
Do Language Models Plagiarize?
Jooyoung Lee
jfl5838@psu.edu

Penn State University
University Park, PA, USA

Thai Le
thaile@olemiss.edu

University of Mississippi
Oxford, MS, USA

Jinghui Chen
jzc5917@psu.edu

Penn State University
University Park, PA, USA

Dongwon Lee
dongwon@psu.edu

Penn State University
University Park, PA, USA

ABSTRACT
Past literature has illustrated that language models (LMs) often
memorize parts of training instances and reproduce them in natural
language generation (NLG) processes. However, it is unclear to what
extent LMs “reuse” a training corpus. For instance, models can gen-
erate paraphrased sentences that are contextually similar to training
samples. In this work, therefore, we study three types of plagiarism
(i.e., verbatim, paraphrase, and idea) among GPT-2 generated texts,
in comparison to its training data, and further analyze the plagiarism
patterns of fine-tuned LMs with domain-specific corpora which are
extensively used in practice. Our results suggest that (1) three types
of plagiarism widely exist in LMs beyond memorization, (2) both
size and decoding methods of LMs are strongly associated with the
degrees of plagiarism they exhibit, and (3) fine-tuned LMs’ plagia-
rism patterns vary based on their corpus similarity and homogeneity.
Given that a majority of LMs’ training data is scraped from the Web
without informing content owners, their reiteration of words, phrases,
and even core ideas from training sets into generated texts has eth-
ical implications. Their patterns are likely to exacerbate as both
the size of LMs and their training data increase, raising concerns
about indiscriminately pursuing larger models with larger training
corpora. Plagiarized content can also contain individuals’ personal
and sensitive information. These findings overall cast doubt on the
practicality of current LMs in mission-critical writing tasks and urge
more discussions around the observed phenomena. Data and source
code are available at https://github.com/Brit7777/LM-plagiarism.

CCS CONCEPTS
• Computing methodologies → Natural language generation.

KEYWORDS
Language Models, Natural Language Generation, Plagiarism

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/\@acmDOI

ACM Reference Format:
Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon Lee. 2023. Do Language
Models Plagiarize?. In Proceedings of the ACM Web Conference 2023 (WWW

’23), May 1–5, 2023, Austin, TX, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/\@acmDOI

1 INTRODUCTION
Language Models (LMs) have become core elements of Natural
Language Processing (NLP) solutions, excelling in a wide range of
tasks such as natural language generation (NLG), speech recogni-
tion, machine translation, and question answering. The development
of large-scale text corpora (generally scraped from the Web) has
enabled researchers to train increasingly large-scale LMs. Especially,
large-scale LMs have demonstrated unprecedented performance on
NLG such that LM-generated texts routinely show more novel and
interesting stories than human writings do [35], and the distinction
between machine-authored and human-written texts has become
non-trivial [52, 53]. As a result, there has been a significant increase
in the use of LMs in user-facing products and critical applications.

Concerning the fast-growing adoption of language technologies, it
is important to educate citizens and practitioners about the potential
ethical, social, and privacy harms of these LMs, as well as strategies
and techniques for preventing LMs from adversely impacting people.
A body of recent studies has attempted to identify such hazards by
examining LMs’ capabilities in generating biased and hateful content
[41], spreading misinformation [3], and violating users’ privacy [12].
Particularly, it was shown that machine-generated texts can include
individuals’ private information such as phone number and email
address due to LMs’ over-memorization of training samples [11].

Some may argue that, since one’s private information was publicly
available in the first place, it is not a problem for LMs to memorize
and emit it in the generated texts. Still, the current data collection
processes (for building training corpora) do not consider how that
particular piece of information has been originally released [9]. For
example, it is possible for malicious attackers to hack an individual’s
private data and intentionally post it online. While training LMs on
corpora explicitly intended for public use with creators’ consents is
ideal, it is challenging to achieve in practice.

Note that over-memorization can be perceived as a threat to the
authorship and originality of training instances, as training sets for
LMs are routinely downloaded from the Internet without the ex-
plicit approval of content owners [9]. This behavior is known as
plagiarism–i.e., the act of exploiting another person’s work or idea
without referencing the individual as its author [4]. As shown in



WWW ’23, May 1–5, 2023, Austin, TX, USA Lee et al.

Type Machine-Written Text Training Text

Verbatim
*** is the second amendment columnist for Breitbart news and host of

bullets with ***, a Breitbart news podcast. [...] (Author: GPT-2)
*** is the second amendment columnist for Breitbart news and host of

bullets with ***, a Breitbart news podcast. [...]

Paraphrase

Cardiovascular disease, diabetes and hypertension significantly increased
the risk of severe COVID-19, and cardiovascular disease increased the risk

of mortality. (Author: Cord19GPT)

For example, the presence of cardiovascular disease is associated with an
increased risk of death from COVID-19 [14] ; diabetes mellitus,

hypertension, and obesity are associated with a greater risk of severe
disease [15] [16] [17] [18].

Idea

A system for automatically creating a plurality of electronic documents
based on user behavior comprising: [...] and wherein the system allows a

user to choose an advertisement selected by the user for inclusion in at least
one of the plurality of electronic documents, the user further being enabled
to associate advertisement items with advertisements for the advertisement

selected by the user based at least in part on behavior of the user’s
associated advertisement items and providing the associated advertisement

items to the user, [...] . (Author: PatentGPT)

The method of claim 1, further comprising: monitoring an interaction of
the viewing user with the at least one of the plurality of news items; and

utilizing the interaction to select advertising for display to the viewing user.

Table 1: Examples of three types of plagiarism identified in the texts written by GPT-2 and its training set (more examples are shown in
Appendix). Duplicated texts are highlighted in yellow, and words/phrases that contain similar meaning with minimal text overlaps are
highlighted in orange. [...] indicates the texts omitted for brevity. Personally identifiable information (PII) was masked as ***.

Table 1, for instance, plagiarized content written by a machine may
contain not only explicit text overlap but also semantically similar
information. Existing memorization studies on LMs have focused
only on the memorized sequences that are identical to training se-
quences [12, 30, 59]. This motivates our main inquiry of this work:
To what extent (not limited to memorization) do LMs exploit phrases
or sentences from their training samples?

On the other hand, the fine-tuning paradigm is widely used in
LMs for downstream NLP tasks. Specifically, LMs are initially pre-
trained on a massive and diverse corpus and then fine-tuned using
a smaller task-specific dataset. This enables LMs to create texts in
specific domains such as poetry [16] and song lyrics [49]. These
tasks require creativity and authenticity, which LMs are prone to fail
in. Therefore, the generation outputs of LMs have great moral and
ethical implications. Despite increasing efforts to comprehend the
over-memorization of pre-trained LMs, to the best of our knowledge,
no prior literature has studied on the memorizing behavior of fine-
tuned LMs from both pre-training and fine-tuning corpora.

To fill this void of our understanding on the limits of LMs, in
this paper, we examine the plagiarizing behaviors of pre-trained
and fine-tuned LMs. Our study is guided by two research questions:
(RQ1) Do pre-trained LMs plagiarize? and (RQ2) Do fine-tuned
LMs plagiarize?. Specifically, we use OpenAI’s GPT-2 [44] for
studying these inquiries.1 We first construct a novel pipeline for
automated plagiarism detection and use it to identify three types of
plagiarism (i.e., verbatim, paraphrase, idea plagiarism) from pas-
sages generated by pre-trained GPT-2 with different combinations of
model sizes and decoding methods. For RQ2, three GPT-2 models
are fine-tuned using datasets in scholarly writing and legal domains,
which are later used for comparing plagiarism from pre-training and
fine-tuning corpora.

Our results demonstrate that machine-generated texts do plagia-
rize from training samples, across all three types of plagiarism. We
discover three attributes that impact LMs’ plagiarism: 1) model
size: larger models plagiarize more from a training set than smaller

1We chose GPT-2 (instead of more recent LMs such as GPT-3) as it is the latest LM
whose replicated training corpus is available. Also, GPT-2 is very popular, ranked as
one of the most downloaded LMs from Hugging Face.

models; 2) decoding methods: decoding the outputs after limiting
the output space via top-p and top-k strategies are positively related
to heightened plagiarism levels as opposed to a raw vocabulary
distribution; 3) corpus similarity and homogeneity: a higher corpus
similarity level across pre-training and fine-tuning corpora, as well
as within fine-tuning corpora, enhances the degree of plagiarism for
a fine-tuned model.

