep reinforce-

ment learning-based approach to tackle topic-aware influence maximization.

Data Science and Engineering 5, 1 (2020), 1–11.

[50] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. 2017. GANG: Detecting

fraudulent users in online social networks via guilt-by-association on directed

graphs. In 2017 IEEE International Conference on Data Mining (ICDM). IEEE,
465–474.

[51] Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. 2017. Online

Influence Maximization under Independent Cascade Model with Semi-Bandit

Feedback. In Advances in Neural Information Processing Systems, Vol. 30.
[52] Yuhao Wu, Yuzhou Fang, Shuaikang Shang, Jing Jin, Lai Wei, and Haizhou Wang.

2021. A novel framework for detecting social bots with deep neural networks

and active learning. Knowledge-Based Systems 211 (2021), 106525.
[53] Kai-Cheng Yang, Onur Varol, Clayton A Davis, Emilio Ferrara, Alessandro Flam-

mini, and Filippo Menczer. 2019. Arming the public with artificial intelligence

to counter social bots. Human Behavior and Emerging Technologies 1, 1 (2019),
48–61.

[54] Kai-Cheng Yang, Onur Varol, Pik-Mai Hui, and Filippo Menczer. 2020. Scalable

and generalizable social bot detection through data selection. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 34. 1096–1103.

[55] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi.

2020. Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement

Learning. In Advances in Neural Information Processing Systems, Vol. 33. 1621–
1632.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Socialbots Detection
	2.2 Adversarial Socialbot Learning

	3 Problem Formulation
	3.1 Social Network Environment
	3.2 The ASL Problem and Objective Function

	4 The Proposed Method: ACORN
	4.1 Markov Decision Process Formulation
	4.2 Parameterization
	4.3 Learning Paradigm

	5 Experiment
	5.1 Set-Up
	5.2 Main Results
	5.3 Multiple Socialbots Results

	6 Discussion and Limitation
	7 Conclusion and Future Work
	References