In summary, our work makes the following contributions:

• By leveraging a BERT-based classifier together with Named
Entity Recognition (NER) on top of Sanchez-Perez et al. [48]’s
plagiarism detection model, we empirically highlight that LMs
do more than copying and pasting texts in a training set; it further
rephrases sentences or mimics ideas from other writings without
properly crediting the source.

• To the best of our knowledge, this is the first work to systemati-
cally study the plagiarizing behavior of fine-tuned LMs. Specif-
ically, we find that restricting intra- and inter-corpus similarity
can considerably decrease the rate of plagiarism.

• We provide a deeper understanding of the factors that influence
LMs’ plagiarizing patterns such as model size, decoding strate-
gies, and a fine-tuning corpus. Our results add value to the ongo-
ing discussion around memorization in modern LMs and pave
the way for future research into designing robust, reliable, and
responsible LMs.

2 RELATED WORK
2.1 Memorization in LMs
There is a growing body of literature that aims to study the memoriza-
tion of neural LMs by recovering texts in the training corpus [31, 47]
or extracting artificially injected canaries [37, 58]. Carlini et al. [12]
and Brown et al. [9] emphasized that data memorization can in-
tentionally or unintentionally lead to sensitive information leakage
from a model’s training set. Meanwhile, recent studies [25, 30] have
shown that training data of LMs tend to contain a large number of
near-duplicates, and overlapping phrases included in near-duplicates
significantly account for memorized text sequences. In order to dis-
tinguish rare but memorized texts from trivial examples, Zhang et al.



Do Language Models Plagiarize? WWW ’23, May 1–5, 2023, Austin, TX, USA

[59] presented a notion of counterfactual memorization which mea-
sures a difference in the expected performance of two models trained
with or without a particular training sample.

Still, none of these works have explored beyond text overlap.
The most relevant research to ours is McCoy et al. [35], which
analyzed the novelty of machine-generated texts. Although authors
found 1,000 word-long duplicated passages from a training set,
they concluded that neural LMs can integrate familiar parts into
novel content, rather than simply copying training samples. However,
because they did not directly compare identified novel content with
training samples, the level of plagiarism is uncertain.

2.2 Automatic Plagiarism Detection
Automated extrinsic plagiarism detection, in general, can be divided
into two subtasks: document retrieval and text alignment. While doc-
ument retrieval focuses on fetching all documents that potentially
have plagiarized an existing document, the text alignment subtask
detects the location and content of plagiarized texts. Alzahrani [6]
retrieved candidate documents that share exactly copied sequences
and computed the similarity between overlapping 8-grams. There
are diverse ways to measure text similarity with segmented docu-
ment pairs. For example, Küppers and Conrad [27] calculated the
Dice coefficient between 250 character chunks of passage pairs, and
Shrestha and Solorio [50] implemented the Jaccard similarity with
n-grams.

More recently, there has been continuous efforts in incorporating
word embedding and advanced machine learning or deep learning
models for plagiarism detection. Agarwal et al. [2] used Convolu-
tional Neural Network (CNN) to obtain the local region information
from n-grams and applied Recurrent Neural Network (RNN) to cap-
ture the long-term dependency information. Similarly, Altheneyan
and Menai [5] viewed the task as a classification problem and de-
veloped a support vector machine (SVM) classifier using several
lexical, syntactic, and semantic features. In our proposed method, we
combine conventional similarity measurements and state-of-the-art
models to maximize the detection performance.

3 PLAGIARISM: DEFINITION AND
DETECTION

3.1 Taxonomy of Plagiarism
Plagiarism occurs when any content including text, source code, or
audio-visual content is reused without permission or citation from
an author of the original work [14, 40]. It has been a longstand-
ing problem, especially in educational and research institutions or
publishers, given the availability of digital artifacts [13]. Plagiarism
can severely damage academic integrity and even hurt individuals’
reputation and morality [18]. To detect such activities, it is necessary
to have extensive knowledge about plagiarism forms and classes.

In this work, we focus on the three most commonly studied pla-
giarism types: verbatim plagiarism, paraphrase plagiarism, and idea
plagiarism. Verbatim plagiarism, which can be considered as the
most naive approach, is to directly copy segments of others’ docu-
ments and paste them into their writings [17]. To make plagiarism
less obvious, one may incorporate paraphrase plagiarism by replac-
ing original words with synonyms or rearrange word orders [7].
Similarly, back translation, using two independent translators to

translate sentences back and forth, is common in generating para-
phrases. Lastly, reuse of the core idea from the original content, also
known as idea plagiarism, is a challenging case for an automatic
detection due to limited lexical and syntactic similarities. Hence,
existing literature (e.g., Gupta et al. [21], Vani and Gupta [54]) spec-
ified the task to capture whether a document embeds a summary of
another document. While paraphrase plagiarism targets sentence-
to-sentence transformations, idea plagiarism reads a chunk of the
content and condenses its main information into fewer sentences
(or vice versa). In essence, in this work, we adopt the following
definition of three plagiarism types:
• Verbatim plagiarism: exact copies of words or phrases without

transformation.
• Paraphrase plagiarism: synonymous substitution, word reorder-

ing, and/or back translation.
• Idea plagiarism: representation of core content in an elongated

form.

3.2 Automatic Detection of Plagiarism
In this section, we introduce a two-step approach for automated
plagiarism detection. Suppose we have 𝑛 documents in a corpus
𝐷={𝑑1, 𝑑2, ... 𝑑𝑛} and a query document 𝑑𝑞 . The goal is to identify
a pair of “plagiarized" text segments (𝑠1, 𝑠2) such that 𝑠1 (resp. 𝑠2) is
a text segment within a document 𝑑𝑖 ∈ 𝐷 (resp. 𝑑𝑞).

Step 1 (Finding Top-𝑛′ Candidate Documents): First, for the
given query document 𝑑𝑞 , we aim to quickly narrow down to top-𝑛′

documents (out of 𝑛 documents, where 𝑛′ ≪ 𝑛) which are likely to
contain plagiarized pieces of texts. To do this, we utilize a document
similarity score as a proxy for plagiarism. Since recent LMs are
generally trained on gigantic corpora, it is non-trivial to store them
locally and compute a pair-wise document similarity. Hence, we
implement a search engine using Elasticsearch2, an open-source
search engine built on Apache Lucene that provides a distributed
RESTful search service with a fast response time. After storing
the entire training documents 𝐷 in Elasticsearch, using a machine-
generated document as the query document 𝑑𝑞 , we retrieve top-𝑛′

most-similar documents. Elasticsearch utilizes the Okapi-BM25
algorithm [46], a popular bag-of-words ranking function, by default.
We used 𝑛′ = 10 in experiments for the sake of time efficiency.3

Step 2 (Finding Plagiarized Text Pairs and Plagiarism Type):
Next, using the identified 𝑛′ candidates {𝑑1, 𝑑2, ..., 𝑑𝑛′} for the query
document 𝑑𝑞 , we aim to find plagiarized text pairs (𝑠1, 𝑠2) such that
𝑠2 is one of three types of plagiarism against 𝑠1. For this task, we
exploit text alignment algorithms that locate and extract most-similar
contiguous text sequences between two given documents. Such text
alignment algorithms are applicable to various tasks such as text-
reuse detection [51] and translation alignment [33]. In particular,
we employ the improved version of the winning method at the
plagiarism detection competition of PAN 2014.4 Following, we

2https://www.elastic.co/elasticsearch/
3We performed a post-hoc analysis with a smaller (𝑛′ = 5) and a larger value (𝑛′ = 30)
of 𝑛′ using GPT-2 xl to gauge its potential effects on identified plagiarism rates. The
results showed a marginal difference (e.g., 1.46% (𝑛′ = 5) vs. 1.54% (𝑛′ = 30) for
temperature setting), indicating that the choice of the 𝑛′ value does not drastically
influence our findings.
4https://pan.webis.de/clef14/pan14-web/text-alignment.html



WWW ’23, May 1–5, 2023, Austin, TX, USA Lee et al.

Scores
PanDataset GptPlagiarismDataset

Verbatim Paraphrase Idea Verbatim Paraphrase Idea

Precision 0.995 1.00 1.00 0.96 0.846 0.99
Recall 0.986 0.723 0.412 0.87 0.785 0.3

Table 2: Evaluation results of our plagiarism detection pipeline.
For PanDataset, we perform the evaluation in a binary clas-
sification setting (e.g., verbatim plagiarism vs. no plagiarism).
Since GptPlagiarismDataset does not take into account docu-
ment pairs without plagiarism, we adopt a multi-nomial classi-
fication setting (e.g., verbatim plagiarism vs. paraphrase/idea
plagiarism).

explain details on Sanchez-Perez et al. [48] and our improvement
strategies.

Current Approach (Sanchez-Perez et al. [48]). Their methods con-
sist of five steps which include (1) text-preprocessing (lower-casing
all characters, tokenizing, and stemming); (2) obfuscation type iden-
tification (verbatim/random/translation/summary obfuscation); (3)
seeding (deconstructing long passages into smaller segments and
finding candidate pairs through sentence-level similarity measure-
ment given two documents); (4) extension (forming larger text frag-
ments that are similar via clustering); and (5) filtering (removing
overlapping and short plagiarized fragments). In summary, they trans-
form the suspicious and source sentences as term frequency–inverse
document frequency vector weights and then calculate the similarity
between the sentence pairs using the dice coefficient and cosine
measure. Adaptive parameter selection is achieved by testing two
settings recursively for the summary obfuscation corpus and the
other three corpora.

Our Improvements. To verify the effectiveness of Sanchez-Perez
et al. [48] on our corpus, we manually inspected 200 plagiarism
detection results. For a fair comparison, the number of sentence pairs
in each category (none/verbatim/paraphrase/idea plagiarism) was
equally distributed. Our evaluation revealed that Sanchez-Perez et al.
[48] induces more false positives than their reported performance,
specifically in detecting the paraphrase type plagiarism (0.51 in
precision). It resulted from the model’s tendency of labeling near-
duplicates with one character difference as paraphrases (should be
the “verbatim" plagiarism type) and its inability to distinguish a
minor entity-level discrepancy such as numerical values or dates. To
minimize such errors, after Sanchez-Perez et al. [48] retrieves all
paraphrased text segments, we post-process segments by chunking
them into sentences with NLTK5’s sentence tokenizer and apply a
RoBERTa-based paraphrase identification model [38]6 and Named-
Entity Recognition (NER)7 as additional validators. Specifically,
when there is at least one sentence pair whose probability score
(from the paraphrase detection model) ranges from 0.5 to 0.998

and have the exactly matching set of entities, we ultimately accept

5https://www.nltk.org
6The RoBERTa classifier has achieved 91.17% accuracy on the evaluation set from the
MSRP corpus (https://www.microsoft.com/en-us/download/details.aspx?id=52398).
7We use SpaCy library (https://spacy.io).
8We specified 0.99 as the upper bound to avoid near-duplicate pairs.

the plagiarism result by Sanchez-Perez et al. [48]. This additional
restriction resulted in the following precision scores: 0.92 for no
plagiarism, 1.0 for verbatim type, 0.88 for paraphrase type, and 0.62
for idea type. To gauge both precision and recall, we utilize two
additional labeled datasets, PanDataset and GptPlagiarismDataset
(refer to Appendix A for more details on datasets). Both precision
and recall scores of each label are reported in Table 2. Note that at
the end, our plagiarism detection pipeline has high precisions at the
cost of low recalls, implying that the number of plagiarism cases
we report subsequently is only a “lower-bound" estimate of plagia-
rism rates that actually exist. For subsequent analyses, we utilize
two hyperparameters: (1) the minimum character count of common
substrings between the two documents for verbatim plagiarism is set
to 256; (2) the minimum character count permitted on either side of
a plagiarism case is set to 150. These thresholds are much stricter
than minimum 50 tokens (i.e., on average 127 characters) employed
by existing works [10, 30]. Again, this ensures that our following
report on RQ1 and RQ2 is the “lower-bound" estimate of plagiarism
frequencies.

4 RQ1: DO PRE-TRAINED LMS PLAGIARIZE?
4.1 Experimental Setup
Dataset. GPT-2 is pre-trained on WebText, containing over 8 million
documents retrieved from 45 million Reddit links. Since OpenAI has
not publicly released WebText, we use OpenWebText which is an
open-source recreation of the WebText corpus.9 It has been reliably
used by prior literature [25, 34].

Model. GPT-2 is an auto-regressive language model predicting one
token at a time in a left-to-right fashion. That is, the probability dis-
tribution of a word sequence can be calculated through the product
of conditional next word distributions. In response to an arbitrary
prompt, GPT-2 can adapt to its style and content and generate artifi-
cial texts. GPT-2 comes in 4 different sizes — small, medium, large,
and xl, with 124M, 355M, 774M, and 1.5B parameters, respectively.
We utilize all of them for analyses.

Text Generation. Given that GPT-2 relies on the probability distri-
bution when generating word-tokens, there exist various decoding
methods which are well known to be critical for performance in
text generation [24]. We primarily consider the following decoding
algorithms:
• Temperature [1]: control the randomness of predictions by divid-

ing the logits by t before applying softmax
• Top-k [19]: filter the k most likely next words and redistribute

the probability mass
• Top-p [22]: choose from the smallest possible set of words whose

cumulative probability exceeds the probability p
It is reported that increasing parameter values (t, k, p) can notably

improve the novelty of machine-generated texts but may also deteri-
orate their quality sides [35]. Conversely, smaller parameter values
tend to yield dull and repetitive sentences [22].

Considering the difficulties in hyper-parameter tuning that can
confidently guarantee high-quality machine-authored texts, we use
off-the-shelf GPT-2 Output Dataset10 provided by OpenAI. This

9https://skylion007.github.io/OpenWebTextCorpus/
10https://github.com/openai/gpt-2-output-dataset



Do Language Models Plagiarize? WWW ’23, May 1–5, 2023, Austin, TX, USA

Figure 1: Document percentage w.r.t. three plagiarism types
from pre-training data

dataset has been reliably used by Kushnareva et al. [28] and Wolff
and Wolff [57] for neural text detection. Specifically, It contains
250,000 texts generated by four versions of the GPT-2 model with
aforementioned decoding approaches. Owners of the repository have
informed us that they used a ‘<|endoftext|>’ token as a prompt and
set t=1, k=40, 0.8<p<1.11. In total, there are 12 (i.e., 4 model size * 3
decoding methods) combinations, and we analyze 10,000 documents
in each combination.

4.2 Results
We discover that pre-trained GPT-2 families do plagiarize from
the OpenWebText. Figure 1 illustrates the percentage of unique
machine-written documents regarding three plagiarism types based
on different model sizes and decoding strategies12. Consistent with
[12, 32], the larger the model size became, the higher occurrences
of plagiarism were observed when using temperature sampling. The
general trend still holds when GPT-2’s word token is sampled with
top-k and top-p truncation except for the xl model size. However,
interestingly, plagiarism frequencies were the highest when GPT-2
large models were used, not xl. We also find that decoding methods
affect models’ plagiarism. More precisely, top-k and top-p sampling
are more strongly associated with plagiarism than decoding with
temperature regardless of the model size. We conjecture that this
discrepancy is due to the fact that top-k and top-p decoding methods
disregard less probable tokens unlike random sampling, which may
push models to choose a memorized one as a next token.

4.3 Qualitative Examination of Plagiarized Texts
Lengths and Occurrences. Motivated by prior memorization stud-
ies [10, 30], we inspect lengths and occurrences of texts that are
associated with verbatim plagiarism. We find that the median length
of memorized texts is 483 characters, and the longest texts contain
5,920 characters. In order to efficiently count the occurrences of pla-
giarized strings within OpenWebText, we utilize the established Elas-
ticsearch pipeline, which includes setting plagiarized texts as search

11Equivalent to existing literature [15, 35], we only report results of these specific
hyperparameters because they were recommended by GPT-2 creators [44] Also, our
findings on the decoding methods were validated by additional experiments with more
diverse parameter values.
12Please note that sentences with proper quotation marks within identified plagiarism
cases were excluded from the analyses, as they do not constitute plagiarism.

Figure 2: Number of unique PII-exposing substrings associated
with plagiarism categories

queries and retrieving documents that embed provided texts.13 We
find that some memorized sequences are from highly duplicated
texts throughout the training corpus: the newsletter sign-up text 14

appeared at most 9,978 times and was memorized. Still, there exist
many instances where models memorize without seeing them more
than two times. While the median of occurrences for memorized
texts is 6, sequences related to paraphrase or idea plagiarism are
prone to not appear at all from training samples (median = 0).

Inclusion of Sensitive Information. We now turn our attention
to whether sequences associated with three plagiarism types con-
tain individuals’ personal or sensitive data. To achieve this, we
use Microsoft’s Presidio analyzer,15 a Python toolkit for person-
ally identifiable information (PII) entity detection (e.g., credit card
information, email address, phone number). There are a total of
1,193 unique text sequences (verbatim: 388, paraphrase: 507, and
idea: 298) plagiarized by pre-trained GPT-2. We set a confidence
threshold to 0.7. A total number of plagiarized documents that reveal
PII entities is shown in Figure 2. Of 1,193 plagiarized sequences,
nearly 28% include at least one element of location information and
a person’s full name. Although none of highly sensitive information
(e.g., driver license number, credit card information, bank number,
social security number, and IP address) is revealed, the results show
a possibility of machine-generated texts disseminating personal data
such as phone number and email address through all three types of
plagiarism.

5 RQ2: DO FINE-TUNED LMS PLAGIARIZE?
5.1 Experimental Setup
Dataset. We choose public English datasets related to scholarly
and legal writings because plagiarism is deemed more sensitive and
intolerable in these domains [42]. Three datasets are:
• ArxivAbstract: includes 250,000 randomly selected abstracts on

arxiv.org, from the start of the site in 1993 to the end of 2019 [20].
It covers a wide range of disciplines (e.g., Physics, Computer
Science, Economics).

• Cord-19: consists of 500,000 scholarly articles about the COVID-
19 virus [55]. Medicine (55%), Biology (31%), and Chemistry

13By default, Elasticsearch does not allow searches to return more than the top 10,000
matching hits.
14“newsletter sign up continue reading the main story please verify you’re not a robot
by clicking the box. invalid email address. please re-enter...”
15https://microsoft.github.io/presidio/analyzer/



WWW ’23, May 1–5, 2023, Austin, TX, USA Lee et al.

Model Decoding
Plagiarism from Pre-Training Data Plagiarism from Fine-Tuning Data

Verbatim Paraphrase Idea Verbatim Paraphrase Idea

Pre-trained
GPT

temp 47 (0.47%) 16 (0.16%) 5 (0.05%)
N/Atop-k 65 (0.65%) 32 (0.32%) 38 (0.38%)

top-p 70 (0.7%) 32 (0.32%) 15 (0.15%)

Patent
GPT

temp 0 (0%) 36 (0.36%) 21 (0.21%) 0 (0%) 32 (0.32%) 17 (0.17%)
top-k 0 (0%) 171 (1.71%) 161 (1.61%) 0 (0%) 2 (0.02%) 0 (0%)
top-p 0 (0%) 94 (0.94%) 130 (1.3%) 0 (0%) 3 (0.03%) 0 (0%)

Cord19
GPT

temp 0 (0%) 6 (0.06%) 6 (0.06%) 43 (0.43%) 90 (0.9%) 42 (0.42%)
top-k 0 (0%) 79 (0.79%) 122 (1.22%) 46 (0.46%) 548 (5.48%) 485 (4.85%)
top-p 2 (0.02%) 57 (0.57%) 79 (0.79%) 72 (0.72%) 388 (3.88%) 228 (2.28%)

ArxivAbstract
GPT

temp 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (0.03%) 0 (0%)
top-k 0 (0%) 0 (0%) 1 (0.01%) 0 (0%) 0 (0%) 0 (0%)
top-p 0 (0%) 2 (0.02%) 0 (0%) 0 (0%) 2 (0.02%) 0 (0%)

Table 3: Number (%) of machine-written documents w.r.t. three plagiarism types from pre-training & fine-tuning data. Blue represents
the pre-trained model, whereas pink represents the fine-trained model. in A total number of documents we generated for each model
and decoding methods is 10,000.

(3%) are primary domains of this corpus. For fine-tuning pur-
poses, we randomly sample 200,000 documents.16

• PatentClaim: is provided by Lee and Hsiang [29] and has 277,947
patent claims in total.

Model. Using these datasets, we fine-tune three independent GPT-2
small models17 and denote them as ArXivAbstractGPT, Cord19GPT,
and PatentGPT, respectively. The details on training configurations
can be found in Appendix B.

Text Generation. For three fine-tuned models, we manually create
10,000 machine-generated texts using the same prompt and parame-
ter settings as GPT-2 Output Dataset.

5.2 Results
We compare plagiarizing behaviors of three fine-tuned models using
both pre-training (OpenWebText) and fine-tuning datasets (Patent-
Claim, Cord-19, ArxivAbstract) in Table 3. Our findings show that
fine-tuning significantly reduces verbatim plagiarism cases from
OpenWebText. This observation aligns with GPT-2’s outstanding
adaptability to the writing styles of a new corpus. Yet, not all fine-
tuned models are plagiarism-free; for PatentGPT and Cord19GPT,
the remaining plagiarism types regarding OpenWebText occurred
more frequently than the pre-trained GPT. Meanwhile, ArxivAb-
stractGPT barely plagiarized texts from OpenWebText. Interestingly,
models’ plagiarism behaviors change when we compare their gener-
ated texts against the fine-tuning samples. Cord19GPT was strongly
affiliated with plagiarism, whereas the other two models were not.

These results suggest that, although three models are fine-tuned in
a similar setting (regarding dataset size and training duration), their
patterns of plagiarism vary. We hypothesize that there are external
factors that affect models’ plagiarism. For example, if fine-tuning
and pre-training corpora have multiple similar or duplicated content,
the fine-tuned model would have been immensely exposed to it and

16Since most articles in CordD-19 exceed the length of 1,024 tokens, we only consider
the first five paragraphs starting from the ‘Introduction’ section.
17Due to constraints of computing resource, we only fine-tune the GPT-2 small variation.

Figure 3: Perplexity (left) and similarity scores (right) of training
data. Plagiarism rate represents the average percentage of all
plagiarism categories using the three decoding methods.

may have started to remember it. Lee et al. [30] has shown a positive
relationship between memorized sequences and their frequencies
in a training set. Similarly, it is also possible that over-exposure
to particular texts may have been resulted from similar documents
within fine-tuning data. Next, we analyze a corpus similarity between
fine-tuning data and pre-training data and a homogeneity of fine-
tuning data in Section 6 to verify our hypotheses.

6 PLAGIARISM V.S. INTRA- AND
INTER-CORPUS SIMILARITY

6.1 Inter-Corpus Similarity (across Datasets)
Method. There are various methods to compute a corpus similarity.
Generally speaking, we first transform document pairs into vec-
tors, apply pair-wise document similarity measurements, and then
aggregate them. Yet, since the size of OpenWebText is huge, it
is computationally expensive to employ conventional approaches.
Thus, inspired by Kilgarriff and Rose [26] and Carlini et al. [12], we
utilize perplexity measures. The perplexity of a sequence estimates
the confidence levels of an LM when predicting the inclusive tokens
in a specific order. To compute the corpus similarities of pre-training
and fine-tuning sets, we retrieve the perplexity of the pre-trained



Do Language Models Plagiarize? WWW ’23, May 1–5, 2023, Austin, TX, USA

Model Decoding
Before Filtering Low Perplexity After Filtering Low Perplexity

Verbatim Paraphrase Idea Verbatim Paraphrase Idea

Patent
GPT

temp* 0 (0%) 26 (0.52%) 11 (0.22%) 0 (0%) 11 (0.22%) 9 (0.18%)
top-k* 0 (0%) 109 (2.18%) 109 (2.18%) 0 (0%) 79 (1.58%) 54 (1.08%)
top-p* 0 (0%) 66 (1.32%) 59 (1.18%) 0 (0%) 41 (0.82%) 27 (0.54%)

Cord19
GPT

temp 0 (0%) 7 (0.14%) 6 (0.12%) 0 (0%) 4 (0.08%) 1 (0.02%)
top-k* 0 (0%) 67 (1.34%) 106 (1.12%) 0 (0%) 56 (1.12%) 36 (0.72%)
top-p* 5 (0.1%) 54 (1.08%) 59 (1.18%) 0 (0%) 35 (0.7%) 25 (0.5%)

Table 4: Number (%) of machine-generated documents w.r.t. three plagiarism types before/after removing training samples with low
perplexity. The total number of generated documents for each model and decoding method is 5,000. * indicates a statistical significance
(𝑝 < 0.05).

GPT-2 on the fine-tuning dataset. Due to the limited space, we refer
the readers to the Appendix C for a detailed description of perplexity
calculation.

Results. A low perplexity implies that LM is not surprised by the
sequence. In our case, the lower the perplexity score is, the more
comparable a particular fine-tuned corpus is to OpenWebText. We
find that a perplexity score of PatentClaim is the lowest, following
Cord-19 and ArxivAbstract (Figure 3). This result concurs with
our initial observation where PatentGPT plagiarizes the most from
OpenWebText. Subsequently, we create two versions of PatentGPT
and Cord19GPT to test the effect of perplexity on plagiarism from
OpenWebText. While the first is trained with a subset of fine-tuning
samples excluding 30% of the documents with the lowest perplexity,
the second does not consider the perplexity.

For a fair comparison, we maintain the same training configura-
tions for all model pairs.18 Finally, we generate 5,000 documents
for each model using three decoding methods and compare their
plagiarism. As shown in Table 4, omitting low perplexity documents
mitigates the intensity of plagiarism from pre-training data.19

6.2 Intra-Corpus Similarity (within Datasets)
Method. Here we adopt a traditional document similarity mea-
surement to quantify inner-similarity levels of fine-tuning datasets.
For each fine-tuning data, we first convert all instances into term
frequency-inverse document frequency (tf-idf) vectors and then ag-
gregate the averaged cosine similarity over all examples.

Results. We observe that the intra-corpus similarity of Cord-19 is
more than twice higher than PatentClaim and ArxivAbstract (Fig-
ure 3). This result coincides with our observation in RQ2 where
Cord19GPT demonstrates a heightened degree of plagiarism. More-
over, our manual inspection of verbatim plagiarism cases supports
that most of them are frequently occurring substrings. For example,
a part of BMJ’s statement about copyright and authors’ rights20

appeared 588 times in the Cord-19 corpus. We further evaluate a cor-
relation between corpus homogeneity and plagiarism by re-training
two Cord19GPT models. Specifically, the former is fine-tuned with
randomly selected 188,880 Cord-19 documents whereas the latter is
fine-tuned using filtered Cord-19 data where 11,120 highly similar

18PatentGPT variations are trained on 189,000 documents for 22,000 steps, whereas
Cord19 variations are trained on 140,000 documents for 40,850 steps.
19Refer to Appendix D for statistical testing results.
20https://authors.bmj.com/policies/copyright-and-authors-rights/

training instances (cosine similarity > 0.8) are removed. They are
both trained for roughly 42,390 steps. Table 5 supports the effective-
ness of removing similar training instances in reducing plagiarism
from fine-tuning data.21

7 FINDINGS
1. Larger LMs plagiarize more. Consistent with Carlini et al. [12]
and Carlini et al. [10], we find that larger GPT-2 models (large
and xl) generally generate plagiarized sequences more frequently
than smaller ones. Depending on the decoding approaches, however,
the model size that yields the largest amount of plagiarism change:
when the next token is sampled from truncated distribution, the
GPT-2 large model plagiarizes the most. On the other hand, the
GPT-2 xl becomes more strongly associated with plagiarism than
the GPT-2 large when the temperature setting without truncation is
employed. This discrepancy may be attributable to the error rates
of our paraphrase and idea plagiarism detection tool. Regardless, it
is evident that larger models plagiarize notably more from training
data. Considering the performance improvement of LMs with larger
model sizes, this finding sheds light on a trade-off between the
performance and copyright protection issues.

2. Decoding algorithms affect plagiarism. Varying effects of de-
coding methods and parameters on text quality and diversity have
been extensively studied [8, 15], but not from the plagiarism perspec-
tive. Particularly, top-p sampling is reported to be the most effective
decoding method in generating high-quality texts [23]. Despite its
efficiency in balancing quality and novelty, our analysis shows that
sampling with top-p or top-k truncation leads to more plagiarism
cases. This result shows that these popular sampling approaches still
pose critical flaws because they have not been thoroughly vetted in
terms of plagiarism. Thus, it is necessary to carefully choose and
evaluate decoding methods not only through the lens of quality and
diversity but also through the originality aspect.

3. Fine-tuning LMs matter. Our findings highlight that fine-tuning
a model with domain-specific data can mitigate verbatim plagiarism
from the pre-training dataset. Still, other types of plagiarism cases
have surged, in the case of PatentGPT and Cord19GPT, alongside
corpus similarity levels between pre-training and fine-tuning corpora.
Moreover, we observe that models’ plagiarism differs depending on
similarity degrees within a fine-tuning corpus. Our research validates

21Refer to Appendix D for statistical testing results.



WWW ’23, May 1–5, 2023, Austin, TX, USA Lee et al.

Model Decoding
Before Filtering Similar Documents After Filtering Similar Documents

Verbatim Paraphrase Idea Verbatim Paraphrase Idea

CORD19
GPT

temp 15 (0.3%) 64 (1.28%) 22 (0.44%) 10 (0.2%) 49 (0.98%) 25 (0.5%)
top-k* 11 (0.22%) 301 (6.02%) 238 (4.76%) 11 (0.22%) 203 (4.06%) 184 (3.68%)
top-p* 21 (0.42%) 190 (3.8%) 111 (2.22%) 11 (0.22%) 153 (3.06%) 94 (1.88%)

Table 5: Number (%) of machine-generated documents w.r.t. three plagiarism types before/after removing similar training samples.
The total number of generated documents for each model and decoding method is 5,000. * indicates a statistical significance (𝑝 < 0.05).

their relationships by comparing the rate of plagiarism before and
after removing syntactically or semantically similar instances in
fine-tuning data. Indeed, restricting inter- and intra-corpus similarity
can reduce the frequency of all plagiarism types. This result can
further be expanded as a simple solution to LMs’ plagiarism issues.

4. LMs can pose privacy harms. Our qualitative examination of
plagiarized texts reveals that LMs expose individuals’ sensitive or
private data not only through verbatim plagiarism but also para-
phrase and idea plagiarism. Although all identified contents were
publicly available on the Web, emitting such sensitive information
in the generated texts can raise a serious concern. This finding adds
value to the ongoing discussion around privacy breaches from the
memorization of modern LMs.

8 DISCUSSION AND ETHICS
Discussion. In this work, we develop a novel pipeline for investi-
gating LMs’ plagiarism in text generation processes and character-
ize a shift in plagiarism rates resulting from three attributes (i.e.,
model size, decoding methods, and corpus similarities). The datasets
utilized to train the models are the subject of this study. We use
GPT-2 as a representative LM to study because it is one of the most
downloaded LMs from Hugging Face at the end of 2022,22 and its
reproduced training corpus is publicly accessible (which is a neces-
sary condition to study the plagiarism of LMs). However, different
LMs may demonstrate different patterns of plagiarism, and thus our
results may not directly generalize to other LMs, including more
recent LMs such as GPT-3 or BLOOM. Future work can revisit the
proposed research questions against more diverse or modern LMs.

In addition, automatic plagiarism detectors are known to have
many failure modes (both in false negatives and false positives) [56].
Our plagiarism detection pipeline of Section 3.2 is no exception.
However, achieving a high precision with a low recall is not a major
issue in our problem domain, as we focus on demonstrating the
lower-bound of the plagiarism vulnerability in LMs (and in reality,
there are likely to be many more plagiarism cases that we missed
to detect due to low recalls). Likewise, prior memorization works
[12, 25] documented the lower-bound of the plagiarism susceptibility
and showed a small number of memorized instances. Regardless,
they were effective in inspiring others to continue exploring this
important phenomenon. As a result, we hope that our current finding
becomes useful to stimulate and raise public awareness about the
plagiarism behavior of popular LMs like GPT-2.

We also stress that distinguishing whether a reproduction of train-
ing datasets is a positive attribute of LM or not is beyond the scope

22https://huggingface.co/models?sort=downloads

of this work. It is highly context-dependent [30], and thus necessi-
tates more sophisticated methods to disentangle. In our experiments,
we treat all instances of LM-generated texts that reiterate training
examples as “problematic", as the fine-tuning datasets we analyzed
are in academic and legal contexts where originality is valued.

Ultimately, a primary purpose of the exploration of the intra-
and inter-corpus similarity in models’ authorship violation is to
support our hypotheses and further motivate researchers to take this
into account when developing new LMs or fine-tuning current ones.
Yet, the current approach fails to completely eradicate plagiarism
occurrences.

Ethics. Data and code, involving plagiarized texts we identified
throughout this research, are available to the research community.
Due to the inclusion of individuals’ personal data in generated texts,
we employed data anonymization techniques prior to distribution.
Specifically, we filtered PII such as name, email address, and phone
number using Microsoft’s Presidio Anonymizer.23 We recommend
that artificial documents generated by fine-tuned GPT-2 be utilized
strictly for research purposes.

9 CONCLUSION
Our work presents the first holistic and empirical analyses of plagia-
rism in LMs by constructing a pipeline for the automatic identifi-
cation of plagiarized content. We conclude that GPT-2 can exploit
and reuse words, sentences, and even core ideas (that are originally
included in OpenWebText, a pre-training corpus) in the generated
texts. Further, this tendency is prone to exacerbate as the model
size increases or certain decoding algorithms are employed. We also
discover that untangling corpus similarity and homogeneity can help
alleviate plagiarism rates by GPT-2. This is the first study to analyze
text generation outputs through the lens of plagiarism. Although the
goal of a supervised machine learning system is to learn to mimic
the distribution of its training data, we deem it crucial for model
users and designers to recognize the observed phenomena. The vul-
nerability of models to plagiarism can adversely impact societal and
ethical norms, particularly in literary disciplines that are intimately
connected to creativity and originality. Therefore, we recommend
researchers carefully assess the model’s intended usage and evaluate
its robustness before deployment.

ACKNOWLEDGMENTS
This work was in part supported by NSF awards #1934782 and
#2114824.

23https://microsoft.github.io/presidio/anonymizer/



Do Language Models Plagiarize? WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. 1985. A learning

algorithm for Boltzmann machines. Cognitive science 9, 1 (1985), 147–169.
[2] Basant Agarwal, Heri Ramampiaro, Helge Langseth, and Massimiliano Ruocco.

2018. A deep network model for paraphrase detection in short text messages.
Information Processing & Management 54, 6 (2018), 922–937.

[3] Alim Al Ayub Ahmed, Ayman Aljabouh, Praveen Kumar Donepudi, and
Myung Suh Choi. 2021. Detecting Fake News using Machine Learning: A Sys-
tematic Literature Review. arXiv preprint arXiv:2102.04458 (2021).

[4] Asim M El Tahir Ali, Hussam M Dahwa Abdulla, and Vaclav Snasel. 2011.
Overview and comparison of plagiarism detection tools.. In Dateso. 161–172.

[5] Alaa Saleh Altheneyan and Mohamed El Bachir Menai. 2020. Automatic plagia-
rism detection in obfuscated text. Pattern Analysis and Applications 23, 4 (2020),
1627–1650.

[6] Salha Alzahrani. 2015. Arabic plagiarism detection using word correlation in
N-Grams with K-overlapping approach. In Proceedings of the Workshops at the
7th Forum for Information Retrieval Evaluation (FIRE). 123–125.

[7] Alberto Barrón-Cedeño, Marta Vila, M Antònia Martí, and Paolo Rosso. 2013.
Plagiarism meets paraphrasing: Insights for the next generation in automatic
plagiarism detection. Computational Linguistics 39, 4 (2013), 917–947.

[8] Sourya Basu, Govardana Sachitanandam Ramachandran, Nitish Shirish Keskar,
and Lav R Varshney. 2020. Mirostat: A neural text decoding algorithm that directly
controls perplexity. arXiv preprint arXiv:2007.14966 (2020).

[9] Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and
Florian Tramèr. 2022. What Does it Mean for a Language Model to Preserve
Privacy? arXiv preprint arXiv:2202.05520 (2022).

[10] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian
Tramer, and Chiyuan Zhang. 2022. Quantifying Memorization Across Neural
Language Models. arXiv preprint arXiv:2202.07646 (2022).

[11] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. 2019.
The secret sharer: Evaluating and testing unintended memorization in neural
networks. In 28th USENIX Security Symposium (USENIX Security 19). 267–284.

[12] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
et al. 2021. Extracting training data from large language models. In 30th USENIX
Security Symposium (USENIX Security 21). 2633–2650.

[13] Roger Clarke. 2006. Plagiarism by academics: More complex than it seems.
Journal of the Association for Information Systems 7, 1 (2006), 5.

[14] Georgina Cosma and Mike Joy. 2008. Towards a definition of source-code plagia-
rism. IEEE Transactions on Education 51, 2 (2008), 195–200.

[15] Alexandra DeLucia, Aaron Mueller, Xiang Lisa Li, and João Sedoc. 2020. De-
coding methods for neural narrative generation. arXiv preprint arXiv:2010.07375
(2020).

[16] Liming Deng, Jie Wang, Hangming Liang, Hui Chen, Zhiqiang Xie, Bojin Zhuang,
Shaojun Wang, and Jing Xiao. 2020. An iterative polishing framework based on
quality aware masked language model for Chinese poetry generation. In Proceed-
ings of the AAAI conference on artificial intelligence, Vol. 34. 7643–7650.

[17] Ish Kumar Dhammi and Rehan Ul Haq. 2016. What is plagiarism and how to
avoid it? Indian journal of orthopaedics 50, 6 (2016), 581.

[18] Julianne East. 2010. Judging plagiarism: a problem of morality and convention.
Higher Education 59, 1 (2010), 69–83.

[19] Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical neural story
generation. arXiv preprint arXiv:1805.04833 (2018).

[20] R. Stuart Geiger. 2019. ArXiV Archive: A tidy and complete archive of metadata
for papers on arxiv.org, 1993-2019. https://doi.org/10.5281/zenodo.2533436

[21] Deepa Gupta, K Vani, and LM Leema. 2016. Plagiarism detection in text docu-
ments using sentence bounded stop word n-grams. Journal of Engineering Science
and Technology 11, 10 (2016), 1403–1420.

[22] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The
curious case of neural text degeneration. arXiv preprint arXiv:1904.09751 (2019).

[23] Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck.
2019. Automatic detection of generated text is easiest when humans are fooled.
arXiv preprint arXiv:1911.00650 (2019).

[24] Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck.
2019. Human and automatic detection of generated text. (2019).

[25] Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022. Deduplicating training
data mitigates privacy risks in language models. arXiv preprint arXiv:2202.06539
(2022).

[26] Adam Kilgarriff and Tony Rose. 1998. Measures for corpus similarity and ho-
mogeneity. In Proceedings of the Third Conference on Empirical Methods for
Natural Language Processing. 46–52.

[27] Robin Küppers and Stefan Conrad. 2012. A Set-Based Approach to Plagiarism
Detection.. In CLEF (Online Working Notes/Labs/Workshop).

[28] Laida Kushnareva, Daniil Cherniavskii, Vladislav Mikhailov, Ekaterina Arte-
mova, Serguei Barannikov, Alexander Bernstein, Irina Piontkovskaya, Dmitri
Piontkovski, and Evgeny Burnaev. 2021. Artificial text detection via examining
the topology of attention maps. arXiv preprint arXiv:2109.04825 (2021).

[29] Jieh-Sheng Lee and Jieh Hsiang. 2020. Patent claim generation by fine-tuning
OpenAI GPT-2. World Patent Information 62 (2020), 101983.

[30] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck,
Chris Callison-Burch, and Nicholas Carlini. 2021. Deduplicating training data
makes language models better. arXiv preprint arXiv:2107.06499 (2021).

[31] Klas Leino and Matt Fredrikson. 2020. Stolen Memories: Leveraging Model Mem-
orization for Calibrated {White-Box} Membership Inference. In 29th USENIX
Security Symposium (USENIX Security 20). 1605–1622.

[32] Sharon Levy, Michael Saxon, and William Yang Wang. 2021. Investigating
Memorization of Conspiracy Theories in Text Generation. arXiv preprint
arXiv:2101.00379 (2021).

[33] Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu, Jiangtao Feng, Hao Zhou, and
Lei Li. 2020. Pre-training multilingual neural machine translation by leveraging
alignment information. arXiv preprint arXiv:2010.03142 (2020).

[34] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[35] R Thomas McCoy, Paul Smolensky, Tal Linzen, Jianfeng Gao, and Asli Celiky-
ilmaz. 2021. How much do language models copy from their training data?
Evaluating linguistic novelty in text generation using RAVEN. arXiv preprint
arXiv:2111.09509 (2021).

[36] Derek Miller. 2019. Leveraging BERT for extractive text summarization on
lectures. arXiv preprint arXiv:1906.04165 (2019).

[37] Fatemehsadat Mireshghallah, Huseyin A Inan, Marcello Hasegawa, Victor Rühle,
Taylor Berg-Kirkpatrick, and Robert Sim. 2021. Privacy regularization: Joint
privacy-utility optimization in language models. arXiv preprint arXiv:2103.07567
(2021).

[38] John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi.
2020. Textattack: A framework for adversarial attacks, data augmentation, and
adversarial training in nlp. arXiv preprint arXiv:2005.05909 (2020).

[39] Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and Sergey Edunov.
2019. Facebook FAIR’s WMT19 news translation task submission. arXiv preprint
arXiv:1907.06616 (2019).

[40] Chris Park. 2003. In other (people’s) words: Plagiarism by university students–
literature and lessons. Assessment & evaluation in higher education 28, 5 (2003),
471–488.

[41] John Pavlopoulos, Jeffrey Sorensen, Lucas Dixon, Nithum Thain, and Ion Androut-
sopoulos. 2020. Toxicity detection: Does context really matter? arXiv preprint
arXiv:2006.00998 (2020).

[42] Diane Pecorari. 2008. Academic writing and plagiarism: A linguistic analysis.
Bloomsbury Publishing.

[43] Robin L Plackett. 1983. Karl Pearson and the chi-squared test. International
statistical review/revue internationale de statistique (1983), 59–72.

[44] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[45] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res.
21, 140 (2020), 1–67.

[46] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. 1995. Okapi at TREC-3. Nist Special Publication Sp 109
(1995), 109.

[47] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and Yang
Zhang. 2020. {Updates-Leak}: Data Set Inference and Reconstruction Attacks
in Online Learning. In 29th USENIX Security Symposium (USENIX Security 20).
1291–1308.

[48] Miguel A Sanchez-Perez, Alexander Gelbukh, and Grigori Sidorov. 2015. Adap-
tive algorithm for plagiarism detection: The best-performing approach at PAN
2014 text alignment competition. In International Conference of the Cross-
Language Evaluation Forum for European Languages. Springer, 402–413.

[49] Zhonghao Sheng, Kaitao Song, Xu Tan, Yi Ren, Wei Ye, Shikun Zhang, and Tao
Qin. 2020. Songmass: Automatic song writing with pre-training and alignment
constraint. arXiv preprint arXiv:2012.05168 (2020).

[50] Prasha Shrestha and Thamar Solorio. 2013. Using a Variety of n-Grams for the
Detection of Different Kinds of Plagiarism. Notebook for PAN at CLEF 2013
(2013).

[51] Ilya Sochenkov, Denis Zubarev, Ilya Tikhomirov, Ivan Smirnov, Artem Shelmanov,
Roman Suvorov, and Gennady Osipov. 2016. Exactus like: Plagiarism detection
in scientific texts. In European conference on information retrieval. Springer,
837–840.

[52] Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee. 2020. Authorship at-
tribution for neural text generation. In Conf. on Empirical Methods in Natural
Language Processing (EMNLP).

[53] Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and Dongwon Lee. 2021. Tur-
ingBench: A Benchmark Environment for Turing Test in the Age of Neural Text
Generation. In Findings of Conf. on Empirical Methods in Natural Language



WWW ’23, May 1–5, 2023, Austin, TX, USA Lee et al.

Processing (EMNLP-Findings).
[54] K Vani and Deepa Gupta. 2017. Detection of idea plagiarism using syntax–

semantic concept extractions with genetic algorithm. Expert Systems with Appli-
cations 73 (2017), 11–26.

[55] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang,
Darrin Eide, Kathryn Funk, Rodney Kinney, Ziyang Liu, William Merrill, et al.
2020. Cord-19: The covid-19 open research dataset. ArXiv (2020).

[56] Debora Weber-Wulff. 2019. Plagiarism detectors are a crutch, and a problem.
Nature 567, 7749 (2019), 435–436.

[57] Max Wolff and Stuart Wolff. 2020. Attacking neural text detectors. arXiv preprint
arXiv:2002.11768 (2020).

[58] Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew
Paverd, Olga Ohrimenko, Boris Köpf, and Marc Brockschmidt. 2020. Analyzing
information leakage of updates to natural language models. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security.
363–375.

[59] Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian
Tramèr, and Nicholas Carlini. 2021. Counterfactual Memorization in Neural
Language Models. arXiv preprint arXiv:2112.12938 (2021).

A EVALUATION DATA FOR OUR
PLAGIARISM DETECTION PIPELINE

We use two corpora with plagiarism labels to measure the precision
and recall scores of our proposed pipeline described in Section 3.2.
The first dataset (denoted as PanDataset) is originally introduced
as a test set for the fifth international competition on plagiarism
detection at PAN 2013.24 It contains in total 3,170 source docu-
ments and 1,827 suspicious documents where 1,001 document pairs
are without plagiarism and 1,001 pairs are affiliated with verbatim
plagiarism. In order to automatically create document pairs for para-
phrase plagiarism, the organizers applied machine-driven approaches
such as randomly replacing words based on a synonym database
like WordNet or back-translating sentences with existing translation
models (e.g., Google Translate25) using source documents. This
resulted in 2,002 pairs. Similarly, 1,186 summary plagiarism cases
are generated by existing text summarization models.

Given that PanDataset may exhibit different characteristics from
GPT-2 generated texts, we consider a subset of OpenWebText as
source documents, create suspicious documents, and use the pairs as
the second dataset (denoted as GptPlagiarismDataset). More specif-
ically, we construct 1,000 document pairs for verbatim plagiarism
by extracting 500 character-long texts within source documents and
using them as suspicious documents. For paraphrase plagiarism,
we randomly select 5 sentences from 1,000 source documents and
employ Facebook FAIR’s WMT19 transformer [39] for back trans-
lation (English->German->English). Lastly, 1,000 document pairs
for summary plagiarism are created by two summarization models.
We first shorten the lengths of source documents with a BERT-based
extractive summarization model [36] and then transformed them
into meaningful summaries using T5 transformer [45] for abstrac-
tive summarization. This enables us to create more sophisticated
summaries with minimal overlapping strings.

B DETAILS ON FINE-TUNING
CONFIGURATIONS

Our experimental environment is based on a Google Colab Pro+
with Tesla V100-SXM2-16GB and 55 GB of RAM. For fine-tuning,
we utilize a Python package called GPT-2-simple.26 We maintain

24https://pan.webis.de/clef13/pan13-web/text-alignment.html
25http://translate.google.com
26https://github.com/minimaxir/gpt-2-simple

hyperparameters that are suggested in public repositories: learning
rate as 1e-4, temperature as 1.0, top-k as 40, and batch size as 1. The
ratio of training and validation sets is 8:2. To prevent the model from
overfitting, we stop training processes when a gap between training
and test losses reaches over 20% of training loss. Table 7 illustrates
their fine-tuning configurations. Fine-tuning one model for 10,000
steps approximately takes 5 hours.

C LM PERPLEXITY CALCULATION
Perplexity is defined as the exponentiation of the cross-entropy
between the data and LM predictions. Given a tokenized sequence
𝑋 = (𝑥0, 𝑥1, 𝑥2 ...𝑥𝑛), the perplexity of 𝑋 can be calculated by:

𝑝𝑒𝑟𝑝 (𝑋 ) = 𝑒𝑥𝑝

{
− 1
𝑚

𝑚∑︁
𝑛

𝑙𝑜𝑔𝑓𝜃 (𝑥𝑛 |𝑥≤𝑛−1)
}

where 𝑙𝑜𝑔𝑓𝜃 (𝑥𝑛 |𝑥≤𝑛−1) is the log-likelihood of the 𝑛th token condi-
tioned on the preceding tokens. Following the guideline provided
by Huggingface,27 we rely on a strided sliding-window technique,
which entails moving the context window repeatedly so that the
model has a broader context when making each prediction. Here
a window size is a hyper-parameter we can adjust. To retrieve one
aggregated perplexity that represents the whole instances, we first
append all documents with newlines and then set the window size
as 512. For an individual document perplexity calculation of the
Cord-19 dataset, we reduce the window size to 50 since we do not
append all documents this time, and many Cord-19 documents tend
to be shorter than 512 tokens.

D STATISTICAL TESTING OF FILTERING
We perform the Pearson’s chi-squared test [43] to verify the sta-
tistical significance of the observed gap between before and after
filtering low-perplexity and similar documents. The test is used to
determine whether there is a statistically significant difference be-
tween the expected frequencies and the observed frequencies. Here
we treat plagiarism as a binary variable (no plagiarism vs. plagia-
rism) and count the total number of documents accordingly. For
plagiarized document count, we do not distinguish plagiarism types.
Table 8 shows the results of the chi-squared test. Most of our experi-
ments except for Cord19GPT’s temperature setting are found to be
statistically meaningful.

E PLAGIARIZED TEXT EXAMPLES
We present several examples of verbatim, paraphrase, and idea pla-
giarism from both pre-trained and fine-tuned models (Table 6). For
verbatim plagiarism, we identify cases where social media’s app ID
and its metadata are memorized, as well as an individual’s writing.
We also frequently find a paragraph related to journals’ copyright and
authors’ rights as verbatim plagiarism from the model trained with
academic papers. Examples associated with paraphrase plagiarism,
especially those authored by GPT-2 and Cord19GPT, demonstrate
models’ abilities in delivering factual information in a different
syntactic form without proper references. PatentGPT’s plagiarism
cases tend to mimic patent data by rephrasing and elaborating on the
described processes created by original patent owners.

27https://huggingface.co/docs/transformers/perplexity



Do Language Models Plagiarize? WWW ’23, May 1–5, 2023, Austin, TX, USA

Type Machine-Written Text Training Text

Verbatim
Unexpected Error An unexpected error occurred. [...] "facebookAp-

pID":***,"allow_select":true,"allow_filter":true,"allow_sheetlink":true
[...] (Author: GPT-2)

Unexpected Error An unexpected error occurred. [...] "facebookAp-
pID":***,"allow_select":true,"allow_filter":true,"allow_sheetlink":true [...]

Verbatim
it reminded me of a feeling I’ve had right there on that road before. It
reminded me of all the times that people have come out to support the

blockade and stood together to make sure those trees stay standing. [...]
(Author: GPT-2)

it reminded me of a feeling I’ve had right there on that road before. It
reminded me of all the times that people have come out to support the

blockade and stood together to make sure those trees stay standing. [...]

Verbatim
I, the Submitting Author has the right to grant and does grant on behalf of

all authors of the Work (as defined in the below author licence), an
exclusive licence and/or a non-exclusive licence for contributions from
authors who are: i) UK Crown employees; ii) where BMJ has agreed a

CC-BY licence shall apply, and/or iii) in accordance with the terms
applicable for US Federal Government officers or employees acting as part

of their official duties; [...](Author: Cord19GPT)

I, the Submitting Author has the right to grant and does grant on behalf of
all authors of the Work (as defined in the below author licence), an

exclusive licence and/or a non-exclusive licence for contributions from
authors who are: i) UK Crown employees; ii) where BMJ has agreed a

CC-BY licence shall apply, and/or iii) in accordance with the terms
applicable for US Federal Government officers or employees acting as part

of their official duties; [...]

Paraphrase

REUTERS/Kevin Lamarque U.S. President Donald Trump and First Lady
Melania Trump, with their son Barron, arrive for a New Year’s Eve party at
his Mar-a-Lago club in Palm Beach, Florida, U.S. December 31, 2017. [...]

(Author: GPT-2)

REUTERS/Kevin Lamarque U.S. President Donald Trump, First Lady
Melania Trump and their son Barron while aboard Air Force One on their
way to Florida, Mar-a-Lago in Palm Beach, Florida to spend the holiday at

Trump International Golf Club Mar-a-Lago. [...]

Paraphrase

The development of natural killer cells (NK cells) is an important element
in the immune system as it provides the first line of defense against diverse

pathogens. (Author: Cord19GPT)

Natural killer (NK) cells are a type of innate lymphoid cell that plays an
important role in the first line of immune defense against any viral

infection, including COVID-19.

Paraphrase

A system, comprising: a sense circuit for receiving an electrical [...] and a
digital compensator coupled with the sense circuit and for receiving the

output value from the decision circuit and generating a compensation value
in accordance with the output value [...] (Author: PatentGPT)

Apple’s First Claim: A touch surface device, comprising: a touch-sensitive
panel [...] and a sensing circuit coupled to the compensation circuit, the
sensing circuit configured for receiving the compensated output signal.

Idea

A method for testing electrical connections, comprising: [...] providing an
electric voltage and an electric current to an electrical contact on the test

element to transfer the electrical conductivity of the line to ground; wherein
the measuring is carried out with the electric current flowing from the
electrical contact on the test element through the electric current to the

ground; [...] (Author: PatentGPT)

The energy passing between elements A and B is in the form of an electric
current through the earth between the two ground connections.

Idea

A control system comprising: a processor configured to execute an
operation on a memory and to output an instruction stream having a

plurality of executable instructions, wherein the output of the plurality of
executable instructions is selectively selectable [...]; and a storage device

storing a plurality of items of a control structure, each of the control
structures containing executable instructions, which when executed by the

processor, cause the processor to perform [...] (Author: PatentGPT)

The system also may comprise a memory having stored thereon
instructions that, upon execution by the at least one processor, cause the

system to perform [...]

Idea

Symptoms of COVID-19 infections are relatively mild, such as fever, dry
cough, headache, diarrhea, dyspnoea, body ache, myalgia and sometimes
headache. In some infected patients, however, the infection is more rapid

and severe with fever, dyspnoea, shortness of breath, cough and other
non-specific symptoms such as sore throat, runny nose, dry throat and
sputum production. [...] Several factors are strongly associated with

mortality in the SARS-CoV-2 outbreak. [...] and comorbidities such as
hypertension, obesity, chronic lung disease, obesity and diabetes. (Author:

Cord19GPT)

The most common symptoms of COVID-19 are headache, loss of smell,
nasal congestion, cough, asthenia, myalgia, rhinorrhea, sore throat, fever,
shortness of breath, nausea or vomiting, and diarrhea [2, 3] . Commonly
reported comorbidities of COVID-19 are hypertension, obesity, diabetes,

and cardiovascular disease [4].

Table 6: Examples of plagiarism identified in texts written by GPT-2 and its training set. Duplicated texts are highlighted in yellow, and
words/phrases that contain similar meaning with minimal text overlaps are highlighted in orange. [...] indicates the texts omitted for
brevity. Personally identifiable information (PII) was masked as ***.

Model Name Training Steps Training / Test Loss
ArXivAbstractGPT 30,000 2.48 / 2.83

Cord19GPT 44,000 2.6 / 2.68
PatentGPT 32,300 1.65 / 1.87

Table 7: Fine-tuning configurations



WWW ’23, May 1–5, 2023, Austin, TX, USA Lee et al.

Model Decoding Plagiarized Document # (before filtering vs. after filtering ) 𝑝

Patent
GPT

temp 37 vs. 20 0.002
top-k 218 vs. 133 <0.00001
top-p 125 vs. 86 0.007

Cord19
GPT

temp 13 vs. 5 0.059
top-k 173 vs. 92 <0.00001
top-p 118 vs. 60 0.00002

Cord19
GPT

temp 101 vs. 84 0.207
top-k 550 vs. 398 <0.00001
top-p 322 vs. 258 0.006

Table 8: Statistical results of the chi-squared test. The first result regarding Cord19GPT is for perplexity, whereas the second one is for
document similarity.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Memorization in LMs
	2.2 Automatic Plagiarism Detection

	3 Plagiarism: Definition and Detection
	3.1 Taxonomy of Plagiarism
	3.2 Automatic Detection of Plagiarism

	4 RQ1: Do Pre-trained LMs Plagiarize?
	4.1 Experimental Setup
	4.2 Results
	4.3 Qualitative Examination of Plagiarized Texts

	5 RQ2: Do Fine-tuned LMs Plagiarize?
	5.1 Experimental Setup
	5.2 Results

	6 Plagiarism v.s. Intra- and Inter-Corpus Similarity
	6.1 Inter-Corpus Similarity (across Datasets)
	6.2 Intra-Corpus Similarity (within Datasets)

	7 Findings
	8 Discussion and Ethics
	9 Conclusion
	Acknowledgments
	References
	A Evaluation Data for Our Plagiarism Detection Pipeline
	B Details on Fine-tuning Configurations
	C LM Perplexity Calculation
	D Statistical Testing of Filtering
	E Plagiarized Text Examples

